summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/mcux-sdk/drivers/pwm/fsl_pwm.c
diff options
context:
space:
mode:
Diffstat (limited to 'bsps/arm/imxrt/mcux-sdk/drivers/pwm/fsl_pwm.c')
-rw-r--r--bsps/arm/imxrt/mcux-sdk/drivers/pwm/fsl_pwm.c1328
1 files changed, 1328 insertions, 0 deletions
diff --git a/bsps/arm/imxrt/mcux-sdk/drivers/pwm/fsl_pwm.c b/bsps/arm/imxrt/mcux-sdk/drivers/pwm/fsl_pwm.c
new file mode 100644
index 0000000000..22dc817c30
--- /dev/null
+++ b/bsps/arm/imxrt/mcux-sdk/drivers/pwm/fsl_pwm.c
@@ -0,0 +1,1328 @@
+/*
+ * Copyright (c) 2015, Freescale Semiconductor, Inc.
+ * Copyright 2016-2022 NXP
+ * All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include "fsl_pwm.h"
+
+/* Component ID definition, used by tools. */
+#ifndef FSL_COMPONENT_ID
+#define FSL_COMPONENT_ID "platform.drivers.pwm"
+#endif
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+/*!
+ * @brief Get the instance from the base address
+ *
+ * @param base PWM peripheral base address
+ *
+ * @return The PWM module instance
+ */
+static uint32_t PWM_GetInstance(PWM_Type *base);
+
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+/*! @brief Pointers to PWM bases for each instance. */
+static PWM_Type *const s_pwmBases[] = PWM_BASE_PTRS;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+/*! @brief Pointers to PWM clocks for each PWM submodule. */
+static const clock_ip_name_t s_pwmClocks[][FSL_FEATURE_PWM_SUBMODULE_COUNT] = PWM_CLOCKS;
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+/*! @brief Temporary PWM duty cycle. */
+static uint8_t s_pwmGetPwmDutyCycle[FSL_FEATURE_PWM_SUBMODULE_COUNT][PWM_SUBMODULE_CHANNEL] = {{0}};
+
+/*******************************************************************************
+ * Code
+ ******************************************************************************/
+
+/*!
+ * brief Complement the variable of type uint16_t as needed
+ *
+ * This function can complement the variable of type uint16_t as needed.For example,
+ * need to ask for the opposite of a positive integer.
+ *
+ * param value Parameters of type uint16_t
+ */
+static inline uint16_t PWM_GetComplementU16(uint16_t value)
+{
+ return (~value + 1U);
+}
+
+static inline uint16_t dutyCycleToReloadValue(uint8_t dutyCyclePercent)
+{
+ /* Rounding calculations to improve the accuracy of reloadValue */
+ return ((65535U * dutyCyclePercent) + 50U) / 100U;
+}
+
+static uint32_t PWM_GetInstance(PWM_Type *base)
+{
+ uint32_t instance;
+
+ /* Find the instance index from base address mappings. */
+ for (instance = 0; instance < ARRAY_SIZE(s_pwmBases); instance++)
+ {
+ if (s_pwmBases[instance] == base)
+ {
+ break;
+ }
+ }
+
+ assert(instance < ARRAY_SIZE(s_pwmBases));
+
+ return instance;
+}
+
+/*!
+ * brief Ungates the PWM submodule clock and configures the peripheral for basic operation.
+ *
+ * note This API should be called at the beginning of the application using the PWM driver.
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ * param config Pointer to user's PWM config structure.
+ *
+ * return kStatus_Success means success; else failed.
+ */
+status_t PWM_Init(PWM_Type *base, pwm_submodule_t subModule, const pwm_config_t *config)
+{
+ assert(config);
+
+ uint16_t reg;
+
+ /* Source clock for submodule 0 cannot be itself */
+ if ((config->clockSource == kPWM_Submodule0Clock) && (subModule == kPWM_Module_0))
+ {
+ return kStatus_Fail;
+ }
+
+ /* Reload source select clock for submodule 0 cannot be master reload */
+ if ((config->reloadSelect == kPWM_MasterReload) && (subModule == kPWM_Module_0))
+ {
+ return kStatus_Fail;
+ }
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ /* Ungate the PWM submodule clock*/
+ CLOCK_EnableClock(s_pwmClocks[PWM_GetInstance(base)][subModule]);
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+ /* Clear the fault status flags */
+ base->FSTS |= PWM_FSTS_FFLAG_MASK;
+
+ reg = base->SM[subModule].CTRL2;
+
+ /* Setup the submodule clock-source, control source of the INIT signal,
+ * source of the force output signal, operation in debug & wait modes and reload source select
+ */
+ reg &=
+ ~(uint16_t)(PWM_CTRL2_CLK_SEL_MASK | PWM_CTRL2_FORCE_SEL_MASK | PWM_CTRL2_INIT_SEL_MASK | PWM_CTRL2_INDEP_MASK |
+#if !defined(FSL_FEATURE_PWM_HAS_NO_WAITEN) || (!FSL_FEATURE_PWM_HAS_NO_WAITEN)
+ PWM_CTRL2_WAITEN_MASK |
+#endif /* FSL_FEATURE_PWM_HAS_NO_WAITEN */
+ PWM_CTRL2_DBGEN_MASK | PWM_CTRL2_RELOAD_SEL_MASK);
+ reg |= (PWM_CTRL2_CLK_SEL(config->clockSource) | PWM_CTRL2_FORCE_SEL(config->forceTrigger) |
+ PWM_CTRL2_INIT_SEL(config->initializationControl) | PWM_CTRL2_DBGEN(config->enableDebugMode) |
+#if !defined(FSL_FEATURE_PWM_HAS_NO_WAITEN) || (!FSL_FEATURE_PWM_HAS_NO_WAITEN)
+ PWM_CTRL2_WAITEN(config->enableWait) |
+#endif /* FSL_FEATURE_PWM_HAS_NO_WAITEN */
+ PWM_CTRL2_RELOAD_SEL(config->reloadSelect));
+
+ /* Setup PWM A & B to be independent or a complementary-pair */
+ switch (config->pairOperation)
+ {
+ case kPWM_Independent:
+ reg |= PWM_CTRL2_INDEP_MASK;
+ break;
+ case kPWM_ComplementaryPwmA:
+ base->MCTRL &= ~((uint16_t)1U << (PWM_MCTRL_IPOL_SHIFT + (uint16_t)subModule));
+ break;
+ case kPWM_ComplementaryPwmB:
+ base->MCTRL |= ((uint16_t)1U << (PWM_MCTRL_IPOL_SHIFT + (uint16_t)subModule));
+ break;
+ default:
+ assert(false);
+ break;
+ }
+ base->SM[subModule].CTRL2 = reg;
+
+ reg = base->SM[subModule].CTRL;
+
+ /* Setup the clock prescale, load mode and frequency */
+ reg &= ~(uint16_t)(PWM_CTRL_PRSC_MASK | PWM_CTRL_LDFQ_MASK | PWM_CTRL_LDMOD_MASK);
+ reg |= (PWM_CTRL_PRSC(config->prescale) | PWM_CTRL_LDFQ(config->reloadFrequency));
+
+ /* Setup register reload logic */
+ switch (config->reloadLogic)
+ {
+ case kPWM_ReloadImmediate:
+ reg |= PWM_CTRL_LDMOD_MASK;
+ break;
+ case kPWM_ReloadPwmHalfCycle:
+ reg |= PWM_CTRL_HALF_MASK;
+ reg &= (uint16_t)(~PWM_CTRL_FULL_MASK);
+ break;
+ case kPWM_ReloadPwmFullCycle:
+ reg &= (uint16_t)(~PWM_CTRL_HALF_MASK);
+ reg |= PWM_CTRL_FULL_MASK;
+ break;
+ case kPWM_ReloadPwmHalfAndFullCycle:
+ reg |= PWM_CTRL_HALF_MASK;
+ reg |= PWM_CTRL_FULL_MASK;
+ break;
+ default:
+ assert(false);
+ break;
+ }
+ base->SM[subModule].CTRL = reg;
+
+ /* Set PWM output normal */
+ base->MASK &= ~(uint16_t)(PWM_MASK_MASKX_MASK | PWM_MASK_MASKA_MASK | PWM_MASK_MASKB_MASK);
+
+ base->DTSRCSEL = 0U;
+
+ /* Issue a Force trigger event when configured to trigger locally */
+ if (config->forceTrigger == kPWM_Force_Local)
+ {
+ base->SM[subModule].CTRL2 |= PWM_CTRL2_FORCE(1U);
+ }
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Gate the PWM submodule clock
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to deinitialize
+ */
+void PWM_Deinit(PWM_Type *base, pwm_submodule_t subModule)
+{
+ /* Stop the submodule */
+ base->MCTRL &= ~((uint16_t)1U << (PWM_MCTRL_RUN_SHIFT + (uint16_t)subModule));
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ /* Gate the PWM submodule clock*/
+ CLOCK_DisableClock(s_pwmClocks[PWM_GetInstance(base)][subModule]);
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+}
+
+/*!
+ * brief Fill in the PWM config struct with the default settings
+ *
+ * The default values are:
+ * code
+ * config->enableDebugMode = false;
+ * config->enableWait = false;
+ * config->reloadSelect = kPWM_LocalReload;
+ * config->clockSource = kPWM_BusClock;
+ * config->prescale = kPWM_Prescale_Divide_1;
+ * config->initializationControl = kPWM_Initialize_LocalSync;
+ * config->forceTrigger = kPWM_Force_Local;
+ * config->reloadFrequency = kPWM_LoadEveryOportunity;
+ * config->reloadLogic = kPWM_ReloadImmediate;
+ * config->pairOperation = kPWM_Independent;
+ * endcode
+ * param config Pointer to user's PWM config structure.
+ */
+void PWM_GetDefaultConfig(pwm_config_t *config)
+{
+ assert(config);
+
+ /* Initializes the configure structure to zero. */
+ (void)memset(config, 0, sizeof(*config));
+
+ /* PWM is paused in debug mode */
+ config->enableDebugMode = false;
+ /* PWM is paused in wait mode */
+#if !defined(FSL_FEATURE_PWM_HAS_NO_WAITEN) || (!FSL_FEATURE_PWM_HAS_NO_WAITEN)
+ config->enableWait = false;
+#endif /* FSL_FEATURE_PWM_HAS_NO_WAITEN */
+ /* PWM module uses the local reload signal to reload registers */
+ config->reloadSelect = kPWM_LocalReload;
+ /* Use the IP Bus clock as source clock for the PWM submodule */
+ config->clockSource = kPWM_BusClock;
+ /* Clock source prescale is set to divide by 1*/
+ config->prescale = kPWM_Prescale_Divide_1;
+ /* Local sync causes initialization */
+ config->initializationControl = kPWM_Initialize_LocalSync;
+ /* The local force signal, CTRL2[FORCE], from the submodule is used to force updates */
+ config->forceTrigger = kPWM_Force_Local;
+ /* PWM reload frequency, reload opportunity is PWM half cycle or full cycle.
+ * This field is not used in Immediate reload mode
+ */
+ config->reloadFrequency = kPWM_LoadEveryOportunity;
+ /* Buffered-registers get loaded with new values as soon as LDOK bit is set */
+ config->reloadLogic = kPWM_ReloadImmediate;
+ /* PWM A & PWM B operate as 2 independent channels */
+ config->pairOperation = kPWM_Independent;
+}
+
+/*!
+ * brief Sets up the PWM signals for a PWM submodule.
+ *
+ * The function initializes the submodule according to the parameters passed in by the user. The function
+ * also sets up the value compare registers to match the PWM signal requirements.
+ * If the dead time insertion logic is enabled, the pulse period is reduced by the
+ * dead time period specified by the user.
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ * param chnlParams Array of PWM channel parameters to configure the channel(s), PWMX submodule is not supported.
+ * param numOfChnls Number of channels to configure, this should be the size of the array passed in.
+ * Array size should not be more than 2 as each submodule has 2 pins to output PWM
+ * param mode PWM operation mode, options available in enumeration ::pwm_mode_t
+ * param pwmFreq_Hz PWM signal frequency in Hz
+ * param srcClock_Hz PWM main counter clock in Hz.
