summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/mcux-sdk/drivers/flexcan/fsl_flexcan.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--bsps/arm/imxrt/mcux-sdk/drivers/flexcan/fsl_flexcan.c4613
1 files changed, 4613 insertions, 0 deletions
diff --git a/bsps/arm/imxrt/mcux-sdk/drivers/flexcan/fsl_flexcan.c b/bsps/arm/imxrt/mcux-sdk/drivers/flexcan/fsl_flexcan.c
new file mode 100644
index 0000000000..280a472e65
--- /dev/null
+++ b/bsps/arm/imxrt/mcux-sdk/drivers/flexcan/fsl_flexcan.c
@@ -0,0 +1,4613 @@
+/*
+ * Copyright (c) 2015, Freescale Semiconductor, Inc.
+ * Copyright 2016-2023 NXP
+ * All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include "fsl_flexcan.h"
+
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+
+/* Component ID definition, used by tools. */
+#ifndef FSL_COMPONENT_ID
+#define FSL_COMPONENT_ID "platform.drivers.flexcan"
+#endif
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
+#define RXINTERMISSION (CAN_DBG1_CFSM(0x2f))
+#define TXINTERMISSION (CAN_DBG1_CFSM(0x14))
+#define BUSIDLE (CAN_DBG1_CFSM(0x02))
+#define CBN_VALUE3 (CAN_DBG1_CBN(0x03))
+#define DELAY_BUSIDLE (200)
+#endif
+
+/* According to CiA doc 1301 v1.0.0, specified data/nominal phase sample point postion for CAN FD at 80 MHz. */
+#define IDEAL_DATA_SP_1 (800U)
+#define IDEAL_DATA_SP_2 (750U)
+#define IDEAL_DATA_SP_3 (700U)
+#define IDEAL_DATA_SP_4 (625U)
+#define IDEAL_NOMINAL_SP (800U)
+
+/* According to CiA doc 301 v4.2.0 and previous version. */
+#define IDEAL_SP_LOW (750U)
+#define IDEAL_SP_MID (800U)
+#define IDEAL_SP_HIGH (875U)
+
+#define IDEAL_SP_FACTOR (1000U)
+
+/* Define the max value of bit timing segments when use different timing register. */
+#define MAX_PROPSEG (CAN_CTRL1_PROPSEG_MASK >> CAN_CTRL1_PROPSEG_SHIFT)
+#define MAX_PSEG1 (CAN_CTRL1_PSEG1_MASK >> CAN_CTRL1_PSEG1_SHIFT)
+#define MAX_PSEG2 (CAN_CTRL1_PSEG2_MASK >> CAN_CTRL1_PSEG2_SHIFT)
+#define MAX_RJW (CAN_CTRL1_RJW_MASK >> CAN_CTRL1_RJW_SHIFT)
+#define MAX_PRESDIV (CAN_CTRL1_PRESDIV_MASK >> CAN_CTRL1_PRESDIV_SHIFT)
+#define CTRL1_MAX_TIME_QUANTA (1U + MAX_PROPSEG + 1U + MAX_PSEG1 + 1U + MAX_PSEG2 + 1U)
+#define CTRL1_MIN_TIME_QUANTA (8U)
+
+#define MAX_EPROPSEG (CAN_CBT_EPROPSEG_MASK >> CAN_CBT_EPROPSEG_SHIFT)
+#define MAX_EPSEG1 (CAN_CBT_EPSEG1_MASK >> CAN_CBT_EPSEG1_SHIFT)
+#define MAX_EPSEG2 (CAN_CBT_EPSEG2_MASK >> CAN_CBT_EPSEG2_SHIFT)
+#define MAX_ERJW (CAN_CBT_ERJW_MASK >> CAN_CBT_ERJW_SHIFT)
+#define MAX_EPRESDIV (CAN_CBT_EPRESDIV_MASK >> CAN_CBT_EPRESDIV_SHIFT)
+#define CBT_MAX_TIME_QUANTA (1U + MAX_EPROPSEG + 1U + MAX_EPSEG1 + 1U + MAX_EPSEG2 + 1U)
+#define CBT_MIN_TIME_QUANTA (8U)
+
+#define MAX_FPROPSEG (CAN_FDCBT_FPROPSEG_MASK >> CAN_FDCBT_FPROPSEG_SHIFT)
+#define MAX_FPSEG1 (CAN_FDCBT_FPSEG1_MASK >> CAN_FDCBT_FPSEG1_SHIFT)
+#define MAX_FPSEG2 (CAN_FDCBT_FPSEG2_MASK >> CAN_FDCBT_FPSEG2_SHIFT)
+#define MAX_FRJW (CAN_FDCBT_FRJW_MASK >> CAN_FDCBT_FRJW_SHIFT)
+#define MAX_FPRESDIV (CAN_FDCBT_FPRESDIV_MASK >> CAN_FDCBT_FPRESDIV_SHIFT)
+#define FDCBT_MAX_TIME_QUANTA (1U + MAX_FPROPSEG + 0U + MAX_FPSEG1 + 1U + MAX_FPSEG2 + 1U)
+#define FDCBT_MIN_TIME_QUANTA (5U)
+
+#define MAX_TDCOFF ((uint32_t)CAN_FDCTRL_TDCOFF_MASK >> CAN_FDCTRL_TDCOFF_SHIFT)
+
+#define MAX_NTSEG1 (CAN_ENCBT_NTSEG1_MASK >> CAN_ENCBT_NTSEG1_SHIFT)
+#define MAX_NTSEG2 (CAN_ENCBT_NTSEG2_MASK >> CAN_ENCBT_NTSEG2_SHIFT)
+#define MAX_NRJW (CAN_ENCBT_NRJW_MASK >> CAN_ENCBT_NRJW_SHIFT)
+#define MAX_ENPRESDIV (CAN_EPRS_ENPRESDIV_MASK >> CAN_EPRS_ENPRESDIV_SHIFT)
+#define ENCBT_MAX_TIME_QUANTA (1U + MAX_NTSEG1 + 1U + MAX_NTSEG2 + 1U)
+#define ENCBT_MIN_TIME_QUANTA (8U)
+
+#define MAX_DTSEG1 (CAN_EDCBT_DTSEG1_MASK >> CAN_EDCBT_DTSEG1_SHIFT)
+#define MAX_DTSEG2 (CAN_EDCBT_DTSEG2_MASK >> CAN_EDCBT_DTSEG2_SHIFT)
+#define MAX_DRJW (CAN_EDCBT_DRJW_MASK >> CAN_EDCBT_DRJW_SHIFT)
+#define MAX_EDPRESDIV (CAN_EPRS_EDPRESDIV_MASK >> CAN_EPRS_EDPRESDIV_SHIFT)
+#define EDCBT_MAX_TIME_QUANTA (1U + MAX_DTSEG1 + 1U + MAX_DTSEG2 + 1U)
+#define EDCBT_MIN_TIME_QUANTA (5U)
+
+#define MAX_ETDCOFF ((uint32_t)CAN_ETDC_ETDCOFF_MASK >> CAN_ETDC_ETDCOFF_SHIFT)
+
+/* TSEG1 corresponds to the sum of xPROPSEG and xPSEG1, TSEG2 corresponds to the xPSEG2 value. */
+#define MIN_TIME_SEGMENT1 (2U)
+#define MIN_TIME_SEGMENT2 (2U)
+
+/* Define maximum CAN and CAN FD bit rate supported by FLEXCAN. */
+#define MAX_CANFD_BITRATE (8000000U)
+#define MAX_CAN_BITRATE (1000000U)
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595)
+#define CAN_ESR1_FLTCONF_BUSOFF CAN_ESR1_FLTCONF(2U)
+#endif
+
+/* Define the range of memory that needs to be initialized when the device has memory error detection feature. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
+#define CAN_INIT_RXFIR ((uintptr_t)base + 0x4Cu)
+#define CAN_INIT_MEMORY_BASE_1 (uint32_t *)((uintptr_t)base + (uintptr_t)FSL_FEATURE_FLEXCAN_INIT_MEMORY_BASE_1)
+#define CAN_INIT_MEMORY_SIZE_1 FSL_FEATURE_FLEXCAN_INIT_MEMORY_SIZE_1
+#define CAN_INIT_MEMORY_BASE_2 (uint32_t *)((uintptr_t)base + (uintptr_t)FSL_FEATURE_FLEXCAN_INIT_MEMORY_BASE_2)
+#define CAN_INIT_MEMORY_SIZE_2 FSL_FEATURE_FLEXCAN_INIT_MEMORY_SIZE_2
+#endif
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+#ifndef CAN_CLOCK_CHECK_NO_AFFECTS
+/* If no define such MACRO, it mean that the CAN in current device have no clock affect issue. */
+#define CAN_CLOCK_CHECK_NO_AFFECTS (true)
+#endif /* CAN_CLOCK_CHECK_NO_AFFECTS */
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+/*! @brief FlexCAN Internal State. */
+enum _flexcan_state
+{
+ kFLEXCAN_StateIdle = 0x0, /*!< MB/RxFIFO idle.*/
+ kFLEXCAN_StateRxData = 0x1, /*!< MB receiving.*/
+ kFLEXCAN_StateRxRemote = 0x2, /*!< MB receiving remote reply.*/
+ kFLEXCAN_StateTxData = 0x3, /*!< MB transmitting.*/
+ kFLEXCAN_StateTxRemote = 0x4, /*!< MB transmitting remote request.*/
+ kFLEXCAN_StateRxFifo = 0x5, /*!< RxFIFO receiving.*/
+};
+
+/*! @brief FlexCAN message buffer CODE for Rx buffers. */
+enum _flexcan_mb_code_rx
+{
+ kFLEXCAN_RxMbInactive = 0x0, /*!< MB is not active.*/
+ kFLEXCAN_RxMbFull = 0x2, /*!< MB is full.*/
+ kFLEXCAN_RxMbEmpty = 0x4, /*!< MB is active and empty.*/
+ kFLEXCAN_RxMbOverrun = 0x6, /*!< MB is overwritten into a full buffer.*/
+ kFLEXCAN_RxMbBusy = 0x8, /*!< FlexCAN is updating the contents of the MB, The CPU must not access the MB.*/
+ kFLEXCAN_RxMbRanswer = 0xA, /*!< A frame was configured to recognize a Remote Request Frame and transmit a
+ Response Frame in return.*/
+ kFLEXCAN_RxMbNotUsed = 0xF, /*!< Not used.*/
+};
+
+/*! @brief FlexCAN message buffer CODE FOR Tx buffers. */
+enum _flexcan_mb_code_tx
+{
+ kFLEXCAN_TxMbInactive = 0x8, /*!< MB is not active.*/
+ kFLEXCAN_TxMbAbort = 0x9, /*!< MB is aborted.*/
+ kFLEXCAN_TxMbDataOrRemote = 0xC, /*!< MB is a TX Data Frame(when MB RTR = 0) or MB is a TX Remote Request
+ Frame (when MB RTR = 1).*/
+ kFLEXCAN_TxMbTanswer = 0xE, /*!< MB is a TX Response Request Frame from an incoming Remote Request Frame.*/
+ kFLEXCAN_TxMbNotUsed = 0xF, /*!< Not used.*/
+};
+
+/* Typedef for interrupt handler. */
+typedef void (*flexcan_isr_t)(CAN_Type *base, flexcan_handle_t *handle);
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+
+#if !defined(NDEBUG)
+/*!
+ * @brief Check if Message Buffer is occupied by Rx FIFO.
+ *
+ * This function check if Message Buffer is occupied by Rx FIFO.
+ *
+ * @param base FlexCAN peripheral base address.
+ * @param mbIdx The FlexCAN Message Buffer index.
+ * @return TRUE if the index MB is occupied by Rx FIFO, FALSE if the index MB not occupied by Rx FIFO.
+ */
+static bool FLEXCAN_IsMbOccupied(CAN_Type *base, uint8_t mbIdx);
+#endif
+
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+/*!
+ * @brief Get the first valid Message buffer ID of give FlexCAN instance.
+ *
+ * This function is a helper function for Errata 5641 workaround.
+ *
+ * @param base FlexCAN peripheral base address.
+ * @return The first valid Message Buffer Number.
+ */
+static uint8_t FLEXCAN_GetFirstValidMb(CAN_Type *base);
+#endif
+
+/*!
+ * @brief Reset the FlexCAN Instance.
+ *
+ * Restores the FlexCAN module to reset state, notice that this function
+ * will set all the registers to reset state so the FlexCAN module can not work
+ * after calling this API.
+ *
+ * @param base FlexCAN peripheral base address.
+ */
+static void FLEXCAN_Reset(CAN_Type *base);
+
+/*!
+ * @brief Calculates the segment values for a single bit time for classical CAN.
+ *
+ * This function use to calculates the Classical CAN segment values which will be set in CTRL1/CBT/ENCBT register.
+ *
+ * @param base FlexCAN peripheral base address.
+ * @param tqNum Number of time quantas per bit, range in 8 ~ 25 when use CTRL1, range in 8 ~ 129 when use CBT, range in
+ * 8 ~ 385 when use ENCBT. param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ */
+static void FLEXCAN_GetSegments(CAN_Type *base,
+ uint32_t bitRate,
+ uint32_t tqNum,
+ flexcan_timing_config_t *pTimingConfig);
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * @brief Get Mailbox offset number by dword.
+ *
+ * This function gets the offset number of the specified mailbox.
+ * Mailbox is not consecutive between memory regions when payload is not 8 bytes
+ * so need to calculate the specified mailbox address.
+ * For example, in the first memory region, MB[0].CS address is 0x4002_4080. For 32 bytes
+ * payload frame, the second mailbox is ((1/12)*512 + 1%12*40)/4 = 10, meaning 10 dword
+ * after the 0x4002_4080, which is actually the address of mailbox MB[1].CS.
+ *
+ * @param base FlexCAN peripheral base address.
+ * @param mbIdx Mailbox index.
+ */
+static uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx);
+
+/*!
+ * @brief Calculates the segment values for a single bit time for CAN FD data phase.
+ *
+ * This function use to calculates the CAN FD data phase segment values which will be set in CFDCBT/EDCBT
+ * register.
+ *
+ * @param bitRateFD Data phase bit rate
+ * @param tqNum Number of time quanta per bit
+ * @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ */
+static void FLEXCAN_FDGetSegments(uint32_t bitRateFD, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig);
+
+/*!
+ * @brief Calculates the improved timing values by specific bit rate for CAN FD nominal phase.
+ *
+ * This function use to calculates the CAN FD nominal phase timing values according to the given nominal phase bit rate.
+ * The Calculated timing values will be set in CBT/ENCBT registers. The calculation is based on the recommendation of
+ * the CiA 1301 v1.0.0 document.
+ *
+ * @param bitRate The CAN FD nominal phase speed in bps defined by user, should be less than or equal to 1Mbps.
+ * @param sourceClock_Hz The Source clock frequency in Hz.
+ * @param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ *
+ * @return TRUE if timing configuration found, FALSE if failed to find configuration.
+ */
+static bool FLEXCAN_CalculateImprovedNominalTimingValues(uint32_t bitRate,
+ uint32_t sourceClock_Hz,
+ flexcan_timing_config_t *pTimingConfig);
+
+#endif
+
+/*!
+ * @brief Check unhandle interrupt events
+ *
+ * @param base FlexCAN peripheral base address.
+ * @return TRUE if unhandled interrupt action exist, FALSE if no unhandlered interrupt action exist.
+ */
+static bool FLEXCAN_CheckUnhandleInterruptEvents(CAN_Type *base);
+
+/*!
+ * @brief Sub Handler Data Trasfered Events
+ *
+ * @param base FlexCAN peripheral base address.
+ * @param handle FlexCAN handle pointer.
+ * @param pResult Pointer to the Handle result.
+ *
+ * @return the status after handle each data transfered event.
+ */
+static status_t FLEXCAN_SubHandlerForDataTransfered(CAN_Type *base, flexcan_handle_t *handle, uint32_t *pResult);
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
+/*!
+ * @brief Sub Handler Ehanced Rx FIFO event
+ *
+ * @param base FlexCAN peripheral base address.
+ * @param handle FlexCAN handle pointer.
+ * @param flags FlexCAN interrupt flags.
+ *
+ * @return the status after handle Ehanced Rx FIFO event.
+ */
+static status_t FLEXCAN_SubHandlerForEhancedRxFifo(CAN_Type *base, flexcan_handle_t *handle, uint64_t flags);
+#endif
+
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+
+/* Array of FlexCAN peripheral base address. */
+static CAN_Type *const s_flexcanBases[] = CAN_BASE_PTRS;
+
+/* Array of FlexCAN IRQ number. */
+static const IRQn_Type s_flexcanRxWarningIRQ[] = CAN_Rx_Warning_IRQS;
+static const IRQn_Type s_flexcanTxWarningIRQ[] = CAN_Tx_Warning_IRQS;
+static const IRQn_Type s_flexcanWakeUpIRQ[] = CAN_Wake_Up_IRQS;
+static const IRQn_Type s_flexcanErrorIRQ[] = CAN_Error_IRQS;
+static const IRQn_Type s_flexcanBusOffIRQ[] = CAN_Bus_Off_IRQS;
+static const IRQn_Type s_flexcanMbIRQ[] = CAN_ORed_Message_buffer_IRQS;
+
+/* Array of FlexCAN handle. */
+static flexcan_handle_t *s_flexcanHandle[ARRAY_SIZE(s_flexcanBases)];
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+/* Array of FlexCAN clock name. */
+static const clock_ip_name_t s_flexcanClock[] = FLEXCAN_CLOCKS;
+#if defined(FLEXCAN_PERIPH_CLOCKS)
+/* Array of FlexCAN serial clock name. */
+static const clock_ip_name_t s_flexcanPeriphClock[] = FLEXCAN_PERIPH_CLOCKS;
+#endif /* FLEXCAN_PERIPH_CLOCKS */
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+/* FlexCAN ISR for transactional APIs. */
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
+static flexcan_isr_t s_flexcanIsr = (flexcan_isr_t)DefaultISR;
+#else
+static flexcan_isr_t s_flexcanIsr;
+#endif
+
+/*******************************************************************************
+ * Implementation of 32-bit memset
+ ******************************************************************************/
+
+static void flexcan_memset(void *s, uint32_t c, size_t n)
+{
+ size_t m;
+ uint32_t *ptr = s;
+
+ m = n / sizeof(*ptr);
+
+ while ((m--) != (size_t)0)
+ {
+ *ptr++ = c;
+ }
+}
+
+/*******************************************************************************
+ * Code
+ ******************************************************************************/
+/*!
+ * brief Get the FlexCAN instance from peripheral base address.
+ *
+ * param base FlexCAN peripheral base address.
+ * return FlexCAN instance.
+ */
+uint32_t FLEXCAN_GetInstance(CAN_Type *base)
+{
+ uint32_t instance;
+
+ /* Find the instance index from base address mappings. */
+ for (instance = 0; instance < ARRAY_SIZE(s_flexcanBases); instance++)
+ {
+ if (s_flexcanBases[instance] == base)
+ {
+ break;
+ }
+ }
+
+ assert(instance < ARRAY_SIZE(s_flexcanBases));
+
+ return instance;
+}
+
+/*!
+ * brief Enter FlexCAN Freeze Mode.
+ *
+ * This function makes the FlexCAN work under Freeze Mode.
+ *
+ * param base FlexCAN peripheral base address.
