summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/mcux-sdk/drivers/usdhc/fsl_usdhc.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--bsps/arm/imxrt/mcux-sdk/drivers/usdhc/fsl_usdhc.c2480
1 files changed, 2480 insertions, 0 deletions
diff --git a/bsps/arm/imxrt/mcux-sdk/drivers/usdhc/fsl_usdhc.c b/bsps/arm/imxrt/mcux-sdk/drivers/usdhc/fsl_usdhc.c
new file mode 100644
index 0000000000..f2c82d8cde
--- /dev/null
+++ b/bsps/arm/imxrt/mcux-sdk/drivers/usdhc/fsl_usdhc.c
@@ -0,0 +1,2480 @@
+/*
+ * Copyright (c) 2016, Freescale Semiconductor, Inc.
+ * Copyright 2016-2021 NXP
+ * All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include "fsl_usdhc.h"
+#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
+#include "fsl_cache.h"
+#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
+#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
+#include "fsl_memory.h"
+#endif
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+
+/* Component ID definition, used by tools. */
+#ifndef FSL_COMPONENT_ID
+#define FSL_COMPONENT_ID "platform.drivers.usdhc"
+#endif
+
+/*! @brief Clock setting */
+/* Max SD clock divisor from base clock */
+#define USDHC_MAX_DVS ((USDHC_SYS_CTRL_DVS_MASK >> USDHC_SYS_CTRL_DVS_SHIFT) + 1U)
+#define USDHC_MAX_CLKFS ((USDHC_SYS_CTRL_SDCLKFS_MASK >> USDHC_SYS_CTRL_SDCLKFS_SHIFT) + 1U)
+#define USDHC_PREV_DVS(x) ((x) -= 1U)
+#define USDHC_PREV_CLKFS(x, y) ((x) >>= (y))
+/*! @brief USDHC ADMA table address align size */
+#define USDHC_ADMA_TABLE_ADDRESS_ALIGN (4U)
+
+/* Typedef for interrupt handler. */
+typedef void (*usdhc_isr_t)(USDHC_Type *base, usdhc_handle_t *handle);
+/*! @brief check flag avalibility */
+#define IS_USDHC_FLAG_SET(reg, flag) (((reg) & ((uint32_t)flag)) != 0UL)
+
+/*! @brief usdhc transfer flags */
+enum _usdhc_transfer_flags
+{
+ kUSDHC_CommandOnly = 1U, /*!< transfer command only */
+ kUSDHC_CommandAndTxData = 2U, /*!< transfer command and transmit data */
+ kUSDHC_CommandAndRxData = 4U, /*!< transfer command and receive data */
+ kUSDHC_DataWithAutoCmd12 = 8U, /*!< transfer data with auto cmd12 enabled */
+ kUSDHC_DataWithAutoCmd23 = 16U, /*!< transfer data with auto cmd23 enabled */
+ kUSDHC_BootData = 32U, /*!< transfer boot data */
+ kUSDHC_BootDataContinuous = 64U, /*!< transfer boot data continuous */
+};
+
+#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
+#define USDHC_ADDR_CPU_2_DMA(addr) (MEMORY_ConvertMemoryMapAddress((addr), kMEMORY_Local2DMA))
+#else
+#define USDHC_ADDR_CPU_2_DMA(addr) (addr)
+#endif
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+/*!
+ * @brief Get the instance.
+ *
+ * @param base USDHC peripheral base address.
+ * @return Instance number.
+ */
+static uint32_t USDHC_GetInstance(USDHC_Type *base);
+
+/*!
+ * @brief Start transfer according to current transfer state
+ *
+ * @param base USDHC peripheral base address.
+ * @param transferFlags transfer flags, @ref _usdhc_transfer_flags.
+ * @param blockSize block size.
+ * @param blockCount block count.
+ */
+static status_t USDHC_SetTransferConfig(USDHC_Type *base,
+ uint32_t transferFlags,
+ size_t blockSize,
+ uint32_t blockCount);
+
+/*!
+ * @brief Receive command response
+ *
+ * @param base USDHC peripheral base address.
+ * @param command Command to be sent.
+ */
+static status_t USDHC_ReceiveCommandResponse(USDHC_Type *base, usdhc_command_t *command);
+
+/*!
+ * @brief Read DATAPORT when buffer enable bit is set.
+ *
+ * @param base USDHC peripheral base address.
+ * @param data Data to be read.
+ * @param transferredWords The number of data words have been transferred last time transaction.
+ * @return The number of total data words have been transferred after this time transaction.
+ */
+static uint32_t USDHC_ReadDataPort(USDHC_Type *base, usdhc_data_t *data, uint32_t transferredWords);
+
+/*!
+ * @brief Read data by using DATAPORT polling way.
+ *
+ * @param base USDHC peripheral base address.
+ * @param data Data to be read.
+ * @retval kStatus_Fail Read DATAPORT failed.
+ * @retval kStatus_Success Operate successfully.
+ */
+static status_t USDHC_ReadByDataPortBlocking(USDHC_Type *base, usdhc_data_t *data);
+
+/*!
+ * @brief Write DATAPORT when buffer enable bit is set.
+ *
+ * @param base USDHC peripheral base address.
+ * @param data Data to be read.
+ * @param transferredWords The number of data words have been transferred last time.
+ * @return The number of total data words have been transferred after this time transaction.
+ */
+static uint32_t USDHC_WriteDataPort(USDHC_Type *base, usdhc_data_t *data, uint32_t transferredWords);
+
+/*!
+ * @brief Write data by using DATAPORT polling way.
+ *
+ * @param base USDHC peripheral base address.
+ * @param data Data to be transferred.
+ * @retval kStatus_Fail Write DATAPORT failed.
+ * @retval kStatus_Success Operate successfully.
+ */
+static status_t USDHC_WriteByDataPortBlocking(USDHC_Type *base, usdhc_data_t *data);
+
+/*!
+ * @brief Transfer data by polling way.
+ *
+ * @param base USDHC peripheral base address.
+ * @param data Data to be transferred.
+ * @param use DMA flag.
+ * @retval kStatus_Fail Transfer data failed.
+ * @retval kStatus_InvalidArgument Argument is invalid.
+ * @retval kStatus_Success Operate successfully.
+ */
+static status_t USDHC_TransferDataBlocking(USDHC_Type *base, usdhc_data_t *data, bool enDMA);
+
+/*!
+ * @brief wait command done
+ *
+ * @param base USDHC peripheral base address.
+ * @param command configuration
+ * @param pollingCmdDone polling command done flag
+ */
+static status_t USDHC_WaitCommandDone(USDHC_Type *base, usdhc_command_t *command, bool pollingCmdDone);
+
+/*!
+ * @brief Handle card detect interrupt.
+ *
+ * @param base USDHC peripheral base address.
+ * @param handle USDHC handle.
+ * @param interruptFlags Card detect related interrupt flags.
+ */
+static void USDHC_TransferHandleCardDetect(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags);
+
+/*!
+ * @brief Handle command interrupt.
+ *
+ * @param base USDHC peripheral base address.
+ * @param handle USDHC handle.
+ * @param interruptFlags Command related interrupt flags.
+ */
+static void USDHC_TransferHandleCommand(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags);
+
+/*!
+ * @brief Handle data interrupt.
+ *
+ * @param base USDHC peripheral base address.
+ * @param handle USDHC handle.
+ * @param interruptFlags Data related interrupt flags.
+ */
+static void USDHC_TransferHandleData(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags);
+
+/*!
+ * @brief Handle SDIO card interrupt signal.
+ *
+ * @param base USDHC peripheral base address.
+ * @param handle USDHC handle.
+ */
+static void USDHC_TransferHandleSdioInterrupt(USDHC_Type *base, usdhc_handle_t *handle);
+
+/*!
+ * @brief Handle SDIO block gap event.
+ *
+ * @param base USDHC peripheral base address.
+ * @param handle USDHC handle.
+ */
+static void USDHC_TransferHandleBlockGap(USDHC_Type *base, usdhc_handle_t *handle);
+
+#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
+/*!
+ * @brief Handle retuning
+ *
+ * @param base USDHC peripheral base address.
+ * @param handle USDHC handle.
+ * @param interrupt flags
+ */
+static void USDHC_TransferHandleReTuning(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags);
+#endif
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+/*! @brief USDHC base pointer array */
+static USDHC_Type *const s_usdhcBase[] = USDHC_BASE_PTRS;
+
+/*! @brief USDHC internal handle pointer array */
+static usdhc_handle_t *s_usdhcHandle[ARRAY_SIZE(s_usdhcBase)] = {0};
+
+/*! @brief USDHC IRQ name array */
+static const IRQn_Type s_usdhcIRQ[] = USDHC_IRQS;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+/*! @brief USDHC clock array name */
+static const clock_ip_name_t s_usdhcClock[] = USDHC_CLOCKS;
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+#if (defined(FSL_FEATURE_USDHC_HAS_RESET) && FSL_FEATURE_USDHC_HAS_RESET)
+/*! @brief Pointers to USDHC resets for each instance. */
+static const reset_ip_name_t s_usdhcResets[] = USDHC_RSTS;
+#endif
+
+/* USDHC ISR for transactional APIs. */
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
+static usdhc_isr_t s_usdhcIsr = (usdhc_isr_t)DefaultISR;
+#else
+static usdhc_isr_t s_usdhcIsr;
+#endif
+/*! @brief Dummy data buffer for mmc boot mode */
+AT_NONCACHEABLE_SECTION_ALIGN(static uint32_t s_usdhcBootDummy, USDHC_ADMA2_ADDRESS_ALIGN);
+
+/*******************************************************************************
+ * Code
+ ******************************************************************************/
+static uint32_t USDHC_GetInstance(USDHC_Type *base)
+{
+ uint8_t instance = 0;
+
+ while ((instance < ARRAY_SIZE(s_usdhcBase)) && (s_usdhcBase[instance] != base))
+ {
+ instance++;
+ }
+
+ assert(instance < ARRAY_SIZE(s_usdhcBase));
+
+ return instance;
+}
+
+static status_t USDHC_SetTransferConfig(USDHC_Type *base, uint32_t transferFlags, size_t blockSize, uint32_t blockCount)
+{
+ uint32_t mixCtrl = base->MIX_CTRL;
+
+ if (((uint32_t)kUSDHC_CommandOnly & transferFlags) != 0U)
+ {
+ /* clear data flags */
+ mixCtrl &= ~(USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK | USDHC_MIX_CTRL_DTDSEL_MASK |
+ USDHC_MIX_CTRL_AC12EN_MASK | USDHC_MIX_CTRL_AC23EN_MASK);
+
+ if (IS_USDHC_FLAG_SET(base->PRES_STATE, kUSDHC_CommandInhibitFlag))
+ {
+ return kStatus_USDHC_BusyTransferring;
+ }
+ }
+ else
+ {
+ /* if transfer boot continous, only need set the CREQ bit, leave others as it is */
+ if ((transferFlags & (uint32_t)kUSDHC_BootDataContinuous) != 0U)
+ {
+ /* clear stop at block gap request */
+ base->PROT_CTRL &= ~USDHC_PROT_CTRL_SABGREQ_MASK;
+ /* continous transfer data */
+ base->PROT_CTRL |= USDHC_PROT_CTRL_CREQ_MASK;
+ return kStatus_Success;
+ }
+
+ /* check data inhibit flag */
+ if (IS_USDHC_FLAG_SET(base->PRES_STATE, kUSDHC_DataInhibitFlag))
+ {
+ return kStatus_USDHC_BusyTransferring;
+ }
+ /* check transfer block count */
+ if ((blockCount > USDHC_MAX_BLOCK_COUNT))
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* config mix parameter */
+ mixCtrl &= ~(USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK | USDHC_MIX_CTRL_DTDSEL_MASK |
+ USDHC_MIX_CTRL_AC12EN_MASK);
+
+ if ((transferFlags & (uint32_t)kUSDHC_CommandAndRxData) != 0U)
+ {
+ mixCtrl |= USDHC_MIX_CTRL_DTDSEL_MASK;
+ }
+
+ if (blockCount > 1U)
+ {
+ mixCtrl |= USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK;
+ /* auto command 12 */
+ if ((transferFlags & (uint32_t)kUSDHC_DataWithAutoCmd12) != 0U)
+ {
+ mixCtrl |= USDHC_MIX_CTRL_AC12EN_MASK;
+ }
+ }
+
+ /* auto command 23, auto send set block count cmd before multiple read/write */
+ if ((transferFlags & (uint32_t)kUSDHC_DataWithAutoCmd23) != 0U)
+ {
+ mixCtrl |= USDHC_MIX_CTRL_AC23EN_MASK;