+ *
+ * return Returns kStatusFail if there was error setting up the signal; kStatusSuccess otherwise
+ */
+status_t PWM_SetupPwm(PWM_Type *base,
+ pwm_submodule_t subModule,
+ const pwm_signal_param_t *chnlParams,
+ uint8_t numOfChnls,
+ pwm_mode_t mode,
+ uint32_t pwmFreq_Hz,
+ uint32_t srcClock_Hz)
+{
+ assert(chnlParams);
+ assert(pwmFreq_Hz);
+ assert(numOfChnls);
+ assert(srcClock_Hz);
+
+ uint32_t pwmClock;
+ uint16_t pulseCnt = 0, pwmHighPulse = 0;
+ uint16_t modulo = 0;
+ uint8_t i, polarityShift = 0, outputEnableShift = 0;
+
+ for (i = 0; i < numOfChnls; i++)
+ {
+ if (chnlParams[i].pwmChannel == kPWM_PwmX)
+ {
+ /* PWMX configuration is not supported yet */
+ return kStatus_Fail;
+ }
+ }
+
+ /* Divide the clock by the prescale value */
+ pwmClock = (srcClock_Hz / (1UL << ((base->SM[subModule].CTRL & PWM_CTRL_PRSC_MASK) >> PWM_CTRL_PRSC_SHIFT)));
+ pulseCnt = (uint16_t)(pwmClock / pwmFreq_Hz);
+
+ /* Setup each PWM channel */
+ for (i = 0; i < numOfChnls; i++)
+ {
+ /* Calculate pulse width */
+ pwmHighPulse = (pulseCnt * chnlParams->dutyCyclePercent) / 100U;
+
+ /* Setup the different match registers to generate the PWM signal */
+ switch (mode)
+ {
+ case kPWM_SignedCenterAligned:
+ /* Setup the PWM period for a signed center aligned signal */
+ if (i == 0U)
+ {
+ modulo = (pulseCnt >> 1U);
+ /* Indicates the start of the PWM period */
+ base->SM[subModule].INIT = PWM_GetComplementU16(modulo);
+ /* Indicates the center value */
+ base->SM[subModule].VAL0 = 0;
+ /* Indicates the end of the PWM period */
+ /* The change during the end to start of the PWM period requires a count time */
+ base->SM[subModule].VAL1 = modulo - 1U;
+ }
+
+ /* Setup the PWM dutycycle */
+ if (chnlParams->pwmChannel == kPWM_PwmA)
+ {
+ base->SM[subModule].VAL2 = PWM_GetComplementU16(pwmHighPulse / 2U);
+ base->SM[subModule].VAL3 = (pwmHighPulse / 2U);
+ }
+ else
+ {
+ base->SM[subModule].VAL4 = PWM_GetComplementU16(pwmHighPulse / 2U);
+ base->SM[subModule].VAL5 = (pwmHighPulse / 2U);
+ }
+ break;
+ case kPWM_CenterAligned:
+ /* Setup the PWM period for an unsigned center aligned signal */
+ /* Indicates the start of the PWM period */
+ if (i == 0U)
+ {
+ base->SM[subModule].INIT = 0;
+ /* Indicates the center value */
+ base->SM[subModule].VAL0 = (pulseCnt / 2U);
+ /* Indicates the end of the PWM period */
+ /* The change during the end to start of the PWM period requires a count time */
+ base->SM[subModule].VAL1 = pulseCnt - 1U;
+ }
+
+ /* Setup the PWM dutycycle */
+ if (chnlParams->pwmChannel == kPWM_PwmA)
+ {
+ base->SM[subModule].VAL2 = ((pulseCnt - pwmHighPulse) / 2U);
+ base->SM[subModule].VAL3 = ((pulseCnt + pwmHighPulse) / 2U);
+ }
+ else
+ {
+ base->SM[subModule].VAL4 = ((pulseCnt - pwmHighPulse) / 2U);
+ base->SM[subModule].VAL5 = ((pulseCnt + pwmHighPulse) / 2U);
+ }
+ break;
+ case kPWM_SignedEdgeAligned:
+ /* Setup the PWM period for a signed edge aligned signal */
+ if (i == 0U)
+ {
+ modulo = (pulseCnt >> 1U);
+ /* Indicates the start of the PWM period */
+ base->SM[subModule].INIT = PWM_GetComplementU16(modulo);
+ /* Indicates the center value */
+ base->SM[subModule].VAL0 = 0;
+ /* Indicates the end of the PWM period */
+ /* The change during the end to start of the PWM period requires a count time */
+ base->SM[subModule].VAL1 = modulo - 1U;
+ }
+
+ /* Setup the PWM dutycycle */
+ if (chnlParams->pwmChannel == kPWM_PwmA)
+ {
+ base->SM[subModule].VAL2 = PWM_GetComplementU16(modulo);
+ base->SM[subModule].VAL3 = PWM_GetComplementU16(modulo) + pwmHighPulse;
+ }
+ else
+ {
+ base->SM[subModule].VAL4 = PWM_GetComplementU16(modulo);
+ base->SM[subModule].VAL5 = PWM_GetComplementU16(modulo) + pwmHighPulse;
+ }
+ break;
+ case kPWM_EdgeAligned:
+ /* Setup the PWM period for a unsigned edge aligned signal */
+ /* Indicates the start of the PWM period */
+ if (i == 0U)
+ {
+ base->SM[subModule].INIT = 0;
+ /* Indicates the center value */
+ base->SM[subModule].VAL0 = (pulseCnt / 2U);
+ /* Indicates the end of the PWM period */
+ /* The change during the end to start of the PWM period requires a count time */
+ base->SM[subModule].VAL1 = pulseCnt - 1U;
+ }
+
+ /* Setup the PWM dutycycle */
+ if (chnlParams->pwmChannel == kPWM_PwmA)
+ {
+ base->SM[subModule].VAL2 = 0;
+ base->SM[subModule].VAL3 = pwmHighPulse;
+ }
+ else
+ {
+ base->SM[subModule].VAL4 = 0;
+ base->SM[subModule].VAL5 = pwmHighPulse;
+ }
+ break;
+ default:
+ assert(false);
+ break;
+ }
+ /* Setup register shift values based on the channel being configured.
+ * Also setup the deadtime value
+ */
+ if (chnlParams->pwmChannel == kPWM_PwmA)
+ {
+ polarityShift = PWM_OCTRL_POLA_SHIFT;
+ outputEnableShift = PWM_OUTEN_PWMA_EN_SHIFT;
+ base->SM[subModule].DTCNT0 = PWM_DTCNT0_DTCNT0(chnlParams->deadtimeValue);
+ }
+ else
+ {
+ polarityShift = PWM_OCTRL_POLB_SHIFT;
+ outputEnableShift = PWM_OUTEN_PWMB_EN_SHIFT;
+ base->SM[subModule].DTCNT1 = PWM_DTCNT1_DTCNT1(chnlParams->deadtimeValue);
+ }
+
+ /* Set PWM output fault status */
+ switch (chnlParams->pwmChannel)
+ {
+ case kPWM_PwmA:
+ base->SM[subModule].OCTRL &= ~((uint16_t)PWM_OCTRL_PWMAFS_MASK);
+ base->SM[subModule].OCTRL |= (((uint16_t)(chnlParams->faultState) << (uint16_t)PWM_OCTRL_PWMAFS_SHIFT) &
+ (uint16_t)PWM_OCTRL_PWMAFS_MASK);
+ break;
+ case kPWM_PwmB:
+ base->SM[subModule].OCTRL &= ~((uint16_t)PWM_OCTRL_PWMBFS_MASK);
+ base->SM[subModule].OCTRL |= (((uint16_t)(chnlParams->faultState) << (uint16_t)PWM_OCTRL_PWMBFS_SHIFT) &
+ (uint16_t)PWM_OCTRL_PWMBFS_MASK);
+ break;
+ default:
+ assert(false);
+ break;
+ }
+
+ /* Setup signal active level */
+ if ((bool)chnlParams->level == kPWM_HighTrue)
+ {
+ base->SM[subModule].OCTRL &= ~((uint16_t)1U << (uint16_t)polarityShift);
+ }
+ else
+ {
+ base->SM[subModule].OCTRL |= ((uint16_t)1U << (uint16_t)polarityShift);
+ }
+ if (chnlParams->pwmchannelenable)
+ {
+ /* Enable PWM output */
+ base->OUTEN |= ((uint16_t)1U << ((uint16_t)outputEnableShift + (uint16_t)subModule));
+ }
+
+ /* Get the pwm duty cycle */
+ s_pwmGetPwmDutyCycle[subModule][chnlParams->pwmChannel] = chnlParams->dutyCyclePercent;
+
+ /* Get the next channel parameters */
+ chnlParams++;
+ }
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Set PWM phase shift for PWM channel running on channel PWM_A, PWM_B which with 50% duty cycle.
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ * param pwmChannel PWM channel to configure
+ * param pwmFreq_Hz PWM signal frequency in Hz
+ * param srcClock_Hz PWM main counter clock in Hz.
+ * param shiftvalue Phase shift value, range in 0 ~ 50
+ * param doSync true: Set LDOK bit for the submodule list;
+ * false: LDOK bit don't set, need to call PWM_SetPwmLdok to sync update.
+ *
+ * return Returns kStatus_Fail if there was error setting up the signal; kStatus_Success otherwise
+ */
+status_t PWM_SetupPwmPhaseShift(PWM_Type *base,
+ pwm_submodule_t subModule,
+ pwm_channels_t pwmChannel,
+ uint32_t pwmFreq_Hz,
+ uint32_t srcClock_Hz,
+ uint8_t shiftvalue,
+ bool doSync)
+{
+ assert(pwmFreq_Hz != 0U);
+ assert(srcClock_Hz != 0U);
+ assert(shiftvalue <= 50U);
+
+ uint32_t pwmClock;
+ uint16_t pulseCnt = 0, pwmHighPulse = 0;
+ uint16_t modulo = 0;
+ uint16_t shift = 0;
+
+ if (pwmChannel != kPWM_PwmX)
+ {
+ /* Divide the clock by the prescale value */
+ pwmClock = (srcClock_Hz / (1UL << ((base->SM[subModule].CTRL & PWM_CTRL_PRSC_MASK) >> PWM_CTRL_PRSC_SHIFT)));
+ pulseCnt = (uint16_t)(pwmClock / pwmFreq_Hz);
+
+ /* Clear LDOK bit if it is set */
+ if (0U != (base->MCTRL & PWM_MCTRL_LDOK(1UL << (uint8_t)subModule)))
+ {
+ base->MCTRL |= PWM_MCTRL_CLDOK(1UL << (uint8_t)subModule);
+ }
+
+ modulo = (pulseCnt >> 1U);
+ /* Indicates the start of the PWM period */
+ base->SM[subModule].INIT = PWM_GetComplementU16(modulo);
+ /* Indicates the center value */
+ base->SM[subModule].VAL0 = 0;
+ /* Indicates the end of the PWM period */
+ /* The change during the end to start of the PWM period requires a count time */
+ base->SM[subModule].VAL1 = modulo - 1U;
+
+ /* Immediately upon when MCTRL[LDOK] being set */
+ base->SM[subModule].CTRL |= PWM_CTRL_LDMOD_MASK;
+
+ /* phase shift value */
+ shift = (pulseCnt * shiftvalue) / 100U;
+
+ /* duty cycle 50% */
+ pwmHighPulse = pulseCnt / 2U;
+
+ if (pwmChannel == kPWM_PwmA)
+ {
+ base->SM[subModule].VAL2 = PWM_GetComplementU16(modulo) + shift;
+ base->SM[subModule].VAL3 = PWM_GetComplementU16(modulo) + pwmHighPulse + shift - 1U;
+ }
+ else if (pwmChannel == kPWM_PwmB)
+ {
+ base->SM[subModule].VAL4 = PWM_GetComplementU16(modulo) + shift;
+ base->SM[subModule].VAL5 = PWM_GetComplementU16(modulo) + pwmHighPulse + shift - 1U;
+ }
+ else
+ {
+ return kStatus_Fail;
+ }
+
+ if (doSync)
+ {
+ /* Set LDOK bit to load VALx bit */
+ base->MCTRL |= PWM_MCTRL_LDOK(1UL << (uint8_t)subModule);
+ }
+ }
+ else
+ {
+ return kStatus_Fail;
+ }
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Updates the PWM signal's dutycycle.
+ *
+ * The function updates the PWM dutycyle to the new value that is passed in.
+ * If the dead time insertion logic is enabled then the pulse period is reduced by the
+ * dead time period specified by the user.
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ * param pwmSignal Signal (PWM A or PWM B) to update
+ * param currPwmMode The current PWM mode set during PWM setup
+ * param dutyCyclePercent New PWM pulse width, value should be between 0 to 100
+ * 0=inactive signal(0% duty cycle)...
+ * 100=active signal (100% duty cycle)
+ */
+void PWM_UpdatePwmDutycycle(PWM_Type *base,
+ pwm_submodule_t subModule,
+ pwm_channels_t pwmSignal,
+ pwm_mode_t currPwmMode,
+ uint8_t dutyCyclePercent)
+{
+ assert(dutyCyclePercent <= 100U);
+ assert(pwmSignal != kPWM_PwmX);
+ uint16_t reloadValue = dutyCycleToReloadValue(dutyCyclePercent);
+
+ PWM_UpdatePwmDutycycleHighAccuracy(base, subModule, pwmSignal, currPwmMode, reloadValue);
+}
+
+/*!
+ * brief Updates the PWM signal's dutycycle with 16-bit accuracy.
+ *
+ * The function updates the PWM dutycyle to the new value that is passed in.
+ * If the dead time insertion logic is enabled then the pulse period is reduced by the
+ * dead time period specified by the user.
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ * param pwmSignal Signal (PWM A or PWM B) to update
+ * param currPwmMode The current PWM mode set during PWM setup
+ * param dutyCycle New PWM pulse width, value should be between 0 to 65535
+ * 0=inactive signal(0% duty cycle)...
+ * 65535=active signal (100% duty cycle)
+ */
+void PWM_UpdatePwmDutycycleHighAccuracy(
+ PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmSignal, pwm_mode_t currPwmMode, uint16_t dutyCycle)
+{
+ assert(pwmSignal != kPWM_PwmX);
+ uint16_t pulseCnt = 0, pwmHighPulse = 0;
+ uint16_t modulo = 0;
+
+ switch (currPwmMode)
+ {
+ case kPWM_SignedCenterAligned:
+ modulo = base->SM[subModule].VAL1 + 1U;
+ pulseCnt = modulo * 2U;
+ /* Calculate pulse width */
+ pwmHighPulse = (pulseCnt * dutyCycle) / 65535U;
+
+ /* Setup the PWM dutycycle */
+ if (pwmSignal == kPWM_PwmA)
+ {
+ base->SM[subModule].VAL2 = PWM_GetComplementU16(pwmHighPulse / 2U);
+ base->SM[subModule].VAL3 = (pwmHighPulse / 2U);
+ }
+ else if (pwmSignal == kPWM_PwmB)
+ {
+ base->SM[subModule].VAL4 = PWM_GetComplementU16(pwmHighPulse / 2U);
+ base->SM[subModule].VAL5 = (pwmHighPulse / 2U);
+ }
+ else
+ {
+ assert(false);
+ }
+ break;
+ case kPWM_CenterAligned:
+ pulseCnt = base->SM[subModule].VAL1 + 1U;
+ /* Calculate pulse width */
+ pwmHighPulse = (pulseCnt * dutyCycle) / 65535U;
+
+ /* Setup the PWM dutycycle */
+ if (pwmSignal == kPWM_PwmA)
+ {
+ base->SM[subModule].VAL2 = ((pulseCnt - pwmHighPulse) / 2U);
+ base->SM[subModule].VAL3 = ((pulseCnt + pwmHighPulse) / 2U);
+ }
+ else if (pwmSignal == kPWM_PwmB)
+ {
+ base->SM[subModule].VAL4 = ((pulseCnt - pwmHighPulse) / 2U);
+ base->SM[subModule].VAL5 = ((pulseCnt + pwmHighPulse) / 2U);
+ }
+ else
+ {
+ assert(false);
+ }
+ break;
+ case kPWM_SignedEdgeAligned:
+ modulo = base->SM[subModule].VAL1 + 1U;
+ pulseCnt = modulo * 2U;
+ /* Calculate pulse width */
+ pwmHighPulse = (pulseCnt * dutyCycle) / 65535U;
+
+ /* Setup the PWM dutycycle */
+ if (pwmSignal == kPWM_PwmA)
+ {
+ base->SM[subModule].VAL2 = PWM_GetComplementU16(modulo);
+ base->SM[subModule].VAL3 = PWM_GetComplementU16(modulo) + pwmHighPulse;
+ }
+ else if (pwmSignal == kPWM_PwmB)
+ {
+ base->SM[subModule].VAL4 = PWM_GetComplementU16(modulo);
+ base->SM[subModule].VAL5 = PWM_GetComplementU16(modulo) + pwmHighPulse;
+ }
+ else
+ {
+ assert(false);
+ }
+ break;
+ case kPWM_EdgeAligned:
+ pulseCnt = base->SM[subModule].VAL1 + 1U;
+ /* Calculate pulse width */
+ pwmHighPulse = (pulseCnt * dutyCycle) / 65535U;
+
+ /* Setup the PWM dutycycle */
+ if (pwmSignal == kPWM_PwmA)
+ {
+ base->SM[subModule].VAL2 = 0;
+ base->SM[subModule].VAL3 = pwmHighPulse;
+ }
+ else if (pwmSignal == kPWM_PwmB)
+ {
+ base->SM[subModule].VAL4 = 0;
+ base->SM[subModule].VAL5 = pwmHighPulse;
+ }
+ else
+ {
+ assert(false);
+ }
+ break;
+ default:
+ assert(false);
+ break;
+ }
+ if (kPWM_PwmX != pwmSignal)
+ {
+ /* Get the pwm duty cycle */
+ s_pwmGetPwmDutyCycle[subModule][pwmSignal] = (uint8_t)(dutyCycle / 65535U);
+ }
+}
+
+/*!
+ * brief Sets up the PWM input capture
+ *
+ * Each PWM submodule has 3 pins that can be configured for use as input capture pins. This function
+ * sets up the capture parameters for each pin and enables the pin for input capture operation.
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ * param pwmChannel Channel in the submodule to setup
+ * param inputCaptureParams Parameters passed in to set up the input pin
+ */
+void PWM_SetupInputCapture(PWM_Type *base,
+ pwm_submodule_t subModule,
+ pwm_channels_t pwmChannel,
+ const pwm_input_capture_param_t *inputCaptureParams)
+{
+ uint16_t reg = 0;
+ switch (pwmChannel)
+ {
+ case kPWM_PwmA:
+ /* Setup the capture paramters for PWM A pin */
+ reg = (PWM_CAPTCTRLA_INP_SELA(inputCaptureParams->captureInputSel) |
+ PWM_CAPTCTRLA_EDGA0(inputCaptureParams->edge0) | PWM_CAPTCTRLA_EDGA1(inputCaptureParams->edge1) |
+ PWM_CAPTCTRLA_ONESHOTA(inputCaptureParams->enableOneShotCapture) |
+ PWM_CAPTCTRLA_CFAWM(inputCaptureParams->fifoWatermark));
+ /* Enable the edge counter if using the output edge counter */
+ if (inputCaptureParams->captureInputSel)
+ {
+ reg |= PWM_CAPTCTRLA_EDGCNTA_EN_MASK;
+ }
+ /* Enable input capture operation */
+ reg |= PWM_CAPTCTRLA_ARMA_MASK;
+
+ base->SM[subModule].CAPTCTRLA = reg;
+
+ /* Setup the compare value when using the edge counter as source */
+ base->SM[subModule].CAPTCOMPA = PWM_CAPTCOMPA_EDGCMPA(inputCaptureParams->edgeCompareValue);
+ /* Setup PWM A pin for input capture */
+ base->OUTEN &= ~((uint16_t)1U << (PWM_OUTEN_PWMA_EN_SHIFT + (uint16_t)subModule));
+ break;
+ case kPWM_PwmB:
+ /* Setup the capture paramters for PWM B pin */
+ reg = (PWM_CAPTCTRLB_INP_SELB(inputCaptureParams->captureInputSel) |
+ PWM_CAPTCTRLB_EDGB0(inputCaptureParams->edge0) | PWM_CAPTCTRLB_EDGB1(inputCaptureParams->edge1) |
+ PWM_CAPTCTRLB_ONESHOTB(inputCaptureParams->enableOneShotCapture) |
+ PWM_CAPTCTRLB_CFBWM(inputCaptureParams->fifoWatermark));
+ /* Enable the edge counter if using the output edge counter */
+ if (inputCaptureParams->captureInputSel)
+ {
+ reg |= PWM_CAPTCTRLB_EDGCNTB_EN_MASK;
+ }
+ /* Enable input capture operation */
+ reg |= PWM_CAPTCTRLB_ARMB_MASK;
+
+ base->SM[subModule].CAPTCTRLB = reg;
+
+ /* Setup the compare value when using the edge counter as source */
+ base->SM[subModule].CAPTCOMPB = PWM_CAPTCOMPB_EDGCMPB(inputCaptureParams->edgeCompareValue);
+ /* Setup PWM B pin for input capture */
+ base->OUTEN &= ~((uint16_t)1U << (PWM_OUTEN_PWMB_EN_SHIFT + (uint16_t)subModule));
+ break;
+ case kPWM_PwmX:
+ reg = (PWM_CAPTCTRLX_INP_SELX(inputCaptureParams->captureInputSel) |
+ PWM_CAPTCTRLX_EDGX0(inputCaptureParams->edge0) | PWM_CAPTCTRLX_EDGX1(inputCaptureParams->edge1) |
+ PWM_CAPTCTRLX_ONESHOTX(inputCaptureParams->enableOneShotCapture) |
+ PWM_CAPTCTRLX_CFXWM(inputCaptureParams->fifoWatermark));
+ /* Enable the edge counter if using the output edge counter */
+ if (inputCaptureParams->captureInputSel)
+ {
+ reg |= PWM_CAPTCTRLX_EDGCNTX_EN_MASK;
+ }
+ /* Enable input capture operation */
+ reg |= PWM_CAPTCTRLX_ARMX_MASK;
+
+ base->SM[subModule].CAPTCTRLX = reg;
+
+ /* Setup the compare value when using the edge counter as source */
+ base->SM[subModule].CAPTCOMPX = PWM_CAPTCOMPX_EDGCMPX(inputCaptureParams->edgeCompareValue);
+ /* Setup PWM X pin for input capture */
+ base->OUTEN &= ~((uint16_t)1U << (PWM_OUTEN_PWMX_EN_SHIFT + (uint16_t)subModule));
+ break;
+ default:
+ assert(false);
+ break;
+ }
+}
+
+/*!
+ * @brief Sets up the PWM fault input filter.
+ *
+ * @param base PWM peripheral base address
+ * @param faultInputFilterParams Parameters passed in to set up the fault input filter.
+ */
+void PWM_SetupFaultInputFilter(PWM_Type *base, const pwm_fault_input_filter_param_t *faultInputFilterParams)
+{
+ assert(NULL != faultInputFilterParams);
+
+ /* When changing values for fault period from a non-zero value, first write a value of 0 to clear the filter. */
+ if (0U != (base->FFILT & PWM_FFILT_FILT_PER_MASK))
+ {
+ base->FFILT &= ~(uint16_t)(PWM_FFILT_FILT_PER_MASK);
+ }
+
+ base->FFILT = (uint16_t)(PWM_FFILT_FILT_PER(faultInputFilterParams->faultFilterPeriod) |
+ PWM_FFILT_FILT_CNT(faultInputFilterParams->faultFilterCount) |
+ PWM_FFILT_GSTR(faultInputFilterParams->faultGlitchStretch ? 1U : 0U));
+}
+
+/*!
+ * brief Sets up the PWM fault protection.
+ *
+ * PWM has 4 fault inputs.
+ *
+ * param base PWM peripheral base address
+ * param faultNum PWM fault to configure.
+ * param faultParams Pointer to the PWM fault config structure
+ */
+void PWM_SetupFaults(PWM_Type *base, pwm_fault_input_t faultNum, const pwm_fault_param_t *faultParams)
+{
+ assert(faultParams);
+ uint16_t reg;
+
+ reg = base->FCTRL;
+ /* Set the faults level-settting */
+ if (faultParams->faultLevel)
+ {
+ reg |= ((uint16_t)1U << (PWM_FCTRL_FLVL_SHIFT + (uint16_t)faultNum));
+ }
+ else
+ {
+ reg &= ~((uint16_t)1U << (PWM_FCTRL_FLVL_SHIFT + (uint16_t)faultNum));
+ }
+ /* Set the fault clearing mode */
+ if ((uint16_t)faultParams->faultClearingMode != 0U)
+ {
+ /* Use manual fault clearing */
+ reg &= ~((uint16_t)1U << (PWM_FCTRL_FAUTO_SHIFT + (uint16_t)faultNum));
+ if (faultParams->faultClearingMode == kPWM_ManualSafety)
+ {
+ /* Use manual fault clearing with safety mode enabled */
+ reg |= ((uint16_t)1U << (PWM_FCTRL_FSAFE_SHIFT + (uint16_t)faultNum));
+ }
+ else
+ {
+ /* Use manual fault clearing with safety mode disabled */
+ reg &= ~((uint16_t)1U << (PWM_FCTRL_FSAFE_SHIFT + (uint16_t)faultNum));
+ }
+ }
+ else
+ {
+ /* Use automatic fault clearing */
+ reg |= ((uint16_t)1U << (PWM_FCTRL_FAUTO_SHIFT + (uint16_t)faultNum));
+ }
+ base->FCTRL = reg;
+
+ /* Set the combinational path option */
+ if (faultParams->enableCombinationalPath)
+ {
+ /* Combinational path from the fault input to the PWM output is available */
+ base->FCTRL2 &= ~((uint16_t)1U << (uint16_t)faultNum);
+ }
+ else
+ {
+ /* No combinational path available, only fault filter & latch signal can disable PWM output */
+ base->FCTRL2 |= ((uint16_t)1U << (uint16_t)faultNum);
+ }
+
+ /* Initially clear both recovery modes */
+ reg = base->FSTS;
+ reg &= ~(((uint16_t)1U << (PWM_FSTS_FFULL_SHIFT + (uint16_t)faultNum)) |
+ ((uint16_t)1U << (PWM_FSTS_FHALF_SHIFT + (uint16_t)faultNum)));
+ /* Setup fault recovery */
+ switch (faultParams->recoverMode)
+ {
+ case kPWM_NoRecovery:
+ break;
+ case kPWM_RecoverHalfCycle:
+ reg |= ((uint16_t)1U << (PWM_FSTS_FHALF_SHIFT + (uint16_t)faultNum));
+ break;
+ case kPWM_RecoverFullCycle:
+ reg |= ((uint16_t)1U << (PWM_FSTS_FFULL_SHIFT + (uint16_t)faultNum));
+ break;
+ case kPWM_RecoverHalfAndFullCycle:
+ reg |= ((uint16_t)1U << (PWM_FSTS_FHALF_SHIFT + (uint16_t)faultNum));
+ reg |= ((uint16_t)1U << (PWM_FSTS_FFULL_SHIFT + (uint16_t)faultNum));
+ break;
+ default:
+ assert(false);
+ break;
+ }
+ base->FSTS = reg;
+}
+
+/*!
+ * brief Fill in the PWM fault config struct with the default settings
+ *
+ * The default values are:
+ * code
+ * config->faultClearingMode = kPWM_Automatic;
+ * config->faultLevel = false;
+ * config->enableCombinationalPath = true;
+ * config->recoverMode = kPWM_NoRecovery;
+ * endcode
+ * param config Pointer to user's PWM fault config structure.
+ */
+void PWM_FaultDefaultConfig(pwm_fault_param_t *config)
+{
+ assert(config);
+
+ /* Initializes the configure structure to zero. */
+ (void)memset(config, 0, sizeof(*config));
+
+ /* PWM uses automatic fault clear mode */
+ config->faultClearingMode = kPWM_Automatic;
+ /* PWM fault level is set to logic 0 */
+ config->faultLevel = false;
+ /* Combinational Path from fault input is enabled */
+ config->enableCombinationalPath = true;
+ /* PWM output will stay inactive when recovering from a fault */
+ config->recoverMode = kPWM_NoRecovery;
+}
+
+/*!
+ * brief Selects the signal to output on a PWM pin when a FORCE_OUT signal is asserted.
+ *
+ * The user specifies which channel to configure by supplying the submodule number and whether
+ * to modify PWM A or PWM B within that submodule.
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ * param pwmChannel Channel to configure
+ * param mode Signal to output when a FORCE_OUT is triggered
+ */
+void PWM_SetupForceSignal(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, pwm_force_signal_t mode)
+
+{
+ uint16_t shift;
+ uint16_t reg;
+
+ /* DTSRCSEL register has 4 bits per submodule; 2 bits for PWM A and 2 bits for PWM B */
+ shift = ((uint16_t)subModule * 4U) + ((uint16_t)pwmChannel * 2U);
+
+ /* Setup the signal to be passed upon occurrence of a FORCE_OUT signal */
+ reg = base->DTSRCSEL;
+ reg &= ~((uint16_t)0x3U << shift);
+ reg |= (uint16_t)((uint16_t)mode << shift);
+ base->DTSRCSEL = reg;
+}
+
+/*!
+ * brief Enables the selected PWM interrupts
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ * param mask The interrupts to enable. This is a logical OR of members of the
+ * enumeration ::pwm_interrupt_enable_t
+ */
+void PWM_EnableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
+{
+ /* Upper 16 bits are for related to the submodule */
+ base->SM[subModule].INTEN |= ((uint16_t)mask & 0xFFFFU);
+ /* Fault related interrupts */
+ base->FCTRL |= ((uint16_t)(mask >> 16U) & PWM_FCTRL_FIE_MASK);
+}
+
+/*!
+ * brief Disables the selected PWM interrupts
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ * param mask The interrupts to enable. This is a logical OR of members of the
+ * enumeration ::pwm_interrupt_enable_t
+ */
+void PWM_DisableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
+{
+ base->SM[subModule].INTEN &= ~((uint16_t)mask & 0xFFFFU);
+ base->FCTRL &= ~((uint16_t)(mask >> 16U) & PWM_FCTRL_FIE_MASK);
+}
+
+/*!
+ * brief Gets the enabled PWM interrupts
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ *
+ * return The enabled interrupts. This is the logical OR of members of the
+ * enumeration ::pwm_interrupt_enable_t
+ */
+uint32_t PWM_GetEnabledInterrupts(PWM_Type *base, pwm_submodule_t subModule)
+{
+ uint32_t enabledInterrupts;
+
+ enabledInterrupts = base->SM[subModule].INTEN;
+ enabledInterrupts |= (((uint32_t)base->FCTRL & PWM_FCTRL_FIE_MASK) << 16UL);
+ return enabledInterrupts;
+}
+
+/*!
+ * brief Gets the PWM status flags
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ *
+ * return The status flags. This is the logical OR of members of the
+ * enumeration ::pwm_status_flags_t
+ */
+uint32_t PWM_GetStatusFlags(PWM_Type *base, pwm_submodule_t subModule)
+{
+ uint32_t statusFlags;
+
+ statusFlags = base->SM[subModule].STS;
+ statusFlags |= (((uint32_t)base->FSTS & PWM_FSTS_FFLAG_MASK) << 16UL);
+
+ return statusFlags;
+}
+
+/*!
+ * brief Clears the PWM status flags
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ * param mask The status flags to clear. This is a logical OR of members of the
+ * enumeration ::pwm_status_flags_t
+ */
+void PWM_ClearStatusFlags(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
+{
+ uint16_t reg;
+
+ base->SM[subModule].STS = ((uint16_t)mask & 0xFFFFU);
+ reg = base->FSTS;
+ /* Clear the fault flags and set only the ones we wish to clear as the fault flags are cleared
+ * by writing a login one
+ */
+ reg &= ~(uint16_t)(PWM_FSTS_FFLAG_MASK);
+ reg |= (uint16_t)((mask >> 16U) & PWM_FSTS_FFLAG_MASK);
+ base->FSTS = reg;
+}
+
+/*!
+ * brief Set PWM output in idle status (high or low).
+ *
+ * note This API should call after PWM_SetupPwm() APIs, and PWMX submodule is not supported.
+ *
+ * param base PWM peripheral base address
+ * param pwmChannel PWM channel to configure
+ * param subModule PWM submodule to configure
+ * param idleStatus True: PWM output is high in idle status; false: PWM output is low in idle status.
+ *
+ * return kStatus_Fail if there was error setting up the signal; kStatus_Success if set output idle success
+ */
+status_t PWM_SetOutputToIdle(PWM_Type *base, pwm_channels_t pwmChannel, pwm_submodule_t subModule, bool idleStatus)
+{
+ uint16_t valOn = 0, valOff = 0;
+ uint16_t ldmod;
+
+ /* Clear LDOK bit if it is set */
+ if (0U != (base->MCTRL & PWM_MCTRL_LDOK(1UL << (uint8_t)subModule)))
+ {
+ base->MCTRL |= PWM_MCTRL_CLDOK(1UL << (uint8_t)subModule);
+ }
+
+ valOff = base->SM[subModule].INIT;
+ valOn = base->SM[subModule].VAL1 + 0x1U;
+
+ if ((valOff + 1U) == valOn)
+ {
+ return kStatus_Fail;
+ }
+
+ /* Should not PWM_X channel */
+ if (kPWM_PwmA == pwmChannel)
+ {
+ if (0U != (base->SM[subModule].OCTRL & PWM_OCTRL_POLA_MASK))
+ {
+ if (!idleStatus)
+ {
+ valOn = base->SM[subModule].INIT;
+ valOff = base->SM[subModule].VAL1 + 0x1U;
+ }
+ }
+ else
+ {
+ if (idleStatus)
+ {
+ valOn = base->SM[subModule].INIT;
+ valOff = base->SM[subModule].VAL1 + 0x1U;
+ }
+ }
+ base->SM[subModule].VAL2 = valOn;
+ base->SM[subModule].VAL3 = valOff;
+ }
+ else if (kPWM_PwmB == pwmChannel)
+ {
+ if (0U != (base->SM[subModule].OCTRL & PWM_OCTRL_POLB_MASK))
+ {
+ if (!idleStatus)
+ {
+ valOn = base->SM[subModule].INIT;
+ valOff = base->SM[subModule].VAL1 + 0x1U;
+ }
+ }
+ else
+ {
+ if (idleStatus)
+ {
+ valOn = base->SM[subModule].INIT;
+ valOff = base->SM[subModule].VAL1 + 0x1U;
+ }
+ }
+ base->SM[subModule].VAL4 = valOn;
+ base->SM[subModule].VAL5 = valOff;
+ }
+ else
+ {
+ return kStatus_Fail;
+ }
+
+ /* Record Load mode */
+ ldmod = base->SM[subModule].CTRL;
+ /* Set Load mode to make Buffered registers take effect immediately when LDOK bit set */
+ base->SM[subModule].CTRL |= PWM_CTRL_LDMOD_MASK;
+ /* Set LDOK bit to load buffer registers */
+ base->MCTRL |= PWM_MCTRL_LDOK(1UL << (uint8_t)subModule);
+ /* Restore Load mode */
+ base->SM[subModule].CTRL = ldmod;
+
+ /* Get pwm duty cycle */
+ s_pwmGetPwmDutyCycle[subModule][pwmChannel] = 0x0U;
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Get the dutycycle value.
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ * param pwmChannel PWM channel to configure
+ *
+ * return Current channel dutycycle value.
+ */
+uint8_t PWM_GetPwmChannelState(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel)
+{
+ return s_pwmGetPwmDutyCycle[subModule][pwmChannel];
+}
+
+/*!
+ * brief Set the pwm submodule prescaler.
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ * param prescaler Set prescaler value
+ */
+void PWM_SetClockMode(PWM_Type *base, pwm_submodule_t subModule, pwm_clock_prescale_t prescaler)
+{
+ uint16_t reg = base->SM[subModule].CTRL;
+
+ /* Clear LDOK bit if it is set */
+ if (0U != (base->MCTRL & PWM_MCTRL_LDOK(1UL << (uint8_t)subModule)))
+ {
+ base->MCTRL |= PWM_MCTRL_CLDOK(1UL << (uint8_t)subModule);
+ }
+ /* Set submodule prescaler. */
+ reg &= ~(uint16_t)PWM_CTRL_PRSC_MASK;
+ reg |= PWM_CTRL_PRSC(prescaler);
+ base->SM[subModule].CTRL = reg;
+ /* Set Load mode to make Buffered registers take effect immediately when LDOK bit set */
+ base->SM[subModule].CTRL |= PWM_CTRL_LDMOD_MASK;
+ /* Set LDOK bit to load buffer registers */
+ base->MCTRL |= PWM_MCTRL_LDOK(1UL << (uint8_t)subModule);
+ /* Restore Load mode */
+ base->SM[subModule].CTRL = reg;
+}
+
+/*!
+ * brief This function enables-disables the forcing of the output of a given eFlexPwm channel to logic 0.
+ *
+ * param base PWM peripheral base address
+ * param pwmChannel PWM channel to configure
+ * param subModule PWM submodule to configure
+ * param forcetozero True: Enable the pwm force output to zero; False: Disable the pwm output resumes normal
+ * function.
+ */
+void PWM_SetPwmForceOutputToZero(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, bool forcetozero)
+{
+ uint16_t reg = base->SM[subModule].CTRL2;
+ uint16_t mask;
+
+ if (kPWM_PwmA == pwmChannel)
+ {
+ mask = PWM_MASK_MASKA(0x01UL << (uint8_t)subModule);
+ }
+ else if (kPWM_PwmB == pwmChannel)
+ {
+ mask = PWM_MASK_MASKB(0x01UL << (uint8_t)subModule);
+ }
+ else
+ {
+ mask = PWM_MASK_MASKX(0x01UL << (uint8_t)subModule);
+ }
+
+ if (forcetozero)
+ {
+ /* Disables the channel output, forcing output level to 0 */
+ base->MASK |= mask;
+ }
+ else
+ {
+ /* Enables the channel output */
+ base->MASK &= ~mask;
+ }
+
+ /* Select local force signal */
+ base->SM[subModule].CTRL2 &= ~(uint16_t)PWM_CTRL2_FORCE_SEL_MASK;
+ /* Issue a local Force trigger event */
+ base->SM[subModule].CTRL2 |= PWM_CTRL2_FORCE_MASK;
+ /* Restore the source of FORCE OUTPUT signal */
+ base->SM[subModule].CTRL2 = reg;
+}
+
+/*!
+ * brief This function set the output state of the PWM pin as requested for the current cycle.
+ *
+ * param base PWM peripheral base address
+ * param subModule PWM submodule to configure
+ * param pwmChannel PWM channel to configure
+ * param outputstate Set pwm output state, see @ref pwm_output_state_t.
+ */
+void PWM_SetChannelOutput(PWM_Type *base,
+ pwm_submodule_t subModule,
+ pwm_channels_t pwmChannel,
+ pwm_output_state_t outputstate)
+{
+ uint16_t mask, swcout, sourceShift;
+ uint16_t reg = base->SM[subModule].CTRL2;
+
+ if (kPWM_PwmA == pwmChannel)
+ {
+ mask = PWM_MASK_MASKA(0x01UL << (uint8_t)subModule);
+ swcout = (uint16_t)PWM_SWCOUT_SM0OUT23_MASK << ((uint8_t)subModule * 2U);
+ sourceShift = PWM_DTSRCSEL_SM0SEL23_SHIFT + ((uint16_t)subModule * 4U);
+ }
+ else if (kPWM_PwmB == pwmChannel)
+ {
+ mask = PWM_MASK_MASKB(0x01UL << (uint8_t)subModule);
+ swcout = (uint16_t)PWM_SWCOUT_SM0OUT45_MASK << ((uint8_t)subModule * 2U);
+ sourceShift = PWM_DTSRCSEL_SM0SEL45_SHIFT + ((uint16_t)subModule * 4U);
+ }
+ else
+ {
+ mask = PWM_MASK_MASKX(0x01UL << (uint8_t)subModule);
+ swcout = 0U;
+ sourceShift = 0U;
+ }
+
+ if (kPWM_MaskState == outputstate)
+ {
+ /* Disables the channel output, forcing output level to 0 */
+ base->MASK |= mask;
+ }
+ else
+ {
+ /* Enables the channel output first */
+ base->MASK &= ~mask;
+ /* PwmX only support MASK mode */
+ if (kPWM_PwmX != pwmChannel)
+ {
+ if (kPWM_HighState == outputstate)
+ {
+ base->SWCOUT |= swcout;
+ base->DTSRCSEL =
+ (base->DTSRCSEL & ~(uint16_t)(0x3UL << sourceShift)) | (uint16_t)(0x2UL << sourceShift);
+ }
+ else if (kPWM_LowState == outputstate)
+ {
+ base->SWCOUT &= ~swcout;
+ base->DTSRCSEL =
+ (base->DTSRCSEL & ~(uint16_t)(0x3UL << sourceShift)) | (uint16_t)(0x2UL << sourceShift);
+ }
+ else if (kPWM_NormalState == outputstate)
+ {
+ base->DTSRCSEL &= ~(uint16_t)(0x3UL << sourceShift);
+ }
+ else
+ {
+ base->DTSRCSEL =
+ (base->DTSRCSEL & ~(uint16_t)(0x3UL << sourceShift)) | (uint16_t)(0x1UL << sourceShift);
+ }
+ }
+ }
+
+ /* Select local force signal */
+ base->SM[subModule].CTRL2 &= ~(uint16_t)PWM_CTRL2_FORCE_SEL_MASK;
+ /* Issue a local Force trigger event */
+ base->SM[subModule].CTRL2 |= PWM_CTRL2_FORCE_MASK;
+ /* Restore the source of FORCE OUTPUT signal */
+ base->SM[subModule].CTRL2 = reg;
+}