+ */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595)
+void FLEXCAN_EnterFreezeMode(CAN_Type *base)
+{
+ uint32_t u32TimeoutCount = 0U;
+ uint32_t u32TempMCR = 0U;
+ uint32_t u32TempIMASK1 = 0U;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint32_t u32TempIMASK2 = 0U;
+#endif
+
+ /* Step1: set FRZ enable in MCR. */
+ base->MCR |= CAN_MCR_FRZ_MASK;
+
+ /* Step2: to check if MDIS bit set in MCR. if yes, clear it. */
+ if (0U != (base->MCR & CAN_MCR_MDIS_MASK))
+ {
+ base->MCR &= ~CAN_MCR_MDIS_MASK;
+ }
+
+ /* Step3: polling LPMACK. */
+ u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT;
+ while ((0U == (base->MCR & CAN_MCR_LPMACK_MASK)) && (u32TimeoutCount > 0U))
+ {
+ u32TimeoutCount--;
+ }
+
+ /* Step4: to check FLTCONF in ESR1 register */
+ if (0U == (base->ESR1 & CAN_ESR1_FLTCONF_BUSOFF))
+ {
+ /* Step5B: Set Halt bits. */
+ base->MCR |= CAN_MCR_HALT_MASK;
+
+ /* Step6B: Poll the MCR register until the Freeze Acknowledge (FRZACK) bit is set, timeout need more than 178
+ * CAN bit length, so 20 multiply timeout is enough. */
+ u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT * 20U;
+ while ((0U == (base->MCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0U))
+ {
+ u32TimeoutCount--;
+ }
+ }
+ else
+ {
+ /* backup MCR and IMASK register. Errata document not descript it, but we need backup for step 8A and 9A. */
+ u32TempMCR = base->MCR;
+ u32TempIMASK1 = base->IMASK1;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ u32TempIMASK2 = base->IMASK2;
+#endif
+
+ /* Step5A: Set the Soft Reset bit ((SOFTRST) in the MCR.*/
+ base->MCR |= CAN_MCR_SOFTRST_MASK;
+
+ /* Step6A: Poll the MCR register until the Soft Reset (SOFTRST) bit is cleared. */
+ u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT;
+ while ((CAN_MCR_SOFTRST_MASK == (base->MCR & CAN_MCR_SOFTRST_MASK)) && (u32TimeoutCount > 0U))
+ {
+ u32TimeoutCount--;
+ }
+
+ /* Step7A: Poll the MCR register until the Freeze Acknowledge (FRZACK) bit is set. */
+ u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT;
+ while ((0U == (base->MCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0U))
+ {
+ u32TimeoutCount--;
+ }
+
+ /* Step8A: reconfig MCR. */
+ base->MCR = u32TempMCR;
+
+ /* Step9A: reconfig IMASK. */
+ base->IMASK1 = u32TempIMASK1;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ base->IMASK2 = u32TempIMASK2;
+#endif
+ }
+}
+#elif (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_8341) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_8341)
+void FLEXCAN_EnterFreezeMode(CAN_Type *base)
+{
+ uint32_t u32TimeoutCount = 0U;
+ uint32_t u32TempMCR = 0U;
+ uint32_t u32TempIMASK1 = 0U;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint32_t u32TempIMASK2 = 0U;
+#endif
+
+ /* Step1: set FRZ and HALT bit enable in MCR. */
+ base->MCR |= CAN_MCR_FRZ_MASK;
+ base->MCR |= CAN_MCR_HALT_MASK;
+
+ /* Step2: to check if MDIS bit set in MCR. if yes, clear it. */
+ if (0U != (base->MCR & CAN_MCR_MDIS_MASK))
+ {
+ base->MCR &= ~CAN_MCR_MDIS_MASK;
+ }
+
+ /* Step3: Poll the MCR register until the Freeze Acknowledge (FRZACK) bit is set. */
+ u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT * 100U;
+ while ((0U == (base->MCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0U))
+ {
+ u32TimeoutCount--;
+ }
+
+ /* Step4: check whether the timeout reached. if no skip step5 to step8. */
+ if (0U == u32TimeoutCount)
+ {
+ /* backup MCR and IMASK register. Errata document not descript it, but we need backup for step 8A and 9A. */
+ u32TempMCR = base->MCR;
+ u32TempIMASK1 = base->IMASK1;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ u32TempIMASK2 = base->IMASK2;
+#endif
+ /* Step5: Set the Soft Reset bit ((SOFTRST) in the MCR.*/
+ base->MCR |= CAN_MCR_SOFTRST_MASK;
+
+ /* Step6: Poll the MCR register until the Soft Reset (SOFTRST) bit is cleared. */
+ while (CAN_MCR_SOFTRST_MASK == (base->MCR & CAN_MCR_SOFTRST_MASK))
+ {
+ }
+
+ /* Step7: reconfig MCR. */
+ base->MCR = u32TempMCR;
+
+ /* Step8: reconfig IMASK. */
+ base->IMASK1 = u32TempIMASK1;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ base->IMASK2 = u32TempIMASK2;
+#endif
+ }
+}
+#else
+void FLEXCAN_EnterFreezeMode(CAN_Type *base)
+{
+ /* Set Freeze, Halt bits. */
+ base->MCR |= CAN_MCR_FRZ_MASK;
+ base->MCR |= CAN_MCR_HALT_MASK;
+ while (0U == (base->MCR & CAN_MCR_FRZACK_MASK))
+ {
+ }
+}
+#endif
+
+/*!
+ * brief Exit FlexCAN Freeze Mode.
+ *
+ * This function makes the FlexCAN leave Freeze Mode.
+ *
+ * param base FlexCAN peripheral base address.
+ */
+void FLEXCAN_ExitFreezeMode(CAN_Type *base)
+{
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
+ /* Clean FlexCAN Access With Non-Correctable Error Interrupt Flag to avoid be put in freeze mode. */
+ FLEXCAN_ClearStatusFlags(base, (uint64_t)kFLEXCAN_FlexCanAccessNonCorrectableErrorIntFlag |
+ (uint64_t)kFLEXCAN_FlexCanAccessNonCorrectableErrorOverrunFlag);
+#endif
+
+ /* Clear Freeze, Halt bits. */
+ base->MCR &= ~CAN_MCR_HALT_MASK;
+ base->MCR &= ~CAN_MCR_FRZ_MASK;
+
+ /* Wait until the FlexCAN Module exit freeze mode. */
+ while (0U != (base->MCR & CAN_MCR_FRZACK_MASK))
+ {
+ }
+}
+
+#if !defined(NDEBUG)
+/*!
+ * brief Check if Message Buffer is occupied by Rx FIFO.
+ *
+ * This function check if Message Buffer is occupied by Rx FIFO.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The FlexCAN Message Buffer index.
+ * return TRUE if the index MB is occupied by Rx FIFO, FALSE if the index MB not occupied by Rx FIFO.
+ */
+static bool FLEXCAN_IsMbOccupied(CAN_Type *base, uint8_t mbIdx)
+{
+ uint8_t lastOccupiedMb;
+ bool fgRet;
+
+ /* Is Rx FIFO enabled? */
+ if (0U != (base->MCR & CAN_MCR_RFEN_MASK))
+ {
+ /* Get RFFN value. */
+ lastOccupiedMb = (uint8_t)((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT);
+ /* Calculate the number of last Message Buffer occupied by Rx FIFO. */
+ lastOccupiedMb = ((lastOccupiedMb + 1U) * 2U) + 5U;
+
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ /* the first valid MB should be occupied by ERRATA 5461 or 5829. */
+ lastOccupiedMb += 1U;
+#endif
+ fgRet = (mbIdx <= lastOccupiedMb);
+ }
+ else
+ {
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ if (0U == mbIdx)
+ {
+ fgRet = true;
+ }
+ else
+#endif
+ {
+ fgRet = false;
+ }
+ }
+
+ return fgRet;
+}
+#endif
+
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+/*!
+ * brief Get the first valid Message buffer ID of give FlexCAN instance.
+ *
+ * This function is a helper function for Errata 5641 workaround.
+ *
+ * param base FlexCAN peripheral base address.
+ * return The first valid Message Buffer Number.
+ */
+static uint8_t FLEXCAN_GetFirstValidMb(CAN_Type *base)
+{
+ uint8_t firstValidMbNum;
+
+ if (0U != (base->MCR & CAN_MCR_RFEN_MASK))
+ {
+ firstValidMbNum = (uint8_t)((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT);
+ firstValidMbNum = ((firstValidMbNum + 1U) * 2U) + 6U;
+ }
+ else
+ {
+ firstValidMbNum = 0U;
+ }
+
+ return firstValidMbNum;
+}
+#endif
+
+/*!
+ * brief Reset the FlexCAN Instance.
+ *
+ * Restores the FlexCAN module to reset state, notice that this function
+ * will set all the registers to reset state so the FlexCAN module can not work
+ * after calling this API.
+ *
+ * param base FlexCAN peripheral base address.
+ */
+static void FLEXCAN_Reset(CAN_Type *base)
+{
+ /* The module must should be first exit from low power
+ * mode, and then soft reset can be applied.
+ */
+ assert(0U == (base->MCR & CAN_MCR_MDIS_MASK));
+
+ uint8_t i;
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
+ if (0 != (FSL_FEATURE_FLEXCAN_INSTANCE_HAS_DOZE_MODE_SUPPORTn(base)))
+ {
+ /* De-assert DOZE Enable Bit. */
+ base->MCR &= ~CAN_MCR_DOZE_MASK;
+ }
+#endif
+
+ /* Wait until FlexCAN exit from any Low Power Mode. */
+ while (0U != (base->MCR & CAN_MCR_LPMACK_MASK))
+ {
+ }
+
+ /* Assert Soft Reset Signal. */
+ base->MCR |= CAN_MCR_SOFTRST_MASK;
+ /* Wait until FlexCAN reset completes. */
+ while (0U != (base->MCR & CAN_MCR_SOFTRST_MASK))
+ {
+ }
+
+/* Reset MCR register. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER) && FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER)
+ base->MCR |= CAN_MCR_WRNEN_MASK | CAN_MCR_WAKSRC_MASK |
+ CAN_MCR_MAXMB((uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base) - 1U);
+#else
+ base->MCR |=
+ CAN_MCR_WRNEN_MASK | CAN_MCR_MAXMB((uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base) - 1U);
+#endif
+
+ /* Reset CTRL1 and CTRL2 register, default to eanble SMP feature which enable three sample point to determine the
+ * received bit's value of the. */
+ base->CTRL1 = CAN_CTRL1_SMP_MASK;
+ base->CTRL2 = CAN_CTRL2_TASD(0x16) | CAN_CTRL2_RRS_MASK | CAN_CTRL2_EACEN_MASK;
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
+ /* Enable unrestricted write access to FlexCAN memory. */
+ base->CTRL2 |= CAN_CTRL2_WRMFRZ_MASK;
+ /* Do memory initialization for all FlexCAN RAM in order to have the parity bits in memory properly
+ updated. */
+ *(volatile uint32_t *)CAN_INIT_RXFIR = 0x0U;
+ flexcan_memset(CAN_INIT_MEMORY_BASE_1, 0, CAN_INIT_MEMORY_SIZE_1);
+ flexcan_memset(CAN_INIT_MEMORY_BASE_2, 0, CAN_INIT_MEMORY_SIZE_2);
+ /* Disable unrestricted write access to FlexCAN memory. */
+ base->CTRL2 &= ~CAN_CTRL2_WRMFRZ_MASK;
+
+ /* Clean all memory error flags. */
+ FLEXCAN_ClearStatusFlags(base, (uint64_t)kFLEXCAN_AllMemoryErrorFlag);
+#else
+ /* Only need clean all Message Buffer memory. */
+ flexcan_memset((void *)&base->MB[0], 0, sizeof(base->MB));
+#endif
+
+ /* Clean all individual Rx Mask of Message Buffers. */
+ for (i = 0; i < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); i++)
+ {
+ base->RXIMR[i] = 0x3FFFFFFF;
+ }
+
+ /* Clean Global Mask of Message Buffers. */
+ base->RXMGMASK = 0x3FFFFFFF;
+ /* Clean Global Mask of Message Buffer 14. */
+ base->RX14MASK = 0x3FFFFFFF;
+ /* Clean Global Mask of Message Buffer 15. */
+ base->RX15MASK = 0x3FFFFFFF;
+ /* Clean Global Mask of Rx FIFO. */
+ base->RXFGMASK = 0x3FFFFFFF;
+}
+
+/*!
+ * brief Set bit rate of FlexCAN classical CAN frame or CAN FD frame nominal phase.
+ *
+ * This function set the bit rate of classical CAN frame or CAN FD frame nominal phase base on
+ * FLEXCAN_CalculateImprovedTimingValues() API calculated timing values.
+ *
+ * note Calling FLEXCAN_SetBitRate() overrides the bit rate set in FLEXCAN_Init().
+ *
+ * param base FlexCAN peripheral base address.
+ * param sourceClock_Hz Source Clock in Hz.
+ * param bitRate_Bps Bit rate in Bps.
+ * return kStatus_Success - Set CAN baud rate (only Nominal phase) successfully.
+ */
+status_t FLEXCAN_SetBitRate(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t bitRate_Bps)
+{
+ flexcan_timing_config_t timingCfg;
+ status_t result = kStatus_Fail;
+
+ if (FLEXCAN_CalculateImprovedTimingValues(base, bitRate_Bps, sourceClock_Hz, &timingCfg))
+ {
+ FLEXCAN_SetTimingConfig(base, &timingCfg);
+ result = kStatus_Success;
+ }
+
+ return result;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * @brief Set bit rate of FlexCAN FD frame.
+ *
+ * This function set the baud rate of FLEXCAN FD base on FLEXCAN_FDCalculateImprovedTimingValues() API calculated timing
+ * values.
+ *
+ * @param base FlexCAN peripheral base address.
+ * @param sourceClock_Hz Source Clock in Hz.
+ * @param bitRateN_Bps Nominal bit Rate in Bps.
+ * @param bitRateD_Bps Data bit Rate in Bps.
+ * @return kStatus_Success - Set CAN FD bit rate (include Nominal and Data phase) successfully.
+ */
+status_t FLEXCAN_SetFDBitRate(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t bitRateN_Bps, uint32_t bitRateD_Bps)
+{
+ flexcan_timing_config_t timingCfg;
+ status_t result = kStatus_Fail;
+
+ if (FLEXCAN_FDCalculateImprovedTimingValues(base, bitRateN_Bps, bitRateD_Bps, sourceClock_Hz, &timingCfg))
+ {
+ FLEXCAN_SetFDTimingConfig(base, &timingCfg);
+ result = kStatus_Success;
+ }
+
+ return result;
+}
+#endif
+
+/*!
+ * brief Initializes a FlexCAN instance.
+ *
+ * This function initializes the FlexCAN module with user-defined settings.
+ * This example shows how to set up the flexcan_config_t parameters and how
+ * to call the FLEXCAN_Init function by passing in these parameters.
+ * code
+ * flexcan_config_t flexcanConfig;
+ * flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0;
+ * flexcanConfig.bitRate = 1000000U;
+ * flexcanConfig.maxMbNum = 16;
+ * flexcanConfig.enableLoopBack = false;
+ * flexcanConfig.enableSelfWakeup = false;
+ * flexcanConfig.enableIndividMask = false;
+ * flexcanConfig.disableSelfReception = false;
+ * flexcanConfig.enableListenOnlyMode = false;
+ * flexcanConfig.enableDoze = false;
+ * flexcanConfig.timingConfig = timingConfig;
+ * FLEXCAN_Init(CAN0, &flexcanConfig, 40000000UL);
+ * endcode
+ *
+ * param base FlexCAN peripheral base address.
+ * param pConfig Pointer to the user-defined configuration structure.
+ * param sourceClock_Hz FlexCAN Protocol Engine clock source frequency in Hz.
+ */
+void FLEXCAN_Init(CAN_Type *base, const flexcan_config_t *pConfig, uint32_t sourceClock_Hz)
+{
+ /* Assertion. */
+ assert(NULL != pConfig);
+ assert((pConfig->maxMbNum > 0U) &&
+ (pConfig->maxMbNum <= (uint8_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base)));
+
+ uint32_t mcrTemp;
+ uint32_t ctrl1Temp;
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ uint32_t instance;
+#endif
+ flexcan_timing_config_t timingCfg = pConfig->timingConfig;
+ /* FlexCAN classical CAN frame or CAN FD frame nominal phase timing setting formula:
+ * quantum = 1 + (phaseSeg1 + 1) + (phaseSeg2 + 1) + (propSeg + 1);
+ */
+ uint32_t quantum = (1U + ((uint32_t)timingCfg.phaseSeg1 + 1U) + ((uint32_t)timingCfg.phaseSeg2 + 1U) +
+ ((uint32_t)timingCfg.propSeg + 1U));
+ uint32_t tqFre = pConfig->bitRate * quantum;
+ uint16_t maxDivider;
+
+ /* Assertion: Check bit rate value. */
+ assert((pConfig->bitRate != 0U) && (pConfig->bitRate <= 1000000U) && (tqFre <= sourceClock_Hz));
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
+ {
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
+ assert((tqFre * MAX_ENPRESDIV) >= sourceClock_Hz);
+ maxDivider = MAX_ENPRESDIV;
+#else
+ assert((tqFre * MAX_EPRESDIV) >= sourceClock_Hz);
+ maxDivider = MAX_EPRESDIV;
+#endif
+ }
+ else
+ {
+ assert((tqFre * MAX_PRESDIV) >= sourceClock_Hz);
+ maxDivider = MAX_PRESDIV;
+ }
+#else
+ assert((tqFre * MAX_PRESDIV) >= sourceClock_Hz);
+ maxDivider = MAX_PRESDIV;
+#endif
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ instance = FLEXCAN_GetInstance(base);
+ /* Enable FlexCAN clock. */
+ (void)CLOCK_EnableClock(s_flexcanClock[instance]);
+ /*
+ * Check the CAN clock in this device whether affected by Other clock gate
+ * If it affected, we'd better to change other clock source,
+ * If user insist on using that clock source, user need open these gate at same time,
+ * In this scene, User need to care the power consumption.
+ */
+ assert(CAN_CLOCK_CHECK_NO_AFFECTS);
+#if defined(FLEXCAN_PERIPH_CLOCKS)
+ /* Enable FlexCAN serial clock. */
+ (void)CLOCK_EnableClock(s_flexcanPeriphClock[instance]);
+#endif /* FLEXCAN_PERIPH_CLOCKS */
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+#if defined(CAN_CTRL1_CLKSRC_MASK)
+#if (defined(FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE) && FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE)
+ if (0 == FSL_FEATURE_FLEXCAN_INSTANCE_SUPPORT_ENGINE_CLK_SEL_REMOVEn(base))
+#endif /* FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE */
+ {
+ /* Disable FlexCAN Module. */
+ FLEXCAN_Enable(base, false);
+
+ /* Protocol-Engine clock source selection, This bit must be set
+ * when FlexCAN Module in Disable Mode.
+ */
+ base->CTRL1 = (kFLEXCAN_ClkSrc0 == pConfig->clkSrc) ? (base->CTRL1 & ~CAN_CTRL1_CLKSRC_MASK) :
+ (base->CTRL1 | CAN_CTRL1_CLKSRC_MASK);
+ }
+#endif /* CAN_CTRL1_CLKSRC_MASK */
+
+ /* Enable FlexCAN Module for configuration. */
+ FLEXCAN_Enable(base, true);
+
+ /* Reset to known status. */
+ FLEXCAN_Reset(base);
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
+ /* Enable to update in MCER. */
+ base->CTRL2 |= CAN_CTRL2_ECRWRE_MASK;
+ base->MECR &= ~CAN_MECR_ECRWRDIS_MASK;
+
+ /* Enable/Disable Memory Error Detection and Correction.*/
+ base->MECR = (pConfig->enableMemoryErrorControl) ? (base->MECR & ~CAN_MECR_ECCDIS_MASK) :
+ (base->MECR | CAN_MECR_ECCDIS_MASK);
+
+ /* Enable/Disable Non-Correctable Errors In FlexCAN Access Put Device In Freeze Mode. */
+ base->MECR = (pConfig->enableNonCorrectableErrorEnterFreeze) ? (base->MECR | CAN_MECR_NCEFAFRZ_MASK) :
+ (base->MECR & ~CAN_MECR_NCEFAFRZ_MASK);
+ /* Lock MCER register. */
+ base->CTRL2 &= ~CAN_CTRL2_ECRWRE_MASK;
+#endif
+
+ /* Save current CTRL1 value and enable to enter Freeze mode(enabled by default). */
+ ctrl1Temp = base->CTRL1;
+
+ /* Save current MCR value and enable to enter Freeze mode(enabled by default). */
+ mcrTemp = base->MCR;
+
+ /* Enable Loop Back Mode? */
+ ctrl1Temp = (pConfig->enableLoopBack) ? (ctrl1Temp | CAN_CTRL1_LPB_MASK) : (ctrl1Temp & ~CAN_CTRL1_LPB_MASK);
+
+ /* Enable Timer Sync? */
+ ctrl1Temp = (pConfig->enableTimerSync) ? (ctrl1Temp | CAN_CTRL1_TSYN_MASK) : (ctrl1Temp & ~CAN_CTRL1_TSYN_MASK);
+
+ /* Enable Listen Only Mode? */
+ ctrl1Temp = (pConfig->enableListenOnlyMode) ? ctrl1Temp | CAN_CTRL1_LOM_MASK : ctrl1Temp & ~CAN_CTRL1_LOM_MASK;
+
+#if !(defined(FSL_FEATURE_FLEXCAN_HAS_NO_SUPV_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_NO_SUPV_SUPPORT)
+ /* Enable Supervisor Mode? */
+ mcrTemp = (pConfig->enableSupervisorMode) ? mcrTemp | CAN_MCR_SUPV_MASK : mcrTemp & ~CAN_MCR_SUPV_MASK;
+#endif
+
+ /* Set the maximum number of Message Buffers */
+ mcrTemp = (mcrTemp & ~CAN_MCR_MAXMB_MASK) | CAN_MCR_MAXMB((uint32_t)pConfig->maxMbNum - 1U);
+
+ /* Enable Self Wake Up Mode and configure the wake up source. */
+ mcrTemp = (pConfig->enableSelfWakeup) ? (mcrTemp | CAN_MCR_SLFWAK_MASK) : (mcrTemp & ~CAN_MCR_SLFWAK_MASK);
+ mcrTemp = (kFLEXCAN_WakeupSrcFiltered == pConfig->wakeupSrc) ? (mcrTemp | CAN_MCR_WAKSRC_MASK) :
+ (mcrTemp & ~CAN_MCR_WAKSRC_MASK);
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_PN_MODE) && FSL_FEATURE_FLEXCAN_HAS_PN_MODE)
+ /* Enable Pretended Networking Mode? When Pretended Networking mode is set, Self Wake Up feature must be disabled.*/
+ mcrTemp = (pConfig->enablePretendedeNetworking) ? ((mcrTemp & ~CAN_MCR_SLFWAK_MASK) | CAN_MCR_PNET_EN_MASK) :
+ (mcrTemp & ~CAN_MCR_PNET_EN_MASK);
+#endif
+
+ /* Enable Individual Rx Masking and Queue feature? */
+ mcrTemp = (pConfig->enableIndividMask) ? (mcrTemp | CAN_MCR_IRMQ_MASK) : (mcrTemp & ~CAN_MCR_IRMQ_MASK);
+
+ /* Disable Self Reception? */
+ mcrTemp = (pConfig->disableSelfReception) ? mcrTemp | CAN_MCR_SRXDIS_MASK : mcrTemp & ~CAN_MCR_SRXDIS_MASK;
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
+ if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_DOZE_MODE_SUPPORTn(base))
+ {
+ /* Enable Doze Mode? */
+ mcrTemp = (pConfig->enableDoze) ? (mcrTemp | CAN_MCR_DOZE_MASK) : (mcrTemp & ~CAN_MCR_DOZE_MASK);
+ }
+#endif
+
+ /* Write back CTRL1 Configuration to register. */
+ base->CTRL1 = ctrl1Temp;
+
+ /* Write back MCR Configuration to register. */
+ base->MCR = mcrTemp;
+
+ /* Check whether Nominal Bit Rate Prescaler is overflow. */
+ if ((sourceClock_Hz / tqFre - 1U) > maxDivider)
+ {
+ timingCfg.preDivider = maxDivider;
+ }
+ else
+ {
+ timingCfg.preDivider = (uint16_t)(sourceClock_Hz / tqFre) - 1U;
+ }
+
+ /* Update actual timing characteristic. */
+ FLEXCAN_SetTimingConfig(base, &timingCfg);
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Initializes a FlexCAN instance.
+ *
+ * This function initializes the FlexCAN module with user-defined settings.
+ * This example shows how to set up the flexcan_config_t parameters and how
+ * to call the FLEXCAN_FDInit function by passing in these parameters.
+ * code
+ * flexcan_config_t flexcanConfig;
+ * flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0;
+ * flexcanConfig.bitRate = 1000000U;
+ * flexcanConfig.bitRateFD = 2000000U;
+ * flexcanConfig.maxMbNum = 16;
+ * flexcanConfig.enableLoopBack = false;
+ * flexcanConfig.enableSelfWakeup = false;
+ * flexcanConfig.enableIndividMask = false;
+ * flexcanConfig.disableSelfReception = false;
+ * flexcanConfig.enableListenOnlyMode = false;
+ * flexcanConfig.enableDoze = false;
+ * flexcanConfig.timingConfig = timingConfig;
+ * FLEXCAN_FDInit(CAN0, &flexcanConfig, 80000000UL, kFLEXCAN_16BperMB, true);
+ * endcode
+ *
+ * param base FlexCAN peripheral base address.
+ * param pConfig Pointer to the user-defined configuration structure.
+ * param sourceClock_Hz FlexCAN Protocol Engine clock source frequency in Hz.
+ * param dataSize FlexCAN Message Buffer payload size. The actual transmitted or received CAN FD frame data size needs
+ * to be less than or equal to this value.
+ * param brs True if bit rate switch is enabled in FD mode.
+ */
+void FLEXCAN_FDInit(
+ CAN_Type *base, const flexcan_config_t *pConfig, uint32_t sourceClock_Hz, flexcan_mb_size_t dataSize, bool brs)
+{
+ assert((uint32_t)dataSize <= 3U);
+ assert(((pConfig->bitRate < pConfig->bitRateFD) && brs) || ((pConfig->bitRate == pConfig->bitRateFD) && (!brs)));
+
+ uint32_t fdctrl = 0U;
+ flexcan_timing_config_t timingCfg = pConfig->timingConfig;
+ /* FlexCAN FD frame data phase timing setting formula:
+ * quantum = 1 + (fphaseSeg1 + 1) + (fphaseSeg2 + 1) + fpropSeg;
+ */
+ uint32_t quantum = (1U + ((uint32_t)timingCfg.fphaseSeg1 + 1U) + ((uint32_t)timingCfg.fphaseSeg2 + 1U) +
+ (uint32_t)timingCfg.fpropSeg);
+ uint32_t tqFre = pConfig->bitRateFD * quantum;
+ uint16_t maxDivider;
+
+ /* Check bit rate value. */
+ assert((pConfig->bitRateFD <= 8000000U) && (tqFre <= sourceClock_Hz));
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
+ assert((tqFre * MAX_EDPRESDIV) >= sourceClock_Hz);
+ maxDivider = MAX_EDPRESDIV;
+#else
+ assert((tqFre * MAX_FPRESDIV) >= sourceClock_Hz);
+ maxDivider = MAX_FPRESDIV;
+#endif
+
+ /* Initialization of classical CAN. */
+ FLEXCAN_Init(base, pConfig, sourceClock_Hz);
+
+ /* Check whether Data Bit Rate Prescaler is overflow. */
+ if ((sourceClock_Hz / tqFre - 1U) > maxDivider)
+ {
+ timingCfg.fpreDivider = maxDivider;
+ }
+ else
+ {
+ timingCfg.fpreDivider = (uint16_t)(sourceClock_Hz / tqFre) - 1U;
+ }
+
+ /* Update actual timing characteristic. */
+ FLEXCAN_SetFDTimingConfig(base, &timingCfg);
+
+ /* read FDCTRL register. */
+ fdctrl = base->FDCTRL;
+
+ /* Enable FD operation and set bit rate switch. */
+ if (brs)
+ {
+ fdctrl |= CAN_FDCTRL_FDRATE_MASK;
+ }
+ else
+ {
+ fdctrl &= ~CAN_FDCTRL_FDRATE_MASK;
+ }
+
+ /* Before use "|=" operation for multi-bits field, CPU should clean previous Setting. */
+ fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR0_MASK) | CAN_FDCTRL_MBDSR0(dataSize);
+#if defined(CAN_FDCTRL_MBDSR1_MASK)
+ fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR1_MASK) | CAN_FDCTRL_MBDSR1(dataSize);
+#endif
+#if defined(CAN_FDCTRL_MBDSR2_MASK)
+ fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR2_MASK) | CAN_FDCTRL_MBDSR2(dataSize);
+#endif
+#if defined(CAN_FDCTRL_MBDSR3_MASK)
+ fdctrl = (fdctrl & ~CAN_FDCTRL_MBDSR3_MASK) | CAN_FDCTRL_MBDSR3(dataSize);
+#endif
+
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+ /* Enable CAN FD operation. */
+ base->MCR |= CAN_MCR_FDEN_MASK;
+ /* Clear SMP bit when CAN FD is enabled (CAN FD only can use one regular sample point plus one optional secondary
+ * sampling point). */
+ base->CTRL1 &= ~CAN_CTRL1_SMP_MASK;
+
+ if (brs && !(pConfig->enableLoopBack))
+ {
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
+ /* The TDC offset should be configured as shown in this equation : offset = DTSEG1 + 2 */
+ if (((uint32_t)pConfig->timingConfig.fphaseSeg1 + pConfig->timingConfig.fpropSeg + 2U) *
+ (pConfig->timingConfig.fpreDivider + 1U) <
+ MAX_ETDCOFF)
+ {
+ base->ETDC =
+ CAN_ETDC_ETDCEN_MASK | CAN_ETDC_TDMDIS(!pConfig->enableTransceiverDelayMeasure) |
+ CAN_ETDC_ETDCOFF(((uint32_t)pConfig->timingConfig.fphaseSeg1 + pConfig->timingConfig.fpropSeg + 2U) *
+ (pConfig->timingConfig.fpreDivider + 1U));
+ }
+ else
+ {
+ /* Enable the Transceiver Delay Compensation */
+ base->ETDC = CAN_ETDC_ETDCEN_MASK | CAN_ETDC_TDMDIS(!pConfig->enableTransceiverDelayMeasure) |
+ CAN_ETDC_ETDCOFF(MAX_ETDCOFF);
+ }
+#else
+ /* The TDC offset should be configured as shown in this equation : offset = PSEG1 + PROPSEG + 2 */
+ if (((uint32_t)pConfig->timingConfig.fphaseSeg1 + pConfig->timingConfig.fpropSeg + 2U) *
+ (pConfig->timingConfig.fpreDivider + 1U) <
+ MAX_TDCOFF)
+ {
+ fdctrl =
+ (fdctrl & ~CAN_FDCTRL_TDCOFF_MASK) |
+ CAN_FDCTRL_TDCOFF(((uint32_t)pConfig->timingConfig.fphaseSeg1 + pConfig->timingConfig.fpropSeg + 2U) *
+ (pConfig->timingConfig.fpreDivider + 1U));
+ }
+ else
+ {
+ fdctrl = (fdctrl & ~CAN_FDCTRL_TDCOFF_MASK) | CAN_FDCTRL_TDCOFF(MAX_TDCOFF);
+ }
+ /* Enable the Transceiver Delay Compensation */
+ fdctrl = (fdctrl & ~CAN_FDCTRL_TDCEN_MASK) | CAN_FDCTRL_TDCEN_MASK;
+#endif
+ }
+
+ /* update the FDCTL register. */
+ base->FDCTRL = fdctrl;
+
+ /* Enable CAN FD ISO mode by default. */
+ base->CTRL2 |= CAN_CTRL2_ISOCANFDEN_MASK;
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+#endif
+
+/*!
+ * brief De-initializes a FlexCAN instance.
+ *
+ * This function disables the FlexCAN module clock and sets all register values
+ * to the reset value.
+ *
+ * param base FlexCAN peripheral base address.
+ */
+void FLEXCAN_Deinit(CAN_Type *base)
+{
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ uint32_t instance;
+#endif
+ /* Reset all Register Contents. */
+ FLEXCAN_Reset(base);
+
+ /* Disable FlexCAN module. */
+ FLEXCAN_Enable(base, false);
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ instance = FLEXCAN_GetInstance(base);
+#if defined(FLEXCAN_PERIPH_CLOCKS)
+ /* Disable FlexCAN serial clock. */
+ (void)CLOCK_DisableClock(s_flexcanPeriphClock[instance]);
+#endif /* FLEXCAN_PERIPH_CLOCKS */
+ /* Disable FlexCAN clock. */
+ (void)CLOCK_DisableClock(s_flexcanClock[instance]);
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+}
+
+/*!
+ * brief Gets the default configuration structure.
+ *
+ * This function initializes the FlexCAN configuration structure to default values. The default
+ * values are as follows.
+ * flexcanConfig->clkSrc = kFLEXCAN_ClkSrc0;
+ * flexcanConfig->bitRate = 1000000U;
+ * flexcanConfig->bitRateFD = 2000000U;
+ * flexcanConfig->maxMbNum = 16;
+ * flexcanConfig->enableLoopBack = false;
+ * flexcanConfig->enableSelfWakeup = false;
+ * flexcanConfig->enableIndividMask = false;
+ * flexcanConfig->disableSelfReception = false;
+ * flexcanConfig->enableListenOnlyMode = false;
+ * flexcanConfig->enableDoze = false;
+ * flexcanConfig->enablePretendedeNetworking = false;
+ * flexcanConfig->enableMemoryErrorControl = true;
+ * flexcanConfig->enableNonCorrectableErrorEnterFreeze = true;
+ * flexcanConfig->enableTransceiverDelayMeasure = true;
+ * flexcanConfig.timingConfig = timingConfig;
+ *
+ * param pConfig Pointer to the FlexCAN configuration structure.
+ */
+void FLEXCAN_GetDefaultConfig(flexcan_config_t *pConfig)
+{
+ /* Assertion. */
+ assert(NULL != pConfig);
+
+ /* Initializes the configure structure to zero. */
+ (void)memset(pConfig, 0, sizeof(*pConfig));
+
+ /* Initialize FlexCAN Module config struct with default value. */
+ pConfig->clkSrc = kFLEXCAN_ClkSrc0;
+ pConfig->bitRate = 1000000U;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ pConfig->bitRateFD = 2000000U;
+#endif
+ pConfig->maxMbNum = 16;
+ pConfig->enableLoopBack = false;
+ pConfig->enableTimerSync = true;
+ pConfig->enableSelfWakeup = false;
+ pConfig->wakeupSrc = kFLEXCAN_WakeupSrcUnfiltered;
+ pConfig->enableIndividMask = false;
+ pConfig->disableSelfReception = false;
+ pConfig->enableListenOnlyMode = false;
+#if !(defined(FSL_FEATURE_FLEXCAN_HAS_NO_SUPV_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_NO_SUPV_SUPPORT)
+ pConfig->enableSupervisorMode = true;
+#endif
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
+ pConfig->enableDoze = false;
+#endif
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_PN_MODE) && FSL_FEATURE_FLEXCAN_HAS_PN_MODE)
+ pConfig->enablePretendedeNetworking = false;
+#endif
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
+ pConfig->enableMemoryErrorControl = true;
+ pConfig->enableNonCorrectableErrorEnterFreeze = true;
+#endif
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
+ pConfig->enableTransceiverDelayMeasure = true;
+#endif
+
+ /* Default protocol timing configuration, nominal bit time quantum is 10 (80% SP), data bit time quantum is 5
+ * (60%). Suggest use FLEXCAN_CalculateImprovedTimingValues/FLEXCAN_FDCalculateImprovedTimingValues to get the
+ * improved timing configuration.*/
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ pConfig->timingConfig.phaseSeg1 = 1;
+ pConfig->timingConfig.phaseSeg2 = 1;
+ pConfig->timingConfig.propSeg = 4;
+ pConfig->timingConfig.rJumpwidth = 1;
+ pConfig->timingConfig.fphaseSeg1 = 1;
+ pConfig->timingConfig.fphaseSeg2 = 1;
+ pConfig->timingConfig.fpropSeg = 0;
+ pConfig->timingConfig.frJumpwidth = 1;
+#else
+ pConfig->timingConfig.phaseSeg1 = 1;
+ pConfig->timingConfig.phaseSeg2 = 1;
+ pConfig->timingConfig.propSeg = 4;
+ pConfig->timingConfig.rJumpwidth = 1;
+#endif
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_PN_MODE) && FSL_FEATURE_FLEXCAN_HAS_PN_MODE)
+/*!
+ * brief Configures the FlexCAN Pretended Networking mode.
+ *
+ * This function configures the FlexCAN Pretended Networking mode with given configuration.
+ *
+ * param base FlexCAN peripheral base address.
+ * param pConfig Pointer to the FlexCAN Rx FIFO configuration structure.
+ */
+void FLEXCAN_SetPNConfig(CAN_Type *base, const flexcan_pn_config_t *pConfig)
+{
+ /* Assertion. */
+ assert(NULL != pConfig);
+ assert(0U != pConfig->matchNum);
+ uint32_t pnctrl;
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+ pnctrl = (pConfig->matchNum > 1U) ? CAN_CTRL1_PN_FCS(0x2U | (uint32_t)pConfig->matchSrc) :
+ CAN_CTRL1_PN_FCS(pConfig->matchSrc);
+ pnctrl |= (pConfig->enableMatch) ? (CAN_CTRL1_PN_WUMF_MSK_MASK) : 0U;
+ pnctrl |= (pConfig->enableTimeout) ? (CAN_CTRL1_PN_WTOF_MSK_MASK) : 0U;
+ pnctrl |= CAN_CTRL1_PN_NMATCH(pConfig->matchNum) | CAN_CTRL1_PN_IDFS(pConfig->idMatchMode) |
+ CAN_CTRL1_PN_PLFS(pConfig->dataMatchMode);
+ base->CTRL1_PN = pnctrl;
+ base->CTRL2_PN = CAN_CTRL2_PN_MATCHTO(pConfig->timeoutValue);
+ base->FLT_ID1 = pConfig->idLower;
+ base->FLT_ID2_IDMASK = pConfig->idUpper;
+ base->FLT_DLC = CAN_FLT_DLC_FLT_DLC_LO(pConfig->lengthLower) | CAN_FLT_DLC_FLT_DLC_HI(pConfig->lengthUpper);
+ base->PL1_LO = pConfig->lowerWord0;
+ base->PL1_HI = pConfig->lowerWord1;
+ base->PL2_PLMASK_LO = pConfig->upperWord0;
+ base->PL2_PLMASK_HI = pConfig->upperWord1;
+
+ FLEXCAN_ClearStatusFlags(base, (uint64_t)kFLEXCAN_PNMatchIntFlag | (uint64_t)kFLEXCAN_PNTimeoutIntFlag);
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+
+/*!
+ * brief Reads a FlexCAN Message from Wake Up MB.
+ *
+ * This function reads a CAN message from the FlexCAN Wake up Message Buffers. There are four Wake up Message Buffers
+ * (WMBs) used to store incoming messages in Pretended Networking mode. The WMB index indicates the arrival order. The
+ * last message is stored in WMB3.
+ *
+ * param base FlexCAN peripheral base address.
+ * param pRxFrame Pointer to CAN message frame structure for reception.
+ * param mbIdx The FlexCAN Wake up Message Buffer index. Range in 0x0 ~ 0x3.
+ * retval kStatus_Success - Read Message from Wake up Message Buffer successfully.
+ * retval kStatus_Fail - Wake up Message Buffer has no valid content.
+ */
+status_t FLEXCAN_ReadPNWakeUpMB(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
+{
+ /* Assertion. */
+ assert(NULL != pRxFrame);
+ assert(mbIdx <= 0x3U);
+
+ uint32_t cs_temp;
+ status_t status;
+
+ /* Check if Wake Up MB has valid content. */
+ if (CAN_WU_MTC_MCOUNTER(mbIdx) < (base->WU_MTC & CAN_WU_MTC_MCOUNTER_MASK))
+ {
+ /* Read CS field of wake up Message Buffer. */
+ cs_temp = base->WMB[mbIdx].CS;
+
+ /* Store Message ID. */
+ pRxFrame->id = base->WMB[mbIdx].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
+
+ /* Get the message ID and format. */
+ pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend :
+ (uint8_t)kFLEXCAN_FrameFormatStandard;
+
+ /* Get the message type. */
+ pRxFrame->type =
+ (cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData;
+
+ /* Get the message length. */
+ pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT);
+
+ /* Messages received during Pretended Networking mode don't have time stamps, and the respective field in the
+ WMB structure must be ignored. */
+ pRxFrame->timestamp = 0x0;
+
+ /* Store Message Payload. */
+ pRxFrame->dataWord0 = base->WMB[mbIdx].D03;
+ pRxFrame->dataWord1 = base->WMB[mbIdx].D47;
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+#endif
+
+/*!
+ * brief Sets the FlexCAN classical protocol timing characteristic.
+ *
+ * This function gives user settings to classical CAN or CAN FD nominal phase timing characteristic.
+ * The function is for an experienced user. For less experienced users, call the FLEXCAN_GetDefaultConfig()
+ * and get the default timing characteristicsthe, then call FLEXCAN_Init() and fill the
+ * bit rate field.
+ *
+ * note Calling FLEXCAN_SetTimingConfig() overrides the bit rate set
+ * in FLEXCAN_Init().
+ *
+ * param base FlexCAN peripheral base address.
+ * param pConfig Pointer to the timing configuration structure.
+ */
+void FLEXCAN_SetTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig)
+{
+ /* Assertion. */
+ assert(NULL != pConfig);
+
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
+ {
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
+ /* Enable extended Bit Timing register ENCBT. */
+ base->CTRL2 |= CAN_CTRL2_BTE_MASK;
+
+ /* Updating Timing Setting according to configuration structure. */
+ base->EPRS = (base->EPRS & (~CAN_EPRS_ENPRESDIV_MASK)) | CAN_EPRS_ENPRESDIV(pConfig->preDivider);
+ base->ENCBT = CAN_ENCBT_NRJW(pConfig->rJumpwidth) |
+ CAN_ENCBT_NTSEG1((uint32_t)pConfig->phaseSeg1 + pConfig->propSeg + 1U) |
+ CAN_ENCBT_NTSEG2(pConfig->phaseSeg2);
+#else
+ /* On RT106x devices, a single write may be ignored, so it is necessary to read back the register value to
+ * determine whether the value is written successfully. */
+
+ do
+ {
+ /* Enable Bit Timing register CBT, updating Timing Setting according to configuration structure. */
+ base->CBT = CAN_CBT_BTF_MASK | CAN_CBT_EPRESDIV(pConfig->preDivider) | CAN_CBT_ERJW(pConfig->rJumpwidth) |
+ CAN_CBT_EPSEG1(pConfig->phaseSeg1) | CAN_CBT_EPSEG2(pConfig->phaseSeg2) |
+ CAN_CBT_EPROPSEG(pConfig->propSeg);
+
+ } while ((CAN_CBT_EPRESDIV(pConfig->preDivider) | CAN_CBT_ERJW(pConfig->rJumpwidth) |
+ CAN_CBT_EPSEG1(pConfig->phaseSeg1) | CAN_CBT_EPSEG2(pConfig->phaseSeg2) |
+ CAN_CBT_EPROPSEG(pConfig->propSeg)) !=
+ (base->CBT & (CAN_CBT_EPRESDIV_MASK | CAN_CBT_ERJW_MASK | CAN_CBT_EPSEG1_MASK | CAN_CBT_EPSEG2_MASK |
+ CAN_CBT_EPROPSEG_MASK)));
+#endif
+ }
+ else
+ {
+ /* Cleaning previous Timing Setting. */
+ base->CTRL1 &= ~(CAN_CTRL1_PRESDIV_MASK | CAN_CTRL1_RJW_MASK | CAN_CTRL1_PSEG1_MASK | CAN_CTRL1_PSEG2_MASK |
+ CAN_CTRL1_PROPSEG_MASK);
+
+ /* Updating Timing Setting according to configuration structure. */
+ base->CTRL1 |= (CAN_CTRL1_PRESDIV(pConfig->preDivider) | CAN_CTRL1_RJW(pConfig->rJumpwidth) |
+ CAN_CTRL1_PSEG1(pConfig->phaseSeg1) | CAN_CTRL1_PSEG2(pConfig->phaseSeg2) |
+ CAN_CTRL1_PROPSEG(pConfig->propSeg));
+ }
+#else
+ /* Cleaning previous Timing Setting. */
+ base->CTRL1 &= ~(CAN_CTRL1_PRESDIV_MASK | CAN_CTRL1_RJW_MASK | CAN_CTRL1_PSEG1_MASK | CAN_CTRL1_PSEG2_MASK |
+ CAN_CTRL1_PROPSEG_MASK);
+
+ /* Updating Timing Setting according to configuration structure. */
+ base->CTRL1 |= (CAN_CTRL1_PRESDIV(pConfig->preDivider) | CAN_CTRL1_RJW(pConfig->rJumpwidth) |
+ CAN_CTRL1_PSEG1(pConfig->phaseSeg1) | CAN_CTRL1_PSEG2(pConfig->phaseSeg2) |
+ CAN_CTRL1_PROPSEG(pConfig->propSeg));
+#endif
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Sets the FlexCAN FD data phase timing characteristic.
+ *
+ * This function gives user settings to CAN FD data phase timing characteristic.
+ * The function is for an experienced user. For less experienced users, call the FLEXCAN_GetDefaultConfig()
+ * and get the default timing characteristicsthe, then call FLEXCAN_FDInit() and fill the
+ * data phase bit rate field.
+ *
+ * note Calling FLEXCAN_SetFDTimingConfig() overrides the bit rate set
+ * in FLEXCAN_FDInit().
+ *
+ * param base FlexCAN peripheral base address.
+ * param pConfig Pointer to the timing configuration structure.
+ */
+void FLEXCAN_SetFDTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig)
+{
+ /* Assertion. */
+ assert(NULL != pConfig);
+
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
+ /* Enable extended Bit Timing register EDCBT. */
+ base->CTRL2 |= CAN_CTRL2_BTE_MASK;
+
+ base->EPRS = (base->EPRS & (~CAN_EPRS_EDPRESDIV_MASK)) | CAN_EPRS_EDPRESDIV(pConfig->fpreDivider);
+ base->EDCBT = CAN_EDCBT_DRJW(pConfig->frJumpwidth) | CAN_EDCBT_DTSEG2(pConfig->fphaseSeg2) |
+ CAN_EDCBT_DTSEG1((uint32_t)pConfig->fphaseSeg1 + pConfig->fpropSeg);
+#else
+ /* Enable Bit Timing register FDCBT,*/
+ base->CBT |= CAN_CBT_BTF_MASK;
+
+ /* On RT106x devices, a single write may be ignored, so it is necessary to read back the register value to determine
+ * whether the value is written successfully. */
+ do
+ {
+ /* Updating Timing Setting according to configuration structure. */
+ base->FDCBT = (CAN_FDCBT_FPRESDIV(pConfig->fpreDivider) | CAN_FDCBT_FRJW(pConfig->frJumpwidth) |
+ CAN_FDCBT_FPSEG1(pConfig->fphaseSeg1) | CAN_FDCBT_FPSEG2(pConfig->fphaseSeg2) |
+ CAN_FDCBT_FPROPSEG(pConfig->fpropSeg));
+ } while ((CAN_FDCBT_FPRESDIV(pConfig->fpreDivider) | CAN_FDCBT_FRJW(pConfig->frJumpwidth) |
+ CAN_FDCBT_FPSEG1(pConfig->fphaseSeg1) | CAN_FDCBT_FPSEG2(pConfig->fphaseSeg2) |
+ CAN_FDCBT_FPROPSEG(pConfig->fpropSeg)) !=
+ (base->FDCBT & (CAN_FDCBT_FPRESDIV_MASK | CAN_FDCBT_FRJW_MASK | CAN_FDCBT_FPSEG1_MASK |
+ CAN_FDCBT_FPSEG2_MASK | CAN_FDCBT_FPROPSEG_MASK)));
+#endif
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+#endif
+
+/*!
+ * brief Sets the FlexCAN receive message buffer global mask.
+ *
+ * This function sets the global mask for the FlexCAN message buffer in a matching process.
+ * The configuration is only effective when the Rx individual mask is disabled in the FLEXCAN_Init().
+ *
+ * param base FlexCAN peripheral base address.
+ * param mask Rx Message Buffer Global Mask value.
+ */
+void FLEXCAN_SetRxMbGlobalMask(CAN_Type *base, uint32_t mask)
+{
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ /* Setting Rx Message Buffer Global Mask value. */
+ base->RXMGMASK = mask;
+ base->RX14MASK = mask;
+ base->RX15MASK = mask;
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+
+/*!
+ * brief Sets the FlexCAN receive FIFO global mask.
+ *
+ * This function sets the global mask for FlexCAN FIFO in a matching process.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mask Rx Fifo Global Mask value.
+ */
+void FLEXCAN_SetRxFifoGlobalMask(CAN_Type *base, uint32_t mask)
+{
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ /* Setting Rx FIFO Global Mask value. */
+ base->RXFGMASK = mask;
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+
+/*!
+ * brief Sets the FlexCAN receive individual mask.
+ *
+ * This function sets the individual mask for the FlexCAN matching process.
+ * The configuration is only effective when the Rx individual mask is enabled in the FLEXCAN_Init().
+ * If the Rx FIFO is disabled, the individual mask is applied to the corresponding Message Buffer.
+ * If the Rx FIFO is enabled, the individual mask for Rx FIFO occupied Message Buffer is applied to
+ * the Rx Filter with the same index. Note that only the first 32
+ * individual masks can be used as the Rx FIFO filter mask.
+ *
+ * param base FlexCAN peripheral base address.
+ * param maskIdx The Index of individual Mask.
+ * param mask Rx Individual Mask value.
+ */
+void FLEXCAN_SetRxIndividualMask(CAN_Type *base, uint8_t maskIdx, uint32_t mask)
+{
+ assert(maskIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ /* Setting Rx Individual Mask value. */
+ base->RXIMR[maskIdx] = mask;
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+
+/*!
+ * brief Configures a FlexCAN transmit message buffer.
+ *
+ * This function aborts the previous transmission, cleans the Message Buffer, and
+ * configures it as a Transmit Message Buffer.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The Message Buffer index.
+ * param enable Enable/disable Tx Message Buffer.
+ * - true: Enable Tx Message Buffer.
+ * - false: Disable Tx Message Buffer.
+ */
+void FLEXCAN_SetTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ /* Inactivate Message Buffer. */
+ if (enable)
+ {
+ base->MB[mbIdx].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+ }
+ else
+ {
+ base->MB[mbIdx].CS = 0;
+ }
+
+ /* Clean Message Buffer content. */
+ base->MB[mbIdx].ID = 0x0;
+ base->MB[mbIdx].WORD0 = 0x0;
+ base->MB[mbIdx].WORD1 = 0x0;
+}
+
+/*!
+ * brief Calculates the segment values for a single bit time for classical CAN.
+ *
+ * This function use to calculates the Classical CAN segment values which will be set in CTRL1/CBT/ENCBT register.
+ *
+ * param bitRate The classical CAN bit rate in bps.
+ * param base FlexCAN peripheral base address.
+ * param tqNum Number of time quantas per bit, range in 8 ~ 25 when use CTRL1, range in 8 ~ 129 when use CBT, range in
+ * 8 ~ 385 when use ENCBT. param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ */
+static void FLEXCAN_GetSegments(CAN_Type *base,
+ uint32_t bitRate,
+ uint32_t tqNum,
+ flexcan_timing_config_t *pTimingConfig)
+{
+ uint32_t ideal_sp;
+ uint32_t seg1Max, proSegMax;
+ uint32_t seg1Temp;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
+ {
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
+ /* Maximum value allowed in ENCBT register. */
+ seg1Max = MAX_NTSEG2 + 1U;
+ proSegMax = MAX_NTSEG1 - MAX_NTSEG2;
+#else
+ /* Maximum value allowed in CBT register. */
+ seg1Max = MAX_EPSEG1 + 1U;
+ proSegMax = MAX_EPROPSEG + 1U;
+#endif
+ }
+ else
+ {
+ /* Maximum value allowed in CTRL1 register. */
+ seg1Max = MAX_PSEG1 + 1U;
+ proSegMax = MAX_PROPSEG + 1U;
+ }
+#else
+ /* Maximum value allowed in CTRL1 register. */
+ seg1Max = MAX_PSEG1 + 1U;
+ proSegMax = MAX_PROPSEG + 1U;
+#endif
+
+ /* Try to find the ideal sample point, according to CiA 301 doc.*/
+ if (bitRate == 1000000U)
+ {
+ ideal_sp = IDEAL_SP_LOW;
+ }
+ else if (bitRate >= 800000U)
+ {
+ ideal_sp = IDEAL_SP_MID;
+ }
+ else
+ {
+ ideal_sp = IDEAL_SP_HIGH;
+ }
+ /* Calculates phaseSeg2. */
+ pTimingConfig->phaseSeg2 = (uint8_t)(tqNum - (tqNum * ideal_sp) / (uint32_t)IDEAL_SP_FACTOR);
+ if (pTimingConfig->phaseSeg2 < MIN_TIME_SEGMENT2)
+ {
+ pTimingConfig->phaseSeg2 = MIN_TIME_SEGMENT2;
+ }
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
+ {
+#if !(defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
+ if (pTimingConfig->phaseSeg2 > (uint8_t)(MAX_EPSEG2 + 1U))
+ {
+ pTimingConfig->phaseSeg2 = (uint8_t)(MAX_EPSEG2 + 1U);
+ }
+#endif
+ }
+#endif
+
+ /* Calculates phaseSeg1 and propSeg and try to make phaseSeg1 equal to phaseSeg2. */
+ if ((tqNum - pTimingConfig->phaseSeg2 - 1U) > (seg1Max + proSegMax))
+ {
+ seg1Temp = seg1Max + proSegMax;
+ pTimingConfig->phaseSeg2 = (uint8_t)(tqNum - 1U - seg1Temp);
+ }
+ else
+ {
+ seg1Temp = tqNum - pTimingConfig->phaseSeg2 - 1U;
+ }
+ if (seg1Temp > (pTimingConfig->phaseSeg2 + proSegMax))
+ {
+ pTimingConfig->propSeg = (uint8_t)proSegMax;
+ pTimingConfig->phaseSeg1 = (uint8_t)(seg1Temp - proSegMax);
+ }
+ else
+ {
+ pTimingConfig->propSeg = (uint8_t)(seg1Temp - pTimingConfig->phaseSeg2);
+ pTimingConfig->phaseSeg1 = pTimingConfig->phaseSeg2;
+ }
+
+ /* rJumpwidth (sjw) is the minimum value of phaseSeg1 and phaseSeg2. */
+ pTimingConfig->rJumpwidth =
+ (pTimingConfig->phaseSeg1 > pTimingConfig->phaseSeg2) ? pTimingConfig->phaseSeg2 : pTimingConfig->phaseSeg1;
+#if !(defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (pTimingConfig->rJumpwidth > (MAX_RJW + 1U))
+ {
+ pTimingConfig->rJumpwidth = (uint8_t)(MAX_RJW + 1U);
+ }
+#else
+ if (0 == FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
+ {
+ if (pTimingConfig->rJumpwidth > (MAX_RJW + 1U))
+ {
+ pTimingConfig->rJumpwidth = (uint8_t)(MAX_RJW + 1U);
+ }
+ }
+#endif
+
+ pTimingConfig->phaseSeg1 -= 1U;
+ pTimingConfig->phaseSeg2 -= 1U;
+ pTimingConfig->propSeg -= 1U;
+ pTimingConfig->rJumpwidth -= 1U;
+}
+
+/*!
+ * brief Calculates the improved timing values by specific bit Rates for classical CAN.
+ *
+ * This function use to calculates the Classical CAN timing values according to the given bit rate. The Calculated
+ * timing values will be set in CTRL1/CBT/ENCBT register. The calculation is based on the recommendation of the CiA 301
+ * v4.2.0 and previous version document.
+ *
+ * param base FlexCAN peripheral base address.
+ * param bitRate The classical CAN speed in bps defined by user, should be less than or equal to 1Mbps.
+ * param sourceClock_Hz The Source clock frequency in Hz.
+ * param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ *
+ * return TRUE if timing configuration found, FALSE if failed to find configuration.
+ */
+bool FLEXCAN_CalculateImprovedTimingValues(CAN_Type *base,
+ uint32_t bitRate,
+ uint32_t sourceClock_Hz,
+ flexcan_timing_config_t *pTimingConfig)
+{
+ /* Observe bit rate maximums. */
+ assert(bitRate <= MAX_CAN_BITRATE);
+
+ uint32_t clk;
+ uint32_t tqNum, tqMin, pdivMAX;
+ uint32_t spTemp = 1000U;
+ flexcan_timing_config_t configTemp = {0};
+ bool fgRet = false;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0 != FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
+ {
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
+ /* Auto Improved Protocal timing for ENCBT. */
+ tqNum = ENCBT_MAX_TIME_QUANTA;
+ tqMin = ENCBT_MIN_TIME_QUANTA;
+ pdivMAX = MAX_ENPRESDIV;
+#else
+ /* Auto Improved Protocal timing for CBT. */
+ tqNum = CBT_MAX_TIME_QUANTA;
+ tqMin = CBT_MIN_TIME_QUANTA;
+ pdivMAX = MAX_PRESDIV;
+#endif
+ }
+ else
+ {
+ /* Auto Improved Protocal timing for CTRL1. */
+ tqNum = CTRL1_MAX_TIME_QUANTA;
+ tqMin = CTRL1_MIN_TIME_QUANTA;
+ pdivMAX = MAX_PRESDIV;
+ }
+#else
+ /* Auto Improved Protocal timing for CTRL1. */
+ tqNum = CTRL1_MAX_TIME_QUANTA;
+ tqMin = CTRL1_MIN_TIME_QUANTA;
+ pdivMAX = MAX_PRESDIV;
+#endif
+ do
+ {
+ clk = bitRate * tqNum;
+ if (clk > sourceClock_Hz)
+ {
+ continue; /* tqNum too large, clk has been exceed sourceClock_Hz. */
+ }
+
+ if ((sourceClock_Hz / clk * clk) != sourceClock_Hz)
+ {
+ continue; /* Non-supporting: the frequency of clock source is not divisible by target bit rate, the user
+ should change a divisible bit rate. */
+ }
+
+ configTemp.preDivider = (uint16_t)(sourceClock_Hz / clk) - 1U;
+ if (configTemp.preDivider > pdivMAX)
+ {
+ break; /* The frequency of source clock is too large or the bit rate is too small, the pre-divider could
+ not handle it. */
+ }
+
+ /* Calculates the best timing configuration under current tqNum. */
+ FLEXCAN_GetSegments(base, bitRate, tqNum, &configTemp);
+ /* Determine whether the calculated timing configuration can get the optimal sampling point. */
+ if (((((uint32_t)configTemp.phaseSeg2 + 1U) * 1000U) / tqNum) < spTemp)
+ {
+ spTemp = (((uint32_t)configTemp.phaseSeg2 + 1U) * 1000U) / tqNum;
+ pTimingConfig->preDivider = configTemp.preDivider;
+ pTimingConfig->rJumpwidth = configTemp.rJumpwidth;
+ pTimingConfig->phaseSeg1 = configTemp.phaseSeg1;
+ pTimingConfig->phaseSeg2 = configTemp.phaseSeg2;
+ pTimingConfig->propSeg = configTemp.propSeg;
+ }
+ fgRet = true;
+ } while (--tqNum >= tqMin);
+
+ return fgRet;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Get Mailbox offset number by dword.
+ *
+ * This function gets the offset number of the specified mailbox.
+ * Mailbox is not consecutive between memory regions when payload is not 8 bytes
+ * so need to calculate the specified mailbox address.
+ * For example, in the first memory region, MB[0].CS address is 0x4002_4080. For 32 bytes
+ * payload frame, the second mailbox is ((1/12)*512 + 1%12*40)/4 = 10, meaning 10 dword
+ * after the 0x4002_4080, which is actually the address of mailbox MB[1].CS.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx Mailbox index.
+ */
+static uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx)
+{
+ uint32_t offset = 0;
+ uint32_t dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
+ if (dataSize == (uint32_t)kFLEXCAN_8BperMB)
+ {
+ offset = (((uint32_t)mbIdx / 32U) * 512U + ((uint32_t)mbIdx % 32U) * 16U);
+ }
+ else if (dataSize == (uint32_t)kFLEXCAN_16BperMB)
+ {
+ offset = (((uint32_t)mbIdx / 21U) * 512U + ((uint32_t)mbIdx % 21U) * 24U);
+ }
+ else if (dataSize == (uint32_t)kFLEXCAN_32BperMB)
+ {
+ offset = (((uint32_t)mbIdx / 12U) * 512U + ((uint32_t)mbIdx % 12U) * 40U);
+ }
+ else
+ {
+ offset = (((uint32_t)mbIdx / 7U) * 512U + ((uint32_t)mbIdx % 7U) * 72U);
+ }
+
+ /* To get the dword aligned offset, need to divide by 4. */
+ offset = offset / 4U;
+ return offset;
+}
+
+/*!
+ * brief Calculates the segment values for a single bit time for CAN FD data phase.
+ *
+ * This function use to calculates the CAN FD data phase segment values which will be set in CFDCBT/EDCBT
+ * register.
+ *
+ * param bitRateFD CAN FD data phase bit rate.
+ * param tqNum Number of time quanta per bit
+ * param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ */
+static void FLEXCAN_FDGetSegments(uint32_t bitRateFD, uint32_t tqNum, flexcan_timing_config_t *pTimingConfig)
+{
+ uint32_t ideal_sp;
+ uint32_t seg1Max, proSegMax, seg2Max;
+ uint32_t seg1Temp;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
+ /* Maximum value allowed in EDCBT register. */
+ seg1Max = MAX_DTSEG2 + 1U;
+ proSegMax = MAX_DTSEG1 - MAX_DTSEG2;
+ seg2Max = MAX_DTSEG2 + 1U;
+#else
+ /* Maximum value allowed in FDCBT register. */
+ seg1Max = MAX_FPSEG1 + 1U;
+ proSegMax = MAX_FPROPSEG;
+ seg2Max = MAX_FPSEG2 + 1U;
+#endif
+
+ /* According to CiA doc 1301 v1.0.0, which specified data phase sample point postion for CAN FD at 80 MHz. */
+ if (bitRateFD <= 1000000U)
+ {
+ ideal_sp = IDEAL_DATA_SP_1;
+ }
+ else if (bitRateFD <= 2000000U)
+ {
+ ideal_sp = IDEAL_DATA_SP_2;
+ }
+ else if (bitRateFD <= 4000000U)
+ {
+ ideal_sp = IDEAL_DATA_SP_3;
+ }
+ else
+ {
+ ideal_sp = IDEAL_DATA_SP_4;
+ }
+
+ /* Calculates fphaseSeg2. */
+ pTimingConfig->fphaseSeg2 = (uint8_t)(tqNum - (tqNum * ideal_sp) / (uint32_t)IDEAL_SP_FACTOR);
+ if (pTimingConfig->fphaseSeg2 < MIN_TIME_SEGMENT2)
+ {
+ pTimingConfig->fphaseSeg2 = MIN_TIME_SEGMENT2;
+ }
+ else if (pTimingConfig->fphaseSeg2 > seg2Max)
+ {
+ pTimingConfig->fphaseSeg2 = (uint8_t)seg2Max;
+ }
+ else
+ {
+ ; /* Intentional empty */
+ }
+
+ /* Calculates fphaseSeg1 and fpropSeg and try to make phaseSeg1 equal to phaseSeg2 */
+ if ((tqNum - pTimingConfig->fphaseSeg2 - 1U) > (seg1Max + proSegMax))
+ {
+ seg1Temp = seg1Max + proSegMax;
+ pTimingConfig->fphaseSeg2 = (uint8_t)(tqNum - 1U - seg1Temp);
+ }
+ else
+ {
+ seg1Temp = tqNum - pTimingConfig->fphaseSeg2 - 1U;
+ }
+ if (seg1Temp > (pTimingConfig->fphaseSeg2 + proSegMax))
+ {
+ pTimingConfig->fpropSeg = (uint8_t)proSegMax;
+ pTimingConfig->fphaseSeg1 = (uint8_t)(seg1Temp - proSegMax);
+ }
+ else if (seg1Temp > pTimingConfig->fphaseSeg2)
+ {
+ pTimingConfig->fpropSeg = (uint8_t)(seg1Temp - pTimingConfig->fphaseSeg2);
+ pTimingConfig->fphaseSeg1 = pTimingConfig->fphaseSeg2;
+ }
+ else
+ {
+ pTimingConfig->fpropSeg = 0U;
+ pTimingConfig->fphaseSeg1 = (uint8_t)seg1Temp;
+ }
+
+ /* rJumpwidth (sjw) is the minimum value of phaseSeg1 and phaseSeg2. */
+ pTimingConfig->frJumpwidth =
+ (pTimingConfig->fphaseSeg1 > pTimingConfig->fphaseSeg2) ? pTimingConfig->fphaseSeg2 : pTimingConfig->fphaseSeg1;
+
+ pTimingConfig->fphaseSeg1 -= 1U;
+ pTimingConfig->fphaseSeg2 -= 1U;
+ pTimingConfig->frJumpwidth -= 1U;
+}
+
+/*!
+ * brief Calculates the improved timing values by specific bit rate for CAN FD nominal phase.
+ *
+ * This function use to calculates the CAN FD nominal phase timing values according to the given nominal phase bit rate.
+ * The Calculated timing values will be set in CBT/ENCBT registers. The calculation is based on the recommendation of
+ * the CiA 1301 v1.0.0 document.
+ *
+ * param bitRate The CAN FD nominal phase speed in bps defined by user, should be less than or equal to 1Mbps.
+ * param sourceClock_Hz The Source clock frequency in Hz.
+ * param pTimingConfig Pointer to the FlexCAN timing configuration structure.
+ *
+ * return TRUE if timing configuration found, FALSE if failed to find configuration.
+ */
+static bool FLEXCAN_CalculateImprovedNominalTimingValues(uint32_t bitRate,
+ uint32_t sourceClock_Hz,
+ flexcan_timing_config_t *pTimingConfig)
+{
+ /* Observe bit rate maximums. */
+ assert(bitRate <= MAX_CAN_BITRATE);
+
+ uint32_t clk;
+ uint32_t tqNum, tqMin, pdivMAX, seg1Max, proSegMax, seg1Temp;
+ uint32_t spTemp = 1000U;
+ flexcan_timing_config_t configTemp = {0};
+ bool fgRet = false;
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
+ /* Auto Improved Protocal timing for ENCBT. */
+ tqNum = ENCBT_MAX_TIME_QUANTA;
+ tqMin = ENCBT_MIN_TIME_QUANTA;
+ pdivMAX = MAX_ENPRESDIV;
+ seg1Max = MAX_NTSEG2 + 1U;
+ proSegMax = MAX_NTSEG1 - MAX_NTSEG2;
+#else
+ /* Auto Improved Protocal timing for CBT. */
+ tqNum = CBT_MAX_TIME_QUANTA;
+ tqMin = CBT_MIN_TIME_QUANTA;
+ pdivMAX = MAX_PRESDIV;
+ seg1Max = MAX_EPSEG1 + 1U;
+ proSegMax = MAX_EPROPSEG + 1U;
+#endif
+
+ do
+ {
+ clk = bitRate * tqNum;
+ if (clk > sourceClock_Hz)
+ {
+ continue; /* tqNum too large, clk has been exceed sourceClock_Hz. */
+ }
+
+ if ((sourceClock_Hz / clk * clk) != sourceClock_Hz)
+ {
+ continue; /* Non-supporting: the frequency of clock source is not divisible by target bit rate, the user
+ should change a divisible bit rate. */
+ }
+
+ configTemp.preDivider = (uint16_t)(sourceClock_Hz / clk) - 1U;
+ if (configTemp.preDivider > pdivMAX)
+ {
+ break; /* The frequency of source clock is too large or the bit rate is too small, the pre-divider could
+ not handle it. */
+ }
+
+ /* Calculates the best timing configuration under current tqNum. */
+ configTemp.phaseSeg2 = (uint8_t)(tqNum - (tqNum * IDEAL_NOMINAL_SP) / (uint32_t)IDEAL_SP_FACTOR);
+
+ /* Calculates phaseSeg1 and propSeg and try to make phaseSeg1 equal to phaseSeg2. */
+ if ((tqNum - configTemp.phaseSeg2 - 1U) > (seg1Max + proSegMax))
+ {
+ seg1Temp = seg1Max + proSegMax;
+ configTemp.phaseSeg2 = (uint8_t)(tqNum - 1U - seg1Temp);
+ }
+ else
+ {
+ seg1Temp = tqNum - configTemp.phaseSeg2 - 1U;
+ }
+ if (seg1Temp > (configTemp.phaseSeg2 + proSegMax))
+ {
+ configTemp.propSeg = (uint8_t)proSegMax;
+ configTemp.phaseSeg1 = (uint8_t)(seg1Temp - proSegMax);
+ }
+ else
+ {
+ configTemp.propSeg = (uint8_t)(seg1Temp - configTemp.phaseSeg2);
+ configTemp.phaseSeg1 = configTemp.phaseSeg2;
+ }
+
+ /* rJumpwidth (sjw) is the minimum value of phaseSeg1 and phaseSeg2. */
+ configTemp.rJumpwidth =
+ (configTemp.phaseSeg1 > configTemp.phaseSeg2) ? configTemp.phaseSeg2 : configTemp.phaseSeg1;
+ configTemp.phaseSeg1 -= 1U;
+ configTemp.phaseSeg2 -= 1U;
+ configTemp.propSeg -= 1U;
+ configTemp.rJumpwidth -= 1U;
+
+ if (((((uint32_t)configTemp.phaseSeg2 + 1U) * 1000U) / tqNum) < spTemp)
+ {
+ spTemp = (((uint32_t)configTemp.phaseSeg2 + 1U) * 1000U) / tqNum;
+ pTimingConfig->preDivider = configTemp.preDivider;
+ pTimingConfig->rJumpwidth = configTemp.rJumpwidth;
+ pTimingConfig->phaseSeg1 = configTemp.phaseSeg1;
+ pTimingConfig->phaseSeg2 = configTemp.phaseSeg2;
+ pTimingConfig->propSeg = configTemp.propSeg;
+ }
+ fgRet = true;
+ } while (--tqNum >= tqMin);
+
+ return fgRet;
+}
+
+/*!
+ * brief Calculates the improved timing values by specific bit rates for CAN FD.
+ *
+ * This function use to calculates the CAN FD timing values according to the given nominal phase bit rate and data phase
+ * bit rate. The Calculated timing values will be set in CBT/ENCBT and FDCBT/EDCBT registers. The calculation is based
+ * on the recommendation of the CiA 1301 v1.0.0 document.
+ *
+ * param bitRate The CAN FD nominal phase speed in bps defined by user.
+ * param bitRateFD The CAN FD data phase speed in bps defined by user. Equal to bitRate means disable bit rate
+ * switching. param sourceClock_Hz The Source clock frequency in Hz. param pTimingConfig Pointer to the FlexCAN timing
+ * configuration structure.
+ *
+ * return TRUE if timing configuration found, FALSE if failed to find configuration
+ */
+bool FLEXCAN_FDCalculateImprovedTimingValues(CAN_Type *base,
+ uint32_t bitRate,
+ uint32_t bitRateFD,
+ uint32_t sourceClock_Hz,
+ flexcan_timing_config_t *pTimingConfig)
+{
+ /* Observe bit rate maximums */
+ assert(bitRate <= MAX_CANFD_BITRATE);
+ assert(bitRateFD <= MAX_CANFD_BITRATE);
+ /* Data phase bit rate need greater or equal to nominal phase bit rate. */
+ assert(bitRate <= bitRateFD);
+
+ uint32_t clk;
+ uint32_t tqMin, pdivMAX, tqTemp;
+ bool fgRet = false;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_BIT_TIMING_REG)
+ /* Auto Improved Protocal timing for EDCBT. */
+ tqTemp = EDCBT_MAX_TIME_QUANTA;
+ tqMin = EDCBT_MIN_TIME_QUANTA;
+ pdivMAX = MAX_EDPRESDIV;
+#else
+ /* Auto Improved Protocal timing for FDCBT. */
+ tqTemp = FDCBT_MAX_TIME_QUANTA;
+ tqMin = FDCBT_MIN_TIME_QUANTA;
+ pdivMAX = MAX_FPRESDIV;
+#endif
+
+ if (bitRate != bitRateFD)
+ {
+ /* To minimize errors when processing FD frames, try to get the same bit rate prescaler value for nominal phase
+ and data phase. */
+ do
+ {
+ clk = bitRateFD * tqTemp;
+ if (clk > sourceClock_Hz)
+ {
+ continue; /* tqTemp too large, clk x tqTemp has been exceed sourceClock_Hz. */
+ }
+
+ if ((sourceClock_Hz / clk * clk) != sourceClock_Hz)
+ {
+ continue; /* the frequency of clock source is not divisible by target bit rate. */
+ }
+
+ pTimingConfig->fpreDivider = (uint16_t)(sourceClock_Hz / clk) - 1U;
+
+ if (pTimingConfig->fpreDivider > pdivMAX)
+ {
+ break; /* The frequency of source clock is too large or the bit rate is too small, the pre-divider
+ could not handle it. */
+ }
+
+ /* Calculates the best data phase timing configuration. */
+ FLEXCAN_FDGetSegments(bitRateFD, tqTemp, pTimingConfig);
+
+ if (FLEXCAN_CalculateImprovedNominalTimingValues(
+ bitRate, sourceClock_Hz / ((uint32_t)pTimingConfig->fpreDivider + 1U), pTimingConfig))
+ {
+ fgRet = true;
+ if (pTimingConfig->preDivider == 0U)
+ {
+ pTimingConfig->preDivider = pTimingConfig->fpreDivider;
+ break;
+ }
+ else
+ {
+ pTimingConfig->preDivider =
+ (pTimingConfig->preDivider + 1U) * (pTimingConfig->fpreDivider + 1U) - 1U;
+ continue;
+ }
+ }
+ } while (--tqTemp >= tqMin);
+ }
+ else
+ {
+ if (FLEXCAN_CalculateImprovedNominalTimingValues(bitRate, sourceClock_Hz, pTimingConfig))
+ {
+ /* No need data phase timing configuration, data phase rate equal to nominal phase rate, user don't use Brs
+ feature. */
+ pTimingConfig->fpreDivider = 0U;
+ pTimingConfig->frJumpwidth = 0U;
+ pTimingConfig->fphaseSeg1 = 0U;
+ pTimingConfig->fphaseSeg2 = 0U;
+ pTimingConfig->fpropSeg = 0U;
+ fgRet = true;
+ }
+ }
+ return fgRet;
+}
+
+/*!
+ * brief Configures a FlexCAN transmit message buffer.
+ *
+ * This function aborts the previous transmission, cleans the Message Buffer, and
+ * configures it as a Transmit Message Buffer.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The Message Buffer index.
+ * param enable Enable/disable Tx Message Buffer.
+ * - true: Enable Tx Message Buffer.
+ * - false: Disable Tx Message Buffer.
+ */
+void FLEXCAN_SetFDTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ uint8_t cnt = 0;
+ uint8_t payload_dword = 1;
+ uint32_t dataSize;
+ dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
+ volatile uint32_t *mbAddr = &(base->MB[0].CS);
+ uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ uint32_t availoffset = FLEXCAN_GetFDMailboxOffset(base, FLEXCAN_GetFirstValidMb(base));
+#endif
+
+ /* Inactivate Message Buffer. */
+ if (enable)
+ {
+ /* Inactivate by writing CS. */
+ mbAddr[offset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+ }
+ else
+ {
+ mbAddr[offset] = 0x0;
+ }
+
+ /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
+ Bytes payload. */
+ for (cnt = 0; cnt < (dataSize + 1U); cnt++)
+ {
+ payload_dword *= 2U;
+ }
+
+ /* Clean ID. */
+ mbAddr[offset + 1U] = 0x0U;
+ /* Clean Message Buffer content, DWORD by DWORD. */
+ for (cnt = 0; cnt < payload_dword; cnt++)
+ {
+ mbAddr[offset + 2U + cnt] = 0x0U;
+ }
+
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+#endif
+}
+#endif /* FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE */
+
+/*!
+ * brief Configures a FlexCAN Receive Message Buffer.
+ *
+ * This function cleans a FlexCAN build-in Message Buffer and configures it
+ * as a Receive Message Buffer.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The Message Buffer index.
+ * param pRxMbConfig Pointer to the FlexCAN Message Buffer configuration structure.
+ * param enable Enable/disable Rx Message Buffer.
+ * - true: Enable Rx Message Buffer.
+ * - false: Disable Rx Message Buffer.
+ */
+void FLEXCAN_SetRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *pRxMbConfig, bool enable)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+ assert(((NULL != pRxMbConfig) || (false == enable)));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ uint32_t cs_temp = 0;
+
+ /* Inactivate Message Buffer. */
+ base->MB[mbIdx].CS = 0;
+
+ /* Clean Message Buffer content. */
+ base->MB[mbIdx].ID = 0x0;
+ base->MB[mbIdx].WORD0 = 0x0;
+ base->MB[mbIdx].WORD1 = 0x0;
+
+ if (enable)
+ {
+ /* Setup Message Buffer ID. */
+ base->MB[mbIdx].ID = pRxMbConfig->id;
+
+ /* Setup Message Buffer format. */
+ if (kFLEXCAN_FrameFormatExtend == pRxMbConfig->format)
+ {
+ cs_temp |= CAN_CS_IDE_MASK;
+ }
+
+ /* Setup Message Buffer type. */
+ if (kFLEXCAN_FrameTypeRemote == pRxMbConfig->type)
+ {
+ cs_temp |= CAN_CS_RTR_MASK;
+ }
+
+ /* Activate Rx Message Buffer. */
+ cs_temp |= CAN_CS_CODE(kFLEXCAN_RxMbEmpty);
+ base->MB[mbIdx].CS = cs_temp;
+ }
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Configures a FlexCAN Receive Message Buffer.
+ *
+ * This function cleans a FlexCAN build-in Message Buffer and configures it
+ * as a Receive Message Buffer.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The Message Buffer index.
+ * param pRxMbConfig Pointer to the FlexCAN Message Buffer configuration structure.
+ * param enable Enable/disable Rx Message Buffer.
+ * - true: Enable Rx Message Buffer.
+ * - false: Disable Rx Message Buffer.
+ */
+void FLEXCAN_SetFDRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *pRxMbConfig, bool enable)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+ assert(((NULL != pRxMbConfig) || (false == enable)));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ uint32_t cs_temp = 0;
+ uint8_t cnt = 0;
+ volatile uint32_t *mbAddr = &(base->MB[0].CS);
+ uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
+ uint8_t payload_dword;
+ uint32_t dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
+
+ /* Inactivate Message Buffer. */
+ mbAddr[offset] = 0U;
+
+ /* Clean Message Buffer content. */
+ mbAddr[offset + 1U] = 0U;
+ /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
+ Bytes payload. */
+ payload_dword = (2U << dataSize);
+ for (cnt = 0; cnt < payload_dword; cnt++)
+ {
+ mbAddr[offset + 2U + cnt] = 0x0;
+ }
+
+ if (enable)
+ {
+ /* Setup Message Buffer ID. */
+ mbAddr[offset + 1U] = pRxMbConfig->id;
+
+ /* Setup Message Buffer format. */
+ if (kFLEXCAN_FrameFormatExtend == pRxMbConfig->format)
+ {
+ cs_temp |= CAN_CS_IDE_MASK;
+ }
+
+ /* Setup Message Buffer type. */
+ if (kFLEXCAN_FrameTypeRemote == pRxMbConfig->type)
+ {
+ cs_temp |= CAN_CS_RTR_MASK;
+ }
+
+ /* Activate Rx Message Buffer. */
+ cs_temp |= CAN_CS_CODE(kFLEXCAN_RxMbEmpty);
+ mbAddr[offset] = cs_temp;
+ }
+}
+#endif
+
+/*!
+ * brief Configures the FlexCAN Legacy Rx FIFO.
+ *
+ * This function configures the FlexCAN Rx FIFO with given configuration.
+ * note Legacy Rx FIFO only can receive classic CAN message.
+ *
+ * param base FlexCAN peripheral base address.
+ * param pRxFifoConfig Pointer to the FlexCAN Legacy Rx FIFO configuration structure. Can be NULL when enable parameter
+ * is false.
+ * param enable Enable/disable Legacy Rx FIFO.
+ * - true: Enable Legacy Rx FIFO.
+ * - false: Disable Legacy Rx FIFO.
+ */
+void FLEXCAN_SetRxFifoConfig(CAN_Type *base, const flexcan_rx_fifo_config_t *pRxFifoConfig, bool enable)
+{
+ /* Assertion. */
+ assert((NULL != pRxFifoConfig) || (false == enable));
+
+ volatile uint32_t *mbAddr;
+ uint8_t i, j, k, rffn = 0, numMbOccupy;
+ uint32_t setup_mb = 0;
+
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ if (enable)
+ {
+ assert(pRxFifoConfig->idFilterNum <= 128U);
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
+ /* Legacy Rx FIFO and Enhanced Rx FIFO cannot be enabled at the same time. */
+ assert((base->ERFCR & CAN_ERFCR_ERFEN_MASK) == 0U);
+#endif
+
+ /* Get the setup_mb value. */
+ setup_mb = (uint8_t)((base->MCR & CAN_MCR_MAXMB_MASK) >> CAN_MCR_MAXMB_SHIFT);
+ setup_mb = (setup_mb < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base)) ?
+ setup_mb :
+ (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base);
+
+ /* Determine RFFN value. */
+ for (i = 0; i <= 0xFU; i++)
+ {
+ if ((8U * (i + 1U)) >= pRxFifoConfig->idFilterNum)
+ {
+ rffn = i;
+ assert(((setup_mb - 8U) - (2U * rffn)) > 0U);
+
+ base->CTRL2 = (base->CTRL2 & ~CAN_CTRL2_RFFN_MASK) | CAN_CTRL2_RFFN(rffn);
+ break;
+ }
+ }
+
+ /* caculate the Number of Mailboxes occupied by RX Legacy FIFO and the filter. */
+ numMbOccupy = 6U + (rffn + 1U) * 2U;
+
+ /* Copy ID filter table to Message Buffer Region (Fix MISRA_C-2012 Rule 18.1). */
+ j = 0U;
+ for (i = 6U; i < numMbOccupy; i++)
+ {
+ /* Get address for current mail box. */
+ mbAddr = &(base->MB[i].CS);
+
+ /* One Mail box contain 4U DWORD registers. */
+ for (k = 0; k < 4U; k++)
+ {
+ /* Fill all valid filter in the mail box occupied by filter.
+ * Disable unused Rx FIFO Filter, the other rest of register in the last Mail box occupied by fiter set
+ * as 0xffffffff.
+ */
+ mbAddr[k] = (j < pRxFifoConfig->idFilterNum) ? (pRxFifoConfig->idFilterTable[j]) : 0xFFFFFFFFU;
+
+ /* Try to fill next filter in current Mail Box. */
+ j++;
+ }
+ }
+
+ /* Setup ID Fitlter Type. */
+ switch (pRxFifoConfig->idFilterType)
+ {
+ case kFLEXCAN_RxFifoFilterTypeA:
+ base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x0);
+ break;
+ case kFLEXCAN_RxFifoFilterTypeB:
+ base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x1);
+ break;
+ case kFLEXCAN_RxFifoFilterTypeC:
+ base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x2);
+ break;
+ case kFLEXCAN_RxFifoFilterTypeD:
+ /* All frames rejected. */
+ base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x3);
+ break;
+ default:
+ /* All the cases have been listed above, the default clause should not be reached. */
+ assert(false);
+ break;
+ }
+
+ /* Setting Message Reception Priority. */
+ base->CTRL2 = (pRxFifoConfig->priority == kFLEXCAN_RxFifoPrioHigh) ? (base->CTRL2 & ~CAN_CTRL2_MRP_MASK) :
+ (base->CTRL2 | CAN_CTRL2_MRP_MASK);
+
+ /* Enable Rx Message FIFO. */
+ base->MCR |= CAN_MCR_RFEN_MASK;
+ }
+ else
+ {
+ rffn = (uint8_t)((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT);
+ /* caculate the Number of Mailboxes occupied by RX Legacy FIFO and the filter. */
+ numMbOccupy = 6U + (rffn + 1U) * 2U;
+
+ /* Disable Rx Message FIFO. */
+ base->MCR &= ~CAN_MCR_RFEN_MASK;
+
+ /* Clean MB0 ~ MB5 and all MB occupied by ID filters (Fix MISRA_C-2012 Rule 18.1). */
+
+ for (i = 0; i < numMbOccupy; i++)
+ {
+ FLEXCAN_SetRxMbConfig(base, i, NULL, false);
+ }
+ }
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
+/*!
+ * brief Configures the FlexCAN Enhanced Rx FIFO.
+ *
+ * This function configures the Enhanced Rx FIFO with given configuration.
+ * note Enhanced Rx FIFO support receive classic CAN or CAN FD messages, Legacy Rx FIFO and Enhanced Rx FIFO
+ * cannot be enabled at the same time.
+ *
+ * param base FlexCAN peripheral base address.
+ * param pConfig Pointer to the FlexCAN Enhanced Rx FIFO configuration structure. Can be NULL when enable parameter
+ * is false.
+ * param enable Enable/disable Enhanced Rx FIFO.
+ * - true: Enable Enhanced Rx FIFO.
+ * - false: Disable Enhanced Rx FIFO.
+ */
+void FLEXCAN_SetEnhancedRxFifoConfig(CAN_Type *base, const flexcan_enhanced_rx_fifo_config_t *pConfig, bool enable)
+{
+ /* Assertion. */
+ assert((NULL != pConfig) || (false == enable));
+ uint32_t i;
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ if (enable)
+ {
+ /* Each pair of filter elements occupies 2 words and can consist of one extended ID filter element or two
+ * standard ID filter elements. */
+ assert((((uint32_t)pConfig->idFilterPairNum * 2UL) <
+ (uint32_t)FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO_FILTER_MAX_NUMBER) &&
+ (pConfig->extendIdFilterNum <= pConfig->idFilterPairNum) && (0UL != pConfig->idFilterPairNum));
+
+ /* The Enhanced Rx FIFO Watermark cannot be greater than the enhanced Rx FIFO size. */
+ assert(pConfig->fifoWatermark < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO_SIZE);
+
+ /* Legacy Rx FIFO and Enhanced Rx FIFO cannot be enabled at the same time. */
+ assert((base->MCR & CAN_MCR_RFEN_MASK) == 0U);
+
+ /* Reset Enhanced Rx FIFO engine and clear flags. */
+ base->ERFSR |= CAN_ERFSR_ERFCLR_MASK | CAN_ERFSR_ERFUFW_MASK | CAN_ERFSR_ERFOVF_MASK | CAN_ERFSR_ERFWMI_MASK |
+ CAN_ERFSR_ERFDA_MASK;
+ /* Setting Enhanced Rx FIFO. */
+ base->ERFCR = CAN_ERFCR_DMALW(pConfig->dmaPerReadLength) | CAN_ERFCR_NEXIF(pConfig->extendIdFilterNum) |
+ CAN_ERFCR_NFE((uint32_t)pConfig->idFilterPairNum - 1UL) | CAN_ERFCR_ERFWM(pConfig->fifoWatermark);
+ /* Copy ID filter table to Enhanced Rx FIFO Filter Element registers. */
+ for (i = 0; i < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO_FILTER_MAX_NUMBER; i++)
+ {
+ base->ERFFEL[i] = (i < ((uint32_t)pConfig->idFilterPairNum * 2U)) ? pConfig->idFilterTable[i] : 0xFFFFFFFFU;
+ }
+
+ /* Setting Message Reception Priority. */
+ base->CTRL2 = (pConfig->priority == kFLEXCAN_RxFifoPrioHigh) ? (base->CTRL2 & ~CAN_CTRL2_MRP_MASK) :
+ (base->CTRL2 | CAN_CTRL2_MRP_MASK);
+ /* Enable Enhanced Rx FIFO. */
+ base->ERFCR |= CAN_ERFCR_ERFEN_MASK;
+ }
+ else
+ {
+ /* Disable Enhanced Rx FIFO. */
+ base->ERFCR = 0U;
+ /* Reset Enhanced Rx FIFO engine and clear flags. */
+ base->ERFSR |= CAN_ERFSR_ERFCLR_MASK | CAN_ERFSR_ERFUFW_MASK | CAN_ERFSR_ERFOVF_MASK | CAN_ERFSR_ERFWMI_MASK |
+ CAN_ERFSR_ERFDA_MASK;
+ /* Clean all Enhanced Rx FIFO Filter Element registers. */
+ for (i = 0; i < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO_FILTER_MAX_NUMBER; i++)
+ {
+ base->ERFFEL[i] = 0xFFFFFFFFU;
+ }
+ }
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+}
+#endif
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA) && FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA)
+/*!
+ * brief Enables or disables the FlexCAN Legacy/Enhanced Rx FIFO DMA request.
+ *
+ * This function enables or disables the DMA feature of FlexCAN build-in Rx FIFO.
+ *
+ * param base FlexCAN peripheral base address.
+ * param enable true to enable, false to disable.
+ */
+void FLEXCAN_EnableRxFifoDMA(CAN_Type *base, bool enable)
+{
+ if (enable)
+ {
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ /* Enable FlexCAN DMA. */
+ base->MCR |= CAN_MCR_DMA_MASK;
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+ }
+ else
+ {
+ /* Enter Freeze Mode. */
+ FLEXCAN_EnterFreezeMode(base);
+
+ /* Disable FlexCAN DMA. */
+ base->MCR &= ~CAN_MCR_DMA_MASK;
+
+ /* Exit Freeze Mode. */
+ FLEXCAN_ExitFreezeMode(base);
+ }
+}
+#endif /* FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA */
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
+/*!
+ * brief Gets the FlexCAN Memory Error Report registers status.
+ *
+ * This function gets the FlexCAN Memory Error Report registers status.
+ *
+ * param base FlexCAN peripheral base address.
+ * param errorStatus Pointer to FlexCAN Memory Error Report registers status structure.
+ */
+void FLEXCAN_GetMemoryErrorReportStatus(CAN_Type *base, flexcan_memory_error_report_status_t *errorStatus)
+{
+ uint32_t temp;
+ /* Disable updates of the error report registers. */
+ base->MECR |= CAN_MECR_RERRDIS_MASK;
+
+ errorStatus->accessAddress = (uint16_t)(base->RERRAR & CAN_RERRAR_ERRADDR_MASK);
+ errorStatus->errorData = base->RERRDR;
+ errorStatus->errorType =
+ (base->RERRAR & CAN_RERRAR_NCE_MASK) == 0U ? kFLEXCAN_CorrectableError : kFLEXCAN_NonCorrectableError;
+
+ temp = (base->RERRAR & CAN_RERRAR_SAID_MASK) >> CAN_RERRAR_SAID_SHIFT;
+ switch (temp)
+ {
+ case (uint32_t)kFLEXCAN_MoveOutFlexCanAccess:
+ case (uint32_t)kFLEXCAN_MoveInAccess:
+ case (uint32_t)kFLEXCAN_TxArbitrationAccess:
+ case (uint32_t)kFLEXCAN_RxMatchingAccess:
+ case (uint32_t)kFLEXCAN_MoveOutHostAccess:
+ errorStatus->accessType = (flexcan_memory_access_type_t)temp;
+ break;
+ default:
+ assert(false);
+ break;
+ }
+
+ for (uint32_t i = 0; i < 4U; i++)
+ {
+ temp = (base->RERRSYNR & ((uint32_t)CAN_RERRSYNR_SYND0_MASK << (i * 8U))) >> (i * 8U);
+ errorStatus->byteStatus[i].byteIsRead = (base->RERRSYNR & ((uint32_t)CAN_RERRSYNR_BE0_MASK << (i * 8U))) != 0U;
+ switch (temp)
+ {
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_NoError):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_ParityBits0Error):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_ParityBits1Error):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_ParityBits2Error):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_ParityBits3Error):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_ParityBits4Error):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits0Error):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits1Error):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits2Error):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits3Error):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits4Error):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits5Error):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits6Error):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_DataBits7Error):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_AllZeroError):
+ case CAN_RERRSYNR_SYND0(kFLEXCAN_AllOneError):
+ errorStatus->byteStatus[i].bitAffected = (flexcan_byte_error_syndrome_t)temp;
+ break;
+ default:
+ errorStatus->byteStatus[i].bitAffected = kFLEXCAN_NonCorrectableErrors;
+ break;
+ }
+ }
+
+ /* Re-enable updates of the error report registers. */
+ base->MECR &= CAN_MECR_RERRDIS_MASK;
+}
+#endif
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
+/*!
+ * FlexCAN: A frame with wrong ID or payload is transmitted into
+ * the CAN bus when the Message Buffer under transmission is
+ * either aborted or deactivated while the CAN bus is in the Bus Idle state
+ *
+ * This function to do workaround for ERR006032
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The FlexCAN Message Buffer index.
+ */
+static void FLEXCAN_ERRATA_6032(CAN_Type *base, volatile uint32_t *mbCSAddr)
+{
+ uint32_t dbg_temp = 0U;
+ uint32_t u32TempCS = 0U;
+ uint32_t u32Timeout = DELAY_BUSIDLE;
+ /*disable ALL interrupts to prevent any context switching*/
+ uint32_t irqMask = DisableGlobalIRQ();
+ dbg_temp = (uint32_t)(base->DBG1);
+ switch (dbg_temp & CAN_DBG1_CFSM_MASK)
+ {
+ case RXINTERMISSION:
+ if (CBN_VALUE3 == (dbg_temp & CAN_DBG1_CBN_MASK))
+ {
+ /*wait until CFSM is different from RXINTERMISSION */
+ while (RXINTERMISSION == (base->DBG1 & CAN_DBG1_CFSM_MASK))
+ {
+ __NOP();
+ }
+ }
+ break;
+ case TXINTERMISSION:
+ if (CBN_VALUE3 == (dbg_temp & CAN_DBG1_CBN_MASK))
+ {
+ /*wait until CFSM is different from TXINTERMISSION*/
+ while (TXINTERMISSION == (base->DBG1 & CAN_DBG1_CFSM_MASK))
+ {
+ __NOP();
+ }
+ }
+ break;
+ default:
+ /* To avoid MISRA-C 2012 rule 16.4 issue. */
+ break;
+ }
+ /*Anyway, BUSIDLE need to delay*/
+ if (BUSIDLE == (base->DBG1 & CAN_DBG1_CFSM_MASK))
+ {
+ while (u32Timeout-- > 0U)
+ {
+ __NOP();
+ }
+
+ /*Write 0x0 into Code field of CS word.*/
+ u32TempCS = (uint32_t)(*mbCSAddr);
+ u32TempCS &= ~CAN_CS_CODE_MASK;
+ *mbCSAddr = u32TempCS;
+ }
+ /*restore interruption*/
+ EnableGlobalIRQ(irqMask);
+}
+#endif
+
+/*!
+ * brief Writes a FlexCAN Message to the Transmit Message Buffer.
+ *
+ * This function writes a CAN Message to the specified Transmit Message Buffer
+ * and changes the Message Buffer state to start CAN Message transmit. After
+ * that the function returns immediately.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The FlexCAN Message Buffer index.
+ * param pTxFrame Pointer to CAN message frame to be sent.
+ * retval kStatus_Success - Write Tx Message Buffer Successfully.
+ * retval kStatus_Fail - Tx Message Buffer is currently in use.
+ */
+status_t FLEXCAN_WriteTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_frame_t *pTxFrame)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+ assert(NULL != pTxFrame);
+ assert(pTxFrame->length <= 8U);
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ uint32_t cs_temp = 0;
+ status_t status;
+
+ /* Check if Message Buffer is available. */
+ if (CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) != (base->MB[mbIdx].CS & CAN_CS_CODE_MASK))
+ {
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
+ FLEXCAN_ERRATA_6032(base, &(base->MB[mbIdx].CS));
+#endif
+ /* Inactive Tx Message Buffer. */
+ base->MB[mbIdx].CS = (base->MB[mbIdx].CS & ~CAN_CS_CODE_MASK) | CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+
+ /* Fill Message ID field. */
+ base->MB[mbIdx].ID = pTxFrame->id;
+
+ /* Fill Message Format field. */
+ if ((uint32_t)kFLEXCAN_FrameFormatExtend == pTxFrame->format)
+ {
+ cs_temp |= CAN_CS_SRR_MASK | CAN_CS_IDE_MASK;
+ }
+
+ /* Fill Message Type field. */
+ if ((uint32_t)kFLEXCAN_FrameTypeRemote == pTxFrame->type)
+ {
+ cs_temp |= CAN_CS_RTR_MASK;
+ }
+
+ cs_temp |= CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) | CAN_CS_DLC(pTxFrame->length);
+
+ /* Load Message Payload. */
+ base->MB[mbIdx].WORD0 = pTxFrame->dataWord0;
+ base->MB[mbIdx].WORD1 = pTxFrame->dataWord1;
+
+ /* Activate Tx Message Buffer. */
+ base->MB[mbIdx].CS = cs_temp;
+
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ base->MB[FLEXCAN_GetFirstValidMb(base)].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+ base->MB[FLEXCAN_GetFirstValidMb(base)].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+#endif
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ /* Tx Message Buffer is activated, return immediately. */
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Writes a FlexCAN FD Message to the Transmit Message Buffer.
+ *
+ * This function writes a CAN FD Message to the specified Transmit Message Buffer
+ * and changes the Message Buffer state to start CAN FD Message transmit. After
+ * that the function returns immediately.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ * param pTxFrame Pointer to CAN FD message frame to be sent.
+ * retval kStatus_Success - Write Tx Message Buffer Successfully.
+ * retval kStatus_Fail - Tx Message Buffer is currently in use.
+ */
+status_t FLEXCAN_WriteFDTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_fd_frame_t *pTxFrame)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+ assert(NULL != pTxFrame);
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ status_t status;
+ uint32_t cs_temp = 0;
+ uint8_t cnt = 0;
+ uint32_t can_cs = 0;
+ uint8_t payload_dword = 1;
+ uint32_t dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ uint32_t availoffset = FLEXCAN_GetFDMailboxOffset(base, FLEXCAN_GetFirstValidMb(base));
+#endif
+ volatile uint32_t *mbAddr = &(base->MB[0].CS);
+ uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
+
+ can_cs = mbAddr[offset];
+ /* Check if Message Buffer is available. */
+ if (CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) != (can_cs & CAN_CS_CODE_MASK))
+ {
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
+ FLEXCAN_ERRATA_6032(base, &(mbAddr[offset]));
+#endif
+ /* Inactive Tx Message Buffer and Fill Message ID field. */
+ mbAddr[offset] = (can_cs & ~CAN_CS_CODE_MASK) | CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+ mbAddr[offset + 1U] = pTxFrame->id;
+
+ /* Fill Message Format field. */
+ if ((uint32_t)kFLEXCAN_FrameFormatExtend == pTxFrame->format)
+ {
+ cs_temp |= CAN_CS_SRR_MASK | CAN_CS_IDE_MASK;
+ }
+
+ /* Fill Message Type field. */
+ if ((uint32_t)kFLEXCAN_FrameTypeRemote == pTxFrame->type)
+ {
+ cs_temp |= CAN_CS_RTR_MASK;
+ }
+
+ cs_temp |= CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) | CAN_CS_DLC(pTxFrame->length) | CAN_CS_EDL(1) |
+ CAN_CS_BRS(pTxFrame->brs);
+
+ /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
+ Bytes payload. */
+ for (cnt = 0; cnt < (dataSize + 1U); cnt++)
+ {
+ payload_dword *= 2U;
+ }
+
+ /* Load Message Payload and Activate Tx Message Buffer. */
+ for (cnt = 0; cnt < payload_dword; cnt++)
+ {
+ mbAddr[offset + 2U + cnt] = pTxFrame->dataWord[cnt];
+ }
+ mbAddr[offset] = cs_temp;
+
+#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
+ mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+ mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
+#endif
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ /* Tx Message Buffer is activated, return immediately. */
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+#endif
+
+/*!
+ * brief Reads a FlexCAN Message from Receive Message Buffer.
+ *
+ * This function reads a CAN message from a specified Receive Message Buffer.
+ * The function fills a receive CAN message frame structure with
+ * just received data and activates the Message Buffer again.
+ * The function returns immediately.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The FlexCAN Message Buffer index.
+ * param pRxFrame Pointer to CAN message frame structure for reception.
+ * retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
+ * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
+ * retval kStatus_Fail - Rx Message Buffer is empty.
+ */
+status_t FLEXCAN_ReadRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+ assert(NULL != pRxFrame);
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ uint32_t cs_temp;
+ uint32_t rx_code;
+ status_t status;
+
+ /* Read CS field of Rx Message Buffer to lock Message Buffer. */
+ cs_temp = base->MB[mbIdx].CS;
+ /* Get Rx Message Buffer Code field. */
+ rx_code = (cs_temp & CAN_CS_CODE_MASK) >> CAN_CS_CODE_SHIFT;
+
+ /* Check to see if Rx Message Buffer is full. */
+ if (((uint32_t)kFLEXCAN_RxMbFull == rx_code) || ((uint32_t)kFLEXCAN_RxMbOverrun == rx_code))
+ {
+ /* Store Message ID. */
+ pRxFrame->id = base->MB[mbIdx].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
+
+ /* Get the message ID and format. */
+ pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend :
+ (uint8_t)kFLEXCAN_FrameFormatStandard;
+
+ /* Get the message type. */
+ pRxFrame->type =
+ (cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData;
+
+ /* Get the message length. */
+ pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT);
+
+ /* Get the time stamp. */
+ pRxFrame->timestamp = (uint16_t)((cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+
+ /* Store Message Payload. */
+ pRxFrame->dataWord0 = base->MB[mbIdx].WORD0;
+ pRxFrame->dataWord1 = base->MB[mbIdx].WORD1;
+
+ /* Read free-running timer to unlock Rx Message Buffer. */
+ (void)base->TIMER;
+
+ if ((uint32_t)kFLEXCAN_RxMbFull == rx_code)
+ {
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_RxOverflow;
+ }
+ }
+ else
+ {
+ /* Read free-running timer to unlock Rx Message Buffer. */
+ (void)base->TIMER;
+
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Reads a FlexCAN FD Message from Receive Message Buffer.
+ *
+ * This function reads a CAN FD message from a specified Receive Message Buffer.
+ * The function fills a receive CAN FD message frame structure with
+ * just received data and activates the Message Buffer again.
+ * The function returns immediately.
+ *
+ * param base FlexCAN peripheral base address.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ * param pRxFrame Pointer to CAN FD message frame structure for reception.
+ * retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
+ * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
+ * retval kStatus_Fail - Rx Message Buffer is empty.
+ */
+status_t FLEXCAN_ReadFDRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pRxFrame)
+{
+ /* Assertion. */
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+ assert(NULL != pRxFrame);
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+ status_t status;
+ uint32_t cs_temp;
+ uint8_t rx_code;
+ uint8_t cnt = 0;
+ uint32_t can_id = 0;
+ uint32_t dataSize;
+ dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
+ uint8_t payload_dword = 1;
+ volatile uint32_t *mbAddr = &(base->MB[0].CS);
+ uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
+
+ /* Read CS field of Rx Message Buffer to lock Message Buffer. */
+ cs_temp = mbAddr[offset];
+ can_id = mbAddr[offset + 1U];
+
+ /* Get Rx Message Buffer Code field. */
+ rx_code = (uint8_t)((cs_temp & CAN_CS_CODE_MASK) >> CAN_CS_CODE_SHIFT);
+
+ /* Check to see if Rx Message Buffer is full. */
+ if (((uint8_t)kFLEXCAN_RxMbFull == rx_code) || ((uint8_t)kFLEXCAN_RxMbOverrun == rx_code))
+ {
+ /* Store Message ID. */
+ pRxFrame->id = can_id & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
+
+ /* Get the message ID and format. */
+ pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend :
+ (uint8_t)kFLEXCAN_FrameFormatStandard;
+
+ /* Get the message type. */
+ pRxFrame->type =
+ (cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData;
+
+ /* Get the message length. */
+ pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT);
+
+ /* Get the time stamp. */
+ pRxFrame->timestamp = (uint16_t)((cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+
+ /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
+ Bytes payload. */
+ for (cnt = 0; cnt < (dataSize + 1U); cnt++)
+ {
+ payload_dword *= 2U;
+ }
+
+ /* Store Message Payload. */
+ for (cnt = 0; cnt < payload_dword; cnt++)
+ {
+ pRxFrame->dataWord[cnt] = mbAddr[offset + 2U + cnt];
+ }
+
+ /* Read free-running timer to unlock Rx Message Buffer. */
+ (void)base->TIMER;
+
+ if ((uint32_t)kFLEXCAN_RxMbFull == rx_code)
+ {
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_RxOverflow;
+ }
+ }
+ else
+ {
+ /* Read free-running timer to unlock Rx Message Buffer. */
+ (void)base->TIMER;
+
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+#endif
+
+/*!
+ * brief Reads a FlexCAN Message from Legacy Rx FIFO.
+ *
+ * This function reads a CAN message from the FlexCAN Legacy Rx FIFO.
+ *
+ * param base FlexCAN peripheral base address.
+ * param pRxFrame Pointer to CAN message frame structure for reception.
+ * retval kStatus_Success - Read Message from Rx FIFO successfully.
+ * retval kStatus_Fail - Rx FIFO is not enabled.
+ */
+status_t FLEXCAN_ReadRxFifo(CAN_Type *base, flexcan_frame_t *pRxFrame)
+{
+ /* Assertion. */
+ assert(NULL != pRxFrame);
+
+ uint32_t cs_temp;
+ status_t status;
+
+ /* Check if Legacy Rx FIFO is Enabled. */
+ if (0U != (base->MCR & CAN_MCR_RFEN_MASK))
+ {
+ /* Read CS field of Rx Message Buffer to lock Message Buffer. */
+ cs_temp = base->MB[0].CS;
+
+ /* Read data from Rx FIFO output port. */
+ /* Store Message ID. */
+ pRxFrame->id = base->MB[0].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
+
+ /* Get the message ID and format. */
+ pRxFrame->format = (cs_temp & CAN_CS_IDE_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameFormatExtend :
+ (uint8_t)kFLEXCAN_FrameFormatStandard;
+
+ /* Get the message type. */
+ pRxFrame->type =
+ (cs_temp & CAN_CS_RTR_MASK) != 0U ? (uint8_t)kFLEXCAN_FrameTypeRemote : (uint8_t)kFLEXCAN_FrameTypeData;
+
+ /* Get the message length. */
+ pRxFrame->length = (uint8_t)((cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT);
+
+ /* Get the time stamp. */
+ pRxFrame->timestamp = (uint16_t)((cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+
+ /* Store Message Payload. */
+ pRxFrame->dataWord0 = base->MB[0].WORD0;
+ pRxFrame->dataWord1 = base->MB[0].WORD1;
+
+ /* Store ID Filter Hit Index. */
+ pRxFrame->idhit = (uint16_t)(base->RXFIR & CAN_RXFIR_IDHIT_MASK);
+
+ /* Read free-running timer to unlock Rx Message Buffer. */
+ (void)base->TIMER;
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
+/*!
+ * brief Reads a FlexCAN Message from Enhanced Rx FIFO.
+ *
+ * This function reads a CAN or CAN FD message from the FlexCAN Enhanced Rx FIFO.
+ *
+ * param base FlexCAN peripheral base address.
+ * param pRxFrame Pointer to CAN FD message frame structure for reception.
+ * retval kStatus_Success - Read Message from Rx FIFO successfully.
+ * retval kStatus_Fail - Rx FIFO is not enabled.
+ */
+status_t FLEXCAN_ReadEnhancedRxFifo(CAN_Type *base, flexcan_fd_frame_t *pRxFrame)
+{
+ /* Assertion. */
+ assert(NULL != pRxFrame);
+
+ status_t status;
+ uint32_t idHitOff;
+
+ /* Check if Enhanced Rx FIFO is Enabled. */
+ if (0U != (base->ERFCR & CAN_ERFCR_ERFEN_MASK))
+ {
+ /* Enhanced Rx FIFO ID HIT offset is changed dynamically according to data length code (DLC) . */
+ idHitOff = (DLC_LENGTH_DECODE(((flexcan_fd_frame_t *)E_RX_FIFO(base))->length) + 3U) / 4U + 3U;
+ /* Copy CAN FD Message from Enhanced Rx FIFO, should use the DLC value to identify the bytes that belong to the
+ * message which is being read. */
+ (void)memcpy((void *)pRxFrame, (void *)(uint32_t *)E_RX_FIFO(base), sizeof(uint32_t) * idHitOff);
+ pRxFrame->idhit = pRxFrame->dataWord[idHitOff - 3U];
+ /* Clear the unused frame data. */
+ for (uint32_t i = (idHitOff - 3U); i < 16U; i++)
+ {
+ pRxFrame->dataWord[i] = 0x0;
+ }
+
+ /* Clear data available flag to let FlexCAN know one frame has been read from the Enhanced Rx FIFO. */
+ base->ERFSR = CAN_ERFSR_ERFDA_MASK;
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+#endif
+
+/*!
+ * brief Performs a polling send transaction on the CAN bus.
+ *
+ * note A transfer handle does not need to be created before calling this API.
+ *
+ * param base FlexCAN peripheral base pointer.
+ * param mbIdx The FlexCAN Message Buffer index.
+ * param pTxFrame Pointer to CAN message frame to be sent.
+ * retval kStatus_Success - Write Tx Message Buffer Successfully.
+ * retval kStatus_Fail - Tx Message Buffer is currently in use.
+ */
+status_t FLEXCAN_TransferSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pTxFrame)
+{
+ status_t status;
+
+ /* Write Tx Message Buffer to initiate a data sending. */
+ if (kStatus_Success == FLEXCAN_WriteTxMb(base, mbIdx, (const flexcan_frame_t *)(uintptr_t)pTxFrame))
+ {
+/* Wait until CAN Message send out. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx))
+#else
+ uint32_t u32flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx))
+#endif
+ {
+ }
+
+/* Clean Tx Message Buffer Flag. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx);
+#else
+ FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx);
+#endif
+ /*After TX MB tranfered success, update the Timestamp from MB[mbIdx].CS register*/
+ pTxFrame->timestamp = (uint16_t)((base->MB[mbIdx].CS & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Performs a polling receive transaction on the CAN bus.
+ *
+ * note A transfer handle does not need to be created before calling this API.
+ *
+ * param base FlexCAN peripheral base pointer.
+ * param mbIdx The FlexCAN Message Buffer index.
+ * param pRxFrame Pointer to CAN message frame structure for reception.
+ * retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
+ * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
+ * retval kStatus_Fail - Rx Message Buffer is empty.
+ */
+status_t FLEXCAN_TransferReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
+{
+/* Wait until Rx Message Buffer non-empty. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx))
+#else
+ uint32_t u32flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx))
+#endif
+ {
+ }
+
+/* Clean Rx Message Buffer Flag. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx);
+#else
+ FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx);
+#endif
+
+ /* Read Received CAN Message. */
+ return FLEXCAN_ReadRxMb(base, mbIdx, pRxFrame);
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Performs a polling send transaction on the CAN bus.
+ *
+ * note A transfer handle does not need to be created before calling this API.
+ *
+ * param base FlexCAN peripheral base pointer.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ * param pTxFrame Pointer to CAN FD message frame to be sent.
+ * retval kStatus_Success - Write Tx Message Buffer Successfully.
+ * retval kStatus_Fail - Tx Message Buffer is currently in use.
+ */
+status_t FLEXCAN_TransferFDSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pTxFrame)
+{
+ status_t status;
+
+ /* Write Tx Message Buffer to initiate a data sending. */
+ if (kStatus_Success == FLEXCAN_WriteFDTxMb(base, mbIdx, (const flexcan_fd_frame_t *)(uintptr_t)pTxFrame))
+ {
+/* Wait until CAN Message send out. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx))
+#else
+ uint32_t u32flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx))
+#endif
+ {
+ }
+
+/* Clean Tx Message Buffer Flag. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx);
+#else
+ FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx);
+#endif
+ /*After TX MB tranfered success, update the Timestamp from base->MB[offset for CAN FD].CS register*/
+ volatile uint32_t *mbAddr = &(base->MB[0].CS);
+ uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
+ pTxFrame->timestamp = (uint16_t)((mbAddr[offset] & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_Fail;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Performs a polling receive transaction on the CAN bus.
+ *
+ * note A transfer handle does not need to be created before calling this API.
+ *
+ * param base FlexCAN peripheral base pointer.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ * param pRxFrame Pointer to CAN FD message frame structure for reception.
+ * retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
+ * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
+ * retval kStatus_Fail - Rx Message Buffer is empty.
+ */
+status_t FLEXCAN_TransferFDReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *pRxFrame)
+{
+/* Wait until Rx Message Buffer non-empty. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u64flag << mbIdx))
+#else
+ uint32_t u32flag = 1;
+ while (0U == FLEXCAN_GetMbStatusFlags(base, u32flag << mbIdx))
+#endif
+ {
+ }
+
+/* Clean Rx Message Buffer Flag. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ FLEXCAN_ClearMbStatusFlags(base, u64flag << mbIdx);
+#else
+ FLEXCAN_ClearMbStatusFlags(base, u32flag << mbIdx);
+#endif
+
+ /* Read Received CAN Message. */
+ return FLEXCAN_ReadFDRxMb(base, mbIdx, pRxFrame);
+}
+#endif
+
+/*!
+ * brief Performs a polling receive transaction from Legacy Rx FIFO on the CAN bus.
+ *
+ * note A transfer handle does not need to be created before calling this API.
+ *
+ * param base FlexCAN peripheral base pointer.
+ * param pRxFrame Pointer to CAN message frame structure for reception.
+ * retval kStatus_Success - Read Message from Rx FIFO successfully.
+ * retval kStatus_Fail - Rx FIFO is not enabled.
+ */
+status_t FLEXCAN_TransferReceiveFifoBlocking(CAN_Type *base, flexcan_frame_t *pRxFrame)
+{
+ status_t rxFifoStatus;
+
+ /* Wait until Legacy Rx FIFO non-empty. */
+ while (0U == FLEXCAN_GetMbStatusFlags(base, (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag))
+ {
+ }
+
+ /* Read data from Legacy Rx FIFO. */
+ rxFifoStatus = FLEXCAN_ReadRxFifo(base, pRxFrame);
+
+ /* Clean Rx Fifo available flag. */
+ FLEXCAN_ClearMbStatusFlags(base, (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag);
+
+ return rxFifoStatus;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
+/*!
+ * brief Performs a polling receive transaction from Enhanced Rx FIFO on the CAN bus.
+ *
+ * note A transfer handle does not need to be created before calling this API.
+ *
+ * param base FlexCAN peripheral base pointer.
+ * param pRxFrame Pointer to CAN FD message frame structure for reception.
+ * retval kStatus_Success - Read Message from Rx FIFO successfully.
+ * retval kStatus_Fail - Rx FIFO is not enabled.
+ */
+status_t FLEXCAN_TransferReceiveEnhancedFifoBlocking(CAN_Type *base, flexcan_fd_frame_t *pRxFrame)
+{
+ status_t rxFifoStatus;
+
+ /* Wait until Enhanced Rx FIFO non-empty. */
+ while (0U == (FLEXCAN_GetStatusFlags(base) & (uint64_t)kFLEXCAN_ERxFifoDataAvlIntFlag))
+ {
+ }
+
+ /* Read data from Enhanced Rx FIFO */
+ rxFifoStatus = FLEXCAN_ReadEnhancedRxFifo(base, pRxFrame);
+
+ return rxFifoStatus;
+}
+#endif
+
+/*!
+ * brief Initializes the FlexCAN handle.
+ *
+ * This function initializes the FlexCAN handle, which can be used for other FlexCAN
+ * transactional APIs. Usually, for a specified FlexCAN instance,
+ * call this API once to get the initialized handle.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param callback The callback function.
+ * param userData The parameter of the callback function.
+ */
+void FLEXCAN_TransferCreateHandle(CAN_Type *base,
+ flexcan_handle_t *handle,
+ flexcan_transfer_callback_t callback,
+ void *userData)
+{
+ assert(NULL != handle);
+
+ uint8_t instance;
+
+ /* Clean FlexCAN transfer handle. */
+ (void)memset(handle, 0, sizeof(*handle));
+
+ /* Get instance from peripheral base address. */
+ instance = (uint8_t)FLEXCAN_GetInstance(base);
+
+ /* Save the context in global variables to support the double weak mechanism. */
+ s_flexcanHandle[instance] = handle;
+
+ /* Register Callback function. */
+ handle->callback = callback;
+ handle->userData = userData;
+
+ s_flexcanIsr = FLEXCAN_TransferHandleIRQ;
+
+ /* We Enable Error & Status interrupt here, because this interrupt just
+ * report current status of FlexCAN module through Callback function.
+ * It is insignificance without a available callback function.
+ */
+ if (handle->callback != NULL)
+ {
+ FLEXCAN_EnableInterrupts(
+ base, (uint32_t)kFLEXCAN_BusOffInterruptEnable | (uint32_t)kFLEXCAN_ErrorInterruptEnable |
+ (uint32_t)kFLEXCAN_RxWarningInterruptEnable | (uint32_t)kFLEXCAN_TxWarningInterruptEnable |
+ (uint32_t)kFLEXCAN_WakeUpInterruptEnable
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_PN_MODE) && FSL_FEATURE_FLEXCAN_HAS_PN_MODE)
+ | (uint64_t)kFLEXCAN_PNMatchWakeUpInterruptEnable |
+ (uint64_t)kFLEXCAN_PNTimeoutWakeUpInterruptEnable
+#endif
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
+ | (uint64_t)kFLEXCAN_HostAccessNCErrorInterruptEnable |
+ (uint64_t)kFLEXCAN_FlexCanAccessNCErrorInterruptEnable |
+ (uint64_t)kFLEXCAN_HostOrFlexCanCErrorInterruptEnable
+#endif
+ );
+ }
+ else
+ {
+ FLEXCAN_DisableInterrupts(
+ base, (uint32_t)kFLEXCAN_BusOffInterruptEnable | (uint32_t)kFLEXCAN_ErrorInterruptEnable |
+ (uint32_t)kFLEXCAN_RxWarningInterruptEnable | (uint32_t)kFLEXCAN_TxWarningInterruptEnable |
+ (uint32_t)kFLEXCAN_WakeUpInterruptEnable
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_PN_MODE) && FSL_FEATURE_FLEXCAN_HAS_PN_MODE)
+ | (uint64_t)kFLEXCAN_PNMatchWakeUpInterruptEnable |
+ (uint64_t)kFLEXCAN_PNTimeoutWakeUpInterruptEnable
+#endif
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
+ | (uint64_t)kFLEXCAN_HostAccessNCErrorInterruptEnable |
+ (uint64_t)kFLEXCAN_FlexCanAccessNCErrorInterruptEnable |
+ (uint64_t)kFLEXCAN_HostOrFlexCanCErrorInterruptEnable
+#endif
+ );
+ }
+
+ /* Enable interrupts in NVIC. */
+ (void)EnableIRQ((IRQn_Type)(s_flexcanRxWarningIRQ[instance]));
+ (void)EnableIRQ((IRQn_Type)(s_flexcanTxWarningIRQ[instance]));
+ (void)EnableIRQ((IRQn_Type)(s_flexcanWakeUpIRQ[instance]));
+ (void)EnableIRQ((IRQn_Type)(s_flexcanErrorIRQ[instance]));
+ (void)EnableIRQ((IRQn_Type)(s_flexcanBusOffIRQ[instance]));
+ (void)EnableIRQ((IRQn_Type)(s_flexcanMbIRQ[instance]));
+}
+
+/*!
+ * brief Sends a message using IRQ.
+ *
+ * This function sends a message using IRQ. This is a non-blocking function, which returns
+ * right away. When messages have been sent out, the send callback function is called.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param pMbXfer FlexCAN Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
+ * retval kStatus_Success Start Tx Message Buffer sending process successfully.
+ * retval kStatus_Fail Write Tx Message Buffer failed.
+ * retval kStatus_FLEXCAN_TxBusy Tx Message Buffer is in use.
+ */
+status_t FLEXCAN_TransferSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(NULL != pMbXfer);
+ assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx));
+#endif
+
+ status_t status;
+
+ /* Check if Message Buffer is idle. */
+ if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx])
+ {
+ /* Distinguish transmit type. */
+ if ((uint32_t)kFLEXCAN_FrameTypeRemote == pMbXfer->frame->type)
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxRemote;
+ }
+ else
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxData;
+ }
+
+ if (kStatus_Success ==
+ FLEXCAN_WriteTxMb(base, pMbXfer->mbIdx, (const flexcan_frame_t *)(uintptr_t)pMbXfer->frame))
+ {
+/* Enable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx);
+#endif
+ status = kStatus_Success;
+ }
+ else
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
+ status = kStatus_Fail;
+ }
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_TxBusy;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Receives a message using IRQ.
+ *
+ * This function receives a message using IRQ. This is non-blocking function, which returns
+ * right away. When the message has been received, the receive callback function is called.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param pMbXfer FlexCAN Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
+ * retval kStatus_Success - Start Rx Message Buffer receiving process successfully.
+ * retval kStatus_FLEXCAN_RxBusy - Rx Message Buffer is in use.
+ */
+status_t FLEXCAN_TransferReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
+{
+ status_t status;
+
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(NULL != pMbXfer);
+ assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx));
+#endif
+
+ /* Check if Message Buffer is idle. */
+ if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx])
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateRxData;
+
+ /* Register Message Buffer. */
+ handle->mbFrameBuf[pMbXfer->mbIdx] = pMbXfer->frame;
+
+/* Enable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx);
+#endif
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_RxBusy;
+ }
+
+ return status;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Sends a message using IRQ.
+ *
+ * This function sends a message using IRQ. This is a non-blocking function, which returns
+ * right away. When messages have been sent out, the send callback function is called.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param pMbXfer FlexCAN FD Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
+ * retval kStatus_Success Start Tx Message Buffer sending process successfully.
+ * retval kStatus_Fail Write Tx Message Buffer failed.
+ * retval kStatus_FLEXCAN_TxBusy Tx Message Buffer is in use.
+ */
+status_t FLEXCAN_TransferFDSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(NULL != pMbXfer);
+ assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx));
+#endif
+
+ status_t status;
+
+ /* Check if Message Buffer is idle. */
+ if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx])
+ {
+ /* Distinguish transmit type. */
+ if ((uint32_t)kFLEXCAN_FrameTypeRemote == pMbXfer->framefd->type)
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxRemote;
+ }
+ else
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateTxData;
+ }
+
+ if (kStatus_Success ==
+ FLEXCAN_WriteFDTxMb(base, pMbXfer->mbIdx, (const flexcan_fd_frame_t *)(uintptr_t)pMbXfer->framefd))
+ {
+/* Enable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx);
+#endif
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
+ status = kStatus_Fail;
+ }
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_TxBusy;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Receives a message using IRQ.
+ *
+ * This function receives a message using IRQ. This is non-blocking function, which returns
+ * right away. When the message has been received, the receive callback function is called.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param pMbXfer FlexCAN FD Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
+ * retval kStatus_Success - Start Rx Message Buffer receiving process successfully.
+ * retval kStatus_FLEXCAN_RxBusy - Rx Message Buffer is in use.
+ */
+status_t FLEXCAN_TransferFDReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *pMbXfer)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(NULL != pMbXfer);
+ assert(pMbXfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, pMbXfer->mbIdx));
+#endif
+
+ status_t status;
+
+ /* Check if Message Buffer is idle. */
+ if ((uint8_t)kFLEXCAN_StateIdle == handle->mbState[pMbXfer->mbIdx])
+ {
+ handle->mbState[pMbXfer->mbIdx] = (uint8_t)kFLEXCAN_StateRxData;
+
+ /* Register Message Buffer. */
+ handle->mbFDFrameBuf[pMbXfer->mbIdx] = pMbXfer->framefd;
+
+/* Enable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u64mask << pMbXfer->mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_EnableMbInterrupts(base, u32mask << pMbXfer->mbIdx);
+#endif
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_RxBusy;
+ }
+
+ return status;
+}
+#endif
+
+/*!
+ * brief Receives a message from Legacy Rx FIFO using IRQ.
+ *
+ * This function receives a message using IRQ. This is a non-blocking function, which returns
+ * right away. When all messages have been received, the receive callback function is called.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param pFifoXfer FlexCAN Rx FIFO transfer structure. See the ref flexcan_fifo_transfer_t.
+ * retval kStatus_Success - Start Rx FIFO receiving process successfully.
+ * retval kStatus_FLEXCAN_RxFifoBusy - Rx FIFO is currently in use.
+ */
+status_t FLEXCAN_TransferReceiveFifoNonBlocking(CAN_Type *base,
+ flexcan_handle_t *handle,
+ flexcan_fifo_transfer_t *pFifoXfer)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(NULL != pFifoXfer);
+
+ status_t status;
+ uint32_t irqMask = (uint32_t)kFLEXCAN_RxFifoOverflowFlag | (uint32_t)kFLEXCAN_RxFifoWarningFlag;
+
+ /* Check if Message Buffer is idle. */
+ if ((uint8_t)kFLEXCAN_StateIdle == handle->rxFifoState)
+ {
+ handle->rxFifoState = (uint8_t)kFLEXCAN_StateRxFifo;
+
+ /* Register Message Buffer. */
+ handle->rxFifoFrameBuf = pFifoXfer->frame;
+ handle->rxFifoFrameNum = pFifoXfer->frameNum;
+ handle->rxFifoTransferTotalNum = pFifoXfer->frameNum;
+
+ if (handle->rxFifoTransferTotalNum < 5U)
+ {
+ /* Enable data available interrupt. */
+ irqMask |= (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag;
+ }
+
+ /* Enable Message Buffer Interrupt. */
+ FLEXCAN_EnableMbInterrupts(base, irqMask);
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_RxFifoBusy;
+ }
+
+ return status;
+}
+
+/*!
+ * brief Gets the Legacy Rx Fifo transfer status during a interrupt non-blocking receive.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param count Number of CAN messages receive so far by the non-blocking transaction.
+ * retval kStatus_InvalidArgument count is Invalid.
+ * retval kStatus_Success Successfully return the count.
+ */
+
+status_t FLEXCAN_TransferGetReceiveFifoCount(CAN_Type *base, flexcan_handle_t *handle, size_t *count)
+{
+ assert(NULL != handle);
+
+ status_t result = kStatus_Success;
+
+ if (handle->rxFifoState == (uint32_t)kFLEXCAN_StateIdle)
+ {
+ result = kStatus_NoTransferInProgress;
+ }
+ else
+ {
+ *count = handle->rxFifoTransferTotalNum - handle->rxFifoFrameNum;
+ }
+
+ return result;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
+/*!
+ * brief Receives a message from Enhanced Rx FIFO using IRQ.
+ *
+ * This function receives a message using IRQ. This is a non-blocking function, which returns
+ * right away. When all messages have been received, the receive callback function is called.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param pFifoXfer FlexCAN Rx FIFO transfer structure. See the ref flexcan_fifo_transfer_t.
+ * retval kStatus_Success - Start Rx FIFO receiving process successfully.
+ * retval kStatus_FLEXCAN_RxFifoBusy - Rx FIFO is currently in use.
+ */
+status_t FLEXCAN_TransferReceiveEnhancedFifoNonBlocking(CAN_Type *base,
+ flexcan_handle_t *handle,
+ flexcan_fifo_transfer_t *pFifoXfer)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(NULL != pFifoXfer);
+
+ status_t status;
+ uint32_t watermark = ((base->ERFCR & CAN_ERFCR_ERFWM_MASK) >> CAN_ERFCR_ERFWM_SHIFT) + 1U;
+ uint64_t irqMask =
+ (uint64_t)kFLEXCAN_ERxFifoUnderflowInterruptEnable | (uint64_t)kFLEXCAN_ERxFifoOverflowInterruptEnable;
+
+ /* Check if Enhanced Rx FIFO is idle. */
+ if ((uint8_t)kFLEXCAN_StateIdle == handle->rxFifoState)
+ {
+ handle->rxFifoState = (uint8_t)kFLEXCAN_StateRxFifo;
+
+ /* Register Message Buffer. */
+ handle->rxFifoFDFrameBuf = pFifoXfer->framefd;
+ handle->rxFifoFrameNum = pFifoXfer->frameNum;
+ handle->rxFifoTransferTotalNum = pFifoXfer->frameNum;
+
+ if (handle->rxFifoTransferTotalNum >= watermark)
+ {
+ /* Enable watermark interrupt. */
+ irqMask |= (uint64_t)kFLEXCAN_ERxFifoWatermarkInterruptEnable;
+ }
+ else
+ {
+ /* Enable data available interrupt. */
+ irqMask |= (uint64_t)kFLEXCAN_ERxFifoDataAvlInterruptEnable;
+ }
+ /* Enable Enhanced Rx FIFO Interrupt. */
+ FLEXCAN_EnableInterrupts(base, irqMask);
+
+ status = kStatus_Success;
+ }
+ else
+ {
+ status = kStatus_FLEXCAN_RxFifoBusy;
+ }
+
+ return status;
+}
+#endif
+
+/*!
+ * brief Aborts the interrupt driven message send process.
+ *
+ * This function aborts the interrupt driven message send process.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param mbIdx The FlexCAN Message Buffer index.
+ */
+void FLEXCAN_TransferAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
+{
+ uint16_t timestamp;
+
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+/* Disable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, u64mask << mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, u32mask << mbIdx);
+#endif
+
+ /* Update the TX frame 's time stamp by MB[mbIdx].cs. */
+ timestamp = (uint16_t)((base->MB[mbIdx].CS & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+ handle->timestamp[mbIdx] = timestamp;
+
+ /* Clean Message Buffer. */
+ FLEXCAN_SetTxMbConfig(base, mbIdx, true);
+
+ handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+/*!
+ * brief Aborts the interrupt driven message send process.
+ *
+ * This function aborts the interrupt driven message send process.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ */
+void FLEXCAN_TransferFDAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
+{
+ volatile uint32_t *mbAddr;
+ uint32_t offset;
+ uint16_t timestamp;
+
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+/* Disable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, u64mask << mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, u32mask << mbIdx);
+#endif
+
+ /* Update the TX frame 's time stamp by base->MB[offset for CAN FD].CS. */
+ mbAddr = &(base->MB[0].CS);
+ offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
+ timestamp = (uint16_t)((mbAddr[offset] & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT);
+ handle->timestamp[mbIdx] = timestamp;
+
+ /* Clean Message Buffer. */
+ FLEXCAN_SetFDTxMbConfig(base, mbIdx, true);
+
+ handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
+}
+
+/*!
+ * brief Aborts the interrupt driven message receive process.
+ *
+ * This function aborts the interrupt driven message receive process.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ */
+void FLEXCAN_TransferFDAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+/* Disable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, u64mask << mbIdx);
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, u32mask << mbIdx);
+#endif
+
+ /* Un-register handle. */
+ handle->mbFDFrameBuf[mbIdx] = NULL;
+ handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
+}
+#endif
+
+/*!
+ * brief Aborts the interrupt driven message receive process.
+ *
+ * This function aborts the interrupt driven message receive process.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param mbIdx The FlexCAN Message Buffer index.
+ */
+void FLEXCAN_TransferAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+ assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
+#if !defined(NDEBUG)
+ assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
+#endif
+
+/* Disable Message Buffer Interrupt. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, (u64mask << mbIdx));
+#else
+ uint32_t u32mask = 1;
+ FLEXCAN_DisableMbInterrupts(base, (u32mask << mbIdx));
+#endif
+
+ /* Un-register handle. */
+ handle->mbFrameBuf[mbIdx] = NULL;
+ handle->mbState[mbIdx] = (uint8_t)kFLEXCAN_StateIdle;
+}
+
+/*!
+ * brief Aborts the interrupt driven message receive from Legacy Rx FIFO process.
+ *
+ * This function aborts the interrupt driven message receive from Legacy Rx FIFO process.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ */
+void FLEXCAN_TransferAbortReceiveFifo(CAN_Type *base, flexcan_handle_t *handle)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+
+ /* Check if Rx FIFO is enabled. */
+ if (0U != (base->MCR & CAN_MCR_RFEN_MASK))
+ {
+ /* Disable Rx Message FIFO Interrupts. */
+ FLEXCAN_DisableMbInterrupts(base, (uint32_t)kFLEXCAN_RxFifoOverflowFlag | (uint32_t)kFLEXCAN_RxFifoWarningFlag |
+ (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag);
+
+ /* Un-register handle. */
+ handle->rxFifoFrameBuf = NULL;
+ /* Clear transfer count. */
+ handle->rxFifoFrameNum = 0U;
+ handle->rxFifoTransferTotalNum = 0U;
+ }
+
+ handle->rxFifoState = (uint8_t)kFLEXCAN_StateIdle;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
+/*!
+ * brief Aborts the interrupt driven message receive from Enhanced Rx FIFO process.
+ *
+ * This function aborts the interrupt driven message receive from Rx FIFO process.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ */
+void FLEXCAN_TransferAbortReceiveEnhancedFifo(CAN_Type *base, flexcan_handle_t *handle)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+
+ /* Check if Enhanced Rx FIFO is enabled. */
+ if (0U != (base->ERFCR & CAN_ERFCR_ERFEN_MASK))
+ {
+ /* Disable all Rx Message FIFO interrupts. */
+ FLEXCAN_DisableInterrupts(base, (uint64_t)kFLEXCAN_ERxFifoUnderflowInterruptEnable |
+ (uint64_t)kFLEXCAN_ERxFifoOverflowInterruptEnable |
+ (uint64_t)kFLEXCAN_ERxFifoWatermarkInterruptEnable |
+ (uint64_t)kFLEXCAN_ERxFifoDataAvlInterruptEnable);
+
+ /* Un-register handle. */
+ handle->rxFifoFDFrameBuf = NULL;
+ /* Clear transfer count. */
+ handle->rxFifoFrameNum = 0U;
+ handle->rxFifoTransferTotalNum = 0U;
+ }
+
+ handle->rxFifoState = (uint8_t)kFLEXCAN_StateIdle;
+}
+#endif
+
+/*!
+ * brief Gets the detail index of Mailbox's Timestamp by handle.
+ *
+ * Then function can only be used when calling non-blocking Data transfer (TX/RX) API,
+ * After TX/RX data transfer done (User can get the status by handler's callback function),
+ * we can get the detail index of Mailbox's timestamp by handle,
+ * Detail non-blocking data transfer API (TX/RX) contain.
+ * -FLEXCAN_TransferSendNonBlocking
+ * -FLEXCAN_TransferFDSendNonBlocking
+ * -FLEXCAN_TransferReceiveNonBlocking
+ * -FLEXCAN_TransferFDReceiveNonBlocking
+ * -FLEXCAN_TransferReceiveFifoNonBlocking
+ *
+ * param handle FlexCAN handle pointer.
+ * param mbIdx The FlexCAN FD Message Buffer index.
+ * return the index of mailbox 's timestamp stored in the handle.
+ *
+ */
+uint32_t FLEXCAN_GetTimeStamp(flexcan_handle_t *handle, uint8_t mbIdx)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+
+ return (uint32_t)(handle->timestamp[mbIdx]);
+}
+
+/*!
+ * brief Check unhandle interrupt events
+ *
+ * param base FlexCAN peripheral base address.
+ * return TRUE if unhandled interrupt action exist, FALSE if no unhandlered interrupt action exist.
+ */
+static bool FLEXCAN_CheckUnhandleInterruptEvents(CAN_Type *base)
+{
+ uint64_t tempmask;
+ uint64_t tempflag;
+ bool fgRet = false;
+
+ if (0U == (FLEXCAN_GetStatusFlags(base) &
+ (FLEXCAN_ERROR_AND_STATUS_INIT_FLAG | FLEXCAN_WAKE_UP_FLAG | FLEXCAN_MEMORY_ENHANCED_RX_FIFO_INIT_FLAG)))
+ {
+ /* If no error, wake_up or enhanced RX FIFO status, Checking whether exist MB interrupt status and legacy RX
+ * FIFO interrupt status */
+ tempmask = (uint64_t)base->IMASK1;
+ tempflag = (uint64_t)base->IFLAG1;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ tempmask |= ((uint64_t)base->IMASK2) << 32;
+ tempflag |= ((uint64_t)base->IFLAG2) << 32;
+#endif
+ fgRet = (0U != (tempmask & tempflag));
+ }
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
+ else if (0U != (FLEXCAN_GetStatusFlags(base) & FLEXCAN_MEMORY_ENHANCED_RX_FIFO_INIT_FLAG))
+ {
+ /* Checking whether exist enhanced RX FIFO interrupt status. */
+ tempmask = (uint64_t)base->ERFIER;
+ tempflag = (uint64_t)base->ERFSR;
+ fgRet = (0U != (tempmask & tempflag));
+ }
+#endif
+ else
+ {
+ /* Exist error or wake up flag. */
+ fgRet = true;
+ }
+
+ return fgRet;
+}
+
+/*!
+ * brief Sub Handler Data Trasfered Events
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param pResult Pointer to the Handle result.
+ *
+ * return the status after handle each data transfered event.
+ */
+static status_t FLEXCAN_SubHandlerForDataTransfered(CAN_Type *base, flexcan_handle_t *handle, uint32_t *pResult)
+{
+ status_t status = kStatus_FLEXCAN_UnHandled;
+ uint32_t result = 0xFFU;
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t intflag = (((uint64_t)base->IMASK2 & base->IFLAG2) << 32UL) | (base->IMASK1 & base->IFLAG1);
+#else
+ uint32_t intflag = base->IMASK1 & base->IFLAG1;
+#endif
+ /* For this implementation, we solve the Message with lowest MB index first. */
+ for (result = 0U; result < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); result++)
+ {
+ /* Find the lowest unhandled Message Buffer */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ if (0UL != (intflag & ((uint64_t)1UL << result)))
+#else
+ if (0UL != (intflag & ((uint32_t)1UL << result)))
+#endif
+ {
+ break;
+ }
+ }
+
+ /* find Message to deal with. */
+ if (result < (uint32_t)FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base))
+ {
+ /* Solve Legacy Rx FIFO interrupt. */
+ if (((uint8_t)kFLEXCAN_StateIdle != handle->rxFifoState) && (result <= (uint32_t)CAN_IFLAG1_BUF7I_SHIFT) &&
+ ((base->MCR & CAN_MCR_RFEN_MASK) != 0U))
+ {
+ uint32_t u32mask = 1;
+ switch (u32mask << result)
+ {
+ case kFLEXCAN_RxFifoOverflowFlag:
+ status = kStatus_FLEXCAN_RxFifoOverflow;
+ break;
+
+ case kFLEXCAN_RxFifoWarningFlag:
+ if ((handle->rxFifoFrameNum > 5U) && (0U != (base->IFLAG1 & (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag)))
+ {
+ for (uint32_t i = 0; i < 5UL; i++)
+ {
+ status = FLEXCAN_ReadRxFifo(base, handle->rxFifoFrameBuf);
+
+ if (kStatus_Success == status)
+ {
+ /* Align the current rxfifo timestamp to the timestamp array by handle. */
+ handle->timestamp[i] = handle->rxFifoFrameBuf->timestamp;
+ handle->rxFifoFrameBuf++;
+ handle->rxFifoFrameNum--;
+ /* Clean Rx Fifo available flag to discard the frame that has been read. */
+ FLEXCAN_ClearMbStatusFlags(base, (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag);
+ }
+ else
+ {
+ return kStatus_FLEXCAN_RxFifoDisabled;
+ }
+ }
+ if (handle->rxFifoFrameNum < 5UL)
+ {
+ /* Enable data avaliable interrupt. */
+ FLEXCAN_EnableMbInterrupts(base, (uint32_t)kFLEXCAN_RxFifoFrameAvlFlag);
+ }
+ status = kStatus_FLEXCAN_RxFifoBusy;
+ }
+ else
+ {
+ /* Should enter case kFLEXCAN_RxFifoFrameAvlFlag but not, means previous transfer may have
+ * overflow*/
+ status = kStatus_FLEXCAN_RxFifoWarning;
+ }
+ break;
+
+ case kFLEXCAN_RxFifoFrameAvlFlag:
+ /* Whether still has CAN messages remaining to be received. */
+ if (handle->rxFifoFrameNum > 0U)
+ {
+ status = FLEXCAN_ReadRxFifo(base, handle->rxFifoFrameBuf);
+ if (kStatus_Success == status)
+ {
+ /* Align the current (index 0) rxfifo timestamp to the timestamp array by handle. */
+ handle->timestamp[0] = handle->rxFifoFrameBuf->timestamp;
+ handle->rxFifoFrameBuf++;
+ handle->rxFifoFrameNum--;
+ }
+ else
+ {
+ return kStatus_FLEXCAN_RxFifoDisabled;
+ }
+ }
+ if (handle->rxFifoFrameNum == 0U)
+ {
+ /* Stop receiving Ehanced Rx FIFO when the transmission is over. */
+ FLEXCAN_TransferAbortReceiveFifo(base, handle);
+ status = kStatus_FLEXCAN_RxFifoIdle;
+ }
+ else
+ {
+ /* Continue use data avaliable interrupt. */
+ status = kStatus_FLEXCAN_RxFifoBusy;
+ }
+ break;
+
+ default:
+ status = kStatus_FLEXCAN_UnHandled;
+ break;
+ }
+ }
+ else
+ {
+ /* Get current State of Message Buffer. */
+ switch (handle->mbState[result])
+ {
+ /* Solve Rx Data Frame. */
+ case (uint8_t)kFLEXCAN_StateRxData:
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0U != (base->MCR & CAN_MCR_FDEN_MASK))
+ {
+ status = FLEXCAN_ReadFDRxMb(base, (uint8_t)result, handle->mbFDFrameBuf[result]);
+ if (kStatus_Success == status)
+ {
+ /* Align the current index of RX MB timestamp to the timestamp array by handle. */
+ handle->timestamp[result] = handle->mbFDFrameBuf[result]->timestamp;
+ status = kStatus_FLEXCAN_RxIdle;
+ }
+ }
+ else
+#endif
+ {
+ status = FLEXCAN_ReadRxMb(base, (uint8_t)result, handle->mbFrameBuf[result]);
+ if (kStatus_Success == status)
+ {
+ /* Align the current index of RX MB timestamp to the timestamp array by handle. */
+ handle->timestamp[result] = handle->mbFrameBuf[result]->timestamp;
+ status = kStatus_FLEXCAN_RxIdle;
+ }
+ }
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0U != (base->MCR & CAN_MCR_FDEN_MASK))
+ {
+ FLEXCAN_TransferFDAbortReceive(base, handle, (uint8_t)result);
+ }
+ else
+#endif
+ {
+ FLEXCAN_TransferAbortReceive(base, handle, (uint8_t)result);
+ }
+ break;
+
+ /* Sove Rx Remote Frame. User need to Read the frame in Mail box in time by Read from MB API. */
+ case (uint8_t)kFLEXCAN_StateRxRemote:
+ status = kStatus_FLEXCAN_RxRemote;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0U != (base->MCR & CAN_MCR_FDEN_MASK))
+ {
+ FLEXCAN_TransferFDAbortReceive(base, handle, (uint8_t)result);
+ }
+ else
+#endif
+ {
+ FLEXCAN_TransferAbortReceive(base, handle, (uint8_t)result);
+ }
+ break;
+
+ /* Solve Tx Data Frame. */
+ case (uint8_t)kFLEXCAN_StateTxData:
+ status = kStatus_FLEXCAN_TxIdle;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
+ if (0U != (base->MCR & CAN_MCR_FDEN_MASK))
+ {
+ FLEXCAN_TransferFDAbortSend(base, handle, (uint8_t)result);
+ }
+ else
+#endif
+ {
+ FLEXCAN_TransferAbortSend(base, handle, (uint8_t)result);
+ }
+ break;
+
+ /* Solve Tx Remote Frame. */
+ case (uint8_t)kFLEXCAN_StateTxRemote:
+ handle->mbState[result] = (uint8_t)kFLEXCAN_StateRxRemote;
+ status = kStatus_FLEXCAN_TxSwitchToRx;
+ break;
+
+ default:
+ status = kStatus_FLEXCAN_UnHandled;
+ break;
+ }
+ }
+
+ /* Clear resolved Message Buffer IRQ. */
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
+ uint64_t u64flag = 1;
+ FLEXCAN_ClearMbStatusFlags(base, u64flag << result);
+#else
+ uint32_t u32flag = 1;
+ FLEXCAN_ClearMbStatusFlags(base, u32flag << result);
+#endif
+ }
+
+ *pResult = result;
+
+ return status;
+}
+
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
+/*!
+ * brief Sub Handler Ehanced Rx FIFO event
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ * param flags FlexCAN interrupt flags.
+ *
+ * return the status after handle Ehanced Rx FIFO event.
+ */
+static status_t FLEXCAN_SubHandlerForEhancedRxFifo(CAN_Type *base, flexcan_handle_t *handle, uint64_t flags)
+{
+ uint32_t watermark = ((base->ERFCR & CAN_ERFCR_ERFWM_MASK) >> CAN_ERFCR_ERFWM_SHIFT) + 1U;
+ uint32_t transferFrames;
+
+ status_t status;
+ /* Solve Ehanced Rx FIFO interrupt. */
+ if ((0u != (flags & (uint64_t)kFLEXCAN_ERxFifoUnderflowIntFlag)) &&
+ (0u != (base->ERFIER & CAN_ERFIER_ERFUFWIE_MASK)))
+ {
+ status = kStatus_FLEXCAN_RxFifoUnderflow;
+ FLEXCAN_ClearStatusFlags(base, (uint64_t)kFLEXCAN_ERxFifoUnderflowIntFlag);
+ }
+ else if ((0u != (flags & (uint64_t)kFLEXCAN_ERxFifoOverflowIntFlag)) &&
+ (0u != (base->ERFIER & CAN_ERFIER_ERFOVFIE_MASK)))
+ {
+ status = kStatus_FLEXCAN_RxFifoOverflow;
+ FLEXCAN_ClearStatusFlags(base, (uint64_t)kFLEXCAN_ERxFifoOverflowIntFlag);
+ }
+ else if ((0u != (flags & (uint64_t)kFLEXCAN_ERxFifoWatermarkIntFlag)) &&
+ (0u != (base->ERFIER & CAN_ERFIER_ERFWMIIE_MASK)))
+ {
+ /* Whether the number of CAN messages remaining to be received is greater than the watermark. */
+ transferFrames = (handle->rxFifoFrameNum > watermark) ? watermark : handle->rxFifoFrameNum;
+
+ for (uint32_t i = 0; i < transferFrames; i++)
+ {
+ status = FLEXCAN_ReadEnhancedRxFifo(base, handle->rxFifoFDFrameBuf);
+
+ if (kStatus_Success == status)
+ {
+ handle->rxFifoFDFrameBuf++;
+ handle->rxFifoFrameNum--;
+ /* Clear data Watermark flag due to has read back one frame. */
+ base->ERFSR = CAN_ERFSR_ERFWMI_MASK;
+ }
+ else
+ {
+ return kStatus_FLEXCAN_RxFifoDisabled;
+ }
+ }
+ if (handle->rxFifoFrameNum == 0U)
+ {
+ /* Stop receiving Ehanced Rx FIFO when the transmission is over. */
+ FLEXCAN_TransferAbortReceiveEnhancedFifo(base, handle);
+ status = kStatus_FLEXCAN_RxFifoIdle;
+ }
+ else if (handle->rxFifoFrameNum < watermark)
+ {
+ /* Disable watermark interrupt and enable data avaliable interrupt. */
+ FLEXCAN_DisableInterrupts(base, (uint64_t)kFLEXCAN_ERxFifoWatermarkInterruptEnable);
+ FLEXCAN_EnableInterrupts(base, (uint64_t)kFLEXCAN_ERxFifoDataAvlInterruptEnable);
+ status = kStatus_FLEXCAN_RxFifoBusy;
+ }
+ else
+ {
+ /* Continue use watermark interrupt. */
+ status = kStatus_FLEXCAN_RxFifoBusy;
+ }
+ }
+ else
+ {
+ /* Data available status, check Whether still has CAN messages remaining to be received. */
+ if (handle->rxFifoFrameNum > 0U)
+ {
+ status = FLEXCAN_ReadEnhancedRxFifo(base, handle->rxFifoFDFrameBuf);
+
+ if (kStatus_Success == status)
+ {
+ handle->rxFifoFDFrameBuf++;
+ handle->rxFifoFrameNum--;
+ }
+ else
+ {
+ return kStatus_FLEXCAN_RxFifoDisabled;
+ }
+ }
+ if (handle->rxFifoFrameNum == 0U)
+ {
+ /* Stop receiving Ehanced Rx FIFO when the transmission is over. */
+ FLEXCAN_TransferAbortReceiveEnhancedFifo(base, handle);
+ status = kStatus_FLEXCAN_RxFifoIdle;
+ }
+ else
+ {
+ /* Continue use data avaliable interrupt. */
+ status = kStatus_FLEXCAN_RxFifoBusy;
+ }
+ }
+ return status;
+}
+#endif
+
+/*!
+ * brief FlexCAN IRQ handle function.
+ *
+ * This function handles the FlexCAN Error, the Message Buffer, and the Rx FIFO IRQ request.
+ *
+ * param base FlexCAN peripheral base address.
+ * param handle FlexCAN handle pointer.
+ */
+void FLEXCAN_TransferHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
+{
+ /* Assertion. */
+ assert(NULL != handle);
+
+ status_t status;
+ uint32_t mbNum = 0xFFU;
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_PN_MODE) && FSL_FEATURE_FLEXCAN_HAS_PN_MODE) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) || \
+ (defined(FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL) && FSL_FEATURE_FLEXCAN_HAS_MEMORY_ERROR_CONTROL)
+ uint64_t result = 0U;
+#else
+ uint32_t result = 0U;
+#endif
+ do
+ {
+ /* Get Current FlexCAN Module Error and Status. */
+ result = FLEXCAN_GetStatusFlags(base);
+
+ /* To handle FlexCAN Error and Status Interrupt first. */
+ if (0U != (result & FLEXCAN_ERROR_AND_STATUS_INIT_FLAG))
+ {
+ status = kStatus_FLEXCAN_ErrorStatus;
+ /* Clear FlexCAN Error and Status Interrupt. */
+ FLEXCAN_ClearStatusFlags(base, FLEXCAN_ERROR_AND_STATUS_INIT_FLAG);
+ }
+ else if (0U != (result & FLEXCAN_WAKE_UP_FLAG))
+ {
+ status = kStatus_FLEXCAN_WakeUp;
+ FLEXCAN_ClearStatusFlags(base, FLEXCAN_WAKE_UP_FLAG);
+ }
+#if (defined(FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO) && FSL_FEATURE_FLEXCAN_HAS_ENHANCED_RX_FIFO)
+ else if (0U != (FLEXCAN_EFIFO_STATUS_UNMASK(result & FLEXCAN_MEMORY_ENHANCED_RX_FIFO_INIT_FLAG) & base->ERFIER))
+ {
+ status = FLEXCAN_SubHandlerForEhancedRxFifo(base, handle, result);
+ }
+#endif
+ else
+ {
+ /* To handle Message Buffer or Legacy Rx FIFO transfer. */
+ status = FLEXCAN_SubHandlerForDataTransfered(base, handle, &mbNum);
+ result = mbNum;
+ }
+
+ /* Calling Callback Function if has one. */
+ if (handle->callback != NULL)
+ {
+ handle->callback(base, handle, status, result, handle->userData);
+ }
+ } while (FLEXCAN_CheckUnhandleInterruptEvents(base));
+}
+
+#if defined(CAN0)
+void CAN0_DriverIRQHandler(void);
+void CAN0_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[0]);
+
+ s_flexcanIsr(CAN0, s_flexcanHandle[0]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(CAN1)
+void CAN1_DriverIRQHandler(void);
+void CAN1_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[1]);
+
+ s_flexcanIsr(CAN1, s_flexcanHandle[1]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(CAN2)
+void CAN2_DriverIRQHandler(void);
+void CAN2_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[2]);
+
+ s_flexcanIsr(CAN2, s_flexcanHandle[2]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(CAN3)
+void CAN3_DriverIRQHandler(void);
+void CAN3_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[3]);
+
+ s_flexcanIsr(CAN3, s_flexcanHandle[3]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(CAN4)
+void CAN4_DriverIRQHandler(void);
+void CAN4_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[4]);
+
+ s_flexcanIsr(CAN4, s_flexcanHandle[4]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(DMA__CAN0)
+void DMA_FLEXCAN0_INT_DriverIRQHandler(void);
+void DMA_FLEXCAN0_INT_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN0)]);
+
+ s_flexcanIsr(DMA__CAN0, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN0)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(DMA__CAN1)
+void DMA_FLEXCAN1_INT_DriverIRQHandler(void);
+void DMA_FLEXCAN1_INT_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN1)]);
+
+ s_flexcanIsr(DMA__CAN1, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN1)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(DMA__CAN2)
+void DMA_FLEXCAN2_INT_DriverIRQHandler(void);
+void DMA_FLEXCAN2_INT_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN2)]);
+
+ s_flexcanIsr(DMA__CAN2, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN2)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(ADMA__CAN0)
+void ADMA_FLEXCAN0_INT_DriverIRQHandler(void);
+void ADMA_FLEXCAN0_INT_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN0)]);
+
+ s_flexcanIsr(ADMA__CAN0, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN0)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(ADMA__CAN1)
+void ADMA_FLEXCAN1_INT_DriverIRQHandler(void);
+void ADMA_FLEXCAN1_INT_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN1)]);
+
+ s_flexcanIsr(ADMA__CAN1, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN1)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(ADMA__CAN2)
+void ADMA_FLEXCAN2_INT_DriverIRQHandler(void);
+void ADMA_FLEXCAN2_INT_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN2)]);
+
+ s_flexcanIsr(ADMA__CAN2, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN2)]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(FLEXCAN1)
+void CAN_FD1_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[1]);
+
+ s_flexcanIsr(FLEXCAN1, s_flexcanHandle[1]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(FLEXCAN2)
+void CAN_FD2_DriverIRQHandler(void)
+{
+ assert(NULL != s_flexcanHandle[2]);
+
+ s_flexcanIsr(FLEXCAN2, s_flexcanHandle[2]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif