summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_flexcan.c
diff options
context:
space:
mode:
Diffstat (limited to 'bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_flexcan.c')
-rw-r--r--bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_flexcan.c3564
1 files changed, 3564 insertions, 0 deletions
diff --git a/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_flexcan.c b/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_flexcan.c
new file mode 100644
index 0000000000..682dae7492
--- /dev/null
+++ b/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_flexcan.c
@@ -0,0 +1,3564 @@
+/*
+ * Copyright (c) 2015, Freescale Semiconductor, Inc.
+ * Copyright 2016-2020 NXP
+ * All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include "fsl_flexcan.h"
+
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+
+/* Component ID definition, used by tools. */
+#ifndef FSL_COMPONENT_ID
+#define FSL_COMPONENT_ID "platform.drivers.flexcan"
+#endif
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
+#define RXINTERMISSION (CAN_DBG1_CFSM(0x2f))
+#define TXINTERMISSION (CAN_DBG1_CFSM(0x14))
+#define BUSIDLE (CAN_DBG1_CFSM(0x02))
+#define CBN_VALUE3 (CAN_DBG1_CBN(0x03))
+#define DELAY_BUSIDLE (200)
+#endif
+
+#define IDEAL_SP_LOW (750U)
+#define IDEAL_SP_MID (800U)
+#define IDEAL_SP_HIGH (875U)
+#define IDEAL_SP_FACTOR (1000U)
+
+#define MAX_PROPSEG (CAN_CTRL1_PROPSEG_MASK >> CAN_CTRL1_PROPSEG_SHIFT)
+#define MAX_PSEG1 (CAN_CTRL1_PSEG1_MASK >> CAN_CTRL1_PSEG1_SHIFT)
+#define MAX_PSEG2 (CAN_CTRL1_PSEG2_MASK >> CAN_CTRL1_PSEG2_SHIFT)
+#define MAX_RJW (CAN_CTRL1_RJW_MASK >> CAN_CTRL1_RJW_SHIFT)
+#define MAX_PRESDIV (CAN_CTRL1_PRESDIV_MASK >> CAN_CTRL1_PRESDIV_SHIFT)
+#define CTRL1_MAX_TIME_QUANTA (1U + MAX_PROPSEG + 1U + MAX_PSEG1 + 1U + MAX_PSEG2 + 1U)
+#define CTRL1_MIN_TIME_QUANTA (8U)
+
+#define MAX_EPROPSEG (CAN_CBT_EPROPSEG_MASK >> CAN_CBT_EPROPSEG_SHIFT)
+#define MAX_EPSEG1 (CAN_CBT_EPSEG1_MASK >> CAN_CBT_EPSEG1_SHIFT)
+#define MAX_EPSEG2 (CAN_CBT_EPSEG2_MASK >> CAN_CBT_EPSEG2_SHIFT)
+#define MAX_ERJW (CAN_CBT_ERJW_MASK >> CAN_CBT_ERJW_SHIFT)
+#define MAX_EPRESDIV (CAN_CBT_EPRESDIV_MASK >> CAN_CBT_EPRESDIV_SHIFT)
+#define CBT_MAX_TIME_QUANTA (1U + MAX_EPROPSEG + 1U + MAX_EPSEG1 + 1U + MAX_EPSEG2 + 1U)
+#define CBT_MIN_TIME_QUANTA (8U)
+
+#define MAX_FPROPSEG (CAN_FDCBT_FPROPSEG_MASK >> CAN_FDCBT_FPROPSEG_SHIFT)
+#define MAX_FPSEG1 (CAN_FDCBT_FPSEG1_MASK >> CAN_FDCBT_FPSEG1_SHIFT)
+#define MAX_FPSEG2 (CAN_FDCBT_FPSEG2_MASK >> CAN_FDCBT_FPSEG2_SHIFT)
+#define MAX_FRJW (CAN_FDCBT_FRJW_MASK >> CAN_FDCBT_FRJW_SHIFT)
+#define MAX_FPRESDIV (CAN_FDCBT_FPRESDIV_MASK >> CAN_FDCBT_FPRESDIV_SHIFT)
+#define FDCBT_MAX_TIME_QUANTA (1U + MAX_FPROPSEG + 0U + MAX_FPSEG1 + 1U + MAX_FPSEG2 + 1U)
+#define FDCBT_MIN_TIME_QUANTA (5U)
+
+#define MAX_CANFD_BAUDRATE (8000000U)
+#define MAX_CAN_BAUDRATE (1000000U)
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595)
+#define CAN_ESR1_FLTCONF_BUSOFF CAN_ESR1_FLTCONF(2U)
+#endif
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+#ifndef CAN_CLOCK_CHECK_NO_AFFECTS
+/* If no define such MACRO, it mean that the CAN in current device have no clock affect issue. */
+#define CAN_CLOCK_CHECK_NO_AFFECTS (true)
+#endif /* CAN_CLOCK_CHECK_NO_AFFECTS */
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+/*! @brief FlexCAN Internal State. */
+enum _flexcan_state
+{
+ kFLEXCAN_StateIdle = 0x0, /*!< MB/RxFIFO idle.*/
+ kFLEXCAN_StateRxData = 0x1, /*!< MB receiving.*/
+ kFLEXCAN_StateRxRemote = 0x2, /*!< MB receiving remote reply.*/
+ kFLEXCAN_StateTxData = 0x3, /*!< MB transmitting.*/
+ kFLEXCAN_StateTxRemote = 0x4, /*!< MB transmitting remote request.*/
+ kFLEXCAN_StateRxFifo = 0x5, /*!< RxFIFO receiving.*/
+};
+
+/*! @brief FlexCAN message buffer CODE for Rx buffers. */
+enum _flexcan_mb_code_rx
+{
+ kFLEXCAN_RxMbInactive = 0x0, /*!< MB is not active.*/
+ kFLEXCAN_RxMbFull = 0x2, /*!< MB is full.*/
+ kFLEXCAN_RxMbEmpty = 0x4, /*!< MB is active and empty.*/
+ kFLEXCAN_RxMbOverrun = 0x6, /*!< MB is overwritten into a full buffer.*/
+ kFLEXCAN_RxMbBusy = 0x8, /*!< FlexCAN is updating the contents of the MB.*/
+ /*! The CPU must not access the MB.*/
+ kFLEXCAN_RxMbRanswer = 0xA, /*!< A frame was configured to recognize a Remote Request Frame */
+ /*! and transmit a Response Frame in return.*/
+ kFLEXCAN_RxMbNotUsed = 0xF, /*!< Not used.*/
+};
+
+/*! @brief FlexCAN message buffer CODE FOR Tx buffers. */
+enum _flexcan_mb_code_tx
+{
+ kFLEXCAN_TxMbInactive = 0x8, /*!< MB is not active.*/
+ kFLEXCAN_TxMbAbort = 0x9, /*!< MB is aborted.*/
+ kFLEXCAN_TxMbDataOrRemote = 0xC, /*!< MB is a TX Data Frame(when MB RTR = 0) or */
+ /*!< MB is a TX Remote Request Frame (when MB RTR = 1).*/
+ kFLEXCAN_TxMbTanswer = 0xE, /*!< MB is a TX Response Request Frame from */
+ /*! an incoming Remote Request Frame.*/
+ kFLEXCAN_TxMbNotUsed = 0xF, /*!< Not used.*/
+};
+
+/* Typedef for interrupt handler. */
+typedef void (*flexcan_isr_t)(CAN_Type *base, flexcan_handle_t *handle);
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+
+#if !defined(NDEBUG)
+/*!
+ * @brief Check if Message Buffer is occupied by Rx FIFO.
+ *
+ * This function check if Message Buffer is occupied by Rx FIFO.
+ *
+ * @param base FlexCAN peripheral base address.
+ * @param mbIdx The FlexCAN Message Buffer index.
+ */
+static bool FLEXCAN_IsMbOccupied(CAN_Type *base, uint8_t mbIdx);
+#endif
+
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+/*!
+ * @brief Get the first valid Message buffer ID of give FlexCAN instance.
+ *
+ * This function is a helper function for Errata 5641 workaround.
+ *
+ * @param base FlexCAN peripheral base address.
+ * @return The first valid Message Buffer Number.
+ */
+static uint8_t FLEXCAN_GetFirstValidMb(CAN_Type *base);
+#endif
+
+/*!
+ * @brief Check if Message Buffer interrupt is enabled.
+ *
+ * This function check if Message Buffer interrupt is enabled.
+ *
+ * @param base FlexCAN peripheral base address.
+ * @param mbIdx The FlexCAN Message Buffer index.
+ * @return TRUE if the index MB interrupt mask enabled, FALSE if the index MB interrupt mask disabled.
+ *
+ */
+static bool FLEXCAN_IsMbIntEnabled(CAN_Type *base, uint8_t mbIdx);
+
+/*!
+ * @brief Reset the FlexCAN Instance.
+ *
+ * Restores the FlexCAN module to reset state, notice that this function
+ * will set all the registers to reset state so the FlexCAN module can not work
+ * after calling this API.
+ *
+ * @param base FlexCAN peripheral base address.
+ */
+static void FLEXCAN_Reset(CAN_Type *base);
+
+/*!
+ * @brief Set Baud Rate of FlexCAN.
+ *
+ * This function set the baud rate of FlexCAN.
+ *
+ * @param base FlexCAN peripheral base address.
+ * @param sourceClock_Hz Source Clock in Hz.
+ * @param baudRate_Bps Baud Rate in Bps.
+ * @param timingConfig FlexCAN timingConfig.
+ */
+static void FLEXCAN_SetBaudRate(CAN_Type *base,
+ uint32_t sourceClock_Hz,
+ uint32_t baudRate_Bps,
+ flexcan_timing_config_t timingConfig);
+/*!
+ * @brief Calculates the segment values for a single bit time for classical CAN
+ *
+ * @param baudRate The data speed in bps
+ * @param tqNum Number of time quantas per bit
+ * @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ *
+ * @return TRUE if Calculates the segment success, FALSE if Calculates the segment success
+ */
+static bool FLEXCAN_GetSegments(uint32_t baudRate, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig);
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * @brief Set Baud Rate of FlexCAN FD frame.
+ *
+ * This function set the baud rate of FlexCAN FD frame.
+ *
+ * @param base FlexCAN peripheral base address.
+ * @param sourceClock_Hz Source Clock in Hz.
+ * @param baudRateFD_Bps FD frame Baud Rate in Bps.
+ * @param timingConfig FlexCAN timingConfig.
+ */
+static void FLEXCAN_SetFDBaudRate(CAN_Type *base,
+ uint32_t sourceClock_Hz,
+ uint32_t baudRateFD_Bps,
+ flexcan_timing_config_t timingConfig);
+
+/*!
+ * @brief Get Mailbox offset number by dword.
+ *
+ * This function gets the offset number of the specified mailbox.
+ * Mailbox is not consecutive between memory regions when payload is not 8 bytes
+ * so need to calculate the specified mailbox address.
+ * For example, in the first memory region, MB[0].CS address is 0x4002_4080. For 32 bytes
+ * payload frame, the second mailbox is ((1/12)*512 + 1%12*40)/4 = 10, meaning 10 dword
+ * after the 0x4002_4080, which is actually the address of mailbox MB[1].CS.
+ *
+ * @param base FlexCAN peripheral base address.
+ * @param mbIdx Mailbox index.
+ */
+static uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx);
+
+/*!
+ * @brief Calculates the segment values for a single bit time for CANFD bus control baud Rate
+ *
+ * @param baudRate The canfd bus control speed in bps
+ * @param tqNum Number of time quanta per bit
+ * @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ *
+ * @return TRUE if Calculates the segment success, FALSE if Calculates the segment success
+ */
+static bool FLEXCAN_FDGetSegments(uint32_t baudRate, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig);
+
+/*!
+ * @brief Calculates the segment values for a single bit time for CANFD bus data baud Rate
+ *
+ * @param baudRatebrs The canfd bus data speed in bps
+ * @param tqNum Number of time quanta per bit
+ * @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ *
+ * @return TRUE if Calculates the segment success, FALSE if Calculates the segment success
+ */
+static bool FLEXCAN_FDGetSegmentswithBRS(uint32_t baudRatebrs, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig);
+
+/*!
+ * @brief Calculates the improved timing values by specific baudrates for CAN by CBT register
+ *
+ * @param baudRate The classical CAN speed in bps defined by user
+ * @param sourceClock_Hz The Source clock data speed in bps. Zero to disable baudrate switching
+ * @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ *
+ * @return TRUE if timing configuration found, FALSE if failed to find configuration
+ */
+static bool FLEXCAN_CalculateImprovedTimingValuesByCBT(uint32_t baudRate,
+ uint32_t sourceClock_Hz,
+ flexcan_timing_config_t *pTimingConfig);
+#endif
+
+/*!
+ * @brief Check unhandle interrupt events
+ *
+ * @param base FlexCAN peripheral base address.
+ * @return TRUE if unhandled interrupt action exist, FALSE if no unhandlered interrupt action exist.
+ */
+static bool FLEXCAN_CheckUnhandleInterruptEvents(CAN_Type *base);
+
+/*!
+ * @brief Sub Handler Data Trasfered Events
+ *
+ * @param base FlexCAN peripheral base address.
+ * @param handle FlexCAN handle pointer.
+ * @param pResult Pointer to the Handle result.
+ * @return the status after handle each data transfered event.
+ */
+static status_t FLEXCAN_SubHandlerForDataTransfered(CAN_Type *base, flexcan_handle_t *handle, uint32_t *pResult);
+
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+
+/* Array of FlexCAN peripheral base address. */
+static CAN_Type *const s_flexcanBases[] = CAN_BASE_PTRS;
+
+/* Array of FlexCAN IRQ number. */
+static const IRQn_Type s_flexcanRxWarningIRQ[] = CAN_Rx_Warning_IRQS;
+static const IRQn_Type s_flexcanTxWarningIRQ[] = CAN_Tx_Warning_IRQS;
+static const IRQn_Type s_flexcanWakeUpIRQ[] = CAN_Wake_Up_IRQS;
+static const IRQn_Type s_flexcanErrorIRQ[] = CAN_Error_IRQS;
+static const IRQn_Type s_flexcanBusOffIRQ[] = CAN_Bus_Off_IRQS;
+static const IRQn_Type s_flexcanMbIRQ[] = CAN_ORed_Message_buffer_IRQS;
+
+/* Array of FlexCAN handle. */
+static flexcan_handle_t *s_flexcanHandle[ARRAY_SIZE(s_flexcanBases)];
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+/* Array of FlexCAN clock name. */
+static const clock_ip_name_t s_flexcanClock[] = FLEXCAN_CLOCKS;
+#if defined(FLEXCAN_PERIPH_CLOCKS)
+/* Array of FlexCAN serial clock name. */
+static const clock_ip_name_t s_flexcanPeriphClock[] = FLEXCAN_PERIPH_CLOCKS;
+#endif /* FLEXCAN_PERIPH_CLOCKS */
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+/* FlexCAN ISR for transactional APIs. */
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
+static flexcan_isr_t s_flexcanIsr = (flexcan_isr_t)DefaultISR;
+#else
+static flexcan_isr_t s_flexcanIsr;
+#endif
+
+/*******************************************************************************
+ * Code
+ ******************************************************************************/
+
+/*!