+ base->VEND_SPEC2 |= USDHC_VEND_SPEC2_ACMD23_ARGU2_EN_MASK;
+ /* config the block count to DS_ADDR */
+ base->DS_ADDR = blockCount;
+ }
+ else
+ {
+ mixCtrl &= ~USDHC_MIX_CTRL_AC23EN_MASK;
+ base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_ACMD23_ARGU2_EN_MASK;
+ }
+
+ /* if transfer boot data, leave the block count to USDHC_SetMmcBootConfig function */
+ if ((transferFlags & (uint32_t)kUSDHC_BootData) == 0U)
+ {
+ /* config data block size/block count */
+ base->BLK_ATT = ((base->BLK_ATT & ~(USDHC_BLK_ATT_BLKSIZE_MASK | USDHC_BLK_ATT_BLKCNT_MASK)) |
+ (USDHC_BLK_ATT_BLKSIZE(blockSize) | USDHC_BLK_ATT_BLKCNT(blockCount)));
+ }
+ else
+ {
+ mixCtrl |= USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK;
+ base->PROT_CTRL |= USDHC_PROT_CTRL_RD_DONE_NO_8CLK_MASK;
+ }
+ }
+ /* config the mix parameter */
+ base->MIX_CTRL = mixCtrl;
+
+ return kStatus_Success;
+}
+
+void USDHC_SetDataConfig(USDHC_Type *base,
+ usdhc_transfer_direction_t dataDirection,
+ uint32_t blockCount,
+ uint32_t blockSize)
+{
+ assert(blockCount <= USDHC_MAX_BLOCK_COUNT);
+
+ uint32_t mixCtrl = base->MIX_CTRL;
+
+ /* block attribute configuration */
+ base->BLK_ATT = ((base->BLK_ATT & ~(USDHC_BLK_ATT_BLKSIZE_MASK | USDHC_BLK_ATT_BLKCNT_MASK)) |
+ (USDHC_BLK_ATT_BLKSIZE(blockSize) | USDHC_BLK_ATT_BLKCNT(blockCount)));
+
+ /* config mix parameter */
+ mixCtrl &= ~(USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK | USDHC_MIX_CTRL_DTDSEL_MASK);
+
+ mixCtrl |= USDHC_MIX_CTRL_DTDSEL(dataDirection) | (blockCount > 1U ? USDHC_MIX_CTRL_MSBSEL_MASK : 0U);
+
+ base->MIX_CTRL = mixCtrl;
+}
+
+static status_t USDHC_ReceiveCommandResponse(USDHC_Type *base, usdhc_command_t *command)
+{
+ assert(command != NULL);
+
+ uint32_t response0 = base->CMD_RSP0;
+ uint32_t response1 = base->CMD_RSP1;
+ uint32_t response2 = base->CMD_RSP2;
+
+ if (command->responseType != kCARD_ResponseTypeNone)
+ {
+ command->response[0U] = response0;
+ if (command->responseType == kCARD_ResponseTypeR2)
+ {
+ /* R3-R2-R1-R0(lowest 8 bit is invalid bit) has the same format as R2 format in SD specification document
+ after removed internal CRC7 and end bit. */
+ command->response[0U] <<= 8U;
+ command->response[1U] = (response1 << 8U) | ((response0 & 0xFF000000U) >> 24U);
+ command->response[2U] = (response2 << 8U) | ((response1 & 0xFF000000U) >> 24U);
+ command->response[3U] = (base->CMD_RSP3 << 8U) | ((response2 & 0xFF000000U) >> 24U);
+ }
+ }
+
+ /* check response error flag */
+ if ((command->responseErrorFlags != 0U) &&
+ ((command->responseType == kCARD_ResponseTypeR1) || (command->responseType == kCARD_ResponseTypeR1b) ||
+ (command->responseType == kCARD_ResponseTypeR6) || (command->responseType == kCARD_ResponseTypeR5)))
+ {
+ if (((command->responseErrorFlags) & (command->response[0U])) != 0U)
+ {
+ return kStatus_USDHC_SendCommandFailed;
+ }
+ }
+
+ return kStatus_Success;
+}
+
+static uint32_t USDHC_ReadDataPort(USDHC_Type *base, usdhc_data_t *data, uint32_t transferredWords)
+{
+ uint32_t i;
+ uint32_t totalWords;
+ uint32_t wordsCanBeRead; /* The words can be read at this time. */
+ uint32_t readWatermark = ((base->WTMK_LVL & USDHC_WTMK_LVL_RD_WML_MASK) >> USDHC_WTMK_LVL_RD_WML_SHIFT);
+
+ /* If DMA is enable, do not need to polling data port */
+ if ((base->MIX_CTRL & USDHC_MIX_CTRL_DMAEN_MASK) == 0U)
+ {
+ /*
+ * Add non aligned access support ,user need make sure your buffer size is big
+ * enough to hold the data,in other words,user need make sure the buffer size
+ * is 4 byte aligned
+ */
+ if (data->blockSize % sizeof(uint32_t) != 0U)
+ {
+ data->blockSize +=
+ sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
+ }
+
+ totalWords = ((data->blockCount * data->blockSize) / sizeof(uint32_t));
+
+ /* If watermark level is equal or bigger than totalWords, transfers totalWords data. */
+ if (readWatermark >= totalWords)
+ {
+ wordsCanBeRead = totalWords;
+ }
+ /* If watermark level is less than totalWords and left words to be sent is equal or bigger than readWatermark,
+ transfers watermark level words. */
+ else if ((readWatermark < totalWords) && ((totalWords - transferredWords) >= readWatermark))
+ {
+ wordsCanBeRead = readWatermark;
+ }
+ /* If watermark level is less than totalWords and left words to be sent is less than readWatermark, transfers
+ left
+ words. */
+ else
+ {
+ wordsCanBeRead = (totalWords - transferredWords);
+ }
+
+ i = 0U;
+ while (i < wordsCanBeRead)
+ {
+ data->rxData[transferredWords++] = USDHC_ReadData(base);
+ i++;
+ }
+ }
+
+ return transferredWords;
+}
+
+static status_t USDHC_ReadByDataPortBlocking(USDHC_Type *base, usdhc_data_t *data)
+{
+ uint32_t totalWords;
+ uint32_t transferredWords = 0U, interruptStatus = 0U;
+ status_t error = kStatus_Success;
+
+ /*
+ * Add non aligned access support ,user need make sure your buffer size is big
+ * enough to hold the data,in other words,user need make sure the buffer size
+ * is 4 byte aligned
+ */
+ if (data->blockSize % sizeof(uint32_t) != 0U)
+ {
+ data->blockSize +=
+ sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
+ }
+
+ totalWords = ((data->blockCount * data->blockSize) / sizeof(uint32_t));
+
+ while ((error == kStatus_Success) && (transferredWords < totalWords))
+ {
+ while (
+ !(IS_USDHC_FLAG_SET(interruptStatus, ((uint32_t)kUSDHC_BufferReadReadyFlag |
+ (uint32_t)kUSDHC_DataErrorFlag | (uint32_t)kUSDHC_TuningErrorFlag))))
+ {
+ interruptStatus = USDHC_GetInterruptStatusFlags(base);
+ }
+
+ /* during std tuning process, software do not need to read data, but wait BRR is enough */
+ if ((data->dataType == (uint32_t)kUSDHC_TransferDataTuning) &&
+ (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_BufferReadReadyFlag)))
+ {
+ USDHC_ClearInterruptStatusFlags(base, kUSDHC_BufferReadReadyFlag);
+
+ return kStatus_Success;
+ }
+#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
+ else if (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_TuningErrorFlag))
+ {
+ USDHC_ClearInterruptStatusFlags(base, kUSDHC_TuningErrorFlag);
+ /* if tuning error occur ,return directly */
+ error = kStatus_USDHC_TuningError;
+ }
+#endif
+ else if (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_DataErrorFlag))
+ {
+ if (!(data->enableIgnoreError))
+ {
+ error = kStatus_Fail;
+ }
+ /* clear data error flag */
+ USDHC_ClearInterruptStatusFlags(base, kUSDHC_DataErrorFlag);
+ }
+ else
+ {
+ /* Intentional empty */
+ }
+
+ if (error == kStatus_Success)
+ {
+ transferredWords = USDHC_ReadDataPort(base, data, transferredWords);
+ /* clear buffer read ready */
+ USDHC_ClearInterruptStatusFlags(base, kUSDHC_BufferReadReadyFlag);
+ interruptStatus = 0U;
+ }
+ }
+
+ /* Clear data complete flag after the last read operation. */
+ USDHC_ClearInterruptStatusFlags(base, kUSDHC_DataCompleteFlag);
+
+ return error;
+}
+
+static uint32_t USDHC_WriteDataPort(USDHC_Type *base, usdhc_data_t *data, uint32_t transferredWords)
+{
+ uint32_t i;
+ uint32_t totalWords;
+ uint32_t wordsCanBeWrote; /* Words can be wrote at this time. */
+ uint32_t writeWatermark = ((base->WTMK_LVL & USDHC_WTMK_LVL_WR_WML_MASK) >> USDHC_WTMK_LVL_WR_WML_SHIFT);
+
+ /* If DMA is enable, do not need to polling data port */
+ if ((base->MIX_CTRL & USDHC_MIX_CTRL_DMAEN_MASK) == 0U)
+ {
+ /*
+ * Add non aligned access support ,user need make sure your buffer size is big
+ * enough to hold the data,in other words,user need make sure the buffer size
+ * is 4 byte aligned
+ */
+ if (data->blockSize % sizeof(uint32_t) != 0U)
+ {
+ data->blockSize +=
+ sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
+ }
+
+ totalWords = ((data->blockCount * data->blockSize) / sizeof(uint32_t));
+
+ /* If watermark level is equal or bigger than totalWords, transfers totalWords data.*/
+ if (writeWatermark >= totalWords)
+ {
+ wordsCanBeWrote = totalWords;
+ }
+ /* If watermark level is less than totalWords and left words to be sent is equal or bigger than watermark,
+ transfers watermark level words. */
+ else if ((writeWatermark < totalWords) && ((totalWords - transferredWords) >= writeWatermark))
+ {
+ wordsCanBeWrote = writeWatermark;
+ }
+ /* If watermark level is less than totalWords and left words to be sent is less than watermark, transfers left
+ words. */
+ else
+ {
+ wordsCanBeWrote = (totalWords - transferredWords);
+ }
+
+ i = 0U;
+ while (i < wordsCanBeWrote)
+ {
+ USDHC_WriteData(base, data->txData[transferredWords++]);
+ i++;
+ }
+ }
+
+ return transferredWords;
+}
+
+static status_t USDHC_WriteByDataPortBlocking(USDHC_Type *base, usdhc_data_t *data)
+{
+ uint32_t totalWords;
+
+ uint32_t transferredWords = 0U, interruptStatus = 0U;
+ status_t error = kStatus_Success;
+
+ /*
+ * Add non aligned access support ,user need make sure your buffer size is big
+ * enough to hold the data,in other words,user need make sure the buffer size
+ * is 4 byte aligned
+ */
+ if (data->blockSize % sizeof(uint32_t) != 0U)
+ {
+ data->blockSize +=
+ sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
+ }
+
+ totalWords = (data->blockCount * data->blockSize) / sizeof(uint32_t);
+
+ while ((error == kStatus_Success) && (transferredWords < totalWords))
+ {
+ while (!(IS_USDHC_FLAG_SET(interruptStatus, (uint32_t)kUSDHC_BufferWriteReadyFlag |
+ (uint32_t)kUSDHC_DataErrorFlag |
+ (uint32_t)kUSDHC_TuningErrorFlag)))
+ {
+ interruptStatus = USDHC_GetInterruptStatusFlags(base);
+ }
+#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
+ if (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_TuningErrorFlag))
+ {
+ USDHC_ClearInterruptStatusFlags(base, kUSDHC_TuningErrorFlag);
+ /* if tuning error occur ,return directly */
+ return kStatus_USDHC_TuningError;
+ }
+ else
+#endif
+ if (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_DataErrorFlag))
+ {
+ if (!(data->enableIgnoreError))
+ {
+ error = kStatus_Fail;
+ }
+ /* clear data error flag */
+ USDHC_ClearInterruptStatusFlags(base, kUSDHC_DataErrorFlag);
+ }
+ else
+ {
+ /* Intentional empty */
+ }
+
+ if (error == kStatus_Success)
+ {
+ transferredWords = USDHC_WriteDataPort(base, data, transferredWords);
+ /* clear buffer write ready */
+ USDHC_ClearInterruptStatusFlags(base, kUSDHC_BufferWriteReadyFlag);
+ interruptStatus = 0U;
+ }
+ }
+
+ /* Wait write data complete or data transfer error after the last writing operation. */
+ while (!(IS_USDHC_FLAG_SET(interruptStatus, (uint32_t)kUSDHC_DataCompleteFlag | (uint32_t)kUSDHC_DataErrorFlag)))
+ {
+ interruptStatus = USDHC_GetInterruptStatusFlags(base);
+ }
+
+ if ((interruptStatus & (uint32_t)kUSDHC_DataErrorFlag) != 0UL)
+ {
+ if (!(data->enableIgnoreError))
+ {
+ error = kStatus_Fail;
+ }
+ }
+ USDHC_ClearInterruptStatusFlags(base, ((uint32_t)kUSDHC_DataCompleteFlag | (uint32_t)kUSDHC_DataErrorFlag));
+
+ return error;
+}
+
+/*!