+ * brief Get the FlexCAN instance from peripheral base address.
+ *
+ * param base FlexCAN peripheral base address.
+ * return FlexCAN instance.
+ */
+uint32_t FLEXCAN_GetInstance(CAN_Type *base)
+{
+ uint32_t instance;
+
+ /* Find the instance index from base address mappings. */
+ for (instance = 0; instance < ARRAY_SIZE(s_flexcanBases); instance++)
+ {
+ if (s_flexcanBases[instance] == base)
+ {
+ break;
+ }
+ }
+
+ assert(instance < ARRAY_SIZE(s_flexcanBases));
+
+ return instance;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595)
+void FLEXCAN_EnterFreezeMode(CAN_Type *base)
+{
+ uint32_t u32TimeoutCount = 0U;
+ uint32_t u32TempMCR = 0U;
+ uint32_t u32TempIMASK1 = 0U;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint32_t u32TempIMASK2 = 0U;
+#endif
+
+ /* Step1: set FRZ enable in MCR. */
+ base->MCR |= CAN_MCR_FRZ_MASK;
+
+ /* Step2: to check if MDIS bit set in MCR. if yes, clear it. */
+ if (0U != (base->MCR & CAN_MCR_MDIS_MASK))
+ {
+ base->MCR &= ~CAN_MCR_MDIS_MASK;
+ }
+
+ /* Step3: polling LPMACK. */
+ u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT;
+ while ((0U == (base->MCR & CAN_MCR_LPMACK_MASK)) && (u32TimeoutCount > 0U))
+ {
+ u32TimeoutCount--;
+ }
+
+ /* Step4: to check FLTCONF in ESR1 register */
+ if (0U == (base->ESR1 & CAN_ESR1_FLTCONF_BUSOFF))
+ {
+ /* Step5B: Set Halt bits. */
+ base->MCR |= CAN_MCR_HALT_MASK;
+
+ /* Step6B: Poll the MCR register until the Freeze Acknowledge (FRZACK) bit is set, timeout need more than 178
+ * CAN bit length, so 20 multiply timeout is enough. */
+ u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT * 20U;
+ while ((0U == (base->MCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0U))
+ {
+ u32TimeoutCount--;
+ }
+ }
+ else
+ {
+ /* backup MCR and IMASK register. Errata document not descript it, but we need backup for step 8A and 9A. */
+ u32TempMCR = base->MCR;
+ u32TempIMASK1 = base->IMASK1;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ u32TempIMASK2 = base->IMASK2;
+#endif
+
+ /* Step5A: Set the Soft Reset bit ((SOFTRST) in the MCR.*/
+ base->MCR |= CAN_MCR_SOFTRST_MASK;
+
+ /* Step6A: Poll the MCR register until the Soft Reset (SOFTRST) bit is cleared. */
+ u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT;
+ while ((CAN_MCR_SOFTRST_MASK == (base->MCR & CAN_MCR_SOFTRST_MASK)) && (u32TimeoutCount > 0U))
+ {
+ u32TimeoutCount--;
+ }
+
+ /* Step7A: Poll the MCR register until the Freeze Acknowledge (FRZACK) bit is set. */
+ u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT;
+ while ((0U == (base->MCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0U))
+ {
+ u32TimeoutCount--;
+ }
+
+ /* Step8A: reconfig MCR. */
+ base->MCR = u32TempMCR;
+
+ /* Step9A: reconfig IMASK. */
+ base->IMASK1 = u32TempIMASK1;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ base->IMASK2 = u32TempIMASK2;
+#endif
+ }
+}
+#elif (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_8341) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_8341)
+void FLEXCAN_EnterFreezeMode(CAN_Type *base)
+{
+ uint32_t u32TimeoutCount = 0U;
+ uint32_t u32TempMCR = 0U;
+ uint32_t u32TempIMASK1 = 0U;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint32_t u32TempIMASK2 = 0U;
+#endif
+
+ /* Step1: set FRZ and HALT bit enable in MCR. */
+ base->MCR |= CAN_MCR_FRZ_MASK;
+ base->MCR |= CAN_MCR_HALT_MASK;
+
+ /* Step2: to check if MDIS bit set in MCR. if yes, clear it. */
+ if (0U != (base->MCR & CAN_MCR_MDIS_MASK))
+ {
+ base->MCR &= ~CAN_MCR_MDIS_MASK;
+ }
+
+ /* Step3: Poll the MCR register until the Freeze Acknowledge (FRZACK) bit is set. */
+ u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT * 100U;
+ while ((0U == (base->MCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0U))
+ {
+ u32TimeoutCount--;
+ }
+
+ /* Step4: check whether the timeout reached. if no skip step5 to step8. */
+ if (0U == u32TimeoutCount)
+ {
+ /* backup MCR and IMASK register. Errata document not descript it, but we need backup for step 8A and 9A. */
+ u32TempMCR = base->MCR;
+ u32TempIMASK1 = base->IMASK1;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ u32TempIMASK2 = base->IMASK2;
+#endif
+ /* Step5: Set the Soft Reset bit ((SOFTRST) in the MCR.*/
+ base->MCR |= CAN_MCR_SOFTRST_MASK;
+
+ /* Step6: Poll the MCR register until the Soft Reset (SOFTRST) bit is cleared. */
+ while (CAN_MCR_SOFTRST_MASK == (base->MCR & CAN_MCR_SOFTRST_MASK))
+ {
+ }
+
+ /* Step7: reconfig MCR. */
+ base->MCR = u32TempMCR;
+
+ /* Step8: reconfig IMASK. */
+ base->IMASK1 = u32TempIMASK1;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ base->IMASK2 = u32TempIMASK2;
+#endif
+ }
+}
+#else
+void FLEXCAN_EnterFreezeMode(CAN_Type *base)
+{
+ /* Set Freeze, Halt bits. */
+ base->MCR |= CAN_MCR_FRZ_MASK;
+ base->MCR |= CAN_MCR_HALT_MASK;
+ while (0U == (base->MCR & CAN_MCR_FRZACK_MASK))
+ {
+ }
+}
+#endif
+
+void FLEXCAN_ExitFreezeMode(CAN_Type *base)
+{
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
+ /* Enable to update in MCER. */
+ base->CTRL2 |= CAN_CTRL2_ECRWRE_MASK;
+ base->MECR &= ~CAN_MECR_ECRWRDIS_MASK;
+#endif
+
+ /* Clear Freeze, Halt bits. */
+ base->MCR &= ~CAN_MCR_HALT_MASK;
+ base->MCR &= ~CAN_MCR_FRZ_MASK;
+
+ /* Wait until the FlexCAN Module exit freeze mode. */
+ while (0U != (base->MCR & CAN_MCR_FRZACK_MASK))
+ {
+ }
+}
+
+#if !defined(NDEBUG)
+static bool FLEXCAN_IsMbOccupied(CAN_Type *base, uint8_t mbIdx)
+{
+ uint8_t lastOccupiedMb;
+ bool fgRet;
+
+ /* Is Rx FIFO enabled? */
+ if (0U != (base->MCR & CAN_MCR_RFEN_MASK))
+ {
+ /* Get RFFN value. */
+ lastOccupiedMb = (uint8_t)((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT);
+ /* Calculate the number of last Message Buffer occupied by Rx FIFO. */
+ lastOccupiedMb = ((lastOccupiedMb + 1U) * 2U) + 5U;
+
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ /* the first valid MB should be occupied by ERRATA 5461 or 5829. */
+ lastOccupiedMb += 1U;
+#endif
+ fgRet = (mbIdx <= lastOccupiedMb);
+ }
+ else
+ {
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ if (0U == mbIdx)
+ {
+ fgRet = true;
+ }
+ else
+#endif
+ {
+ fgRet = false;
+ }
+ }
+
+ return fgRet;
+}
+#endif
+
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+static uint8_t FLEXCAN_GetFirstValidMb(CAN_Type *base)
+{
+ uint8_t firstValidMbNum;
+
+ if (0U != (base->MCR & CAN_MCR_RFEN_MASK))
+ {
+ firstValidMbNum = (uint8_t)((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT);
+ firstValidMbNum = ((firstValidMbNum + 1U) * 2U) + 6U;
+ }
+ else
+ {
+ firstValidMbNum = 0U;
+ }
+
+ return firstValidMbNum;
+}
+#endif
+
+static bool FLEXCAN_IsMbIntEnabled(CAN_Type *base, uint8_t mbIdx)
+{
+ /* Assertion. */
+ assert(mbIdx < (uint8_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base));
+
+ uint32_t flag = 1U;
+ bool fgRet = false;
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ if (mbIdx >= 32U)
+ {
+ fgRet = (0U != (base->IMASK2 & (flag << (mbIdx - 32U))));
+ }
+ else
+#endif
+ {
+ fgRet = (0U != (base->IMASK1 & (flag << mbIdx)));
+ }
+
+ return fgRet;
+}
+
+static void FLEXCAN_Reset(CAN_Type *base)
+{
+ /* The module must should be first exit from low power
+ * mode, and then soft reset can be applied.
+ */
+ assert(0U == (base->MCR & CAN_MCR_MDIS_MASK));
+
+ uint8_t i;
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
+ if (0 != (FSL_FEATURE_FLEXCAN_INSTANCE_HAS_DOZE_MODE_SUPPORTn(base)))
+ {
+ /* De-assert DOZE Enable Bit. */
+ base->MCR &= ~CAN_MCR_DOZE_MASK;
+ }
+#endif
+
+ /* Wait until FlexCAN exit from any Low Power Mode. */
+ while (0U != (base->MCR & CAN_MCR_LPMACK_MASK))
+ {
+ }
+
+ /* Assert Soft Reset Signal. */
+ base->MCR |= CAN_MCR_SOFTRST_MASK;
+ /* Wait until FlexCAN reset completes. */
+ while (0U != (base->MCR & CAN_MCR_SOFTRST_MASK))
+ {
+ }
+
+/* Reset MCR register. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER) && FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER)
+ base->MCR |= CAN_MCR_WRNEN_MASK | CAN_MCR_WAKSRC_MASK |
+ CAN_MCR_MAXMB((uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base) - 1U);
+#else
+ base->MCR |=
+ CAN_MCR_WRNEN_MASK | CAN_MCR_MAXMB((uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base) - 1U);
+#endif
+
+/* Reset CTRL1 and CTRL2 register. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ /* SMP bit cannot be asserted when CAN FD is enabled */
+ if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
+ {
+ base->CTRL1 = 0x0;
+ }
+ else
+ {
+ base->CTRL1 = CAN_CTRL1_SMP_MASK;
+ }
+#else
+ base->CTRL1 = CAN_CTRL1_SMP_MASK;
+#endif
+ base->CTRL2 = CAN_CTRL2_TASD(0x16) | CAN_CTRL2_RRS_MASK | CAN_CTRL2_EACEN_MASK;
+
+ /* Clean all individual Rx Mask of Message Buffers. */
+ for (i = 0; i < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); i++)
+ {
+ base->RXIMR[i] = 0x3FFFFFFF;
+ }
+
+ /* Clean Global Mask of Message Buffers. */
+ base->RXMGMASK = 0x3FFFFFFF;
+ /* Clean Global Mask of Message Buffer 14. */
+ base->RX14MASK = 0x3FFFFFFF;
+ /* Clean Global Mask of Message Buffer 15. */
+ base->RX15MASK = 0x3FFFFFFF;
+ /* Clean Global Mask of Rx FIFO. */
+ base->RXFGMASK = 0x3FFFFFFF;
+
+ /* Clean all Message Buffer CS fields. */
+ for (i = 0; i < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); i++)
+ {
+ base->MB[i].CS = 0x0;
+ }
+}
+
+static void FLEXCAN_SetBaudRate(CAN_Type *base,
+ uint32_t sourceClock_Hz,
+ uint32_t baudRate_Bps,
+ flexcan_timing_config_t timingConfig)
+{
+ /* FlexCAN timing setting formula:
+ * quantum = 1 + (PSEG1 + 1) + (PSEG2 + 1) + (PROPSEG + 1);
+ */
+ uint32_t quantum = (1U + ((uint32_t)timingConfig.phaseSeg1 + 1U) + ((uint32_t)timingConfig.phaseSeg2 + 1U) +
+ ((uint32_t)timingConfig.propSeg + 1U));
+ uint32_t priDiv = baudRate_Bps * quantum;
+
+ /* Assertion: Desired baud rate is too high. */
+ assert(baudRate_Bps <= 1000000U);
+ /* Assertion: Source clock should greater than baud rate * quantum. */
+ assert(priDiv <= sourceClock_Hz);
+
+ if (0U == priDiv)
+ {
+ priDiv = 1;
+ }
+
+ priDiv = (sourceClock_Hz / priDiv) - 1U;
+
+ /* Desired baud rate is too low. */
+ if (priDiv > 0xFFU)
+ {
+ priDiv = 0xFF;
+ }
+
+ timingConfig.preDivider = (uint16_t)priDiv;
+
+ /* Update actual timing characteristic. */
+ FLEXCAN_SetTimingConfig(base, (const flexcan_timing_config_t *)(uint32_t)&timingConfig);
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+static void FLEXCAN_SetFDBaudRate(CAN_Type *base,
+ uint32_t sourceClock_Hz,
+ uint32_t baudRateFD_Bps,
+ flexcan_timing_config_t timingConfig)
+{
+ /* FlexCAN FD timing setting formula:
+ * quantum = 1 + (FPSEG1 + 1) + (FPSEG2 + 1) + FPROPSEG;
+ */
+ uint32_t quantum = (1U + ((uint32_t)timingConfig.fphaseSeg1 + 1U) + ((uint32_t)timingConfig.fphaseSeg2 + 1U) +
+ (uint32_t)timingConfig.fpropSeg);
+ uint32_t priDiv = baudRateFD_Bps * quantum;
+
+ /* Assertion: Desired baud rate is too high. */
+ assert(baudRateFD_Bps <= 8000000U);
+ /* Assertion: Source clock should greater than baud rate * FLEXCAN_TIME_QUANTA_NUM. */
+ assert(priDiv <= sourceClock_Hz);
+
+ if (0U == priDiv)
+ {
+ priDiv = 1;
+ }
+
+ priDiv = (sourceClock_Hz / priDiv) - 1U;
+
+ /* Desired baud rate is too low. */
+ if (priDiv > 0xFFU)
+ {
+ priDiv = 0xFF;
+ }
+
+ timingConfig.fpreDivider = (uint16_t)priDiv;
+
+ /* Update actual timing characteristic. */
+ FLEXCAN_SetFDTimingConfig(base, (const flexcan_timing_config_t *)(uint32_t)&timingConfig);
+}
+#endif
+
+/*!
+ * brief Initializes a FlexCAN instance.
+ *
+ * This function initializes the FlexCAN module with user-defined settings.
+ * This example shows how to set up the flexcan_config_t parameters and how
+ * to call the FLEXCAN_Init function by passing in these parameters.