+ * brief send command function
+ *
+ * param base USDHC peripheral base address.
+ * param command configuration
+ */
+void USDHC_SendCommand(USDHC_Type *base, usdhc_command_t *command)
+{
+ assert(NULL != command);
+
+ uint32_t xferType = base->CMD_XFR_TYP, flags = command->flags;
+
+ if (((base->PRES_STATE & (uint32_t)kUSDHC_CommandInhibitFlag) == 0U) && (command->type != kCARD_CommandTypeEmpty))
+ {
+ if ((command->responseType == kCARD_ResponseTypeR1) || (command->responseType == kCARD_ResponseTypeR5) ||
+ (command->responseType == kCARD_ResponseTypeR6) || (command->responseType == kCARD_ResponseTypeR7))
+ {
+ flags |= ((uint32_t)kUSDHC_ResponseLength48Flag | (uint32_t)kUSDHC_EnableCrcCheckFlag |
+ (uint32_t)kUSDHC_EnableIndexCheckFlag);
+ }
+ else if ((command->responseType == kCARD_ResponseTypeR1b) || (command->responseType == kCARD_ResponseTypeR5b))
+ {
+ flags |= ((uint32_t)kUSDHC_ResponseLength48BusyFlag | (uint32_t)kUSDHC_EnableCrcCheckFlag |
+ (uint32_t)kUSDHC_EnableIndexCheckFlag);
+ }
+ else if (command->responseType == kCARD_ResponseTypeR2)
+ {
+ flags |= ((uint32_t)kUSDHC_ResponseLength136Flag | (uint32_t)kUSDHC_EnableCrcCheckFlag);
+ }
+ else if ((command->responseType == kCARD_ResponseTypeR3) || (command->responseType == kCARD_ResponseTypeR4))
+ {
+ flags |= ((uint32_t)kUSDHC_ResponseLength48Flag);
+ }
+ else
+ {
+ /* Intentional empty */
+ }
+
+ if (command->type == kCARD_CommandTypeAbort)
+ {
+ flags |= (uint32_t)kUSDHC_CommandTypeAbortFlag;
+ }
+
+ /* config cmd index */
+ xferType &= ~(USDHC_CMD_XFR_TYP_CMDINX_MASK | USDHC_CMD_XFR_TYP_CMDTYP_MASK | USDHC_CMD_XFR_TYP_CICEN_MASK |
+ USDHC_CMD_XFR_TYP_CCCEN_MASK | USDHC_CMD_XFR_TYP_RSPTYP_MASK | USDHC_CMD_XFR_TYP_DPSEL_MASK);
+
+ xferType |=
+ (((command->index << USDHC_CMD_XFR_TYP_CMDINX_SHIFT) & USDHC_CMD_XFR_TYP_CMDINX_MASK) |
+ ((flags) & (USDHC_CMD_XFR_TYP_CMDTYP_MASK | USDHC_CMD_XFR_TYP_CICEN_MASK | USDHC_CMD_XFR_TYP_CCCEN_MASK |
+ USDHC_CMD_XFR_TYP_RSPTYP_MASK | USDHC_CMD_XFR_TYP_DPSEL_MASK)));
+
+ /* config the command xfertype and argument */
+ base->CMD_ARG = command->argument;
+ base->CMD_XFR_TYP = xferType;
+ }
+
+ if (command->type == kCARD_CommandTypeEmpty)
+ {
+ /* disable CMD done interrupt for empty command */
+ base->INT_SIGNAL_EN &= ~USDHC_INT_SIGNAL_EN_CCIEN_MASK;
+ }
+}
+
+static status_t USDHC_WaitCommandDone(USDHC_Type *base, usdhc_command_t *command, bool pollingCmdDone)
+{
+ assert(NULL != command);
+
+ status_t error = kStatus_Success;
+ uint32_t interruptStatus = 0U;
+ /* check if need polling command done or not */
+ if (pollingCmdDone)
+ {
+ /* Wait command complete or USDHC encounters error. */
+ while (!(IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_CommandFlag)))
+ {
+ interruptStatus = USDHC_GetInterruptStatusFlags(base);
+ }
+
+ if ((interruptStatus & (uint32_t)kUSDHC_CommandErrorFlag) != 0UL)
+ {
+ error = kStatus_Fail;
+ }
+
+ /* Receive response when command completes successfully. */
+ if (error == kStatus_Success)
+ {
+ error = USDHC_ReceiveCommandResponse(base, command);
+ }
+
+ USDHC_ClearInterruptStatusFlags(base, kUSDHC_CommandFlag);
+ }
+
+ return error;
+}
+
+static status_t USDHC_TransferDataBlocking(USDHC_Type *base, usdhc_data_t *data, bool enDMA)
+{
+ status_t error = kStatus_Success;
+ uint32_t interruptStatus = 0U;
+
+ if (enDMA)
+ {
+ /* Wait data complete or USDHC encounters error. */
+ while (!(IS_USDHC_FLAG_SET(interruptStatus, ((uint32_t)kUSDHC_DataDMAFlag | (uint32_t)kUSDHC_TuningErrorFlag))))
+ {
+ interruptStatus = USDHC_GetInterruptStatusFlags(base);
+ }
+
+#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
+ if (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_TuningErrorFlag))
+ {
+ error = kStatus_USDHC_TuningError;
+ }
+ else
+#endif
+ if (IS_USDHC_FLAG_SET(interruptStatus, ((uint32_t)kUSDHC_DataErrorFlag | (uint32_t)kUSDHC_DmaErrorFlag)))
+ {
+ if ((!(data->enableIgnoreError)) || (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_DataTimeoutFlag)))
+ {
+ error = kStatus_USDHC_TransferDataFailed;
+ }
+ }
+ else
+ {
+ /* Intentional empty */
+ }
+ /* load dummy data */
+ if ((data->dataType == (uint32_t)kUSDHC_TransferDataBootcontinous) && (error == kStatus_Success))
+ {
+ *(data->rxData) = s_usdhcBootDummy;
+ }
+
+ USDHC_ClearInterruptStatusFlags(base, ((uint32_t)kUSDHC_DataDMAFlag | (uint32_t)kUSDHC_TuningErrorFlag));
+ }
+ else
+ {
+ if (data->rxData != NULL)
+ {
+ error = USDHC_ReadByDataPortBlocking(base, data);
+ if (error != kStatus_Success)
+ {
+ return error;
+ }
+ }
+ else
+ {
+ error = USDHC_WriteByDataPortBlocking(base, data);
+ if (error != kStatus_Success)
+ {
+ return error;
+ }
+ }
+ }
+
+ return error;
+}
+
+/*!
+ * brief USDHC module initialization function.
+ *
+ * Configures the USDHC according to the user configuration.
+ *
+ * Example:
+ code
+ usdhc_config_t config;
+ config.cardDetectDat3 = false;
+ config.endianMode = kUSDHC_EndianModeLittle;
+ config.dmaMode = kUSDHC_DmaModeAdma2;
+ config.readWatermarkLevel = 128U;
+ config.writeWatermarkLevel = 128U;
+ USDHC_Init(USDHC, &config);
+ endcode
+ *
+ * param base USDHC peripheral base address.
+ * param config USDHC configuration information.
+ * retval kStatus_Success Operate successfully.
+ */
+void USDHC_Init(USDHC_Type *base, const usdhc_config_t *config)
+{
+ assert(config != NULL);
+ assert((config->writeWatermarkLevel >= 1U) && (config->writeWatermarkLevel <= 128U));
+ assert((config->readWatermarkLevel >= 1U) && (config->readWatermarkLevel <= 128U));
+#if !(defined(FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN) && FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN)
+ assert(config->writeBurstLen <= 16U);
+#endif
+ uint32_t proctl, sysctl, wml;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ /* Enable USDHC clock. */
+ CLOCK_EnableClock(s_usdhcClock[USDHC_GetInstance(base)]);
+#endif
+
+#if (defined(FSL_FEATURE_USDHC_HAS_RESET) && FSL_FEATURE_USDHC_HAS_RESET)
+ /* Reset the USDHC module */
+ RESET_PeripheralReset(s_usdhcResets[USDHC_GetInstance(base)]);
+#endif
+
+ /* Reset ALL USDHC. */
+ base->SYS_CTRL |= USDHC_SYS_CTRL_RSTA_MASK | USDHC_SYS_CTRL_RSTC_MASK | USDHC_SYS_CTRL_RSTD_MASK;
+
+ proctl = base->PROT_CTRL;
+ wml = base->WTMK_LVL;
+ sysctl = base->SYS_CTRL;
+
+ proctl &= ~(USDHC_PROT_CTRL_EMODE_MASK | USDHC_PROT_CTRL_DMASEL_MASK);
+ /* Endian mode*/
+ proctl |= USDHC_PROT_CTRL_EMODE(config->endianMode);
+
+#if (defined(FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN) && FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN)
+ /* Watermark level */
+ wml &= ~(USDHC_WTMK_LVL_RD_WML_MASK | USDHC_WTMK_LVL_WR_WML_MASK);
+ wml |= (USDHC_WTMK_LVL_RD_WML(config->readWatermarkLevel) | USDHC_WTMK_LVL_WR_WML(config->writeWatermarkLevel));
+#else
+ /* Watermark level */
+ wml &= ~(USDHC_WTMK_LVL_RD_WML_MASK | USDHC_WTMK_LVL_WR_WML_MASK | USDHC_WTMK_LVL_RD_BRST_LEN_MASK |
+ USDHC_WTMK_LVL_WR_BRST_LEN_MASK);
+ wml |= (USDHC_WTMK_LVL_RD_WML(config->readWatermarkLevel) | USDHC_WTMK_LVL_WR_WML(config->writeWatermarkLevel) |
+ USDHC_WTMK_LVL_RD_BRST_LEN(config->readBurstLen) | USDHC_WTMK_LVL_WR_BRST_LEN(config->writeBurstLen));
+#endif
+
+ /* config the data timeout value */
+ sysctl &= ~USDHC_SYS_CTRL_DTOCV_MASK;
+ sysctl |= USDHC_SYS_CTRL_DTOCV(config->dataTimeout);
+
+ base->SYS_CTRL = sysctl;
+ base->WTMK_LVL = wml;
+ base->PROT_CTRL = proctl;
+
+#if FSL_FEATURE_USDHC_HAS_EXT_DMA
+ /* disable external DMA */
+ base->VEND_SPEC &= ~USDHC_VEND_SPEC_EXT_DMA_EN_MASK;
+#endif
+ /* disable internal DMA and DDR mode */
+ base->MIX_CTRL &= ~(USDHC_MIX_CTRL_DMAEN_MASK | USDHC_MIX_CTRL_DDR_EN_MASK);
+ /* disable interrupt, enable all the interrupt status, clear status. */
+ base->INT_STATUS_EN = kUSDHC_AllInterruptFlags;
+ base->INT_SIGNAL_EN = 0UL;
+ base->INT_STATUS = kUSDHC_AllInterruptFlags;
+}
+
+/*!
+ * brief Deinitializes the USDHC.
+ *
+ * param base USDHC peripheral base address.
+ */
+void USDHC_Deinit(USDHC_Type *base)
+{
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ /* Disable clock. */
+ CLOCK_DisableClock(s_usdhcClock[USDHC_GetInstance(base)]);
+#endif
+}
+
+/*!
+ * brief Resets the USDHC.
+ *
+ * param base USDHC peripheral base address.
+ * param mask The reset type mask(_usdhc_reset).
+ * param timeout Timeout for reset.
+ * retval true Reset successfully.
+ * retval false Reset failed.
+ */
+bool USDHC_Reset(USDHC_Type *base, uint32_t mask, uint32_t timeout)
+{
+ base->SYS_CTRL |= (mask & (USDHC_SYS_CTRL_RSTA_MASK | USDHC_SYS_CTRL_RSTC_MASK | USDHC_SYS_CTRL_RSTD_MASK
+#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
+ | USDHC_SYS_CTRL_RSTT_MASK
+#endif
+ ));
+ /* Delay some time to wait reset success. */
+ while (IS_USDHC_FLAG_SET(base->SYS_CTRL, mask))
+ {
+ if (timeout == 0UL)
+ {
+ break;
+ }
+ timeout--;
+ }
+
+ return ((0UL == timeout) ? false : true);
+}
+
+/*!
+ * brief Gets the capability information.
+ *
+ * param base USDHC peripheral base address.
+ * param capability Structure to save capability information.
+ */
+void USDHC_GetCapability(USDHC_Type *base, usdhc_capability_t *capability)
+{
+ assert(capability != NULL);
+
+ uint32_t htCapability;
+ uint32_t maxBlockLength;
+
+ htCapability = base->HOST_CTRL_CAP;
+
+ /* Get the capability of USDHC. */
+ maxBlockLength = ((htCapability & USDHC_HOST_CTRL_CAP_MBL_MASK) >> USDHC_HOST_CTRL_CAP_MBL_SHIFT);
+ capability->maxBlockLength = (512UL << maxBlockLength);
+ /* Other attributes not in HTCAPBLT register. */
+ capability->maxBlockCount = USDHC_MAX_BLOCK_COUNT;
+ capability->flags =
+ (htCapability & (USDHC_HOST_CTRL_CAP_ADMAS_MASK | USDHC_HOST_CTRL_CAP_HSS_MASK | USDHC_HOST_CTRL_CAP_DMAS_MASK |
+ USDHC_HOST_CTRL_CAP_SRS_MASK | USDHC_HOST_CTRL_CAP_VS33_MASK));
+ capability->flags |= htCapability & USDHC_HOST_CTRL_CAP_VS30_MASK;
+ capability->flags |= htCapability & USDHC_HOST_CTRL_CAP_VS18_MASK;
+ capability->flags |= htCapability & USDHC_HOST_CTRL_CAP_DDR50_SUPPORT_MASK;
+#if defined(FSL_FEATURE_USDHC_HAS_SDR104_MODE) && FSL_FEATURE_USDHC_HAS_SDR104_MODE
+ capability->flags |= USDHC_HOST_CTRL_CAP_SDR104_SUPPORT_MASK;
+#endif
+
+#if defined(FSL_FEATURE_USDHC_HAS_SDR104_MODE) && FSL_FEATURE_USDHC_HAS_SDR50_MODE
+ capability->flags |= USDHC_HOST_CTRL_CAP_SDR50_SUPPORT_MASK;
+#endif
+ /* USDHC support 4/8 bit data bus width. */
+ capability->flags |= (USDHC_HOST_CTRL_CAP_MBL_SHIFT << 0UL) | (USDHC_HOST_CTRL_CAP_MBL_SHIFT << 1UL);
+}
+
+/*!
+ * brief Sets the SD bus clock frequency.
+ *
+ * param base USDHC peripheral base address.
+ * param srcClock_Hz USDHC source clock frequency united in Hz.
+ * param busClock_Hz SD bus clock frequency united in Hz.
+ *
+ * return The nearest frequency of busClock_Hz configured to SD bus.
+ */
+uint32_t USDHC_SetSdClock(USDHC_Type *base, uint32_t srcClock_Hz, uint32_t busClock_Hz)
+{
+ assert(srcClock_Hz != 0U);
+ assert(busClock_Hz != 0U);
+
+ uint32_t totalDiv = 0UL;
+ uint32_t divisor = 0UL;
+ uint32_t prescaler = 0UL;
+ uint32_t sysctl = 0UL;
+ uint32_t nearestFrequency = 0UL;
+
+ if (busClock_Hz > srcClock_Hz)
+ {
+ busClock_Hz = srcClock_Hz;
+ }
+
+ totalDiv = srcClock_Hz / busClock_Hz;
+
+ /* calucate total divisor first */
+ if (totalDiv > (USDHC_MAX_CLKFS * USDHC_MAX_DVS))
+ {
+ return 0UL;
+ }
+
+ if (totalDiv != 0UL)
+ {
+ /* calucate the divisor (srcClock_Hz / divisor) <= busClock_Hz */
+ if ((srcClock_Hz / totalDiv) > busClock_Hz)
+ {
+ totalDiv++;
+ }
+
+ /* divide the total divisor to div and prescaler */
+ if (totalDiv > USDHC_MAX_DVS)
+ {
+ prescaler = totalDiv / USDHC_MAX_DVS;
+ /* prescaler must be a value which equal 2^n and smaller than SDHC_MAX_CLKFS */
+ while (((USDHC_MAX_CLKFS % prescaler) != 0UL) || (prescaler == 1UL))
+ {
+ prescaler++;
+ }
+ /* calucate the divisor */
+ divisor = totalDiv / prescaler;
+ /* fine tuning the divisor until divisor * prescaler >= totalDiv */
+ while ((divisor * prescaler) < totalDiv)
+ {
+ divisor++;
+ if (divisor > USDHC_MAX_DVS)
+ {
+ prescaler <<= 1UL;
+ if (prescaler > USDHC_MAX_CLKFS)
+ {
+ return 0UL;
+ }
+ divisor = totalDiv / prescaler;
+ }
+ }
+ }
+ else
+ {
+ /* in this situation , divsior and SDCLKFS can generate same clock
+ use SDCLKFS*/
+ if (((totalDiv % 2UL) != 0UL) && (totalDiv != 1UL))
+ {
+ divisor = totalDiv;
+ prescaler = 1UL;
+ }
+ else
+ {
+ divisor = 1UL;
+ prescaler = totalDiv;
+ }
+ }
+ nearestFrequency = srcClock_Hz / (divisor == 0UL ? 1UL : divisor) / prescaler;
+ }
+ /* in this condition , srcClock_Hz = busClock_Hz, */
+ else
+ {
+ /* in DDR mode , set SDCLKFS to 0, divisor = 0, actually the
+ totoal divider = 2U */
+ divisor = 0UL;
+ prescaler = 0UL;
+ nearestFrequency = srcClock_Hz;
+ }
+
+ /* calucate the value write to register */
+ if (divisor != 0UL)
+ {
+ USDHC_PREV_DVS(divisor);
+ }
+ /* calucate the value write to register */
+ if (prescaler != 0UL)
+ {
+ USDHC_PREV_CLKFS(prescaler, 1UL);
+ }
+
+ /* Set the SD clock frequency divisor, SD clock frequency select, data timeout counter value. */
+ sysctl = base->SYS_CTRL;
+ sysctl &= ~(USDHC_SYS_CTRL_DVS_MASK | USDHC_SYS_CTRL_SDCLKFS_MASK);
+ sysctl |= (USDHC_SYS_CTRL_DVS(divisor) | USDHC_SYS_CTRL_SDCLKFS(prescaler));
+ base->SYS_CTRL = sysctl;
+
+ /* Wait until the SD clock is stable. */
+ while (!IS_USDHC_FLAG_SET(base->PRES_STATE, USDHC_PRES_STATE_SDSTB_MASK))
+ {
+ }
+
+ return nearestFrequency;
+}
+
+/*!
+ * brief Sends 80 clocks to the card to set it to the active state.
+ *
+ * This function must be called each time the card is inserted to ensure that the card can receive the command
+ * correctly.
+ *
+ * param base USDHC peripheral base address.
+ * param timeout Timeout to initialize card.
+ * retval true Set card active successfully.
+ * retval false Set card active failed.
+ */
+bool USDHC_SetCardActive(USDHC_Type *base, uint32_t timeout)
+{
+ base->SYS_CTRL |= USDHC_SYS_CTRL_INITA_MASK;
+ /* Delay some time to wait card become active state. */
+ while (IS_USDHC_FLAG_SET(base->SYS_CTRL, USDHC_SYS_CTRL_INITA_MASK))
+ {
+ if (0UL == timeout)
+ {
+ break;
+ }
+ timeout--;
+ }
+
+ return ((0UL == timeout) ? false : true);
+}
+
+/*!
+ * brief the enable/disable DDR mode
+ *
+ * param base USDHC peripheral base address.
+ * param enable/disable flag
+ * param nibble position
+ */
+void USDHC_EnableDDRMode(USDHC_Type *base, bool enable, uint32_t nibblePos)
+{
+ uint32_t prescaler = (base->SYS_CTRL & USDHC_SYS_CTRL_SDCLKFS_MASK) >> USDHC_SYS_CTRL_SDCLKFS_SHIFT;
+
+ if (enable)
+ {
+ base->MIX_CTRL &= ~USDHC_MIX_CTRL_NIBBLE_POS_MASK;
+ base->MIX_CTRL |= (USDHC_MIX_CTRL_DDR_EN_MASK | USDHC_MIX_CTRL_NIBBLE_POS(nibblePos));
+ prescaler >>= 1UL;
+ }
+ else
+ {
+ base->MIX_CTRL &= ~USDHC_MIX_CTRL_DDR_EN_MASK;
+
+ if (prescaler == 0UL)
+ {
+ prescaler += 1UL;
+ }
+ else
+ {
+ prescaler <<= 1UL;
+ }
+ }
+
+ base->SYS_CTRL = (base->SYS_CTRL & (~USDHC_SYS_CTRL_SDCLKFS_MASK)) | USDHC_SYS_CTRL_SDCLKFS(prescaler);
+}
+
+/*!
+ * brief Configures the MMC boot feature.
+ *
+ * Example:
+ code
+ usdhc_boot_config_t config;
+ config.ackTimeoutCount = 4;
+ config.bootMode = kUSDHC_BootModeNormal;
+ config.blockCount = 5;
+ config.enableBootAck = true;
+ config.enableBoot = true;
+ config.enableAutoStopAtBlockGap = true;
+ USDHC_SetMmcBootConfig(USDHC, &config);
+ endcode
+ *
+ * param base USDHC peripheral base address.
+ * param config The MMC boot configuration information.
+ */
+void USDHC_SetMmcBootConfig(USDHC_Type *base, const usdhc_boot_config_t *config)
+{
+ assert(config != NULL);
+ assert(config->ackTimeoutCount <= (USDHC_MMC_BOOT_DTOCV_ACK_MASK >> USDHC_MMC_BOOT_DTOCV_ACK_SHIFT));
+ assert(config->blockCount <= (USDHC_MMC_BOOT_BOOT_BLK_CNT_MASK >> USDHC_MMC_BOOT_BOOT_BLK_CNT_SHIFT));
+
+ uint32_t mmcboot = base->MMC_BOOT;
+
+ mmcboot &= ~(USDHC_MMC_BOOT_DTOCV_ACK_MASK | USDHC_MMC_BOOT_BOOT_MODE_MASK | USDHC_MMC_BOOT_BOOT_BLK_CNT_MASK);
+ mmcboot |= USDHC_MMC_BOOT_DTOCV_ACK(config->ackTimeoutCount) | USDHC_MMC_BOOT_BOOT_MODE(config->bootMode);
+
+ if (config->enableBootAck)
+ {
+ mmcboot |= USDHC_MMC_BOOT_BOOT_ACK_MASK;
+ }
+ if (config->enableAutoStopAtBlockGap)
+ {
+ mmcboot |=
+ USDHC_MMC_BOOT_AUTO_SABG_EN_MASK | USDHC_MMC_BOOT_BOOT_BLK_CNT(USDHC_MAX_BLOCK_COUNT - config->blockCount);
+ /* always set the block count to USDHC_MAX_BLOCK_COUNT to use auto stop at block gap feature */
+ base->BLK_ATT = ((base->BLK_ATT & ~(USDHC_BLK_ATT_BLKSIZE_MASK | USDHC_BLK_ATT_BLKCNT_MASK)) |
+ (USDHC_BLK_ATT_BLKSIZE(config->blockSize) | USDHC_BLK_ATT_BLKCNT(USDHC_MAX_BLOCK_COUNT)));
+ }
+ else
+ {
+ base->BLK_ATT = ((base->BLK_ATT & ~(USDHC_BLK_ATT_BLKSIZE_MASK | USDHC_BLK_ATT_BLKCNT_MASK)) |
+ (USDHC_BLK_ATT_BLKSIZE(config->blockSize) | USDHC_BLK_ATT_BLKCNT(config->blockCount)));
+ }
+
+ base->MMC_BOOT = mmcboot;
+}
+
+/*!
+ * brief Sets the ADMA1 descriptor table configuration.
+ *
+ * param admaTable Adma table address.
+ * param admaTableWords Adma table length.
+ * param dataBufferAddr Data buffer address.
+ * param dataBytes Data length.
+ * param flags ADAM descriptor flag, used to indicate to create multiple or single descriptor, please
+ * reference _usdhc_adma_flag.
+ * retval kStatus_OutOfRange ADMA descriptor table length isn't enough to describe data.
+ * retval kStatus_Success Operate successfully.
+ */
+status_t USDHC_SetADMA1Descriptor(
+ uint32_t *admaTable, uint32_t admaTableWords, const uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t flags)
+{
+ assert(NULL != admaTable);
+ assert(NULL != dataBufferAddr);
+
+ uint32_t miniEntries, startEntries = 0UL,
+ maxEntries = (admaTableWords * sizeof(uint32_t)) / sizeof(usdhc_adma1_descriptor_t);
+ usdhc_adma1_descriptor_t *adma1EntryAddress = (usdhc_adma1_descriptor_t *)(uint32_t)(admaTable);
+ uint32_t i, dmaBufferLen = 0UL;
+ const uint32_t *data = dataBufferAddr;
+
+ if (((uint32_t)data % USDHC_ADMA1_ADDRESS_ALIGN) != 0UL)
+ {
+ return kStatus_USDHC_DMADataAddrNotAlign;
+ }
+
+ if (flags == (uint32_t)kUSDHC_AdmaDescriptorMultipleFlag)
+ {
+ return kStatus_USDHC_NotSupport;
+ }
+ /*
+ * Add non aligned access support ,user need make sure your buffer size is big
+ * enough to hold the data,in other words,user need make sure the buffer size
+ * is 4 byte aligned
+ */
+ if (dataBytes % sizeof(uint32_t) != 0UL)
+ {
+ /* make the data length as word-aligned */
+ dataBytes += sizeof(uint32_t) - (dataBytes % sizeof(uint32_t));
+ }
+
+ /* Check if ADMA descriptor's number is enough. */
+ if ((dataBytes % USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) == 0UL)
+ {
+ miniEntries = dataBytes / USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY;
+ }
+ else
+ {
+ miniEntries = ((dataBytes / USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) + 1UL);
+ }
+
+ /* ADMA1 needs two descriptors to finish a transfer */
+ miniEntries <<= 1UL;
+
+ if (miniEntries + startEntries > maxEntries)
+ {
+ return kStatus_OutOfRange;
+ }
+
+ for (i = startEntries; i < (miniEntries + startEntries); i += 2UL)
+ {
+ if (dataBytes > USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY)
+ {
+ dmaBufferLen = USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY;
+ }
+ else
+ {
+ dmaBufferLen = dataBytes;
+ }
+
+ adma1EntryAddress[i] = (dmaBufferLen << USDHC_ADMA1_DESCRIPTOR_LENGTH_SHIFT);
+ adma1EntryAddress[i] |= (uint32_t)kUSDHC_Adma1DescriptorTypeSetLength;
+ adma1EntryAddress[i + 1UL] = (uint32_t)(data);
+ adma1EntryAddress[i + 1UL] |=
+ (uint32_t)kUSDHC_Adma1DescriptorTypeTransfer | (uint32_t)kUSDHC_Adma1DescriptorInterrupFlag;
+ data = (uint32_t *)((uint32_t)data + dmaBufferLen);
+ dataBytes -= dmaBufferLen;
+ }
+ /* the end of the descriptor */
+ adma1EntryAddress[i - 1UL] |= (uint32_t)kUSDHC_Adma1DescriptorEndFlag;
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Sets the ADMA2 descriptor table configuration.
+ *
+ * param admaTable Adma table address.
+ * param admaTableWords Adma table length.
+ * param dataBufferAddr Data buffer address.
+ * param dataBytes Data Data length.
+ * param flags ADAM descriptor flag, used to indicate to create multiple or single descriptor, please
+ * reference _usdhc_adma_flag.
+ * retval kStatus_OutOfRange ADMA descriptor table length isn't enough to describe data.
+ * retval kStatus_Success Operate successfully.
+ */
+status_t USDHC_SetADMA2Descriptor(
+ uint32_t *admaTable, uint32_t admaTableWords, const uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t flags)
+{
+ assert(NULL != admaTable);
+ assert(NULL != dataBufferAddr);
+
+ uint32_t miniEntries, startEntries = 0UL,
+ maxEntries = (admaTableWords * sizeof(uint32_t)) / sizeof(usdhc_adma2_descriptor_t);
+ usdhc_adma2_descriptor_t *adma2EntryAddress = (usdhc_adma2_descriptor_t *)(uint32_t)(admaTable);
+ uint32_t i, dmaBufferLen = 0UL;
+ const uint32_t *data = dataBufferAddr;
+
+ if (((uint32_t)data % USDHC_ADMA2_ADDRESS_ALIGN) != 0UL)
+ {
+ return kStatus_USDHC_DMADataAddrNotAlign;
+ }
+ /*
+ * Add non aligned access support ,user need make sure your buffer size is big
+ * enough to hold the data,in other words,user need make sure the buffer size
+ * is 4 byte aligned
+ */
+ if (dataBytes % sizeof(uint32_t) != 0UL)
+ {
+ /* make the data length as word-aligned */
+ dataBytes += sizeof(uint32_t) - (dataBytes % sizeof(uint32_t));
+ }
+
+ /* Check if ADMA descriptor's number is enough. */
+ if ((dataBytes % USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) == 0UL)
+ {
+ miniEntries = dataBytes / USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY;
+ }
+ else
+ {
+ miniEntries = ((dataBytes / USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) + 1UL);
+ }
+ /* calucate the start entry for multiple descriptor mode, ADMA engine is not stop, so update the descriptor
+ data adress and data size is enough */
+ if (flags == (uint32_t)kUSDHC_AdmaDescriptorMultipleFlag)
+ {
+ for (i = 0UL; i < maxEntries; i++)
+ {
+ if ((adma2EntryAddress[i].attribute & (uint32_t)kUSDHC_Adma2DescriptorValidFlag) == 0UL)
+ {
+ break;
+ }
+ }
+ startEntries = i;
+ /* add one entry for dummy entry */
+ miniEntries += 1UL;
+ }
+
+ if ((miniEntries + startEntries) > maxEntries)
+ {
+ return kStatus_OutOfRange;
+ }
+
+ for (i = startEntries; i < (miniEntries + startEntries); i++)
+ {
+ if (dataBytes > USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY)
+ {
+ dmaBufferLen = USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY;
+ }
+ else
+ {
+ dmaBufferLen = (dataBytes == 0UL ? sizeof(uint32_t) :
+ dataBytes); /* adma don't support 0 data length transfer descriptor */
+ }
+
+ /* Each descriptor for ADMA2 is 64-bit in length */
+ adma2EntryAddress[i].address = (dataBytes == 0UL) ? &s_usdhcBootDummy : data;
+ adma2EntryAddress[i].attribute = (dmaBufferLen << USDHC_ADMA2_DESCRIPTOR_LENGTH_SHIFT);
+ adma2EntryAddress[i].attribute |=
+ (dataBytes == 0UL) ?
+ 0UL :
+ ((uint32_t)kUSDHC_Adma2DescriptorTypeTransfer | (uint32_t)kUSDHC_Adma2DescriptorInterruptFlag);
+ data = (uint32_t *)((uint32_t)data + dmaBufferLen);
+
+ if (dataBytes != 0UL)
+ {
+ dataBytes -= dmaBufferLen;
+ }
+ }
+
+ /* add a dummy valid ADMA descriptor for multiple descriptor mode, this is useful when transfer boot data, the ADMA
+ engine
+ will not stop at block gap */
+ if (flags == (uint32_t)kUSDHC_AdmaDescriptorMultipleFlag)
+ {
+ adma2EntryAddress[startEntries + 1UL].attribute |= (uint32_t)kUSDHC_Adma2DescriptorTypeTransfer;
+ }
+ else
+ {
+ /* set the end bit */
+ adma2EntryAddress[i - 1UL].attribute |= (uint32_t)kUSDHC_Adma2DescriptorEndFlag;
+ }
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Internal DMA configuration.
+ * This function is used to config the USDHC DMA related registers.
+ * param base USDHC peripheral base address.
+ * param adma configuration
+ * param dataAddr transfer data address, a simple DMA parameter, if ADMA is used, leave it to NULL.
+ * param enAutoCmd23 flag to indicate Auto CMD23 is enable or not, a simple DMA parameter,if ADMA is used, leave it to
+ * false.
+ * retval kStatus_OutOfRange ADMA descriptor table length isn't enough to describe data.
+ * retval kStatus_Success Operate successfully.
+ */
+status_t USDHC_SetInternalDmaConfig(USDHC_Type *base,
+ usdhc_adma_config_t *dmaConfig,
+ const uint32_t *dataAddr,
+ bool enAutoCmd23)
+{
+ assert(dmaConfig != NULL);
+ assert(dataAddr != NULL);
+ assert((NULL != dmaConfig->admaTable) &&
+ (((USDHC_ADMA_TABLE_ADDRESS_ALIGN - 1U) & (uint32_t)dmaConfig->admaTable) == 0UL));
+
+#if FSL_FEATURE_USDHC_HAS_EXT_DMA
+ /* disable the external DMA if support */
+ base->VEND_SPEC &= ~USDHC_VEND_SPEC_EXT_DMA_EN_MASK;
+#endif
+
+ if (dmaConfig->dmaMode == kUSDHC_DmaModeSimple)
+ {
+ /* check DMA data buffer address align or not */
+ if (((uint32_t)dataAddr % USDHC_ADMA2_ADDRESS_ALIGN) != 0UL)
+ {
+ return kStatus_USDHC_DMADataAddrNotAlign;
+ }
+ /* in simple DMA mode if use auto CMD23, address should load to ADMA addr,
+ and block count should load to DS_ADDR*/
+ if (enAutoCmd23)
+ {
+ base->ADMA_SYS_ADDR = USDHC_ADDR_CPU_2_DMA((uint32_t)dataAddr);
+ }
+ else
+ {
+ base->DS_ADDR = USDHC_ADDR_CPU_2_DMA((uint32_t)dataAddr);
+ }
+ }
+ else
+ {
+ /* When use ADMA, disable simple DMA */
+ base->DS_ADDR = 0UL;
+ base->ADMA_SYS_ADDR = USDHC_ADDR_CPU_2_DMA((uint32_t)(dmaConfig->admaTable));
+ }
+
+#if (defined(FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN) && FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN)
+ /* select DMA mode and config the burst length */
+ base->PROT_CTRL &= ~(USDHC_PROT_CTRL_DMASEL_MASK);
+ base->PROT_CTRL |= USDHC_PROT_CTRL_DMASEL(dmaConfig->dmaMode);
+#else
+ /* select DMA mode and config the burst length */
+ base->PROT_CTRL &= ~(USDHC_PROT_CTRL_DMASEL_MASK | USDHC_PROT_CTRL_BURST_LEN_EN_MASK);
+ base->PROT_CTRL |= USDHC_PROT_CTRL_DMASEL(dmaConfig->dmaMode) | USDHC_PROT_CTRL_BURST_LEN_EN(dmaConfig->burstLen);
+#endif
+ /* enable DMA */
+ base->MIX_CTRL |= USDHC_MIX_CTRL_DMAEN_MASK;
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Sets the DMA descriptor table configuration.
+ * A high level DMA descriptor configuration function.
+ * param base USDHC peripheral base address.
+ * param adma configuration
+ * param data Data descriptor
+ * param flags ADAM descriptor flag, used to indicate to create multiple or single descriptor, please
+ * reference _usdhc_adma_flag
+ * retval kStatus_OutOfRange ADMA descriptor table length isn't enough to describe data.
+ * retval kStatus_Success Operate successfully.
+ */
+status_t USDHC_SetAdmaTableConfig(USDHC_Type *base,
+ usdhc_adma_config_t *dmaConfig,
+ usdhc_data_t *dataConfig,
+ uint32_t flags)
+{
+ assert(NULL != dmaConfig);
+ assert((NULL != dmaConfig->admaTable) &&
+ (((USDHC_ADMA_TABLE_ADDRESS_ALIGN - 1U) & (uint32_t)dmaConfig->admaTable) == 0UL));
+ assert(NULL != dataConfig);
+
+ status_t error = kStatus_Fail;
+ uint32_t bootDummyOffset =
+ dataConfig->dataType == (uint32_t)kUSDHC_TransferDataBootcontinous ? sizeof(uint32_t) : 0UL;
+ const uint32_t *data = (const uint32_t *)USDHC_ADDR_CPU_2_DMA((uint32_t)(
+ (uint32_t)((dataConfig->rxData == NULL) ? dataConfig->txData : dataConfig->rxData) + bootDummyOffset));
+ uint32_t blockSize = dataConfig->blockSize * dataConfig->blockCount - bootDummyOffset;
+
+#if FSL_FEATURE_USDHC_HAS_EXT_DMA
+ if (dmaConfig->dmaMode == kUSDHC_ExternalDMA)
+ {
+ /* enable the external DMA */
+ base->VEND_SPEC |= USDHC_VEND_SPEC_EXT_DMA_EN_MASK;
+ }
+ else
+#endif
+ if (dmaConfig->dmaMode == kUSDHC_DmaModeSimple)
+ {
+ error = kStatus_Success;
+ }
+ else if (dmaConfig->dmaMode == kUSDHC_DmaModeAdma1)
+ {
+ error = USDHC_SetADMA1Descriptor(dmaConfig->admaTable, dmaConfig->admaTableWords, data, blockSize, flags);
+ }
+ /* ADMA2 */
+ else
+ {
+ error = USDHC_SetADMA2Descriptor(dmaConfig->admaTable, dmaConfig->admaTableWords, data, blockSize, flags);
+ }
+
+ /* for internal dma, internal DMA configurations should not update the configurations when continous transfer the
+ * boot data, only the DMA descriptor need update */
+ if ((dmaConfig->dmaMode != kUSDHC_ExternalDMA) && (error == kStatus_Success) &&
+ (dataConfig->dataType != (uint32_t)kUSDHC_TransferDataBootcontinous))
+ {
+ error = USDHC_SetInternalDmaConfig(base, dmaConfig, data, dataConfig->enableAutoCommand23);
+ }
+
+ return error;
+}
+
+/*!
+ * brief Transfers the command/data using a blocking method.
+ *
+ * This function waits until the command response/data is received or the USDHC encounters an error by polling the
+ * status
+ * flag.
+ * The application must not call this API in multiple threads at the same time. Because of that this API doesn't support
+ * the re-entry mechanism.
+ *
+ * note There is no need to call the API 'USDHC_TransferCreateHandle' when calling this API.
+ *
+ * param base USDHC peripheral base address.
+ * param adma configuration
+ * param transfer Transfer content.
+ * retval kStatus_InvalidArgument Argument is invalid.
+ * retval kStatus_USDHC_PrepareAdmaDescriptorFailed Prepare ADMA descriptor failed.
+ * retval kStatus_USDHC_SendCommandFailed Send command failed.
+ * retval kStatus_USDHC_TransferDataFailed Transfer data failed.
+ * retval kStatus_Success Operate successfully.
+ */
+status_t USDHC_TransferBlocking(USDHC_Type *base, usdhc_adma_config_t *dmaConfig, usdhc_transfer_t *transfer)
+{
+ assert(transfer != NULL);
+
+ status_t error = kStatus_Fail;
+ usdhc_command_t *command = transfer->command;
+ usdhc_data_t *data = transfer->data;
+ bool enDMA = true;
+ bool executeTuning = ((data == NULL) ? false : data->dataType == (uint32_t)kUSDHC_TransferDataTuning);
+ uint32_t transferFlags = (uint32_t)kUSDHC_CommandOnly;
+ size_t blockSize = 0U;
+ size_t blockCount = 0U;
+
+#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
+ /*check re-tuning request*/
+ if ((USDHC_GetInterruptStatusFlags(base) & (uint32_t)kUSDHC_ReTuningEventFlag) != 0UL)
+ {
+ USDHC_ClearInterruptStatusFlags(base, kUSDHC_ReTuningEventFlag);
+ return kStatus_USDHC_ReTuningRequest;
+ }
+#endif
+
+ if (data != NULL)
+ {
+ /* Update ADMA descriptor table according to different DMA mode(no DMA, ADMA1, ADMA2).*/
+ if ((dmaConfig != NULL) && (!executeTuning))
+ {
+ error = USDHC_SetAdmaTableConfig(base, dmaConfig, data,
+ (uint32_t)(IS_USDHC_FLAG_SET(data->dataType, kUSDHC_TransferDataBoot) ?
+ kUSDHC_AdmaDescriptorMultipleFlag :
+ kUSDHC_AdmaDescriptorSingleFlag));
+ }
+ blockSize = data->blockSize;
+ blockCount = data->blockCount;
+ transferFlags = data->enableAutoCommand12 ? (uint32_t)kUSDHC_DataWithAutoCmd12 : 0U;
+ transferFlags |= data->enableAutoCommand23 ? (uint32_t)kUSDHC_DataWithAutoCmd23 : 0U;
+ transferFlags |= data->txData != NULL ? (uint32_t)kUSDHC_CommandAndTxData : (uint32_t)kUSDHC_CommandAndRxData;
+ transferFlags |= data->dataType == (uint8_t)kUSDHC_TransferDataBoot ? (uint32_t)kUSDHC_BootData : 0U;
+ transferFlags |=
+ data->dataType == (uint8_t)kUSDHC_TransferDataBootcontinous ? (uint32_t)kUSDHC_BootDataContinuous : 0U;
+
+ command->flags |= (uint32_t)kUSDHC_DataPresentFlag;
+ }
+
+ /* if the DMA desciptor configure fail or not needed , disable it */
+ if (error != kStatus_Success)
+ {
+ enDMA = false;
+ /* disable DMA, using polling mode in this situation */
+ USDHC_EnableInternalDMA(base, false);
+ }
+#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
+ else
+ {
+ if (data->txData != NULL)
+ {
+ /* clear the DCACHE */
+ DCACHE_CleanByRange((uint32_t)data->txData, (data->blockSize) * (data->blockCount));
+ }
+ else
+ {
+ /* clear the DCACHE */
+ DCACHE_CleanInvalidateByRange((uint32_t)data->rxData, (data->blockSize) * (data->blockCount));
+ }
+ }
+#endif
+
+ /* config the data transfer parameter */
+ error = USDHC_SetTransferConfig(base, transferFlags, blockSize, blockCount);
+ if (error != kStatus_Success)
+ {
+ return error;
+ }
+ /* send command first */
+ USDHC_SendCommand(base, command);
+ /* wait command done */
+ error =
+ USDHC_WaitCommandDone(base, command, (data == NULL) || (data->dataType == (uint32_t)kUSDHC_TransferDataNormal));
+ if (kStatus_Success != error)
+ {
+ return kStatus_USDHC_SendCommandFailed;
+ }
+
+ /* wait transfer data finsih */
+ if (data != NULL)
+ {
+ error = USDHC_TransferDataBlocking(base, data, enDMA);
+ if (kStatus_Success != error)
+ {
+ return error;
+ }
+ }
+
+ return kStatus_Success;
+}
+
+#if (defined FSL_USDHC_ENABLE_SCATTER_GATHER_TRANSFER) && FSL_USDHC_ENABLE_SCATTER_GATHER_TRANSFER
+static status_t USDHC_SetScatterGatherAdmaTableConfig(USDHC_Type *base,
+ usdhc_adma_config_t *dmaConfig,
+ usdhc_scatter_gather_data_t *dataConfig,
+ uint32_t *totalTransferSize)
+{
+ assert(NULL != dmaConfig);
+ assert((NULL != dmaConfig->admaTable) &&
+ (((USDHC_ADMA_TABLE_ADDRESS_ALIGN - 1U) & (uint32_t)dmaConfig->admaTable) == 0UL));
+ assert(NULL != dataConfig);
+
+ status_t error = kStatus_Fail;
+ uint32_t *admaDesBuffer = dmaConfig->admaTable;
+ uint32_t admaDesLen = dmaConfig->admaTableWords;
+ usdhc_scatter_gather_data_list_t *sgDataList = &dataConfig->sgData;
+ uint32_t oneDescriptorMaxTransferSize = dmaConfig->dmaMode == kUSDHC_DmaModeAdma1 ?
+ USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY :
+ USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY;
+ uint32_t miniEntries = 0U;
+
+ while (sgDataList != NULL)
+ {
+ if (dmaConfig->dmaMode == kUSDHC_DmaModeAdma1)
+ {
+ error = USDHC_SetADMA1Descriptor(admaDesBuffer, admaDesLen, sgDataList->dataAddr, sgDataList->dataSize, 0U);
+ }
+ /* ADMA2 */
+ else
+ {
+ error = USDHC_SetADMA2Descriptor(admaDesBuffer, admaDesLen, sgDataList->dataAddr, sgDataList->dataSize, 0U);
+ }
+
+ if (error != kStatus_Success)
+ {
+ return kStatus_USDHC_PrepareAdmaDescriptorFailed;
+ }
+
+#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
+ if (dataConfig->dataDirection == kUSDHC_TransferDirectionSend)
+ {
+ /* clear the DCACHE */
+ DCACHE_CleanByRange((uint32_t)sgDataList->dataAddr, sgDataList->dataSize);
+ }
+ else
+ {
+ /* clear the DCACHE */
+ DCACHE_CleanInvalidateByRange((uint32_t)sgDataList->dataAddr, sgDataList->dataSize);
+ }
+#endif
+
+ *totalTransferSize += sgDataList->dataSize;
+ if (sgDataList->dataList != NULL)
+ {
+ if ((sgDataList->dataSize % oneDescriptorMaxTransferSize) == 0UL)
+ {
+ miniEntries = sgDataList->dataSize / oneDescriptorMaxTransferSize;
+ }
+ else
+ {
+ miniEntries = ((sgDataList->dataSize / oneDescriptorMaxTransferSize) + 1UL);
+ }
+ if (dmaConfig->dmaMode == kUSDHC_DmaModeAdma1)
+ {
+ admaDesBuffer[miniEntries * 2U - 1U] &= ~kUSDHC_Adma1DescriptorEndFlag;
+ }
+ else
+ {
+ admaDesBuffer[miniEntries * 2U - 2U] &= ~kUSDHC_Adma2DescriptorEndFlag;
+ }
+ admaDesBuffer += miniEntries * 2U;
+ admaDesLen -= miniEntries * 2U;
+ }
+
+ sgDataList = sgDataList->dataList;
+ }
+
+ base->DS_ADDR = 0UL;
+ base->ADMA_SYS_ADDR = (uint32_t)(dmaConfig->admaTable);
+
+ /* select DMA mode and config the burst length */
+ base->PROT_CTRL &= ~(USDHC_PROT_CTRL_DMASEL_MASK);
+ base->PROT_CTRL |= USDHC_PROT_CTRL_DMASEL(dmaConfig->dmaMode);
+
+ /* enable DMA */
+ base->MIX_CTRL |= USDHC_MIX_CTRL_DMAEN_MASK;
+
+ return error;
+}
+
+/*!
+ * brief Transfers the command/scatter gather data using an interrupt and an asynchronous method.
+ *
+ * This function sends a command and data and returns immediately. It doesn't wait for the transfer to complete or
+ * to encounter an error. The application must not call this API in multiple threads at the same time. Because of that
+ * this API doesn't support the re-entry mechanism.
+ * This function is target for the application would like to have scatter gather buffer to be transferred within one
+ * read/write request, non scatter gather buffer is support by this function also.
+ *
+ * note Call API @ref USDHC_TransferCreateHandle when calling this API.
+ *
+ * param base USDHC peripheral base address.
+ * param handle USDHC handle.
+ * param dmaConfig adma configurations, must be not NULL, since the function is target for ADMA only.
+ * param transfer scatter gather transfer content.
+ *
+ * retval #kStatus_InvalidArgument Argument is invalid.
+ * retval #kStatus_USDHC_BusyTransferring Busy transferring.
+ * retval #kStatus_USDHC_PrepareAdmaDescriptorFailed Prepare ADMA descriptor failed.
+ * retval #kStatus_Success Operate successfully.
+ */
+status_t USDHC_TransferScatterGatherADMANonBlocking(USDHC_Type *base,
+ usdhc_handle_t *handle,
+ usdhc_adma_config_t *dmaConfig,
+ usdhc_scatter_gather_transfer_t *transfer)
+{
+ assert(handle != NULL);
+ assert(transfer != NULL);
+ assert(dmaConfig != NULL);
+
+ status_t error = kStatus_Fail;
+ usdhc_command_t *command = transfer->command;
+ uint32_t totalTransferSize = 0U;
+ uint32_t transferFlags = kUSDHC_CommandOnly;
+ size_t blockSize = 0U;
+ size_t blockCount = 0U;
+ usdhc_scatter_gather_data_t *scatterGatherData = transfer->data;
+ bool enDMA = false;
+
+ /* check data inhibit flag */
+ if (IS_USDHC_FLAG_SET(base->PRES_STATE, kUSDHC_CommandInhibitFlag))
+ {
+ return kStatus_USDHC_BusyTransferring;
+ }
+
+ handle->command = command;
+ handle->data = scatterGatherData;
+ /* transferredWords will only be updated in ISR when transfer way is DATAPORT. */
+ handle->transferredWords = 0UL;
+
+ /* Update ADMA descriptor table according to different DMA mode(ADMA1, ADMA2).*/
+ if (scatterGatherData != NULL)
+ {
+ if (scatterGatherData->sgData.dataAddr == NULL)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ if (scatterGatherData->dataType != (uint32_t)kUSDHC_TransferDataTuning)
+ {
+ if (USDHC_SetScatterGatherAdmaTableConfig(base, dmaConfig, transfer->data, &totalTransferSize) !=
+ kStatus_Success)
+ {
+ return kStatus_USDHC_PrepareAdmaDescriptorFailed;
+ }
+
+ enDMA = true;
+ }
+ blockSize = scatterGatherData->blockSize;
+ blockCount = totalTransferSize / scatterGatherData->blockSize;
+ transferFlags = scatterGatherData->enableAutoCommand12 ? kUSDHC_DataWithAutoCmd12 : 0U;
+ transferFlags |= scatterGatherData->enableAutoCommand23 ? kUSDHC_DataWithAutoCmd23 : 0U;
+ transferFlags |= scatterGatherData->dataDirection == kUSDHC_TransferDirectionSend ? kUSDHC_CommandAndTxData :
+ kUSDHC_CommandAndRxData;
+ command->flags |= kUSDHC_DataPresentFlag;
+ }
+
+ error = USDHC_SetTransferConfig(base, transferFlags, blockSize, blockCount);
+ if (error != kStatus_Success)
+ {
+ return error;
+ }
+
+ /* enable interrupt per transfer request */
+ if (scatterGatherData != NULL)
+ {
+ USDHC_ClearInterruptStatusFlags(
+ base, (uint32_t)(enDMA == false ? kUSDHC_DataFlag : kUSDHC_DataDMAFlag | kUSDHC_DmaCompleteFlag) |
+ (uint32_t)kUSDHC_CommandFlag);
+ USDHC_EnableInterruptSignal(
+ base, (uint32_t)(enDMA == false ? kUSDHC_DataFlag : kUSDHC_DataDMAFlag | kUSDHC_DmaCompleteFlag) |
+ (uint32_t)kUSDHC_CommandFlag);
+ }
+ else
+ {
+ USDHC_ClearInterruptStatusFlags(base, kUSDHC_CommandFlag);
+ USDHC_EnableInterruptSignal(base, kUSDHC_CommandFlag);
+ }
+
+ /* send command first */
+ USDHC_SendCommand(base, command);
+
+ return kStatus_Success;
+}
+#else
+/*!
+ * brief Transfers the command/data using an interrupt and an asynchronous method.
+ *
+ * This function sends a command and data and returns immediately. It doesn't wait the transfer complete or encounter an
+ * error.
+ * The application must not call this API in multiple threads at the same time. Because of that this API doesn't support
+ * the re-entry mechanism.
+ *
+ * note Call the API 'USDHC_TransferCreateHandle' when calling this API.
+ *
+ * param base USDHC peripheral base address.
+ * param handle USDHC handle.
+ * param adma configuration.
+ * param transfer Transfer content.
+ * retval kStatus_InvalidArgument Argument is invalid.
+ * retval kStatus_USDHC_BusyTransferring Busy transferring.
+ * retval kStatus_USDHC_PrepareAdmaDescriptorFailed Prepare ADMA descriptor failed.
+ * retval kStatus_Success Operate successfully.
+ */
+status_t USDHC_TransferNonBlocking(USDHC_Type *base,
+ usdhc_handle_t *handle,
+ usdhc_adma_config_t *dmaConfig,
+ usdhc_transfer_t *transfer)
+{
+ assert(handle != NULL);
+ assert(transfer != NULL);
+
+ status_t error = kStatus_Fail;
+ usdhc_command_t *command = transfer->command;
+ usdhc_data_t *data = transfer->data;
+ bool executeTuning = ((data == NULL) ? false : data->dataType == (uint32_t)kUSDHC_TransferDataTuning);
+ bool enDMA = true;
+ uint32_t transferFlags = (uint32_t)kUSDHC_CommandOnly;
+ size_t blockSize = 0U;
+ size_t blockCount = 0U;
+
+#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
+ /*check re-tuning request*/
+ if ((USDHC_GetInterruptStatusFlags(base) & ((uint32_t)kUSDHC_ReTuningEventFlag)) != 0UL)
+ {
+ USDHC_ClearInterruptStatusFlags(base, kUSDHC_ReTuningEventFlag);
+ return kStatus_USDHC_ReTuningRequest;
+ }
+#endif
+ /* Save command and data into handle before transferring. */
+
+ handle->command = command;
+ handle->data = data;
+ /* transferredWords will only be updated in ISR when transfer way is DATAPORT. */
+ handle->transferredWords = 0UL;
+
+ if (data != NULL)
+ {
+ /* Update ADMA descriptor table according to different DMA mode(no DMA, ADMA1, ADMA2).*/
+ if ((dmaConfig != NULL) && (!executeTuning))
+ {
+ error = USDHC_SetAdmaTableConfig(
+ base, dmaConfig, data,
+ (uint32_t)(IS_USDHC_FLAG_SET(data->dataType, (uint32_t)kUSDHC_TransferDataBoot) ?
+ kUSDHC_AdmaDescriptorMultipleFlag :
+ kUSDHC_AdmaDescriptorSingleFlag));
+ }
+
+ blockSize = data->blockSize;
+ blockCount = data->blockCount;
+ transferFlags = data->enableAutoCommand12 ? (uint32_t)kUSDHC_DataWithAutoCmd12 : 0U;
+ transferFlags |= data->enableAutoCommand23 ? (uint32_t)kUSDHC_DataWithAutoCmd23 : 0U;
+ transferFlags |= data->txData != NULL ? (uint32_t)kUSDHC_CommandAndTxData : (uint32_t)kUSDHC_CommandAndRxData;
+ transferFlags |= data->dataType == (uint8_t)kUSDHC_TransferDataBoot ? (uint32_t)kUSDHC_BootData : 0U;
+ transferFlags |=
+ data->dataType == (uint8_t)kUSDHC_TransferDataBootcontinous ? (uint32_t)kUSDHC_BootDataContinuous : 0U;
+
+ command->flags |= (uint32_t)kUSDHC_DataPresentFlag;
+ }
+
+ /* if the DMA desciptor configure fail or not needed , disable it */
+ if (error != kStatus_Success)
+ {
+ /* disable DMA, using polling mode in this situation */
+ USDHC_EnableInternalDMA(base, false);
+ enDMA = false;
+ }
+#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
+ else
+ {
+ if (data->txData != NULL)
+ {
+ /* clear the DCACHE */
+ DCACHE_CleanByRange((uint32_t)data->txData, (data->blockSize) * (data->blockCount));
+ }
+ else
+ {
+ /* clear the DCACHE */
+ DCACHE_CleanInvalidateByRange((uint32_t)data->rxData, (data->blockSize) * (data->blockCount));
+ }
+ }
+#endif
+
+ /* config the data transfer parameter */
+ error = USDHC_SetTransferConfig(base, transferFlags, blockSize, blockCount);
+ if (error != kStatus_Success)
+ {
+ return error;
+ }
+
+ /* enable interrupt per transfer request */
+ if (handle->data != NULL)
+ {
+ USDHC_ClearInterruptStatusFlags(
+ base, (uint32_t)(enDMA == false ? kUSDHC_DataFlag : kUSDHC_DataDMAFlag) | (uint32_t)kUSDHC_CommandFlag |
+ (uint32_t)(data->dataType == (uint8_t)kUSDHC_TransferDataBootcontinous ?
+ (uint32_t)kUSDHC_DmaCompleteFlag :
+ 0U));
+ USDHC_EnableInterruptSignal(base, (uint32_t)(enDMA == false ? kUSDHC_DataFlag : kUSDHC_DataDMAFlag) |
+ (uint32_t)kUSDHC_CommandFlag |
+ (uint32_t)(data->dataType == (uint8_t)kUSDHC_TransferDataBootcontinous ?
+ (uint32_t)kUSDHC_DmaCompleteFlag :
+ 0U));
+ }
+ else
+ {
+ USDHC_ClearInterruptStatusFlags(base, kUSDHC_CommandFlag);
+ USDHC_EnableInterruptSignal(base, kUSDHC_CommandFlag);
+ }
+
+ /* send command first */
+ USDHC_SendCommand(base, command);
+
+ return kStatus_Success;
+}
+#endif
+
+#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
+/*!
+ * brief manual tuning trigger or abort
+ * User should handle the tuning cmd and find the boundary of the delay
+ * then calucate a average value which will be config to the CLK_TUNE_CTRL_STATUS
+ * This function should called before USDHC_AdjustDelayforSDR104 function
+ * param base USDHC peripheral base address.
+ * param tuning enable flag
+ */
+void USDHC_EnableManualTuning(USDHC_Type *base, bool enable)
+{
+ if (enable)
+ {
+ /* make sure std_tun_en bit is clear */
+ base->TUNING_CTRL &= ~USDHC_TUNING_CTRL_STD_TUNING_EN_MASK;
+ /* disable auto tuning here */
+ base->MIX_CTRL &= ~USDHC_MIX_CTRL_AUTO_TUNE_EN_MASK;
+ /* execute tuning for SDR104 mode */
+ base->MIX_CTRL |= USDHC_MIX_CTRL_EXE_TUNE_MASK | USDHC_MIX_CTRL_SMP_CLK_SEL_MASK;
+ }
+ else
+ { /* abort the tuning */
+ base->MIX_CTRL &= ~USDHC_MIX_CTRL_EXE_TUNE_MASK;
+ }
+}
+
+/*!
+ * brief the SDR104 mode delay setting adjust
+ * This function should called after USDHC_ManualTuningForSDR104
+ * param base USDHC peripheral base address.
+ * param delay setting configuration
+ * retval kStatus_Fail config the delay setting fail
+ * retval kStatus_Success config the delay setting success
+ */
+status_t USDHC_AdjustDelayForManualTuning(USDHC_Type *base, uint32_t delay)
+{
+ uint32_t clkTuneCtrl = 0UL;
+
+ clkTuneCtrl = base->CLK_TUNE_CTRL_STATUS;
+
+ clkTuneCtrl &= ~USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_PRE_MASK;
+
+ clkTuneCtrl |= USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_PRE(delay);
+
+ /* load the delay setting */
+ base->CLK_TUNE_CTRL_STATUS = clkTuneCtrl;
+ /* check delat setting error */
+ if (IS_USDHC_FLAG_SET(base->CLK_TUNE_CTRL_STATUS,
+ USDHC_CLK_TUNE_CTRL_STATUS_PRE_ERR_MASK | USDHC_CLK_TUNE_CTRL_STATUS_NXT_ERR_MASK))
+ {
+ return kStatus_Fail;
+ }
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief The tuning delay cell setting.
+ *
+ * param base USDHC peripheral base address.
+ * param preDelay Set the number of delay cells on the feedback clock between the feedback clock and CLK_PRE.
+ * param outDelay Set the number of delay cells on the feedback clock between CLK_PRE and CLK_OUT.
+ * param postDelay Set the number of delay cells on the feedback clock between CLK_OUT and CLK_POST.
+ * retval kStatus_Fail config the delay setting fail
+ * retval kStatus_Success config the delay setting success
+ */
+status_t USDHC_SetTuningDelay(USDHC_Type *base, uint32_t preDelay, uint32_t outDelay, uint32_t postDelay)
+{
+ assert(preDelay <=
+ (USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_PRE_MASK >> USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_PRE_SHIFT));
+ assert(outDelay <=
+ (USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_OUT_MASK >> USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_OUT_SHIFT));
+ assert(postDelay <=
+ (USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_POST_MASK >> USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_POST_SHIFT));
+
+ uint32_t clkTuneCtrl = 0UL;
+
+ clkTuneCtrl = base->CLK_TUNE_CTRL_STATUS;
+
+ clkTuneCtrl &=
+ ~(USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_PRE_MASK | USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_OUT_MASK |
+ USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_POST_MASK);
+
+ clkTuneCtrl |= USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_PRE(preDelay) |
+ USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_OUT(outDelay) |
+ USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_POST(postDelay);
+
+ /* load the delay setting */
+ base->CLK_TUNE_CTRL_STATUS = clkTuneCtrl;
+ /* check delat setting error */
+ if (IS_USDHC_FLAG_SET(base->CLK_TUNE_CTRL_STATUS,
+ USDHC_CLK_TUNE_CTRL_STATUS_PRE_ERR_MASK | USDHC_CLK_TUNE_CTRL_STATUS_NXT_ERR_MASK))
+ {
+ return kStatus_Fail;
+ }
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief the enable standard tuning function
+ * The standard tuning window and tuning counter use the default config
+ * tuning cmd is send by the software, user need to check the tuning result
+ * can be used for SDR50,SDR104,HS200 mode tuning
+ * param base USDHC peripheral base address.
+ * param tuning start tap
+ * param tuning step
+ * param enable/disable flag
+ */
+void USDHC_EnableStandardTuning(USDHC_Type *base, uint32_t tuningStartTap, uint32_t step, bool enable)
+{
+ uint32_t tuningCtrl = 0UL;
+
+ if (enable)
+ {
+ /* feedback clock */
+ base->MIX_CTRL |= USDHC_MIX_CTRL_FBCLK_SEL_MASK;
+ /* config tuning start and step */
+ tuningCtrl = base->TUNING_CTRL;
+ tuningCtrl &= ~(USDHC_TUNING_CTRL_TUNING_START_TAP_MASK | USDHC_TUNING_CTRL_TUNING_STEP_MASK);
+ tuningCtrl |= (USDHC_TUNING_CTRL_TUNING_START_TAP(tuningStartTap) | USDHC_TUNING_CTRL_TUNING_STEP(step) |
+ USDHC_TUNING_CTRL_STD_TUNING_EN_MASK);
+ base->TUNING_CTRL = tuningCtrl;
+
+ /* excute tuning */
+ base->AUTOCMD12_ERR_STATUS |=
+ (USDHC_AUTOCMD12_ERR_STATUS_EXECUTE_TUNING_MASK | USDHC_AUTOCMD12_ERR_STATUS_SMP_CLK_SEL_MASK);
+ }
+ else
+ {
+ /* disable the standard tuning */
+ base->TUNING_CTRL &= ~USDHC_TUNING_CTRL_STD_TUNING_EN_MASK;
+ /* clear excute tuning */
+ base->AUTOCMD12_ERR_STATUS &=
+ ~(USDHC_AUTOCMD12_ERR_STATUS_EXECUTE_TUNING_MASK | USDHC_AUTOCMD12_ERR_STATUS_SMP_CLK_SEL_MASK);
+ }
+}
+
+#if FSL_FEATURE_USDHC_HAS_HS400_MODE
+/*!
+ * brief config the strobe DLL delay target and update interval
+ *
+ * param base USDHC peripheral base address.
+ * param delayTarget delay target
+ * param updateInterval update interval
+ */
+void USDHC_ConfigStrobeDLL(USDHC_Type *base, uint32_t delayTarget, uint32_t updateInterval)
+{
+ assert(delayTarget <= (USDHC_STROBE_DLL_CTRL_STROBE_DLL_CTRL_SLV_DLY_TARGET_MASK >>
+ USDHC_STROBE_DLL_CTRL_STROBE_DLL_CTRL_SLV_DLY_TARGET_SHIFT));
+
+ /* reset strobe dll firstly */
+ base->STROBE_DLL_CTRL |= USDHC_STROBE_DLL_CTRL_STROBE_DLL_CTRL_RESET_MASK;
+ /* clear reset and other register fields */
+ base->STROBE_DLL_CTRL = 0;
+ /* configure the DELAY target and update interval */
+ base->STROBE_DLL_CTRL |= USDHC_STROBE_DLL_CTRL_STROBE_DLL_CTRL_ENABLE_MASK |
+ USDHC_STROBE_DLL_CTRL_STROBE_DLL_CTRL_SLV_UPDATE_INT(updateInterval) |
+ USDHC_STROBE_DLL_CTRL_STROBE_DLL_CTRL_SLV_DLY_TARGET(delayTarget);
+
+ while (
+ (USDHC_GetStrobeDLLStatus(base) & (USDHC_STROBE_DLL_STATUS_STROBE_DLL_STS_SLV_LOCK_MASK |
+ USDHC_STROBE_DLL_STATUS_STROBE_DLL_STS_REF_LOCK_MASK)) !=
+ ((USDHC_STROBE_DLL_STATUS_STROBE_DLL_STS_SLV_LOCK_MASK | USDHC_STROBE_DLL_STATUS_STROBE_DLL_STS_REF_LOCK_MASK)))
+ {
+ }
+}
+#endif
+
+/*!
+ * brief the auto tuning enbale for CMD/DATA line
+ *
+ * param base USDHC peripheral base address.
+ */
+void USDHC_EnableAutoTuningForCmdAndData(USDHC_Type *base)
+{
+ uint32_t busWidth = (base->PROT_CTRL & USDHC_PROT_CTRL_DTW_MASK) >> USDHC_PROT_CTRL_DTW_SHIFT;
+
+ base->VEND_SPEC2 |= USDHC_VEND_SPEC2_TUNING_CMD_EN_MASK;
+
+ /* 1bit data width */
+ if (busWidth == 0UL)
+ {
+ base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_TUNING_8bit_EN_MASK;
+ base->VEND_SPEC2 |= USDHC_VEND_SPEC2_TUNING_1bit_EN_MASK;
+ }
+ /* 4bit data width */
+ else if (busWidth == 1UL)
+ {
+ base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_TUNING_8bit_EN_MASK;
+ base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_TUNING_1bit_EN_MASK;
+ }
+ /* 8bit data width */
+ else
+ {
+ base->VEND_SPEC2 |= USDHC_VEND_SPEC2_TUNING_8bit_EN_MASK;
+ base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_TUNING_1bit_EN_MASK;
+ }
+}
+#endif /* FSL_FEATURE_USDHC_HAS_SDR50_MODE */
+
+static void USDHC_TransferHandleCardDetect(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags)
+{
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_CardInsertionFlag))
+ {
+ if (handle->callback.CardInserted != NULL)
+ {
+ handle->callback.CardInserted(base, handle->userData);
+ }
+ }
+ else
+ {
+ if (handle->callback.CardRemoved != NULL)
+ {
+ handle->callback.CardRemoved(base, handle->userData);
+ }
+ }
+}
+
+static void USDHC_TransferHandleCommand(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags)
+{
+ assert(handle->command != NULL);
+
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_CommandErrorFlag))
+ {
+ if (handle->callback.TransferComplete != NULL)
+ {
+ handle->callback.TransferComplete(base, handle, kStatus_USDHC_SendCommandFailed, handle->userData);
+ }
+ }
+ else
+ {
+ /* Receive response */
+ if (kStatus_Success != USDHC_ReceiveCommandResponse(base, handle->command))
+ {
+ if (handle->callback.TransferComplete != NULL)
+ {
+ handle->callback.TransferComplete(base, handle, kStatus_USDHC_SendCommandFailed, handle->userData);
+ }
+ }
+ else
+ {
+ if (handle->callback.TransferComplete != NULL)
+ {
+ handle->callback.TransferComplete(base, handle, kStatus_USDHC_SendCommandSuccess, handle->userData);
+ }
+ }
+ }
+ /* disable interrupt signal and reset command pointer */
+ USDHC_DisableInterruptSignal(base, kUSDHC_CommandFlag);
+ handle->command = NULL;
+}
+
+#if (defined FSL_USDHC_ENABLE_SCATTER_GATHER_TRANSFER) && FSL_USDHC_ENABLE_SCATTER_GATHER_TRANSFER
+static void USDHC_TransferHandleData(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags)
+{
+ assert(handle->data != NULL);
+
+ status_t transferStatus = kStatus_USDHC_BusyTransferring;
+
+ if ((!(handle->data->enableIgnoreError)) &&
+ (IS_USDHC_FLAG_SET(interruptFlags, (uint32_t)kUSDHC_DataErrorFlag | (uint32_t)kUSDHC_DmaErrorFlag)))
+ {
+ transferStatus = kStatus_USDHC_TransferDataFailed;
+ }
+ else
+ {
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_BufferReadReadyFlag))
+ {
+ /* std tuning process only need to wait BRR */
+ if (handle->data->dataType == (uint32_t)kUSDHC_TransferDataTuning)
+ {
+ transferStatus = kStatus_USDHC_TransferDataComplete;
+ }
+ }
+ else
+ {
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_DmaCompleteFlag))
+ {
+ transferStatus = kStatus_USDHC_TransferDMAComplete;
+ }
+
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_DataCompleteFlag))
+ {
+ transferStatus = kStatus_USDHC_TransferDataComplete;
+
+#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
+ if (handle->data->dataDirection == kUSDHC_TransferDirectionReceive)
+ {
+ usdhc_scatter_gather_data_list_t *sgDataList = &handle->data->sgData;
+ while (sgDataList != NULL)
+ {
+ DCACHE_InvalidateByRange((uint32_t)sgDataList->dataAddr, sgDataList->dataSize);
+ sgDataList = sgDataList->dataList;
+ }
+ }
+#endif
+ }
+ }
+ }
+
+ if ((handle->callback.TransferComplete != NULL) && (transferStatus != kStatus_USDHC_BusyTransferring))
+ {
+ handle->callback.TransferComplete(base, handle, transferStatus, handle->userData);
+ USDHC_DisableInterruptSignal(
+ base, (uint32_t)kUSDHC_DataFlag | (uint32_t)kUSDHC_DataDMAFlag | (uint32_t)kUSDHC_DmaCompleteFlag);
+ handle->data = NULL;
+ }
+}
+
+#else
+static void USDHC_TransferHandleData(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags)
+{
+ assert(handle->data != NULL);
+
+ status_t transferStatus = kStatus_USDHC_BusyTransferring;
+ uint32_t transferredWords = handle->transferredWords;
+
+ if ((!(handle->data->enableIgnoreError)) &&
+ (IS_USDHC_FLAG_SET(interruptFlags, (uint32_t)kUSDHC_DataErrorFlag | (uint32_t)kUSDHC_DmaErrorFlag)))
+ {
+ transferStatus = kStatus_USDHC_TransferDataFailed;
+ }
+ else
+ {
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_BufferReadReadyFlag))
+ {
+ /* std tuning process only need to wait BRR */
+ if (handle->data->dataType == (uint32_t)kUSDHC_TransferDataTuning)
+ {
+ transferStatus = kStatus_USDHC_TransferDataComplete;
+ }
+ else
+ {
+ handle->transferredWords = USDHC_ReadDataPort(base, handle->data, transferredWords);
+ }
+ }
+ else if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_BufferWriteReadyFlag))
+ {
+ handle->transferredWords = USDHC_WriteDataPort(base, handle->data, transferredWords);
+ }
+ else
+ {
+ if ((IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_DmaCompleteFlag)) &&
+ (handle->data->dataType == (uint32_t)kUSDHC_TransferDataBootcontinous))
+ {
+ *(handle->data->rxData) = s_usdhcBootDummy;
+ }
+
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_DataCompleteFlag))
+ {
+ transferStatus = kStatus_USDHC_TransferDataComplete;
+
+#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
+ if (handle->data->rxData != NULL)
+ {
+ DCACHE_InvalidateByRange((uint32_t)(handle->data->rxData),
+ (handle->data->blockSize) * (handle->data->blockCount));
+ }
+#endif
+ }
+ }
+ }
+
+ if ((handle->callback.TransferComplete != NULL) && (transferStatus != kStatus_USDHC_BusyTransferring))
+ {
+ handle->callback.TransferComplete(base, handle, transferStatus, handle->userData);
+ USDHC_DisableInterruptSignal(base, (uint32_t)kUSDHC_DataFlag | (uint32_t)kUSDHC_DataDMAFlag);
+ handle->data = NULL;
+ }
+}
+#endif
+
+static void USDHC_TransferHandleSdioInterrupt(USDHC_Type *base, usdhc_handle_t *handle)
+{
+ if (handle->callback.SdioInterrupt != NULL)
+ {
+ handle->callback.SdioInterrupt(base, handle->userData);
+ }
+}
+
+#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
+static void USDHC_TransferHandleReTuning(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags)
+{
+ assert(handle->callback.ReTuning != NULL);
+ /* retuning request */
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_TuningErrorFlag))
+ {
+ handle->callback.ReTuning(base, handle->userData); /* retuning fail */
+ }
+}
+#endif
+
+static void USDHC_TransferHandleBlockGap(USDHC_Type *base, usdhc_handle_t *handle)
+{
+ if (handle->callback.BlockGap != NULL)
+ {
+ handle->callback.BlockGap(base, handle->userData);
+ }
+}
+
+/*!
+ * brief Creates the USDHC handle.
+ *
+ * param base USDHC peripheral base address.
+ * param handle USDHC handle pointer.
+ * param callback Structure pointer to contain all callback functions.
+ * param userData Callback function parameter.
+ */
+void USDHC_TransferCreateHandle(USDHC_Type *base,
+ usdhc_handle_t *handle,
+ const usdhc_transfer_callback_t *callback,
+ void *userData)
+{
+ assert(handle != NULL);
+ assert(callback != NULL);
+
+ /* Zero the handle. */
+ (void)memset(handle, 0, sizeof(*handle));
+
+ /* Set the callback. */
+ handle->callback.CardInserted = callback->CardInserted;
+ handle->callback.CardRemoved = callback->CardRemoved;
+ handle->callback.SdioInterrupt = callback->SdioInterrupt;
+ handle->callback.BlockGap = callback->BlockGap;
+ handle->callback.TransferComplete = callback->TransferComplete;
+ handle->callback.ReTuning = callback->ReTuning;
+ handle->userData = userData;
+
+ /* Save the handle in global variables to support the double weak mechanism. */
+ s_usdhcHandle[USDHC_GetInstance(base)] = handle;
+
+ /* save IRQ handler */
+ s_usdhcIsr = USDHC_TransferHandleIRQ;
+
+ (void)EnableIRQ(s_usdhcIRQ[USDHC_GetInstance(base)]);
+}
+
+/*!
+ * brief IRQ handler for the USDHC.
+ *
+ * This function deals with the IRQs on the given host controller.
+ *
+ * param base USDHC peripheral base address.
+ * param handle USDHC handle.
+ */
+void USDHC_TransferHandleIRQ(USDHC_Type *base, usdhc_handle_t *handle)
+{
+ assert(handle != NULL);
+
+ uint32_t interruptFlags;
+
+ interruptFlags = USDHC_GetEnabledInterruptStatusFlags(base);
+
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_CardDetectFlag))
+ {
+ USDHC_TransferHandleCardDetect(base, handle, interruptFlags);
+ }
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_CommandFlag))
+ {
+ USDHC_TransferHandleCommand(base, handle, interruptFlags);
+ }
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_DataFlag))
+ {
+ USDHC_TransferHandleData(base, handle, interruptFlags);
+ }
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_CardInterruptFlag))
+ {
+ USDHC_TransferHandleSdioInterrupt(base, handle);
+ }
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_BlockGapEventFlag))
+ {
+ USDHC_TransferHandleBlockGap(base, handle);
+ }
+#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
+ if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_SDR104TuningFlag))
+ {
+ USDHC_TransferHandleReTuning(base, handle, interruptFlags);
+ }
+#endif
+ USDHC_ClearInterruptStatusFlags(base, interruptFlags);
+}
+
+#ifdef USDHC0
+void USDHC0_DriverIRQHandler(void);
+void USDHC0_DriverIRQHandler(void)
+{
+ s_usdhcIsr(s_usdhcBase[0U], s_usdhcHandle[0U]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#ifdef USDHC1
+void USDHC1_DriverIRQHandler(void);
+void USDHC1_DriverIRQHandler(void)
+{
+ s_usdhcIsr(s_usdhcBase[1U], s_usdhcHandle[1U]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#ifdef USDHC2
+void USDHC2_DriverIRQHandler(void);
+void USDHC2_DriverIRQHandler(void)
+{
+ s_usdhcIsr(s_usdhcBase[2U], s_usdhcHandle[2U]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+#endif