+ * code
+ * flexcan_config_t flexcanConfig;
+ * flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0;
+ * flexcanConfig.baudRate = 1000000U;
+ * flexcanConfig.maxMbNum = 16;
+ * flexcanConfig.enableLoopBack = false;
+ * flexcanConfig.enableSelfWakeup = false;
+ * flexcanConfig.enableIndividMask = false;
+ * flexcanConfig.disableSelfReception = false;
+ * flexcanConfig.enableListenOnlyMode = false;
+ * flexcanConfig.enableDoze = false;
+ * flexcanConfig.timingConfig = timingConfig;
+ * FLEXCAN_Init(CAN0, &flexcanConfig, 8000000UL);
+ * endcode
+ *
+ * param base FlexCAN peripheral base address.
+ * param pConfig Pointer to the user-defined configuration structure.
+ * param sourceClock_Hz FlexCAN Protocol Engine clock source frequency in Hz.
+ */
+void FLEXCAN_Init(CAN_Type *base, const flexcan_config_t *pConfig, uint32_t sourceClock_Hz)
+{
+ /* Assertion. */
+ assert(NULL != pConfig);
+ assert((pConfig->maxMbNum > 0U) &&
+ (pConfig->maxMbNum <= (uint8_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base)));
+
+ uint32_t mcrTemp;
+ uint32_t ctrl1Temp;
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ uint32_t instance;
+#endif
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ instance = FLEXCAN_GetInstance(base);
+ /* Enable FlexCAN clock. */
+ (void)CLOCK_EnableClock(s_flexcanClock[instance]);
+ /*
+ * Check the CAN clock in this device whether affected by Other clock gate
+ * If it affected, we'd better to change other clock source,
+ * If user insist on using that clock source, user need open these gate at same time,
+ * In this scene, User need to care the power consumption.
+ */
+ assert(CAN_CLOCK_CHECK_NO_AFFECTS);
+#if defined(FLEXCAN_PERIPH_CLOCKS)
+ /* Enable FlexCAN serial clock. */
+ (void)CLOCK_EnableClock(s_flexcanPeriphClock[instance]);
+#endif /* FLEXCAN_PERIPH_CLOCKS */
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+#if defined(CAN_CTRL1_CLKSRC_MASK)
+#if (defined(FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE) && FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE)
+ if (0 == FSL_FEATURE_FLEXCAN_INSTANCE_SUPPORT_ENGINE_CLK_SEL_REMOVEn(base))
+#endif /* FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE */
+ {
+ /* Disable FlexCAN Module. */
+ FLEXCAN_Enable(base, false);
+
+ /* Protocol-Engine clock source selection, This bit must be set
+ * when FlexCAN Module in Disable Mode.
+ */
+ base->CTRL1 = (kFLEXCAN_ClkSrc0 == pConfig->clkSrc) ? (base->CTRL1 & ~CAN_CTRL1_CLKSRC_MASK) :
+ (base->CTRL1 | CAN_CTRL1_CLKSRC_MASK);
+ }
+#endif /* CAN_CTRL1_CLKSRC_MASK */
+
+ /* Enable FlexCAN Module for configuration. */
+ FLEXCAN_Enable(base, true);
+
+ /* Reset to known status. */
+ FLEXCAN_Reset(base);
+
+ /* Save current CTRL1 value and enable to enter Freeze mode(enabled by default). */
+ ctrl1Temp = base->CTRL1;
+
+ /* Save current MCR value and enable to enter Freeze mode(enabled by default). */
+ mcrTemp = base->MCR;
+
+ /* Enable Loop Back Mode? */
+ ctrl1Temp = (pConfig->enableLoopBack) ? (ctrl1Temp | CAN_CTRL1_LPB_MASK) : (ctrl1Temp & ~CAN_CTRL1_LPB_MASK);
+
+ /* Enable Timer Sync? */
+ ctrl1Temp = (pConfig->enableTimerSync) ? (ctrl1Temp | CAN_CTRL1_TSYN_MASK) : (ctrl1Temp & ~CAN_CTRL1_TSYN_MASK);
+
+ /* Enable Listen Only Mode? */
+ ctrl1Temp = (pConfig->enableListenOnlyMode) ? ctrl1Temp | CAN_CTRL1_LOM_MASK : ctrl1Temp & ~CAN_CTRL1_LOM_MASK;
+
+ /* Set the maximum number of Message Buffers */
+ mcrTemp = (mcrTemp & ~CAN_MCR_MAXMB_MASK) | CAN_MCR_MAXMB((uint32_t)pConfig->maxMbNum - 1U);
+
+ /* Enable Self Wake Up Mode and configure the wake up source. */
+ mcrTemp = (pConfig->enableSelfWakeup) ? (mcrTemp | CAN_MCR_SLFWAK_MASK) : (mcrTemp & ~CAN_MCR_SLFWAK_MASK);
+ mcrTemp = (kFLEXCAN_WakeupSrcFiltered == pConfig->wakeupSrc) ? (mcrTemp | CAN_MCR_WAKSRC_MASK) :
+ (mcrTemp & ~CAN_MCR_WAKSRC_MASK);
+
+ /* Enable Individual Rx Masking? */
+ mcrTemp = (pConfig->enableIndividMask) ? (mcrTemp | CAN_MCR_IRMQ_MASK) : (mcrTemp & ~CAN_MCR_IRMQ_MASK);
+
+ /* Disable Self Reception? */
+ mcrTemp = (pConfig->disableSelfReception) ? mcrTemp | CAN_MCR_SRXDIS_MASK : mcrTemp & ~CAN_MCR_SRXDIS_MASK;
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
+ if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_DOZE_MODE_SUPPORTn(base))
+ {
+ /* Enable Doze Mode? */
+ mcrTemp = (pConfig->enableDoze) ? (mcrTemp | CAN_MCR_DOZE_MASK) : (mcrTemp & ~CAN_MCR_DOZE_MASK);
+ }
+#endif
+
+ /* Write back CTRL1 Configuration to register. */
+ base->CTRL1 = ctrl1Temp;
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
+ /* Enable to update in MCER. */
+ base->CTRL2 |= CAN_CTRL2_ECRWRE_MASK;
+ base->MECR &= ~CAN_MECR_ECRWRDIS_MASK;
+#endif
+
+ /* Write back MCR Configuration to register. */
+ base->MCR = mcrTemp;
+
+ /* Baud Rate Configuration.*/
+ FLEXCAN_SetBaudRate(base, sourceClock_Hz, pConfig->baudRate, pConfig->timingConfig);
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Initializes a FlexCAN instance.
+ *
+ * This function initializes the FlexCAN module with user-defined settings.
+ * This example shows how to set up the flexcan_config_t parameters and how
+ * to call the FLEXCAN_FDInit function by passing in these parameters.
+ * code
+ * flexcan_config_t flexcanConfig;
+ * flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0;
+ * flexcanConfig.baudRate = 1000000U;
+ * flexcanConfig.baudRateFD = 2000000U;
+ * flexcanConfig.maxMbNum = 16;
+ * flexcanConfig.enableLoopBack = false;
+ * flexcanConfig.enableSelfWakeup = false;
+ * flexcanConfig.enableIndividMask = false;
+ * flexcanConfig.disableSelfReception = false;
+ * flexcanConfig.enableListenOnlyMode = false;
+ * flexcanConfig.enableDoze = false;
+ * flexcanConfig.timingConfig = timingConfig;
+ * FLEXCAN_FDInit(CAN0, &flexcanConfig, 8000000UL, kFLEXCAN_16BperMB, false);
+ * endcode
+ *
+ * param base FlexCAN peripheral base address.
+ * param pConfig Pointer to the user-defined configuration structure.
+ * param sourceClock_Hz FlexCAN Protocol Engine clock source frequency in Hz.
+ * param dataSize FlexCAN FD frame payload size.
+ * param brs If bitrate switch is enabled in FD mode.
+ */
+void FLEXCAN_FDInit(
+ CAN_Type *base, const flexcan_config_t *pConfig, uint32_t sourceClock_Hz, flexcan_mb_size_t dataSize, bool brs)
+{
+ assert((uint32_t)dataSize <= 3U);
+
+ uint32_t fdctrl = 0U;
+
+ /* Initialization of classical CAN. */
+ FLEXCAN_Init(base, pConfig, sourceClock_Hz);
+
+ /* Extra bitrate setting for CANFD. */
+ FLEXCAN_SetFDBaudRate(base, sourceClock_Hz, pConfig->baudRateFD, pConfig->timingConfig);
+
+ /* read FDCTRL register. */
+ fdctrl = base->FDCTRL;
+
+ /* Enable FD operation and set bitrate switch. */
+ if (brs)
+ {
+ fdctrl |= CAN_FDCTRL_FDRATE_MASK;
+ }
+ else
+ {
+ fdctrl &= ~CAN_FDCTRL_FDRATE_MASK;
+ }
+
+ if (brs && !(pConfig->enableLoopBack))
+ {
+ /* Before use "|=" operation for multi-bits field, CPU should Clean previous Setting. */
+ fdctrl = (fdctrl & ~CAN_FDCTRL_TDCOFF_MASK) | CAN_FDCTRL_TDCOFF(0x2U);
+ }
+
+ /* Before use "|=" operation for multi-bits field, CPU should clean previous Setting. */
+ fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR0_MASK) | CAN_FDCTRL_MBDSR0(dataSize);
+#if defined(CAN_FDCTRL_MBDSR1_MASK)
+ fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR1_MASK) | CAN_FDCTRL_MBDSR1(dataSize);
+#endif
+#if defined(CAN_FDCTRL_MBDSR2_MASK)
+ fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR2_MASK) | CAN_FDCTRL_MBDSR2(dataSize);
+#endif
+#if defined(CAN_FDCTRL_MBDSR3_MASK)
+ fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR3_MASK) | CAN_FDCTRL_MBDSR3(dataSize);
+#endif
+
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ base->MCR |= CAN_MCR_FDEN_MASK;
+
+ /* update the FDCTL register. */
+ base->FDCTRL = fdctrl;
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+#endif
+
+/*!
+ * brief De-initializes a FlexCAN instance.
+ *
+ * This function disables the FlexCAN module clock and sets all register values
+ * to the reset value.
+ *
+ * param base FlexCAN peripheral base address.
+ */
+void FLEXCAN_Deinit(CAN_Type *base)
+{
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ uint32_t instance;
+#endif
+ /* Reset all Register Contents. */
+ FLEXCAN_Reset(base);
+
+ /* Disable FlexCAN module. */
+ FLEXCAN_Enable(base, false);
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ instance = FLEXCAN_GetInstance(base);
+#if defined(FLEXCAN_PERIPH_CLOCKS)
+ /* Disable FlexCAN serial clock. */
+ (void)CLOCK_DisableClock(s_flexcanPeriphClock[instance]);
+#endif /* FLEXCAN_PERIPH_CLOCKS */
+ /* Disable FlexCAN clock. */
+ (void)CLOCK_DisableClock(s_flexcanClock[instance]);
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+}
+
+/*!
+ * brief Gets the default configuration structure.
+ *
+ * This function initializes the FlexCAN configuration structure to default values. The default
+ * values are as follows.
+ * flexcanConfig->clkSrc = kFLEXCAN_ClkSrc0;
+ * flexcanConfig->baudRate = 1000000U;
+ * flexcanConfig->baudRateFD = 2000000U;
+ * flexcanConfig->maxMbNum = 16;
+ * flexcanConfig->enableLoopBack = false;
+ * flexcanConfig->enableSelfWakeup = false;
+ * flexcanConfig->enableIndividMask = false;
+ * flexcanConfig->disableSelfReception = false;
+ * flexcanConfig->enableListenOnlyMode = false;
+ * flexcanConfig->enableDoze = false;
+ * flexcanConfig.timingConfig = timingConfig;
+ *
+ * param pConfig Pointer to the FlexCAN configuration structure.
+ */
+void FLEXCAN_GetDefaultConfig(flexcan_config_t *pConfig)
+{
+ /* Assertion. */
+ assert(NULL != pConfig);
+
+ /* Initializes the configure structure to zero. */
+ (void)memset(pConfig, 0, sizeof(*pConfig));
+
+ /* Initialize FlexCAN Module config struct with default value. */
+ pConfig->clkSrc = kFLEXCAN_ClkSrc0;
+ pConfig->baudRate = 1000000U;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ pConfig->baudRateFD = 2000000U;
+#endif
+ pConfig->maxMbNum = 16;
+ pConfig->enableLoopBack = false;
+ pConfig->enableTimerSync = true;
+ pConfig->enableSelfWakeup = false;
+ pConfig->wakeupSrc = kFLEXCAN_WakeupSrcUnfiltered;
+ pConfig->enableIndividMask = false;
+ pConfig->disableSelfReception = false;
+ pConfig->enableListenOnlyMode = false;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
+ pConfig->enableDoze = false;
+#endif
+ /* Default protocol timing configuration, time quantum is 10. */
+ pConfig->timingConfig.phaseSeg1 = 3;
+ pConfig->timingConfig.phaseSeg2 = 2;
+ pConfig->timingConfig.propSeg = 1;
+ pConfig->timingConfig.rJumpwidth = 1;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ pConfig->timingConfig.fphaseSeg1 = 3;
+ pConfig->timingConfig.fphaseSeg2 = 3;
+ pConfig->timingConfig.fpropSeg = 1;
+ pConfig->timingConfig.frJumpwidth = 1;
+#endif
+}
+
+/*!
+ * brief Sets the FlexCAN protocol timing characteristic.
+ *
+ * This function gives user settings to CAN bus timing characteristic.
+ * The function is for an experienced user. For less experienced users, call
+ * the FLEXCAN_Init() and fill the baud rate field with a desired value.
+ * This provides the default timing characteristics to the module.
+ *
+ * Note that calling FLEXCAN_SetTimingConfig() overrides the baud rate set
+ * in FLEXCAN_Init().
+ *
+ * param base FlexCAN peripheral base address.
+ * param pConfig Pointer to the timing configuration structure.
+ */
+void FLEXCAN_SetTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig)
+{
+ /* Assertion. */
+ assert(NULL != pConfig);
+
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
+ {
+ /* Cleaning previous Timing Setting. */
+ base->CBT &= ~(CAN_CBT_EPRESDIV_MASK | CAN_CBT_ERJW_MASK | CAN_CBT_EPSEG1_MASK | CAN_CBT_EPSEG2_MASK |
+ CAN_CBT_EPROPSEG_MASK);
+
+ /* Updating Timing Setting according to configuration structure. */
+ base->CBT |= (CAN_CBT_EPRESDIV(pConfig->preDivider) | CAN_CBT_ERJW(pConfig->rJumpwidth) |
+ CAN_CBT_EPSEG1(pConfig->phaseSeg1) | CAN_CBT_EPSEG2(pConfig->phaseSeg2) |
+ CAN_CBT_EPROPSEG(pConfig->propSeg));
+ }
+ else
+ {
+ /* Cleaning previous Timing Setting. */
+ base->CTRL1 &= ~(CAN_CTRL1_PRESDIV_MASK | CAN_CTRL1_RJW_MASK | CAN_CTRL1_PSEG1_MASK | CAN_CTRL1_PSEG2_MASK |
+ CAN_CTRL1_PROPSEG_MASK);
+
+ /* Updating Timing Setting according to configuration structure. */
+ base->CTRL1 |= (CAN_CTRL1_PRESDIV(pConfig->preDivider) | CAN_CTRL1_RJW(pConfig->rJumpwidth) |
+ CAN_CTRL1_PSEG1(pConfig->phaseSeg1) | CAN_CTRL1_PSEG2(pConfig->phaseSeg2) |
+ CAN_CTRL1_PROPSEG(pConfig->propSeg));
+ }
+#else
+ /* Cleaning previous Timing Setting. */
+ base->CTRL1 &= ~(CAN_CTRL1_PRESDIV_MASK | CAN_CTRL1_RJW_MASK | CAN_CTRL1_PSEG1_MASK | CAN_CTRL1_PSEG2_MASK |
+ CAN_CTRL1_PROPSEG_MASK);
+
+ /* Updating Timing Setting according to configuration structure. */
+ base->CTRL1 |= (CAN_CTRL1_PRESDIV(pConfig->preDivider) | CAN_CTRL1_RJW(pConfig->rJumpwidth) |
+ CAN_CTRL1_PSEG1(pConfig->phaseSeg1) | CAN_CTRL1_PSEG2(pConfig->phaseSeg2) |
+ CAN_CTRL1_PROPSEG(pConfig->propSeg));
+#endif
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Sets the FlexCAN FD protocol timing characteristic.
+ *
+ * This function gives user settings to CAN bus timing characteristic.
+ * The function is for an experienced user. For less experienced users, call
+ * the FLEXCAN_Init() and fill the baud rate field with a desired value.
+ * This provides the default timing characteristics to the module.
+ *
+ * Note that calling FLEXCAN_SetFDTimingConfig() overrides the baud rate set
+ * in FLEXCAN_Init().
+ *
+ * param base FlexCAN peripheral base address.
+ * param pConfig Pointer to the timing configuration structure.
+ */
+void FLEXCAN_SetFDTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig)
+{
+ /* Assertion. */
+ assert(NULL != pConfig);
+
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ base->CBT |= CAN_CBT_BTF(1);
+ /* Cleaning previous Timing Setting. */
+ base->FDCBT &= ~(CAN_FDCBT_FPRESDIV_MASK | CAN_FDCBT_FRJW_MASK | CAN_FDCBT_FPSEG1_MASK | CAN_FDCBT_FPSEG2_MASK |
+ CAN_FDCBT_FPROPSEG_MASK);
+
+ /* Updating Timing Setting according to configuration structure. */
+ base->FDCBT |= (CAN_FDCBT_FPRESDIV(pConfig->fpreDivider) | CAN_FDCBT_FRJW(pConfig->frJumpwidth) |
+ CAN_FDCBT_FPSEG1(pConfig->fphaseSeg1) | CAN_FDCBT_FPSEG2(pConfig->fphaseSeg2) |
+ CAN_FDCBT_FPROPSEG(pConfig->fpropSeg));
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+#endif
+
+/*!
+ * brief Sets the FlexCAN receive message buffer global mask.
+ *
+ * This function sets the global mask for the FlexCAN message buffer in a matching process.
+ * The configuration is only effective when the Rx individual mask is disabled in the FLEXCAN_Init().
+ *
+ * param base FlexCAN peripheral base address.
+ * param mask Rx Message Buffer Global Mask value.
+ */
+void FLEXCAN_SetRxMbGlobalMask(CAN_Type *base, uint32_t mask)
+{
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ /* Setting Rx Message Buffer Global Mask value. */
+ base->RXMGMASK = mask;
+ base->RX14MASK = mask;
+ base->RX15MASK = mask;
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+
+/*!
+ * brief Sets the FlexCAN receive FIFO global mask.
+ *
+ * This function sets the global mask for FlexCAN FIFO in a matching process.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mask Rx Fifo Global Mask value.
+ */
+void FLEXCAN_SetRxFifoGlobalMask(CAN_Type *base, uint32_t mask)
+{
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ /* Setting Rx FIFO Global Mask value. */
+ base->RXFGMASK = mask;
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+
+/*!
+ * brief Sets the FlexCAN receive individual mask.
+ *
+ * This function sets the individual mask for the FlexCAN matching process.
+ * The configuration is only effective when the Rx individual mask is enabled in the FLEXCAN_Init().
+ * If the Rx FIFO is disabled, the individual mask is applied to the corresponding Message Buffer.
+ * If the Rx FIFO is enabled, the individual mask for Rx FIFO occupied Message Buffer is applied to
+ * the Rx Filter with the same index. Note that only the first 32
+ * individual masks can be used as the Rx FIFO filter mask.
+ *
+ * param base FlexCAN peripheral base address.
+ * param maskIdx The Index of individual Mask.
+ * param mask Rx Individual Mask value.
+ */
+void FLEXCAN_SetRxIndividualMask(CAN_Type *base, uint8_t maskIdx, uint32_t mask)
+{
+ assert(maskIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ /* Setting Rx Individual Mask value. */
+ base->RXIMR[maskIdx] = mask;
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+
+/*!
+ * brief Configures a FlexCAN transmit message buffer.
+ *
+ * This function aborts the previous transmission, cleans the Message Buffer, and
+ * configures it as a Transmit Message Buffer.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The Message Buffer index.
+ * param enable Enable/disable Tx Message Buffer.
+ * - true: Enable Tx Message Buffer.
+ * - false: Disable Tx Message Buffer.
+ */
+void FLEXCAN_SetTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ /* Inactivate Message Buffer. */
+ if (enable)
+ {
+ base->MB[mbIdx].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+ }
+ else
+ {
+ base->MB[mbIdx].CS = 0;
+ }
+
+ /* Clean Message Buffer content. */
+ base->MB[mbIdx].ID = 0x0;
+ base->MB[mbIdx].WORD0 = 0x0;
+ base->MB[mbIdx].WORD1 = 0x0;
+}
+
+/*!
+ * @brief Calculates the segment values for a single bit time for classical CAN
+ *
+ * @param baudRate The data speed in bps
+ * @param tqNum Number of time quantas per bit
+ * @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ *
+ * @return TRUE if Calculates the segment success, FALSE if Calculates the segment success
+ */
+static bool FLEXCAN_GetSegments(uint32_t baudRate, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig)
+{
+ uint32_t ideal_sp;
+ uint32_t p1;
+ bool fgRet = false;
+
+ /* Get ideal sample point. For the Bit field in CTRL1 register can't calculate higher ideal SP, we set it as the
+ * lowest one(75%).*/
+ ideal_sp = IDEAL_SP_LOW;
+
+ /* distribute time quanta. */
+ p1 = tqNum * (uint32_t)ideal_sp;
+ pTimingConfig->propSeg = (uint8_t)(p1 / (uint32_t)IDEAL_SP_FACTOR - 2U);
+ if (pTimingConfig->propSeg <= (MAX_PSEG1 + MAX_PROPSEG))
+ {
+ if (pTimingConfig->propSeg > MAX_PROPSEG)
+ {
+ pTimingConfig->phaseSeg1 = pTimingConfig->propSeg - MAX_PROPSEG;
+ pTimingConfig->propSeg = MAX_PROPSEG;
+ }
+ else
+ {
+ pTimingConfig->phaseSeg1 = 0;
+ }
+
+ /* The value of prog Seg should be not larger than tqNum -4U. */
+ if ((pTimingConfig->propSeg + pTimingConfig->phaseSeg1) < ((uint8_t)tqNum - 4U))
+ {
+ pTimingConfig->phaseSeg2 = (uint8_t)tqNum - (pTimingConfig->phaseSeg1 + pTimingConfig->propSeg + 4U);
+
+ if (pTimingConfig->phaseSeg2 <= MAX_PSEG1)
+ {
+ if ((pTimingConfig->phaseSeg1 < pTimingConfig->phaseSeg2) &&
+ (pTimingConfig->propSeg > (pTimingConfig->phaseSeg2 - pTimingConfig->phaseSeg1)))
+ {
+ pTimingConfig->propSeg -= (pTimingConfig->phaseSeg2 - pTimingConfig->phaseSeg1);
+ pTimingConfig->phaseSeg1 = pTimingConfig->phaseSeg2;
+ }
+
+ /* subtract one TQ for sync seg. */
+ /* sjw is 20% of total TQ, rounded to nearest int. */
+ pTimingConfig->rJumpwidth = ((uint8_t)tqNum + 4U) / 5U - 1U;
+ /* The max tqNum for CBT will reach to 129, ERJW would not be larger than 26. */
+ /* Considering that max ERJW is 31, rJumpwidth will always be smaller than MAX_ERJW. */
+ if (pTimingConfig->rJumpwidth > MAX_RJW)
+ {
+ pTimingConfig->rJumpwidth = MAX_RJW;
+ }
+
+ fgRet = true;
+ }
+ }
+ }
+
+ return fgRet;
+}
+
+/*!
+ * @brief Calculates the improved timing values by specific baudrates for classical CAN
+ *
+ * @param baudRate The classical CAN speed in bps defined by user
+ * @param sourceClock_Hz The Source clock data speed in bps. Zero to disable baudrate switching
+ * @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ *
+ * @return TRUE if timing configuration found, FALSE if failed to find configuration
+ */
+bool FLEXCAN_CalculateImprovedTimingValues(uint32_t baudRate,
+ uint32_t sourceClock_Hz,
+ flexcan_timing_config_t *pTimingConfig)
+{
+ /* observe baud rate maximums. */
+ assert(baudRate <= MAX_CAN_BAUDRATE);
+
+ uint32_t clk; /* the clock is tqNumb x baudRateFD. */
+ uint32_t tqNum; /* Numbers of TQ. */
+ bool fgRet = false;
+
+ /* Auto Improved Protocal timing for CTRL1. */
+ tqNum = CTRL1_MAX_TIME_QUANTA;
+ do
+ {
+ clk = baudRate * tqNum;
+ if (clk > sourceClock_Hz)
+ {
+ continue; /* tqNum too large, clk has been exceed sourceClock_Hz. */
+ }
+
+ if ((sourceClock_Hz / clk * clk) != sourceClock_Hz)
+ {
+ continue; /* Non-supporting: the frequency of clock source is not divisible by target baud rate, the user
+ should change a divisible baud rate. */
+ }
+
+ pTimingConfig->preDivider = (uint16_t)(sourceClock_Hz / clk) - 1U;
+ if (pTimingConfig->preDivider > MAX_PRESDIV)
+ {
+ break; /* The frequency of source clock is too large or the baud rate is too small, the pre-divider could
+ not handle it. */
+ }
+
+ /* Try to get the best timing configuration. */
+ if (FLEXCAN_GetSegments(baudRate, tqNum, pTimingConfig))
+ {
+ fgRet = true;
+ break;
+ }
+ } while (--tqNum >= CTRL1_MIN_TIME_QUANTA);
+
+ return fgRet;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+static uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx)
+{
+ uint32_t offset = 0;
+ uint32_t dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
+ switch (dataSize)
+ {
+ case (uint32_t)kFLEXCAN_8BperMB:
+ offset = (((uint32_t)mbIdx / 32U) * 512U + ((uint32_t)mbIdx % 32U) * 16U);
+ break;
+ case (uint32_t)kFLEXCAN_16BperMB:
+ offset = (((uint32_t)mbIdx / 21U) * 512U + ((uint32_t)mbIdx % 21U) * 24U);
+ break;
+ case (uint32_t)kFLEXCAN_32BperMB:
+ offset = (((uint32_t)mbIdx / 12U) * 512U + ((uint32_t)mbIdx % 12U) * 40U);
+ break;
+ case (uint32_t)kFLEXCAN_64BperMB:
+ offset = (((uint32_t)mbIdx / 7U) * 512U + ((uint32_t)mbIdx % 7U) * 72U);
+ break;
+ default:
+ /* All the cases have been listed above, the default clause should not be reached. */
+ assert(false);
+ break;
+ }
+ /* To get the dword aligned offset, need to divide by 4. */
+ offset = offset / 4U;
+ return offset;
+}
+
+/*!
+ * @brief Calculates the segment values for a single bit time for CANFD bus control baud Rate
+ *
+ * @param baudRate The canfd bus control speed in bps
+ * @param tqNum Number of time quanta per bit
+ * @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ *
+ * @return TRUE if Calculates the segment success, FALSE if Calculates the segment success
+ */
+static bool FLEXCAN_FDGetSegments(uint32_t baudRate, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig)
+{
+ uint32_t ideal_sp;
+ uint32_t p1;
+ bool fgRet = false;
+
+ /* Get ideal sample point. */
+ if (baudRate >= 1000000U)
+ {
+ ideal_sp = IDEAL_SP_LOW;
+ }
+ else if (baudRate >= 800000U)
+ {
+ ideal_sp = IDEAL_SP_MID;
+ }
+ else
+ {
+ ideal_sp = IDEAL_SP_HIGH;
+ }
+
+ /* distribute time quanta. */
+ p1 = tqNum * (uint32_t)ideal_sp;
+ pTimingConfig->propSeg = (uint8_t)(p1 / (uint32_t)IDEAL_SP_FACTOR - 2U);
+ if (pTimingConfig->propSeg <= (MAX_EPSEG1 + MAX_EPROPSEG))
+ {
+ if (pTimingConfig->propSeg > MAX_EPROPSEG)
+ {
+ pTimingConfig->phaseSeg1 = pTimingConfig->propSeg - MAX_EPROPSEG;
+ pTimingConfig->propSeg = MAX_EPROPSEG;
+ }
+ else
+ {
+ pTimingConfig->phaseSeg1 = 0;
+ }
+
+ /* The value of prog Seg should be not larger than tqNum -4U. */
+ if ((pTimingConfig->propSeg + pTimingConfig->phaseSeg1) < ((uint8_t)tqNum - 4U))
+ {
+ pTimingConfig->phaseSeg2 = (uint8_t)tqNum - (pTimingConfig->phaseSeg1 + pTimingConfig->propSeg + 4U);
+
+ if (pTimingConfig->phaseSeg2 <= MAX_EPSEG2)
+ {
+ if ((pTimingConfig->phaseSeg1 < pTimingConfig->phaseSeg2) &&
+ (pTimingConfig->propSeg > (pTimingConfig->phaseSeg2 - pTimingConfig->phaseSeg1)))
+ {
+ pTimingConfig->propSeg -= (pTimingConfig->phaseSeg2 - pTimingConfig->phaseSeg1);
+ pTimingConfig->phaseSeg1 = pTimingConfig->phaseSeg2;
+ }
+
+ /* subtract one TQ for sync seg. */
+ /* sjw is 20% of total TQ, rounded to nearest int. */
+ pTimingConfig->rJumpwidth = ((uint8_t)tqNum + 4U) / 5U - 1U;
+ /* The max tqNum for CBT will reach to 129, ERJW would not be larger than 26. */
+ /* Considering that max ERJW is 31, rJumpwidth will always be smaller than MAX_ERJW. */
+ if (pTimingConfig->rJumpwidth > MAX_ERJW)
+ {
+ pTimingConfig->rJumpwidth = MAX_ERJW;
+ }
+
+ fgRet = true;
+ }
+ }
+ }
+
+ return fgRet;
+}
+
+/*!
+ * @brief Calculates the segment values for a single bit time for CANFD bus data baud Rate
+ *
+ * @param baudRatebrs The canfd bus data speed in bps
+ * @param tqNum Number of time quanta per bit
+ * @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ *
+ * @return TRUE if Calculates the segment success, FALSE if Calculates the segment success
+ */
+static bool FLEXCAN_FDGetSegmentswithBRS(uint32_t baudRatebrs, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig)
+{
+ uint32_t ideal_sp;
+ uint32_t p1;
+ bool fgRet = false;
+
+ /* get ideal sample point. */
+ if (baudRatebrs >= 1000000U)
+ {
+ ideal_sp = IDEAL_SP_LOW;
+ }
+ else if (baudRatebrs >= 800000U)
+ {
+ ideal_sp = IDEAL_SP_MID;
+ }
+ else
+ {
+ ideal_sp = IDEAL_SP_HIGH;
+ }
+
+ /* distribute time quanta. */
+ p1 = tqNum * (uint32_t)ideal_sp;
+ pTimingConfig->fpropSeg = (uint8_t)(p1 / (uint32_t)IDEAL_SP_FACTOR - 1U);
+ if (pTimingConfig->fpropSeg <= (MAX_FPSEG1 + MAX_FPROPSEG))
+ {
+ if (pTimingConfig->fpropSeg > MAX_FPROPSEG)
+ {
+ pTimingConfig->fphaseSeg1 = pTimingConfig->fpropSeg - MAX_FPROPSEG;
+ pTimingConfig->fpropSeg = MAX_FPROPSEG;
+ }
+ else
+ {
+ pTimingConfig->fphaseSeg1 = 0;
+ }
+
+ /* The value of prog Seg should be not larger than tqNum -3U. */
+ if ((pTimingConfig->fpropSeg + pTimingConfig->fphaseSeg1) < ((uint8_t)tqNum - 3U))
+ {
+ pTimingConfig->fphaseSeg2 = (uint8_t)tqNum - (pTimingConfig->fphaseSeg1 + pTimingConfig->fpropSeg + 3U);
+
+ if ((pTimingConfig->fphaseSeg1 < pTimingConfig->fphaseSeg2) &&
+ (pTimingConfig->fpropSeg > (pTimingConfig->fphaseSeg2 - pTimingConfig->fphaseSeg1)))
+ {
+ pTimingConfig->fpropSeg -= (pTimingConfig->fphaseSeg2 - pTimingConfig->fphaseSeg1);
+ pTimingConfig->fphaseSeg1 = pTimingConfig->fphaseSeg2;
+ }
+
+ /* subtract one TQ for sync seg. */
+ /* sjw is 20% of total TQ, rounded to nearest int. */
+ pTimingConfig->frJumpwidth = ((uint8_t)tqNum + 4U) / 5U - 1U;
+
+ if (pTimingConfig->frJumpwidth > MAX_FRJW)
+ {
+ pTimingConfig->frJumpwidth = MAX_FRJW;
+ }
+ fgRet = true;
+ }
+ }
+
+ return fgRet;
+}
+
+/*!
+ * @brief Calculates the improved timing values by specific baudrates for CAN by CBT register
+ *
+ * @param baudRate The classical CAN speed in bps defined by user
+ * @param sourceClock_Hz The Source clock data speed in bps. Zero to disable baudrate switching
+ * @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ *
+ * @return TRUE if timing configuration found, FALSE if failed to find configuration
+ */
+static bool FLEXCAN_CalculateImprovedTimingValuesByCBT(uint32_t baudRate,
+ uint32_t sourceClock_Hz,
+ flexcan_timing_config_t *pTimingConfig)
+{
+ /* observe baud rate maximums. */
+ assert(baudRate <= MAX_CAN_BAUDRATE);
+
+ uint32_t clk; /* the clock is tqNumb x baudRateFD. */
+ uint32_t tqNum; /* Numbers of TQ. */
+ bool fgRet = false;
+
+ tqNum = CBT_MAX_TIME_QUANTA;
+ /* Auto Improved Protocal timing. */
+ do
+ {
+ clk = baudRate * tqNum;
+ if (clk > sourceClock_Hz)
+ {
+ continue; /* tqNum too large, clk has been exceed sourceClock_Hz. */
+ }
+
+ if ((sourceClock_Hz / clk * clk) != sourceClock_Hz)
+ {
+ continue; /* Non-supporting: the frequency of clock source is not divisible by target baud rate, the user
+ should change a divisible baud rate. */
+ }
+
+ pTimingConfig->preDivider = (uint16_t)(sourceClock_Hz / clk) - 1U;
+ if (pTimingConfig->preDivider > MAX_EPRESDIV)
+ {
+ break; /* The frequency of source clock is too large or the baud rate is too small, the pre-divider could
+ not handle it. */
+ }
+
+ /* Try to get the best timing configuration. */
+ if (FLEXCAN_FDGetSegments(baudRate, tqNum, pTimingConfig))
+ {
+ fgRet = true;
+ break;
+ }
+ } while (--tqNum >= CBT_MIN_TIME_QUANTA);
+
+ return fgRet;
+}
+
+/*!
+ * @brief Calculates the improved timing values by specific baudrates for CANFD
+ *
+ * @param baudRate The CANFD bus control speed in bps defined by user
+ * @param baudRateFD The CANFD bus data speed in bps defined by user
+ * @param sourceClock_Hz The Source clock data speed in bps. Zero to disable baudrate switching
+ * @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ *
+ * @return TRUE if timing configuration found, FALSE if failed to find configuration
+ */
+bool FLEXCAN_FDCalculateImprovedTimingValues(uint32_t baudRate,
+ uint32_t baudRateFD,
+ uint32_t sourceClock_Hz,
+ flexcan_timing_config_t *pTimingConfig)
+{
+ /* observe baud rate maximums */
+ assert(baudRate <= MAX_CAN_BAUDRATE);
+ assert(baudRateFD <= MAX_CANFD_BAUDRATE);
+
+ uint32_t clk;
+ uint32_t tqNum; /* Numbers of TQ. */
+ bool fgRet = false;
+
+ if (FLEXCAN_CalculateImprovedTimingValuesByCBT(baudRate, sourceClock_Hz, pTimingConfig))
+ {
+ if (0U != baudRateFD)
+ {
+ /* Auto Improved Protocal timing for CBT. */
+ tqNum = FDCBT_MAX_TIME_QUANTA;
+ do
+ {
+ clk = baudRateFD * tqNum;
+ if (clk > sourceClock_Hz)
+ {
+ continue; /* tqNum too large, clk x tqNum has been exceed sourceClock_Hz. */
+ }
+
+ if ((sourceClock_Hz / clk * clk) != sourceClock_Hz)
+ {
+ continue; /* Non-supporting: the frequency of clock source is not divisible by target baud rate,
+ the user should change a divisible baud rate. */
+ }
+
+ pTimingConfig->fpreDivider = (uint16_t)(sourceClock_Hz / clk - 1U);
+ if (pTimingConfig->fpreDivider > MAX_FPRESDIV)
+ {
+ break; /* The frequency of source clock is too large or the baud rate is too small, the pre-divider
+ could not handle it. */
+ }
+
+ /* Get the best CANFD data bus timing configuration. */
+ if (FLEXCAN_FDGetSegmentswithBRS(baudRateFD, tqNum, pTimingConfig))
+ {
+ fgRet = true;
+ break;
+ }
+ } while (--tqNum >= FDCBT_MIN_TIME_QUANTA);
+ }
+ else
+ {
+ fgRet = true; /* User don't use Brs feature. */
+ }
+ }
+ return fgRet;
+}
+
+/*!
+ * brief Configures a FlexCAN transmit message buffer.
+ *
+ * This function aborts the previous transmission, cleans the Message Buffer, and
+ * configures it as a Transmit Message Buffer.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The Message Buffer index.
+ * param enable Enable/disable Tx Message Buffer.
+ * - true: Enable Tx Message Buffer.
+ * - false: Disable Tx Message Buffer.
+ */
+void FLEXCAN_SetFDTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ uint8_t cnt = 0;
+ uint8_t payload_dword = 1;
+ uint32_t dataSize;
+ dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
+ volatile uint32_t *mbAddr = &(base->MB[0].CS);
+ uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ uint32_t availoffset = FLEXCAN_GetFDMailboxOffset(base, FLEXCAN_GetFirstValidMb(base));
+#endif
+
+ /* Inactivate Message Buffer. */
+ if (enable)
+ {
+ /* Inactivate by writing CS. */
+ mbAddr[offset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+ }
+ else
+ {
+ mbAddr[offset] = 0x0;
+ }
+
+ /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
+ Bytes payload. */
+ for (cnt = 0; cnt < (dataSize + 1U); cnt++)
+ {
+ payload_dword *= 2U;
+ }
+
+ /* Clean ID. */
+ mbAddr[offset + 1U] = 0x0U;
+ /* Clean Message Buffer content, DWORD by DWORD. */
+ for (cnt = 0; cnt < payload_dword; cnt++)
+ {
+ mbAddr[offset + 2U + cnt] = 0x0U;
+ }
+
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+#endif
+}
+#endif /* FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE */
+
+/*!
+ * brief Configures a FlexCAN Receive Message Buffer.
+ *
+ * This function cleans a FlexCAN build-in Message Buffer and configures it
+ * as a Receive Message Buffer.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The Message Buffer index.
+ * param pRxMbConfig Pointer to the FlexCAN Message Buffer configuration structure.
+ * param enable Enable/disable Rx Message Buffer.
+ * - true: Enable Rx Message Buffer.
+ * - false: Disable Rx Message Buffer.
+ */
+void FLEXCAN_SetRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *pRxMbConfig, bool enable)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+ assert(((NULL != pRxMbConfig) || (false == enable)));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ uint32_t cs_temp = 0;
+
+ /* Inactivate Message Buffer. */
+ base->MB[mbIdx].CS = 0;
+
+ /* Clean Message Buffer content. */
+ base->MB[mbIdx].ID = 0x0;
+ base->MB[mbIdx].WORD0 = 0x0;
+ base->MB[mbIdx].WORD1 = 0x0;
+
+ if (enable)
+ {
+ /* Setup Message Buffer ID. */
+ base->MB[mbIdx].ID = pRxMbConfig->id;
+
+ /* Setup Message Buffer format. */
+ if (kFLEXCAN_FrameFormatExtend == pRxMbConfig->format)
+ {
+ cs_temp |= CAN_CS_IDE_MASK;
+ }
+
+ /* Setup Message Buffer type. */
+ if (kFLEXCAN_FrameTypeRemote == pRxMbConfig->type)
+ {
+ cs_temp |= CAN_CS_RTR_MASK;
+ }
+
+ /* Activate Rx Message Buffer. */
+ cs_temp |= CAN_CS_CODE(kFLEXCAN_RxMbEmpty);
+ base->MB[mbIdx].CS = cs_temp;
+ }
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Configures a FlexCAN Receive Message Buffer.
+ *
+ * This function cleans a FlexCAN build-in Message Buffer and configures it
+ * as a Receive Message Buffer.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The Message Buffer index.
+ * param pRxMbConfig Pointer to the FlexCAN Message Buffer configuration structure.
+ * param enable Enable/disable Rx Message Buffer.
+ * - true: Enable Rx Message Buffer.
+ * - false: Disable Rx Message Buffer.
+ */
+void FLEXCAN_SetFDRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *pRxMbConfig, bool enable)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+ assert(((NULL != pRxMbConfig) || (false == enable)));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ uint32_t cs_temp = 0;
+ uint8_t cnt = 0;
+ volatile uint32_t *mbAddr = &(base->MB[0].CS);
+ uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
+ uint8_t payload_dword;
+ uint32_t dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
+
+ /* Inactivate Message Buffer. */
+ mbAddr[offset] = 0U;
+
+ /* Clean Message Buffer content. */
+ mbAddr[offset + 1U] = 0U;
+ /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
+ Bytes payload. */
+ payload_dword = (2U << dataSize);
+ for (cnt = 0; cnt < payload_dword; cnt++)
+ {
+ mbAddr[offset + 2U + cnt] = 0x0;
+ }
+
+ if (enable)
+ {
+ /* Setup Message Buffer ID. */
+ mbAddr[offset + 1U] = pRxMbConfig->id;
+
+ /* Setup Message Buffer format. */
+ if (kFLEXCAN_FrameFormatExtend == pRxMbConfig->format)
+ {
+ cs_temp |= CAN_CS_IDE_MASK;
+ }
+
+ /* Setup Message Buffer type. */
+ if (kFLEXCAN_FrameTypeRemote == pRxMbConfig->type)
+ {
+ cs_temp |= CAN_CS_RTR_MASK;
+ }
+
+ /* Activate Rx Message Buffer. */
+ cs_temp |= CAN_CS_CODE(kFLEXCAN_RxMbEmpty);
+ mbAddr[offset] = cs_temp;
+ }
+}
+#endif
+
+/*!
+ * brief Configures the FlexCAN Rx FIFO.
+ *
+ * This function configures the Rx FIFO with given Rx FIFO configuration.
+ *
+ * param base FlexCAN peripheral base address.
+ * param pRxFifoConfig Pointer to the FlexCAN Rx FIFO configuration structure.
+ * param enable Enable/disable Rx FIFO.
+ * - true: Enable Rx FIFO.
+ * - false: Disable Rx FIFO.
+ */
+void FLEXCAN_SetRxFifoConfig(CAN_Type *base, const flexcan_rx_fifo_config_t *pRxFifoConfig, bool enable)
+{
+ /* Assertion. */
+ assert((NULL != pRxFifoConfig) || (false == enable));
+
+ volatile uint32_t *mbAddr;
+ uint8_t i, j, k, rffn = 0, numMbOccupy;
+ uint32_t setup_mb = 0;
+
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ if (enable)
+ {
+ assert(pRxFifoConfig->idFilterNum <= 128U);
+
+ /* Get the setup_mb value. */
+ setup_mb = (uint8_t)((base->MCR & CAN_MCR_MAXMB_MASK) >> CAN_MCR_MAXMB_SHIFT);
+ setup_mb = (setup_mb < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base)) ?
+ setup_mb :
+ (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base);
+
+ /* Determine RFFN value. */
+ for (i = 0; i <= 0xFU; i++)
+ {
+ if ((8U * (i + 1U)) >= pRxFifoConfig->idFilterNum)
+ {
+ rffn = i;
+ assert(((setup_mb - 8U) - (2U * rffn)) > 0U);
+
+ base->CTRL2 = (base->CTRL2 & ~CAN_CTRL2_RFFN_MASK) | CAN_CTRL2_RFFN(rffn);
+ break;
+ }
+ }
+
+ /* caculate the Number of Mailboxes occupied by RX Legacy FIFO and the filter. */
+ numMbOccupy = 6U + (rffn + 1U) * 2U;
+
+ /* Copy ID filter table to Message Buffer Region (Fix MISRA_C-2012 Rule 18.1). */
+ j = 0U;
+ for (i = 6U; i < numMbOccupy; i++)
+ {
+ /* Get address for current mail box. */
+ mbAddr = &(base->MB[i].CS);
+
+ /* One Mail box contain 4U DWORD registers. */
+ for (k = 0; k < 4U; k++)
+ {
+ /* Fill all valid filter in the mail box occupied by filter.
+ * Disable unused Rx FIFO Filter, the other rest of register in the last Mail box occupied by fiter set
+ * as 0xffffffff.
+ */
+ mbAddr[k] = (j < pRxFifoConfig->idFilterNum) ? (pRxFifoConfig->idFilterTable[j]) : 0xFFFFFFFFU;
+
+ /* Try to fill next filter in current Mail Box. */
+ j++;
+ }
+ }
+
+ /* Setup ID Fitlter Type. */
+ switch (pRxFifoConfig->idFilterType)
+ {
+ case kFLEXCAN_RxFifoFilterTypeA:
+ base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x0);
+ break;
+ case kFLEXCAN_RxFifoFilterTypeB:
+ base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x1);
+ break;
+ case kFLEXCAN_RxFifoFilterTypeC:
+ base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x2);
+ break;
+ case kFLEXCAN_RxFifoFilterTypeD:
+ /* All frames rejected. */
+ base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x3);
+ break;
+ default:
+ /* All the cases have been listed above, the default clause should not be reached. */
+ assert(false);
+ break;
+ }
+
+ /* Setting Message Reception Priority. */
+ base->CTRL2 = (pRxFifoConfig->priority == kFLEXCAN_RxFifoPrioHigh) ? (base->CTRL2 & ~CAN_CTRL2_MRP_MASK) :
+ (base->CTRL2 | CAN_CTRL2_MRP_MASK);
+
+ /* Enable Rx Message FIFO. */
+ base->MCR |= CAN_MCR_RFEN_MASK;
+ }
+ else
+ {
+ rffn = (uint8_t)((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT);
+ /* caculate the Number of Mailboxes occupied by RX Legacy FIFO and the filter. */
+ numMbOccupy = 6U + (rffn + 1U) * 2U;
+
+ /* Disable Rx Message FIFO. */
+ base->MCR &= ~CAN_MCR_RFEN_MASK;
+
+ /* Clean MB0 ~ MB5 and all MB occupied by ID filters (Fix MISRA_C-2012 Rule 18.1). */
+
+ for (i = 0; i < numMbOccupy; i++)
+ {
+ FLEXCAN_SetRxMbConfig(base, i, NULL, false);
+ }
+ }
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA) && FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA)
+/*!
+ * brief Enables or disables the FlexCAN Rx FIFO DMA request.
+ *
+ * This function enables or disables the DMA feature of FlexCAN build-in Rx FIFO.
+ *
+ * param base FlexCAN peripheral base address.
+ * param enable true to enable, false to disable.
+ */
+void FLEXCAN_EnableRxFifoDMA(CAN_Type *base, bool enable)
+{
+ if (enable)
+ {
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ /* Enable FlexCAN DMA. */
+ base->MCR |= CAN_MCR_DMA_MASK;
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+ }
+ else
+ {
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ /* Disable FlexCAN DMA. */
+ base->MCR &= ~CAN_MCR_DMA_MASK;
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+ }
+}
+#endif /* FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA */
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
+/*!
+ * FlexCAN: A frame with wrong ID or payload is transmitted into
+ * the CAN bus when the Message Buffer under transmission is
+ * either aborted or deactivated while the CAN bus is in the Bus Idle state
+ *
+ * This function to do workaround for ERR006032
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The FlexCAN Message Buffer index.
+ */
+static void FLEXCAN_ERRATA_6032(CAN_Type *base, volatile uint32_t *mbCSAddr)
+{
+ uint32_t dbg_temp = 0U;
+ uint32_t u32TempCS = 0U;
+ uint32_t u32Timeout = DELAY_BUSIDLE;
+ uint32_t u32TempIMASK1 = base->IMASK1;
+/*after backup all interruption, disable ALL interruption*/
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint32_t u32TempIMASK2 = base->IMASK2;
+ base->IMASK2 = 0;
+#endif
+ base->IMASK1 = 0;
+ dbg_temp = (uint32_t)(base->DBG1);
+ switch (dbg_temp & CAN_DBG1_CFSM_MASK)
+ {
+ case RXINTERMISSION:
+ if (CBN_VALUE3 == (dbg_temp & CAN_DBG1_CBN_MASK))
+ {
+ /*wait until CFSM is different from RXINTERMISSION */
+ while (RXINTERMISSION == (base->DBG1 & CAN_DBG1_CFSM_MASK))
+ {
+ __NOP();
+ }
+ }
+ break;
+ case TXINTERMISSION:
+ if (CBN_VALUE3 == (dbg_temp & CAN_DBG1_CBN_MASK))
+ {
+ /*wait until CFSM is different from TXINTERMISSION*/
+ while (TXINTERMISSION == (base->DBG1 & CAN_DBG1_CFSM_MASK))
+ {
+ __NOP();
+ }
+ }
+ break;
+ default:
+ /* To avoid MISRA-C 2012 rule 16.4 issue. */
+ break;
+ }
+ /*Anyway, BUSIDLE need to delay*/
+ if (BUSIDLE == (base->DBG1 & CAN_DBG1_CFSM_MASK))
+ {
+ while (u32Timeout-- > 0U)
+ {
+ __NOP();
+ }
+
+ /*Write 0x0 into Code field of CS word.*/
+ u32TempCS = (uint32_t)(*mbCSAddr);
+ u32TempCS &= ~CAN_CS_CODE_MASK;
+ *mbCSAddr = u32TempCS;
+ }
+ /*restore interruption*/
+ base->IMASK1 = u32TempIMASK1;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ base->IMASK2 = u32TempIMASK2;
+#endif
+}
+#endif
+
+/*!
+ * brief Writes a FlexCAN Message to the Transmit Message Buffer.
+ *
+ * This function writes a CAN Message to the specified Transmit Message Buffer
+ * and changes the Message Buffer state to start CAN Message transmit. After
+ * that the function returns immediately.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The FlexCAN Message Buffer index.
+ * param pTxFrame Pointer to CAN message frame to be sent.
+ * retval kStatus_Success - Write Tx Message Buffer Successfully.
+ * retval kStatus_Fail - Tx Message Buffer is currently in use.
+ */
+status_t FLEXCAN_WriteTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_frame_t *pTxFrame)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+ assert(NULL != pTxFrame);
+ assert(pTxFrame->length <= 8U);
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ uint32_t cs_temp = 0;
+ status_t status;
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
+ FLEXCAN_ERRATA_6032(base, &(base->MB[mbIdx].CS));
+#endif
+ /* Check if Message Buffer is available. */
+ if (CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) != (base->MB[mbIdx].CS & CAN_CS_CODE_MASK))
+ {
+ /* Inactive Tx Message Buffer. */
+ base->MB[mbIdx].CS = (base->MB[mbIdx].CS & ~CAN_CS_CODE_MASK) | CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+
+ /* Fill Message ID field. */
+ base->MB[mbIdx].ID = pTxFrame->id;
+
+ /* Fill Message Format field. */
+ if ((uint32_t)kFLEXCAN_FrameFormatExtend == pTxFrame->format)
+ {
+ cs_temp |= CAN_CS_SRR_MASK | CAN_CS_IDE_MASK;
+ }
+
+ /* Fill Message Type field. */
+ if ((uint32_t)kFLEXCAN_FrameTypeRemote == pTxFrame->type)
+ {
+ cs_temp |= CAN_CS_RTR_MASK;
+ }
+
+ cs_temp |= CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) | CAN_CS_DLC(pTxFrame->length);
+
+ /* Load Message Payload. */
+ base->MB[mbIdx].WORD0 = pTxFrame->dataWord0;
+ base->MB[mbIdx].WORD1 = pTxFrame->dataWord1;
+
+ /* Activate Tx Message Buffer. */
+ base->MB[mbIdx].CS = cs_temp;
+
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ base->MB[FLEXCAN_GetFirstValidMb(base)].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+ base->MB[FLEXCAN_GetFirstValidMb(base)].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+#endif
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ /* Tx Message Buffer is activated, return immediately. */
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Writes a FlexCAN FD Message to the Transmit Message Buffer.
+ *
+ * This function writes a CAN FD Message to the specified Transmit Message Buffer
+ * and changes the Message Buffer state to start CAN FD Message transmit. After
+ * that the function returns immediately.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ * param pTxFrame Pointer to CAN FD message frame to be sent.
+ * retval kStatus_Success - Write Tx Message Buffer Successfully.
+ * retval kStatus_Fail - Tx Message Buffer is currently in use.
+ */
+status_t FLEXCAN_WriteFDTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_fd_frame_t *pTxFrame)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+ assert(NULL != pTxFrame);
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ status_t status;
+ uint32_t cs_temp = 0;
+ uint8_t cnt = 0;
+ uint32_t can_cs = 0;
+ uint8_t payload_dword = 1;
+ uint32_t dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ uint32_t availoffset = FLEXCAN_GetFDMailboxOffset(base, FLEXCAN_GetFirstValidMb(base));
+#endif
+ volatile uint32_t *mbAddr = &(base->MB[0].CS);
+ uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
+ FLEXCAN_ERRATA_6032(base, &(mbAddr[offset]));
+#endif
+
+ can_cs = mbAddr[offset];
+ /* Check if Message Buffer is available. */
+ if (CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) != (can_cs & CAN_CS_CODE_MASK))
+ {
+ /* Inactive Tx Message Buffer and Fill Message ID field. */
+ mbAddr[offset] = (can_cs & ~CAN_CS_CODE_MASK) | CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+ mbAddr[offset + 1U] = pTxFrame->id;
+
+ /* Fill Message Format field. */
+ if ((uint32_t)kFLEXCAN_FrameFormatExtend == pTxFrame->format)
+ {
+ cs_temp |= CAN_CS_SRR_MASK | CAN_CS_IDE_MASK;
+ }
+
+ /* Fill Message Type field. */
+ if ((uint32_t)kFLEXCAN_FrameTypeRemote == pTxFrame->type)
+ {
+ cs_temp |= CAN_CS_RTR_MASK;
+ }
+
+ cs_temp |= CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) | CAN_CS_DLC(pTxFrame->length) | CAN_CS_EDL(1) |
+ CAN_CS_BRS(pTxFrame->brs);
+
+ /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
+ Bytes payload. */
+ for (cnt = 0; cnt < (dataSize + 1U); cnt++)
+ {
+ payload_dword *= 2U;
+ }
+
+ /* Load Message Payload and Activate Tx Message Buffer. */
+ for (cnt = 0; cnt < payload_dword; cnt++)
+ {
+ mbAddr[offset + 2U + cnt] = pTxFrame->dataWord[cnt];
+ }
+ mbAddr[offset] = cs_temp;
+
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+ mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+#endif
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ /* Tx Message Buffer is activated, return immediately. */
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+#endif
+
+/*!
+ * brief Reads a FlexCAN Message from Receive Message Buffer.
+ *
+ * This function reads a CAN message from a specified Receive Message Buffer.
+ * The function fills a receive CAN message frame structure with
+ * just received data and activates the Message Buffer again.
+ * The function returns immediately.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The FlexCAN Message Buffer index.
+ * param pRxFrame Pointer to CAN message frame structure for reception.
+ * retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
+ * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
+ * retval kStatus_Fail - Rx Message Buffer is empty.
+ */
+status_t FLEXCAN_ReadRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+ assert(NULL != pRxFrame);
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ uint32_t cs_temp;
+ uint32_t rx_code;
+ status_t status;
+
+ /* Read CS field of Rx Message Buffer to lock Message Buffer. */
+ cs_temp = base->MB[mbIdx].CS;
+ /* Get Rx Message Buffer Code field. */
+ rx_code = (cs_temp & CAN_CS_CODE_MASK) >> CAN_CS_CODE_SHIFT;
+
+ /* Check to see if Rx Message Buffer is full. */
+ if (((uint32_t)kFLEXCAN_RxMbFull == rx_code) || ((uint32_t)kFLEXCAN_RxMbOverrun == rx_code))
+ {
+ /* Store Message ID. */
+ pRxFrame->id = base->MB[mbIdx].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
+
+ /* Get the message ID and format. */
+ pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend :
+ (uint8_t)kFLEXCAN_FrameFormatStandard;
+
+ /* Get the message type. */
+ pRxFrame->type =
+ (cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData;
+
+ /* Get the message length. */
+ pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT);
+
+ /* Get the time stamp. */
+ pRxFrame->timestamp = (uint16_t)((cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+
+ /* Store Message Payload. */
+ pRxFrame->dataWord0 = base->MB[mbIdx].WORD0;
+ pRxFrame->dataWord1 = base->MB[mbIdx].WORD1;
+
+ /* Read free-running timer to unlock Rx Message Buffer. */
+ (void)base->TIMER;
+
+ if ((uint32_t)kFLEXCAN_RxMbFull == rx_code)
+ {
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_RxOverflow;
+ }
+ }
+ else
+ {
+ /* Read free-running timer to unlock Rx Message Buffer. */
+ (void)base->TIMER;
+
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Reads a FlexCAN FD Message from Receive Message Buffer.
+ *
+ * This function reads a CAN FD message from a specified Receive Message Buffer.
+ * The function fills a receive CAN FD message frame structure with
+ * just received data and activates the Message Buffer again.
+ * The function returns immediately.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ * param pRxFrame Pointer to CAN FD message frame structure for reception.
+ * retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
+ * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
+ * retval kStatus_Fail - Rx Message Buffer is empty.
+ */
+status_t FLEXCAN_ReadFDRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pRxFrame)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+ assert(NULL != pRxFrame);
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ status_t status;
+ uint32_t cs_temp;
+ uint8_t rx_code;
+ uint8_t cnt = 0;
+ uint32_t can_id = 0;
+ uint32_t dataSize;
+ dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
+ uint8_t payload_dword = 1;
+ volatile uint32_t *mbAddr = &(base->MB[0].CS);
+ uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
+
+ /* Read CS field of Rx Message Buffer to lock Message Buffer. */
+ cs_temp = mbAddr[offset];
+ can_id = mbAddr[offset + 1U];
+
+ /* Get Rx Message Buffer Code field. */
+ rx_code = (uint8_t)((cs_temp & CAN_CS_CODE_MASK) >> CAN_CS_CODE_SHIFT);
+
+ /* Check to see if Rx Message Buffer is full. */
+ if (((uint8_t)kFLEXCAN_RxMbFull == rx_code) || ((uint8_t)kFLEXCAN_RxMbOverrun == rx_code))
+ {
+ /* Store Message ID. */
+ pRxFrame->id = can_id & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
+
+ /* Get the message ID and format. */
+ pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend :
+ (uint8_t)kFLEXCAN_FrameFormatStandard;
+
+ /* Get the message type. */
+ pRxFrame->type =
+ (cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData;
+
+ /* Get the message length. */
+ pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT);
+
+ /* Get the time stamp. */
+ pRxFrame->timestamp = (uint16_t)((cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+
+ /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
+ Bytes payload. */
+ for (cnt = 0; cnt < (dataSize + 1U); cnt++)
+ {
+ payload_dword *= 2U;
+ }
+
+ /* Store Message Payload. */
+ for (cnt = 0; cnt < payload_dword; cnt++)
+ {
+ pRxFrame->dataWord[cnt] = mbAddr[offset + 2U + cnt];
+ }
+
+ /* Read free-running timer to unlock Rx Message Buffer. */
+ (void)base->TIMER;
+
+ if ((uint32_t)kFLEXCAN_RxMbFull == rx_code)
+ {
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_RxOverflow;
+ }
+ }
+ else
+ {
+ /* Read free-running timer to unlock Rx Message Buffer. */
+ (void)base->TIMER;
+
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+#endif
+
+/*!
+ * brief Reads a FlexCAN Message from Rx FIFO.
+ *
+ * This function reads a CAN message from the FlexCAN build-in Rx FIFO.
+ *
+ * param base FlexCAN peripheral base address.
+ * param pRxFrame Pointer to CAN message frame structure for reception.
+ * retval kStatus_Success - Read Message from Rx FIFO successfully.
+ * retval kStatus_Fail - Rx FIFO is not enabled.
+ */
+status_t FLEXCAN_ReadRxFifo(CAN_Type *base, flexcan_frame_t *pRxFrame)
+{
+ /* Assertion. */
+ assert(NULL != pRxFrame);
+
+ uint32_t cs_temp;
+ status_t status;
+
+ /* Check if Rx FIFO is Enabled. */
+ if (0U != (base->MCR & CAN_MCR_RFEN_MASK))
+ {
+ /* Read CS field of Rx Message Buffer to lock Message Buffer. */
+ cs_temp = base->MB[0].CS;
+
+ /* Read data from Rx FIFO output port. */
+ /* Store Message ID. */
+ pRxFrame->id = base->MB[0].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
+
+ /* Get the message ID and format. */
+ pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend :
+ (uint8_t)kFLEXCAN_FrameFormatStandard;
+
+ /* Get the message type. */
+ pRxFrame->type =
+ (cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData;
+
+ /* Get the message length. */
+ pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT);
+
+ /* Get the time stamp. */
+ pRxFrame->timestamp = (uint16_t)((cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+
+ /* Store Message Payload. */
+ pRxFrame->dataWord0 = base->MB[0].WORD0;
+ pRxFrame->dataWord1 = base->MB[0].WORD1;
+
+ /* Store ID Filter Hit Index. */
+ pRxFrame->idhit = (uint16_t)(base->RXFIR & CAN_RXFIR_IDHIT_MASK);
+
+ /* Read free-running timer to unlock Rx Message Buffer. */
+ (void)base->TIMER;
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Performs a polling send transaction on the CAN bus.
+ *
+ * Note that a transfer handle does not need to be created before calling this API.
+ *
+ * param base FlexCAN peripheral base pointer.
+ * param mbIdx The FlexCAN Message Buffer index.
+ * param pTxFrame Pointer to CAN message frame to be sent.
+ * retval kStatus_Success - Write Tx Message Buffer Successfully.
+ * retval kStatus_Fail - Tx Message Buffer is currently in use.
+ */
+status_t FLEXCAN_TransferSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pTxFrame)
+{
+ status_t status;
+
+ /* Write Tx Message Buffer to initiate a data sending. */
+ if (kStatus_Success == FLEXCAN_WriteTxMb(base, mbIdx, (const flexcan_frame_t *)(uint32_t)pTxFrame))
+ {
+/* Wait until CAN Message send out. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx))
+#else
+ uint32_t u32flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx))
+#endif
+ {
+ }
+
+/* Clean Tx Message Buffer Flag. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx);
+#else
+ FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx);
+#endif
+ /*After TX MB tranfered success, update the Timestamp from MB[mbIdx].CS register*/
+ pTxFrame->timestamp = (uint16_t)((base->MB[mbIdx].CS & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Performs a polling receive transaction on the CAN bus.
+ *
+ * Note that a transfer handle does not need to be created before calling this API.
+ *
+ * param base FlexCAN peripheral base pointer.
+ * param mbIdx The FlexCAN Message Buffer index.
+ * param pRxFrame Pointer to CAN message frame structure for reception.
+ * retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
+ * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
+ * retval kStatus_Fail - Rx Message Buffer is empty.
+ */
+status_t FLEXCAN_TransferReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
+{
+/* Wait until Rx Message Buffer non-empty. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx))
+#else
+ uint32_t u32flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx))
+#endif
+ {
+ }
+
+/* Clean Rx Message Buffer Flag. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx);
+#else
+ FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx);
+#endif
+
+ /* Read Received CAN Message. */
+ return FLEXCAN_ReadRxMb(base, mbIdx, pRxFrame);
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Performs a polling send transaction on the CAN bus.
+ *
+ * Note that a transfer handle does not need to be created before calling this API.
+ *
+ * param base FlexCAN peripheral base pointer.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ * param pTxFrame Pointer to CAN FD message frame to be sent.
+ * retval kStatus_Success - Write Tx Message Buffer Successfully.
+ * retval kStatus_Fail - Tx Message Buffer is currently in use.
+ */
+status_t FLEXCAN_TransferFDSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pTxFrame)
+{
+ status_t status;
+
+ /* Write Tx Message Buffer to initiate a data sending. */
+ if (kStatus_Success == FLEXCAN_WriteFDTxMb(base, mbIdx, (const flexcan_fd_frame_t *)(uint32_t)pTxFrame))
+ {
+/* Wait until CAN Message send out. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx))
+#else
+ uint32_t u32flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx))
+#endif
+ {
+ }
+
+/* Clean Tx Message Buffer Flag. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx);
+#else
+ FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx);
+#endif
+ /*After TX MB tranfered success, update the Timestamp from base->MB[offset for CANFD].CS register*/
+ volatile uint32_t *mbAddr = &(base->MB[0].CS);
+ uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
+ pTxFrame->timestamp = (uint16_t)((mbAddr[offset] & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Performs a polling receive transaction on the CAN bus.
+ *
+ * Note that a transfer handle does not need to be created before calling this API.
+ *
+ * param base FlexCAN peripheral base pointer.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ * param pRxFrame Pointer to CAN FD message frame structure for reception.
+ * retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
+ * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
+ * retval kStatus_Fail - Rx Message Buffer is empty.
+ */
+status_t FLEXCAN_TransferFDReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pRxFrame)
+{
+/* Wait until Rx Message Buffer non-empty. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx))
+#else
+ uint32_t u32flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx))
+#endif
+ {
+ }
+
+/* Clean Rx Message Buffer Flag. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx);
+#else
+ FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx);
+#endif
+
+ /* Read Received CAN Message. */
+ return FLEXCAN_ReadFDRxMb(base, mbIdx, pRxFrame);
+}
+#endif
+
+/*!
+ * brief Performs a polling receive transaction from Rx FIFO on the CAN bus.
+ *
+ * Note that a transfer handle does not need to be created before calling this API.
+ *
+ * param base FlexCAN peripheral base pointer.
+ * param pRxFrame Pointer to CAN message frame structure for reception.
+ * retval kStatus_Success - Read Message from Rx FIFO successfully.
+ * retval kStatus_Fail - Rx FIFO is not enabled.
+ */
+status_t FLEXCAN_TransferReceiveFifoBlocking(CAN_Type *base, flexcan_frame_t *pRxFrame)
+{
+ status_t rxFifoStatus;
+
+ /* Wait until Rx FIFO non-empty. */
+ while (0U == FLEXCAN_GetMbStatusFlags(base, (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag))
+ {
+ }
+
+ /* */
+ rxFifoStatus = FLEXCAN_ReadRxFifo(base, pRxFrame);
+
+ /* Clean Rx Fifo available flag. */
+ FLEXCAN_ClearMbStatusFlags(base, (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag);
+
+ return rxFifoStatus;
+}
+
+/*!
+ * brief Initializes the FlexCAN handle.
+ *
+ * This function initializes the FlexCAN handle, which can be used for other FlexCAN
+ * transactional APIs. Usually, for a specified FlexCAN instance,
+ * call this API once to get the initialized handle.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param callback The callback function.
+ * param userData The parameter of the callback function.
+ */
+void FLEXCAN_TransferCreateHandle(CAN_Type *base,
+ flexcan_handle_t *handle,
+ flexcan_transfer_callback_t callback,
+ void *userData)
+{
+ assert(NULL != handle);
+
+ uint8_t instance;
+
+ /* Clean FlexCAN transfer handle. */
+ (void)memset(handle, 0, sizeof(*handle));
+
+ /* Get instance from peripheral base address. */
+ instance = (uint8_t)FLEXCAN_GetInstance(base);
+
+ /* Save the context in global variables to support the double weak mechanism. */
+ s_flexcanHandle[instance] = handle;
+
+ /* Register Callback function. */
+ handle->callback = callback;
+ handle->userData = userData;
+
+ s_flexcanIsr = FLEXCAN_TransferHandleIRQ;
+
+ /* We Enable Error & Status interrupt here, because this interrupt just
+ * report current status of FlexCAN module through Callback function.
+ * It is insignificance without a available callback function.
+ */
+ if (handle->callback != NULL)
+ {
+ FLEXCAN_EnableInterrupts(
+ base, (uint32_t)kFLEXCAN_BusOffInterruptEnable | (uint32_t)kFLEXCAN_ErrorInterruptEnable |
+ (uint32_t)kFLEXCAN_RxWarningInterruptEnable | (uint32_t)kFLEXCAN_TxWarningInterruptEnable |
+ (uint32_t)kFLEXCAN_WakeUpInterruptEnable);
+ }
+ else
+ {
+ FLEXCAN_DisableInterrupts(
+ base, (uint32_t)kFLEXCAN_BusOffInterruptEnable | (uint32_t)kFLEXCAN_ErrorInterruptEnable |
+ (uint32_t)kFLEXCAN_RxWarningInterruptEnable | (uint32_t)kFLEXCAN_TxWarningInterruptEnable |
+ (uint32_t)kFLEXCAN_WakeUpInterruptEnable);
+ }
+
+ /* Enable interrupts in NVIC. */
+ (void)EnableIRQ((IRQn_Type)(s_flexcanRxWarningIRQ[instance]));
+ (void)EnableIRQ((IRQn_Type)(s_flexcanTxWarningIRQ[instance]));
+ (void)EnableIRQ((IRQn_Type)(s_flexcanWakeUpIRQ[instance]));
+ (void)EnableIRQ((IRQn_Type)(s_flexcanErrorIRQ[instance]));
+ (void)EnableIRQ((IRQn_Type)(s_flexcanBusOffIRQ[instance]));
+ (void)EnableIRQ((IRQn_Type)(s_flexcanMbIRQ[instance]));
+}
+
+/*!
+ * brief Sends a message using IRQ.
+ *
+ * This function sends a message using IRQ. This is a non-blocking function, which returns
+ * right away. When messages have been sent out, the send callback function is called.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param pMbXfer FlexCAN Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
+ * retval kStatus_Success Start Tx Message Buffer sending process successfully.
+ * retval kStatus_Fail Write Tx Message Buffer failed.
+ * retval kStatus_FLEXCAN_TxBusy Tx Message Buffer is in use.
+ */
+status_t FLEXCAN_TransferSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(NULL != pMbXfer);
+ assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx));
+#endif
+
+ status_t status;
+
+ /* Check if Message Buffer is idle. */
+ if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx])
+ {
+ /* Distinguish transmit type. */
+ if ((uint32_t)kFLEXCAN_FrameTypeRemote == pMbXfer->frame->type)
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxRemote;
+ }
+ else
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxData;
+ }
+
+ if (kStatus_Success ==
+ FLEXCAN_WriteTxMb(base, pMbXfer->mbIdx, (const flexcan_frame_t *)(uint32_t)pMbXfer->frame))
+ {
+/* Enable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx);
+#endif
+ status = kStatus_Success;
+ }
+ else
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
+ status = kStatus_Fail;
+ }
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_TxBusy;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Receives a message using IRQ.
+ *
+ * This function receives a message using IRQ. This is non-blocking function, which returns
+ * right away. When the message has been received, the receive callback function is called.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param pMbXfer FlexCAN Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
+ * retval kStatus_Success - Start Rx Message Buffer receiving process successfully.
+ * retval kStatus_FLEXCAN_RxBusy - Rx Message Buffer is in use.
+ */
+status_t FLEXCAN_TransferReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
+{
+ status_t status;
+
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(NULL != pMbXfer);
+ assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx));
+#endif
+
+ /* Check if Message Buffer is idle. */
+ if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx])
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateRxData;
+
+ /* Register Message Buffer. */
+ handle->mbFrameBuf[pMbXfer->mbIdx] = pMbXfer->frame;
+
+/* Enable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx);
+#endif
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_RxBusy;
+ }
+
+ return status;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Sends a message using IRQ.
+ *
+ * This function sends a message using IRQ. This is a non-blocking function, which returns
+ * right away. When messages have been sent out, the send callback function is called.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param pMbXfer FlexCAN FD Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
+ * retval kStatus_Success Start Tx Message Buffer sending process successfully.
+ * retval kStatus_Fail Write Tx Message Buffer failed.
+ * retval kStatus_FLEXCAN_TxBusy Tx Message Buffer is in use.
+ */
+status_t FLEXCAN_TransferFDSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(NULL != pMbXfer);
+ assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx));
+#endif
+
+ status_t status;
+
+ /* Check if Message Buffer is idle. */
+ if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx])
+ {
+ /* Distinguish transmit type. */
+ if ((uint32_t)kFLEXCAN_FrameTypeRemote == pMbXfer->framefd->type)
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxRemote;
+ }
+ else
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxData;
+ }
+
+ if (kStatus_Success ==
+ FLEXCAN_WriteFDTxMb(base, pMbXfer->mbIdx, (const flexcan_fd_frame_t *)(uint32_t)pMbXfer->framefd))
+ {
+/* Enable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx);
+#endif
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
+ status = kStatus_Fail;
+ }
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_TxBusy;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Receives a message using IRQ.
+ *
+ * This function receives a message using IRQ. This is non-blocking function, which returns
+ * right away. When the message has been received, the receive callback function is called.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param pMbXfer FlexCAN FD Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
+ * retval kStatus_Success - Start Rx Message Buffer receiving process successfully.
+ * retval kStatus_FLEXCAN_RxBusy - Rx Message Buffer is in use.
+ */
+status_t FLEXCAN_TransferFDReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(NULL != pMbXfer);
+ assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx));
+#endif
+
+ status_t status;
+
+ /* Check if Message Buffer is idle. */
+ if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx])
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateRxData;
+
+ /* Register Message Buffer. */
+ handle->mbFDFrameBuf[pMbXfer->mbIdx] = pMbXfer->framefd;
+
+/* Enable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx);
+#endif
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_RxBusy;
+ }
+
+ return status;
+}
+#endif
+
+/*!
+ * brief Receives a message from Rx FIFO using IRQ.
+ *
+ * This function receives a message using IRQ. This is a non-blocking function, which returns
+ * right away. When all messages have been received, the receive callback function is called.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param pFifoXfer FlexCAN Rx FIFO transfer structure. See the ref flexcan_fifo_transfer_t.
+ * retval kStatus_Success - Start Rx FIFO receiving process successfully.
+ * retval kStatus_FLEXCAN_RxFifoBusy - Rx FIFO is currently in use.
+ */
+status_t FLEXCAN_TransferReceiveFifoNonBlocking(CAN_Type *base,
+ flexcan_handle_t *handle,
+ flexcan_fifo_transfer_t *pFifoXfer)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(NULL != pFifoXfer);
+
+ status_t status;
+
+ /* Check if Message Buffer is idle. */
+ if ((uint8_t)kFLEXCAN_StateIdle == handle->rxFifoState)
+ {
+ handle->rxFifoState = (uint8_t)kFLEXCAN_StateRxFifo;
+
+ /* Register Message Buffer. */
+ handle->rxFifoFrameBuf = pFifoXfer->frame;
+
+ /* Enable Message Buffer Interrupt. */
+ FLEXCAN_EnableMbInterrupts(base, (uint32_t)kFLEXCAN_RxFifoOverflowFlag | (uint32_t)kFLEXCAN_RxFifoWarningFlag |
+ (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag);
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_RxFifoBusy;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Aborts the interrupt driven message send process.
+ *
+ * This function aborts the interrupt driven message send process.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param mbIdx The FlexCAN Message Buffer index.
+ */
+void FLEXCAN_TransferAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
+{
+ uint16_t timestamp;
+
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+/* Disable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, u64mask << mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, u32mask << mbIdx);
+#endif
+
+ /* Update the TX frame 's time stamp by MB[mbIdx].cs. */
+ timestamp = (uint16_t)((base->MB[mbIdx].CS & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+ handle->timestamp[mbIdx] = timestamp;
+
+ /* Clean Message Buffer. */
+ FLEXCAN_SetTxMbConfig(base, mbIdx, true);
+
+ handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Aborts the interrupt driven message send process.
+ *
+ * This function aborts the interrupt driven message send process.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ */
+void FLEXCAN_TransferFDAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
+{
+ volatile uint32_t *mbAddr;
+ uint32_t offset;
+ uint16_t timestamp;
+
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+/* Disable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, u64mask << mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, u32mask << mbIdx);
+#endif
+
+ /* Update the TX frame 's time stamp by base->MB[offset for CANFD].CS. */
+ mbAddr = &(base->MB[0].CS);
+ offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
+ timestamp = (uint16_t)((mbAddr[offset] & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+ handle->timestamp[mbIdx] = timestamp;
+
+ /* Clean Message Buffer. */
+ FLEXCAN_SetFDTxMbConfig(base, mbIdx, true);
+
+ handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
+}
+
+/*!
+ * brief Aborts the interrupt driven message receive process.
+ *
+ * This function aborts the interrupt driven message receive process.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ */
+void FLEXCAN_TransferFDAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+/* Disable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, u64mask << mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, u32mask << mbIdx);
+#endif
+
+ /* Un-register handle. */
+ handle->mbFDFrameBuf[mbIdx] = NULL;
+ handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
+}
+#endif
+
+/*!
+ * brief Aborts the interrupt driven message receive process.
+ *
+ * This function aborts the interrupt driven message receive process.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param mbIdx The FlexCAN Message Buffer index.
+ */
+void FLEXCAN_TransferAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+/* Disable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, (u64mask << mbIdx));
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, (u32mask << mbIdx));
+#endif
+
+ /* Un-register handle. */
+ handle->mbFrameBuf[mbIdx] = NULL;
+ handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
+}
+
+/*!
+ * brief Aborts the interrupt driven message receive from Rx FIFO process.
+ *
+ * This function aborts the interrupt driven message receive from Rx FIFO process.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ */
+void FLEXCAN_TransferAbortReceiveFifo(CAN_Type *base, flexcan_handle_t *handle)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+
+ /* Check if Rx FIFO is enabled. */
+ if (0U != (base->MCR & CAN_MCR_RFEN_MASK))
+ {
+ /* Disable Rx Message FIFO Interrupts. */
+ FLEXCAN_DisableMbInterrupts(base, (uint32_t)kFLEXCAN_RxFifoOverflowFlag | (uint32_t)kFLEXCAN_RxFifoWarningFlag |
+ (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag);
+
+ /* Un-register handle. */
+ handle->rxFifoFrameBuf = NULL;
+ }
+
+ handle->rxFifoState = (uint8_t)kFLEXCAN_StateIdle;
+}
+
+/*!
+ * brief Gets the detail index of Mailbox's Timestamp by handle.
+ *
+ * Then function can only be used when calling non-blocking Data transfer (TX/RX) API,
+ * After TX/RX data transfer done (User can get the status by handler's callback function),
+ * we can get the detail index of Mailbox's timestamp by handle,
+ * Detail non-blocking data transfer API (TX/RX) contain.
+ * -FLEXCAN_TransferSendNonBlocking
+ * -FLEXCAN_TransferFDSendNonBlocking
+ * -FLEXCAN_TransferReceiveNonBlocking
+ * -FLEXCAN_TransferFDReceiveNonBlocking
+ * -FLEXCAN_TransferReceiveFifoNonBlocking
+ *
+ * param handle FlexCAN handle pointer.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ * return the index of mailbox 's timestamp stored in the handle.
+ *
+ */
+uint32_t FLEXCAN_GetTimeStamp(flexcan_handle_t *handle, uint8_t mbIdx)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+
+ return (uint32_t)(handle->timestamp[mbIdx]);
+}
+
+static bool FLEXCAN_CheckUnhandleInterruptEvents(CAN_Type *base)
+{
+ uint64_t tempmask;
+ uint64_t tempflag;
+ bool fgRet = false;
+
+ /* Checking exist error flag. */
+ if (0U == (FLEXCAN_GetStatusFlags(base) &
+ ((uint32_t)kFLEXCAN_TxWarningIntFlag | (uint32_t)kFLEXCAN_RxWarningIntFlag |
+ (uint32_t)kFLEXCAN_BusOffIntFlag | (uint32_t)kFLEXCAN_ErrorIntFlag | (uint32_t)kFLEXCAN_WakeUpIntFlag)))
+ {
+ tempmask = (uint64_t)base->IMASK1;
+ tempflag = (uint64_t)base->IFLAG1;
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ /* Checking whether exist MB interrupt status and legacy RX FIFO interrupt status. */
+ tempmask |= ((uint64_t)base->IMASK2) << 32;
+ tempflag |= ((uint64_t)base->IFLAG2) << 32;
+#endif
+ fgRet = (0U != (tempmask & tempflag));
+ }
+ else
+ {
+ fgRet = true;
+ }
+
+ return fgRet;
+}
+
+static status_t FLEXCAN_SubHandlerForDataTransfered(CAN_Type *base, flexcan_handle_t *handle, uint32_t *pResult)
+{
+ status_t status = kStatus_FLEXCAN_UnHandled;
+ uint32_t result = 0xFFU;
+
+ /* For this implementation, we solve the Message with lowest MB index first. */
+ for (result = 0U; result < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); result++)
+ {
+ /* Get the lowest unhandled Message Buffer */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64flag = 1;
+ if (0U != FLEXCAN_GetMbStatusFlags(base, u64flag << result))
+#else
+ uint32_t u32flag = 1;
+ if (0U != FLEXCAN_GetMbStatusFlags(base, u32flag << result))
+#endif
+ {
+ if (FLEXCAN_IsMbIntEnabled(base, (uint8_t)result))
+ {
+ break;
+ }
+ }
+ }
+
+ /* find Message to deal with. */
+ if (result < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base))
+ {
+ /* Solve Legacy Rx FIFO interrupt. */
+ if (((uint8_t)kFLEXCAN_StateIdle != handle->rxFifoState) && (result <= (uint32_t)CAN_IFLAG1_BUF7I_SHIFT))
+ {
+ uint32_t u32mask = 1;
+ switch (u32mask << result)
+ {
+ case kFLEXCAN_RxFifoOverflowFlag:
+ status = kStatus_FLEXCAN_RxFifoOverflow;
+ break;
+
+ case kFLEXCAN_RxFifoWarningFlag:
+ status = kStatus_FLEXCAN_RxFifoWarning;
+ break;
+
+ case kFLEXCAN_RxFifoFrameAvlFlag:
+ status = FLEXCAN_ReadRxFifo(base, handle->rxFifoFrameBuf);
+ if (kStatus_Success == status)
+ {
+ /* Align the current (index 0) rxfifo timestamp to the timestamp array by handle. */
+ handle->timestamp[0] = handle->rxFifoFrameBuf->timestamp;
+ status = kStatus_FLEXCAN_RxFifoIdle;
+ }
+ FLEXCAN_TransferAbortReceiveFifo(base, handle);
+ break;
+
+ default:
+ status = kStatus_FLEXCAN_UnHandled;
+ break;
+ }
+ }
+ else
+ {
+ /* Get current State of Message Buffer. */
+ switch (handle->mbState[result])
+ {
+ /* Solve Rx Data Frame. */
+ case (uint8_t)kFLEXCAN_StateRxData:
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0U != (base->MCR & CAN_MCR_FDEN_MASK))
+ {
+ status = FLEXCAN_ReadFDRxMb(base, (uint8_t)result, handle->mbFDFrameBuf[result]);
+ if (kStatus_Success == status)
+ {
+ /* Align the current index of RX MB timestamp to the timestamp array by handle. */
+ handle->timestamp[result] = handle->mbFDFrameBuf[result]->timestamp;
+ status = kStatus_FLEXCAN_RxIdle;
+ }
+ }
+ else
+#endif
+ {
+ status = FLEXCAN_ReadRxMb(base, (uint8_t)result, handle->mbFrameBuf[result]);
+ if (kStatus_Success == status)
+ {
+ /* Align the current index of RX MB timestamp to the timestamp array by handle. */
+ handle->timestamp[result] = handle->mbFrameBuf[result]->timestamp;
+ status = kStatus_FLEXCAN_RxIdle;
+ }
+ }
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0U != (base->MCR & CAN_MCR_FDEN_MASK))
+ {
+ FLEXCAN_TransferFDAbortReceive(base, handle, (uint8_t)result);
+ }
+ else
+#endif
+ {
+ FLEXCAN_TransferAbortReceive(base, handle, (uint8_t)result);
+ }
+ break;
+
+ /* Sove Rx Remote Frame. User need to Read the frame in Mail box in time by Read from MB API. */
+ case (uint8_t)kFLEXCAN_StateRxRemote:
+ status = kStatus_FLEXCAN_RxRemote;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0U != (base->MCR & CAN_MCR_FDEN_MASK))
+ {
+ FLEXCAN_TransferFDAbortReceive(base, handle, (uint8_t)result);
+ }
+ else
+#endif
+ {
+ FLEXCAN_TransferAbortReceive(base, handle, (uint8_t)result);
+ }
+ break;
+
+ /* Solve Tx Data Frame. */
+ case (uint8_t)kFLEXCAN_StateTxData:
+ status = kStatus_FLEXCAN_TxIdle;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0U != (base->MCR & CAN_MCR_FDEN_MASK))
+ {
+ FLEXCAN_TransferFDAbortSend(base, handle, (uint8_t)result);
+ }
+ else
+#endif
+ {
+ FLEXCAN_TransferAbortSend(base, handle, (uint8_t)result);
+ }
+ break;
+
+ /* Solve Tx Remote Frame. */
+ case (uint8_t)kFLEXCAN_StateTxRemote:
+ handle->mbState[result] = (uint8_t)kFLEXCAN_StateRxRemote;
+ status = kStatus_FLEXCAN_TxSwitchToRx;
+ break;
+
+ default:
+ status = kStatus_FLEXCAN_UnHandled;
+ break;
+ }
+ }
+
+ /* Clear resolved Message Buffer IRQ. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64flag = 1;
+ FLEXCAN_ClearMbStatusFlags(base, u64flag << result);
+#else
+ uint32_t u32flag = 1;
+ FLEXCAN_ClearMbStatusFlags(base, u32flag << result);
+#endif
+ }
+
+ *pResult = result;
+
+ return status;
+}
+
+/*!
+ * brief FlexCAN IRQ handle function.
+ *
+ * This function handles the FlexCAN Error, the Message Buffer, and the Rx FIFO IRQ request.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ */
+void FLEXCAN_TransferHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+
+ status_t status;
+ uint32_t result = 0xFFU;
+ uint32_t EsrStatus = 0U;
+
+ do
+ {
+ /* Get Current FlexCAN Module Error and Status. */
+ EsrStatus = FLEXCAN_GetStatusFlags(base);
+
+ /* To handle FlexCAN Error and Status Interrupt first. */
+ if (0U != (EsrStatus & ((uint32_t)kFLEXCAN_TxWarningIntFlag | (uint32_t)kFLEXCAN_RxWarningIntFlag |
+ (uint32_t)kFLEXCAN_BusOffIntFlag | (uint32_t)kFLEXCAN_ErrorIntFlag)))
+ {
+ status = kStatus_FLEXCAN_ErrorStatus;
+ /* Clear FlexCAN Error and Status Interrupt. */
+ FLEXCAN_ClearStatusFlags(base, (uint32_t)kFLEXCAN_TxWarningIntFlag | (uint32_t)kFLEXCAN_RxWarningIntFlag |
+ (uint32_t)kFLEXCAN_BusOffIntFlag | (uint32_t)kFLEXCAN_ErrorIntFlag);
+ result = EsrStatus;
+ }
+ else if (0U != (EsrStatus & (uint32_t)kFLEXCAN_WakeUpIntFlag))
+ {
+ status = kStatus_FLEXCAN_WakeUp;
+ FLEXCAN_ClearStatusFlags(base, (uint32_t)kFLEXCAN_WakeUpIntFlag);
+ }
+ else
+ {
+ /* to handle real data transfer. */
+ status = FLEXCAN_SubHandlerForDataTransfered(base, handle, &result);
+ }
+
+ /* Calling Callback Function if has one. */
+ if (handle->callback != NULL)
+ {
+ handle->callback(base, handle, status, result, handle->userData);
+ }
+ } while (FLEXCAN_CheckUnhandleInterruptEvents(base));
+}
+
+#if defined(CAN0)
+void CAN0_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[0]);
+
+ s_flexcanIsr(CAN0, s_flexcanHandle[0]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(CAN1)
+void CAN1_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[1]);
+
+ s_flexcanIsr(CAN1, s_flexcanHandle[1]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(CAN2)
+void CAN2_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[2]);
+
+ s_flexcanIsr(CAN2, s_flexcanHandle[2]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(CAN3)
+void CAN3_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[3]);
+
+ s_flexcanIsr(CAN3, s_flexcanHandle[3]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(CAN4)
+void CAN4_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[4]);
+
+ s_flexcanIsr(CAN4, s_flexcanHandle[4]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(DMA__CAN0)
+void DMA_FLEXCAN0_INT_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN0)]);
+
+ s_flexcanIsr(DMA__CAN0, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN0)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(DMA__CAN1)
+void DMA_FLEXCAN1_INT_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN1)]);
+
+ s_flexcanIsr(DMA__CAN1, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN1)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(DMA__CAN2)
+void DMA_FLEXCAN2_INT_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN2)]);
+
+ s_flexcanIsr(DMA__CAN2, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN2)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(ADMA__CAN0)
+void ADMA_FLEXCAN0_INT_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN0)]);
+
+ s_flexcanIsr(ADMA__CAN0, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN0)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(ADMA__CAN1)
+void ADMA_FLEXCAN1_INT_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN1)]);
+
+ s_flexcanIsr(ADMA__CAN1, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN1)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(ADMA__CAN2)
+void ADMA_FLEXCAN2_INT_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN2)]);
+
+ s_flexcanIsr(ADMA__CAN2, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN2)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif