summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/mcux-sdk/drivers/edma
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--bsps/arm/imxrt/mcux-sdk/drivers/edma/fsl_edma.c2858
-rw-r--r--bsps/arm/imxrt/mcux-sdk/drivers/edma/fsl_edma.h1018
2 files changed, 3876 insertions, 0 deletions
diff --git a/bsps/arm/imxrt/mcux-sdk/drivers/edma/fsl_edma.c b/bsps/arm/imxrt/mcux-sdk/drivers/edma/fsl_edma.c
new file mode 100644
index 0000000000..269d62c7ff
--- /dev/null
+++ b/bsps/arm/imxrt/mcux-sdk/drivers/edma/fsl_edma.c
@@ -0,0 +1,2858 @@
+/*
+ * Copyright (c) 2015, Freescale Semiconductor, Inc.
+ * Copyright 2016-2022 NXP
+ * All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include "fsl_edma.h"
+#if defined FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
+#include "fsl_memory.h"
+#endif
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+
+/* Component ID definition, used by tools. */
+#ifndef FSL_COMPONENT_ID
+#define FSL_COMPONENT_ID "platform.drivers.edma"
+#endif
+
+#define EDMA_TRANSFER_ENABLED_MASK 0x80U
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+
+/*!
+ * @brief Get instance offset.
+ *
+ * @param instance EDMA peripheral instance number.
+ */
+static uint32_t EDMA_GetInstanceOffset(uint32_t instance);
+
+/*!
+ * @brief Map transfer width.
+ *
+ * @param width transfer width.
+ */
+static edma_transfer_size_t EDMA_TransferWidthMapping(uint32_t width);
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+
+/*! @brief Array to map EDMA instance number to base pointer. */
+static DMA_Type *const s_edmaBases[] = DMA_BASE_PTRS;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+/*! @brief Array to map EDMA instance number to clock name. */
+static const clock_ip_name_t s_edmaClockName[] = EDMA_CLOCKS;
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+/*! @brief Array to map EDMA instance number to IRQ number. */
+static const IRQn_Type s_edmaIRQNumber[][FSL_FEATURE_EDMA_MODULE_CHANNEL] = DMA_CHN_IRQS;
+
+/*! @brief Pointers to transfer handle for each EDMA channel. */
+static edma_handle_t *s_EDMAHandle[FSL_FEATURE_EDMA_MODULE_CHANNEL * FSL_FEATURE_SOC_EDMA_COUNT];
+
+/*******************************************************************************
+ * Code
+ ******************************************************************************/
+
+static uint32_t EDMA_GetInstance(DMA_Type *base)
+{
+ uint32_t instance;
+
+ /* Find the instance index from base address mappings. */
+ for (instance = 0; instance < ARRAY_SIZE(s_edmaBases); instance++)
+ {
+ if (s_edmaBases[instance] == base)
+ {
+ break;
+ }
+ }
+
+ assert(instance < ARRAY_SIZE(s_edmaBases));
+
+ return instance;
+}
+
+/*!
+ * brief Push content of TCD structure into hardware TCD register.
+ *
+ * param base EDMA peripheral base address.
+ * param channel EDMA channel number.
+ * param tcd Point to TCD structure.
+ */
+void EDMA_InstallTCD(DMA_Type *base, uint32_t channel, edma_tcd_t *tcd)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+ assert(tcd != NULL);
+ assert(((uint32_t)tcd & 0x1FU) == 0U);
+
+ /* Push tcd into hardware TCD register */
+ base->TCD[channel].SADDR = tcd->SADDR;
+ base->TCD[channel].SOFF = tcd->SOFF;
+ base->TCD[channel].ATTR = tcd->ATTR;
+ base->TCD[channel].NBYTES_MLNO = tcd->NBYTES;
+ base->TCD[channel].SLAST = (int32_t)tcd->SLAST;
+ base->TCD[channel].DADDR = tcd->DADDR;
+ base->TCD[channel].DOFF = tcd->DOFF;
+ base->TCD[channel].CITER_ELINKNO = tcd->CITER;
+ base->TCD[channel].DLAST_SGA = (int32_t)tcd->DLAST_SGA;
+ /* Clear DONE bit first, otherwise ESG cannot be set */
+ base->TCD[channel].CSR = 0;
+ base->TCD[channel].CSR = tcd->CSR;
+ base->TCD[channel].BITER_ELINKNO = tcd->BITER;
+}
+
+/*!
+ * brief Initializes the eDMA peripheral.
+ *
+ * This function ungates the eDMA clock and configures the eDMA peripheral according
+ * to the configuration structure.
+ *
+ * param base eDMA peripheral base address.
+ * param config A pointer to the configuration structure, see "edma_config_t".
+ * note This function enables the minor loop map feature.
+ */
+void EDMA_Init(DMA_Type *base, const edma_config_t *config)
+{
+ assert(config != NULL);
+
+ uint32_t tmpreg;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ /* Ungate EDMA peripheral clock */
+ CLOCK_EnableClock(s_edmaClockName[EDMA_GetInstance(base)]);
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+ /* clear all the enabled request, status to make sure EDMA status is in normal condition */
+ base->ERQ = 0U;
+ base->INT = 0xFFFFFFFFU;
+ base->ERR = 0xFFFFFFFFU;
+ /* Configure EDMA peripheral according to the configuration structure. */
+ tmpreg = base->CR;
+ tmpreg &= ~(DMA_CR_ERCA_MASK | DMA_CR_HOE_MASK | DMA_CR_CLM_MASK | DMA_CR_EDBG_MASK);
+ tmpreg |= (DMA_CR_ERCA(config->enableRoundRobinArbitration) | DMA_CR_HOE(config->enableHaltOnError) |
+ DMA_CR_CLM(config->enableContinuousLinkMode) | DMA_CR_EDBG(config->enableDebugMode) | DMA_CR_EMLM(1U));
+ base->CR = tmpreg;
+}
+
+/*!
+ * brief Deinitializes the eDMA peripheral.
+ *
+ * This function gates the eDMA clock.
+ *
+ * param base eDMA peripheral base address.
+ */
+void EDMA_Deinit(DMA_Type *base)
+{
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ /* Gate EDMA peripheral clock */
+ CLOCK_DisableClock(s_edmaClockName[EDMA_GetInstance(base)]);
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+}
+
+/*!
+ * brief Gets the eDMA default configuration structure.
+ *
+ * This function sets the configuration structure to default values.
+ * The default configuration is set to the following values.
+ * code
+ * config.enableContinuousLinkMode = false;
+ * config.enableHaltOnError = true;
+ * config.enableRoundRobinArbitration = false;
+ * config.enableDebugMode = false;
+ * endcode
+ *
+ * param config A pointer to the eDMA configuration structure.
+ */
+void EDMA_GetDefaultConfig(edma_config_t *config)
+{
+ assert(config != NULL);
+
+ /* Initializes the configure structure to zero. */
+ (void)memset(config, 0, sizeof(*config));
+
+ config->enableRoundRobinArbitration = false;
+ config->enableHaltOnError = true;
+ config->enableContinuousLinkMode = false;
+ config->enableDebugMode = false;
+}
+
+/*!
+ * brief Sets all TCD registers to default values.
+ *
+ * This function sets TCD registers for this channel to default values.
+ *
+ * param base eDMA peripheral base address.
+ * param channel eDMA channel number.
+ * note This function must not be called while the channel transfer is ongoing
+ * or it causes unpredictable results.
+ * note This function enables the auto stop request feature.
+ */
+void EDMA_ResetChannel(DMA_Type *base, uint32_t channel)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+
+ EDMA_TcdReset((edma_tcd_t *)(uint32_t)&base->TCD[channel]);
+}
+
+/*!
+ * brief Configures the eDMA transfer attribute.
+ *
+ * This function configures the transfer attribute, including source address, destination address,
+ * transfer size, address offset, and so on. It also configures the scatter gather feature if the
+ * user supplies the TCD address.
+ * Example:
+ * code
+ * edma_transfer_t config;
+ * edma_tcd_t tcd;
+ * config.srcAddr = ..;
+ * config.destAddr = ..;
+ * ...
+ * EDMA_SetTransferConfig(DMA0, channel, &config, &stcd);
+ * endcode
+ *
+ * param base eDMA peripheral base address.
+ * param channel eDMA channel number.
+ * param config Pointer to eDMA transfer configuration structure.
+ * param nextTcd Point to TCD structure. It can be NULL if users
+ * do not want to enable scatter/gather feature.
+ * note If nextTcd is not NULL, it means scatter gather feature is enabled
+ * and DREQ bit is cleared in the previous transfer configuration, which
+ * is set in the eDMA_ResetChannel.
+ */
+void EDMA_SetTransferConfig(DMA_Type *base, uint32_t channel, const edma_transfer_config_t *config, edma_tcd_t *nextTcd)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+ assert(config != NULL);
+ assert(((uint32_t)nextTcd & 0x1FU) == 0U);
+
+/* If there is address offset, convert the address */
+#if defined FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
+ nextTcd = (edma_tcd_t *)(MEMORY_ConvertMemoryMapAddress((uint32_t)nextTcd, kMEMORY_Local2DMA));
+#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
+ EDMA_TcdSetTransferConfig((edma_tcd_t *)(uint32_t)&base->TCD[channel], config, nextTcd);
+}
+
+/*!
+ * brief Configures the eDMA minor offset feature.
+ *
+ * The minor offset means that the signed-extended value is added to the source address or destination
+ * address after each minor loop.
+ *
+ * param base eDMA peripheral base address.
+ * param channel eDMA channel number.
+ * param config A pointer to the minor offset configuration structure.
+ */
+void EDMA_SetMinorOffsetConfig(DMA_Type *base, uint32_t channel, const edma_minor_offset_config_t *config)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+ assert(config != NULL);
+
+ uint32_t tmpreg;
+
+ tmpreg = base->TCD[channel].NBYTES_MLOFFYES;
+ tmpreg &= ~(DMA_NBYTES_MLOFFYES_SMLOE_MASK | DMA_NBYTES_MLOFFYES_DMLOE_MASK | DMA_NBYTES_MLOFFYES_MLOFF_MASK);
+ tmpreg |=
+ (DMA_NBYTES_MLOFFYES_SMLOE(config->enableSrcMinorOffset) |
+ DMA_NBYTES_MLOFFYES_DMLOE(config->enableDestMinorOffset) | DMA_NBYTES_MLOFFYES_MLOFF(config->minorOffset));
+ base->TCD[channel].NBYTES_MLOFFYES = tmpreg;
+}
+
+/*!
+ * brief Configures the eDMA channel TCD major offset feature.
+ *
+ * Adjustment value added to the source address at the completion of the major iteration count
+ *
+ * param base eDMA peripheral base address.
+ * param channel edma channel number.
+ * param sourceOffset source address offset.
+ * param destOffset destination address offset.
+ */
+void EDMA_SetMajorOffsetConfig(DMA_Type *base, uint32_t channel, int32_t sourceOffset, int32_t destOffset)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+
+ base->TCD[channel].SLAST = sourceOffset;
+ base->TCD[channel].DLAST_SGA = destOffset;
+}
+
+/*!
+ * brief Configures the eDMA channel preemption feature.
+ *
+ * This function configures the channel preemption attribute and the priority of the channel.
+ *
+ * param base eDMA peripheral base address.
+ * param channel eDMA channel number
+ * param config A pointer to the channel preemption configuration structure.
+ */
+void EDMA_SetChannelPreemptionConfig(DMA_Type *base, uint32_t channel, const edma_channel_Preemption_config_t *config)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+ assert(config != NULL);
+
+ bool tmpEnablePreemptAbility = config->enablePreemptAbility;
+ bool tmpEnableChannelPreemption = config->enableChannelPreemption;
+ uint8_t tmpChannelPriority = config->channelPriority;
+ volatile uint8_t *tmpReg = &base->DCHPRI3;
+
+ ((volatile uint8_t *)tmpReg)[DMA_DCHPRI_INDEX(channel)] =
+ (DMA_DCHPRI0_DPA((true == tmpEnablePreemptAbility ? 0U : 1U)) |
+ DMA_DCHPRI0_ECP((true == tmpEnableChannelPreemption ? 1U : 0U)) | DMA_DCHPRI0_CHPRI(tmpChannelPriority));
+}
+
+/*!
+ * brief Sets the channel link for the eDMA transfer.
+ *
+ * This function configures either the minor link or the major link mode. The minor link means that the channel link is
+ * triggered every time CITER decreases by 1. The major link means that the channel link is triggered when the CITER is
+ * exhausted.
+ *
+ * param base eDMA peripheral base address.
+ * param channel eDMA channel number.
+ * param linkType A channel link type, which can be one of the following:
+ * arg kEDMA_LinkNone
+ * arg kEDMA_MinorLink
+ * arg kEDMA_MajorLink
+ * param linkedChannel The linked channel number.
+ * note Users should ensure that DONE flag is cleared before calling this interface, or the configuration is invalid.
+ */
+void EDMA_SetChannelLink(DMA_Type *base, uint32_t channel, edma_channel_link_type_t linkType, uint32_t linkedChannel)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+ assert(linkedChannel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+
+ EDMA_TcdSetChannelLink((edma_tcd_t *)(uint32_t)&base->TCD[channel], linkType, linkedChannel);
+}
+
+/*!
+ * brief Sets the bandwidth for the eDMA transfer.
+ *
+ * Because the eDMA processes the minor loop, it continuously generates read/write sequences
+ * until the minor count is exhausted. The bandwidth forces the eDMA to stall after the completion of
+ * each read/write access to control the bus request bandwidth seen by the crossbar switch.
+ *
+ * param base eDMA peripheral base address.
+ * param channel eDMA channel number.
+ * param bandWidth A bandwidth setting, which can be one of the following:
+ * arg kEDMABandwidthStallNone
+ * arg kEDMABandwidthStall4Cycle
+ * arg kEDMABandwidthStall8Cycle
+ */
+void EDMA_SetBandWidth(DMA_Type *base, uint32_t channel, edma_bandwidth_t bandWidth)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+
+ base->TCD[channel].CSR = (uint16_t)((base->TCD[channel].CSR & (~DMA_CSR_BWC_MASK)) | DMA_CSR_BWC(bandWidth));
+}
+
+/*!
+ * brief Sets the source modulo and the destination modulo for the eDMA transfer.
+ *
+ * This function defines a specific address range specified to be the value after (SADDR + SOFF)/(DADDR + DOFF)
+ * calculation is performed or the original register value. It provides the ability to implement a circular data
+ * queue easily.
+ *
+ * param base eDMA peripheral base address.
+ * param channel eDMA channel number.
+ * param srcModulo A source modulo value.
+ * param destModulo A destination modulo value.
+ */
+void EDMA_SetModulo(DMA_Type *base, uint32_t channel, edma_modulo_t srcModulo, edma_modulo_t destModulo)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+
+ uint16_t tmpreg;
+
+ tmpreg = base->TCD[channel].ATTR & (~(uint16_t)(DMA_ATTR_SMOD_MASK | DMA_ATTR_DMOD_MASK));
+ base->TCD[channel].ATTR = tmpreg | DMA_ATTR_DMOD(destModulo) | DMA_ATTR_SMOD(srcModulo);
+}
+
+/*!
+ * brief Enables the interrupt source for the eDMA transfer.
+ *
+ * param base eDMA peripheral base address.
+ * param channel eDMA channel number.
+ * param mask The mask of interrupt source to be set. Users need to use
+ * the defined edma_interrupt_enable_t type.
+ */
+void EDMA_EnableChannelInterrupts(DMA_Type *base, uint32_t channel, uint32_t mask)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+
+ /* Enable error interrupt */
+ if (0U != (mask & (uint32_t)kEDMA_ErrorInterruptEnable))
+ {
+ base->EEI |= ((uint32_t)0x1U << channel);
+ }
+
+ /* Enable Major interrupt */
+ if (0U != (mask & (uint32_t)kEDMA_MajorInterruptEnable))
+ {
+ base->TCD[channel].CSR |= DMA_CSR_INTMAJOR_MASK;
+ }
+
+ /* Enable Half major interrupt */
+ if (0U != (mask & (uint32_t)kEDMA_HalfInterruptEnable))
+ {
+ base->TCD[channel].CSR |= DMA_CSR_INTHALF_MASK;
+ }
+}
+
+/*!
+ * brief Disables the interrupt source for the eDMA transfer.
+ *
+ * param base eDMA peripheral base address.
+ * param channel eDMA channel number.
+ * param mask The mask of the interrupt source to be set. Use
+ * the defined edma_interrupt_enable_t type.
+ */
+void EDMA_DisableChannelInterrupts(DMA_Type *base, uint32_t channel, uint32_t mask)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+
+ /* Disable error interrupt */
+ if (0U != (mask & (uint32_t)kEDMA_ErrorInterruptEnable))
+ {
+ base->EEI &= (~((uint32_t)0x1U << channel));
+ }
+
+ /* Disable Major interrupt */
+ if (0U != (mask & (uint32_t)kEDMA_MajorInterruptEnable))
+ {
+ base->TCD[channel].CSR &= ~(uint16_t)DMA_CSR_INTMAJOR_MASK;
+ }
+
+ /* Disable Half major interrupt */
+ if (0U != (mask & (uint32_t)kEDMA_HalfInterruptEnable))
+ {
+ base->TCD[channel].CSR &= ~(uint16_t)DMA_CSR_INTHALF_MASK;
+ }
+}
+
+/*!
+ * brief Sets all fields to default values for the TCD structure.
+ *
+ * This function sets all fields for this TCD structure to default value.
+ *
+ * param tcd Pointer to the TCD structure.
+ * note This function enables the auto stop request feature.
+ */
+void EDMA_TcdReset(edma_tcd_t *tcd)
+{
+ assert(tcd != NULL);
+ assert(((uint32_t)tcd & 0x1FU) == 0U);
+
+ /* Reset channel TCD */
+ tcd->SADDR = 0U;
+ tcd->SOFF = 0U;
+ tcd->ATTR = 0U;
+ tcd->NBYTES = 0U;
+ tcd->SLAST = 0U;
+ tcd->DADDR = 0U;
+ tcd->DOFF = 0U;
+ tcd->CITER = 0U;
+ tcd->DLAST_SGA = 0U;
+ /* Enable auto disable request feature */
+ tcd->CSR = DMA_CSR_DREQ(1U);
+ tcd->BITER = 0U;
+}
+
+/*!
+ * brief Configures the eDMA TCD transfer attribute.
+ *
+ * The TCD is a transfer control descriptor. The content of the TCD is the same as the hardware TCD registers.
+ * The TCD is used in the scatter-gather mode.
+ * This function configures the TCD transfer attribute, including source address, destination address,
+ * transfer size, address offset, and so on. It also configures the scatter gather feature if the
+ * user supplies the next TCD address.
+ * Example:
+ * code
+ * edma_transfer_t config = {
+ * ...
+ * }
+ * edma_tcd_t tcd __aligned(32);
+ * edma_tcd_t nextTcd __aligned(32);
+ * EDMA_TcdSetTransferConfig(&tcd, &config, &nextTcd);
+ * endcode
+ *
+ * param tcd Pointer to the TCD structure.
+ * param config Pointer to eDMA transfer configuration structure.
+ * param nextTcd Pointer to the next TCD structure. It can be NULL if users
+ * do not want to enable scatter/gather feature.
+ * note TCD address should be 32 bytes aligned or it causes an eDMA error.
+ * note If the nextTcd is not NULL, the scatter gather feature is enabled
+ * and DREQ bit is cleared in the previous transfer configuration, which
+ * is set in the EDMA_TcdReset.
+ */
+void EDMA_TcdSetTransferConfig(edma_tcd_t *tcd, const edma_transfer_config_t *config, edma_tcd_t *nextTcd)
+{
+ assert(tcd != NULL);
+ assert(((uint32_t)tcd & 0x1FU) == 0U);
+ assert(config != NULL);
+ assert(((uint32_t)nextTcd & 0x1FU) == 0U);
+ assert((config->srcAddr % (1UL << (uint32_t)config->srcTransferSize)) == 0U);
+ assert((config->destAddr % (1UL << (uint32_t)config->destTransferSize)) == 0U);
+
+ /* source address */
+#if defined FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
+ tcd->SADDR = MEMORY_ConvertMemoryMapAddress(config->srcAddr, kMEMORY_Local2DMA);
+ /* destination address */
+ tcd->DADDR = MEMORY_ConvertMemoryMapAddress(config->destAddr, kMEMORY_Local2DMA);
+#else
+ tcd->SADDR = config->srcAddr;
+ /* destination address */
+ tcd->DADDR = config->destAddr;
+#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
+ /* Source data and destination data transfer size */
+ tcd->ATTR = DMA_ATTR_SSIZE(config->srcTransferSize) | DMA_ATTR_DSIZE(config->destTransferSize);
+ /* Source address signed offset */
+ tcd->SOFF = (uint16_t)config->srcOffset;
+ /* Destination address signed offset */
+ tcd->DOFF = (uint16_t)config->destOffset;
+ /* Minor byte transfer count */
+ tcd->NBYTES = config->minorLoopBytes;
+ /* Current major iteration count */
+ tcd->CITER = (uint16_t)config->majorLoopCounts;
+ /* Starting major iteration count */
+ tcd->BITER = (uint16_t)config->majorLoopCounts;
+ /* Enable scatter/gather processing */
+ if (nextTcd != NULL)
+ {
+#if defined FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
+ tcd->DLAST_SGA = MEMORY_ConvertMemoryMapAddress((uint32_t)nextTcd, kMEMORY_Local2DMA);
+#else
+ tcd->DLAST_SGA = (uint32_t)nextTcd;
+#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
+ /*
+ Before call EDMA_TcdSetTransferConfig or EDMA_SetTransferConfig,
+ user must call EDMA_TcdReset or EDMA_ResetChannel which will set
+ DREQ, so must use "|" or "&" rather than "=".
+
+ Clear the DREQ bit because scatter gather has been enabled, so the
+ previous transfer is not the last transfer, and channel request should
+ be enabled at the next transfer(the next TCD).
+ */
+ tcd->CSR = (tcd->CSR | (uint16_t)DMA_CSR_ESG_MASK) & ~(uint16_t)DMA_CSR_DREQ_MASK;
+ }
+}
+
+/*!
+ * brief Configures the eDMA TCD minor offset feature.
+ *
+ * A minor offset is a signed-extended value added to the source address or a destination
+ * address after each minor loop.
+ *
+ * param tcd A point to the TCD structure.
+ * param config A pointer to the minor offset configuration structure.
+ */
+void EDMA_TcdSetMinorOffsetConfig(edma_tcd_t *tcd, const edma_minor_offset_config_t *config)
+{
+ assert(tcd != NULL);
+ assert(((uint32_t)tcd & 0x1FU) == 0U);
+
+ uint32_t tmpreg;
+
+ tmpreg = tcd->NBYTES &
+ ~(DMA_NBYTES_MLOFFYES_SMLOE_MASK | DMA_NBYTES_MLOFFYES_DMLOE_MASK | DMA_NBYTES_MLOFFYES_MLOFF_MASK);
+ tmpreg |=
+ (DMA_NBYTES_MLOFFYES_SMLOE(config->enableSrcMinorOffset) |
+ DMA_NBYTES_MLOFFYES_DMLOE(config->enableDestMinorOffset) | DMA_NBYTES_MLOFFYES_MLOFF(config->minorOffset));
+ tcd->NBYTES = tmpreg;
+}
+
+/*!
+ * brief Configures the eDMA TCD major offset feature.
+ *
+ * Adjustment value added to the source address at the completion of the major iteration count
+ *
+ * param tcd A point to the TCD structure.
+ * param sourceOffset source address offset.
+ * param destOffset destination address offset.
+ */
+void EDMA_TcdSetMajorOffsetConfig(edma_tcd_t *tcd, int32_t sourceOffset, int32_t destOffset)
+{
+ assert(tcd != NULL);
+ assert(((uint32_t)tcd & 0x1FU) == 0U);
+
+ tcd->SLAST = (uint32_t)sourceOffset;
+ tcd->DLAST_SGA = (uint32_t)destOffset;
+}
+
+/*!
+ * brief Sets the channel link for the eDMA TCD.
+ *
+ * This function configures either a minor link or a major link. The minor link means the channel link is
+ * triggered every time CITER decreases by 1. The major link means that the channel link is triggered when the CITER is
+ * exhausted.
+ *
+ * note Users should ensure that DONE flag is cleared before calling this interface, or the configuration is invalid.
+ * param tcd Point to the TCD structure.
+ * param linkType Channel link type, it can be one of:
+ * arg kEDMA_LinkNone
+ * arg kEDMA_MinorLink
+ * arg kEDMA_MajorLink
+ * param linkedChannel The linked channel number.
+ */
+void EDMA_TcdSetChannelLink(edma_tcd_t *tcd, edma_channel_link_type_t linkType, uint32_t linkedChannel)
+{
+ assert(tcd != NULL);
+ assert(((uint32_t)tcd & 0x1FU) == 0U);
+ assert(linkedChannel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+
+ if (linkType == kEDMA_MinorLink) /* Minor link config */
+ {
+ uint16_t tmpreg;
+
+ /* Enable minor link */
+ tcd->CITER |= DMA_CITER_ELINKYES_ELINK_MASK;
+ tcd->BITER |= DMA_BITER_ELINKYES_ELINK_MASK;
+ /* Set linked channel */
+ tmpreg = tcd->CITER & (~(uint16_t)DMA_CITER_ELINKYES_LINKCH_MASK);
+ tmpreg |= DMA_CITER_ELINKYES_LINKCH(linkedChannel);
+ tcd->CITER = tmpreg;
+ tmpreg = tcd->BITER & (~(uint16_t)DMA_BITER_ELINKYES_LINKCH_MASK);
+ tmpreg |= DMA_BITER_ELINKYES_LINKCH(linkedChannel);
+ tcd->BITER = tmpreg;
+ }
+ else if (linkType == kEDMA_MajorLink) /* Major link config */
+ {
+ uint16_t tmpreg;
+
+ /* Enable major link */
+ tcd->CSR |= DMA_CSR_MAJORELINK_MASK;
+ /* Set major linked channel */
+ tmpreg = tcd->CSR & (~(uint16_t)DMA_CSR_MAJORLINKCH_MASK);
+ tcd->CSR = tmpreg | DMA_CSR_MAJORLINKCH(linkedChannel);
+ }
+ else /* Link none */
+ {
+ tcd->CITER &= ~(uint16_t)DMA_CITER_ELINKYES_ELINK_MASK;
+ tcd->BITER &= ~(uint16_t)DMA_BITER_ELINKYES_ELINK_MASK;
+ tcd->CSR &= ~(uint16_t)DMA_CSR_MAJORELINK_MASK;
+ }
+}
+
+/*!
+ * brief Sets the source modulo and the destination modulo for the eDMA TCD.
+ *
+ * This function defines a specific address range specified to be the value after (SADDR + SOFF)/(DADDR + DOFF)
+ * calculation is performed or the original register value. It provides the ability to implement a circular data
+ * queue easily.
+ *
+ * param tcd A pointer to the TCD structure.
+ * param srcModulo A source modulo value.
+ * param destModulo A destination modulo value.
+ */
+void EDMA_TcdSetModulo(edma_tcd_t *tcd, edma_modulo_t srcModulo, edma_modulo_t destModulo)
+{
+ assert(tcd != NULL);
+ assert(((uint32_t)tcd & 0x1FU) == 0U);
+
+ uint16_t tmpreg;
+
+ tmpreg = tcd->ATTR & (~(uint16_t)(DMA_ATTR_SMOD_MASK | DMA_ATTR_DMOD_MASK));
+ tcd->ATTR = tmpreg | DMA_ATTR_DMOD(destModulo) | DMA_ATTR_SMOD(srcModulo);
+}
+
+/*!
+ * brief Enables the interrupt source for the eDMA TCD.
+ *
+ * param tcd Point to the TCD structure.
+ * param mask The mask of interrupt source to be set. Users need to use
+ * the defined edma_interrupt_enable_t type.
+ */
+void EDMA_TcdEnableInterrupts(edma_tcd_t *tcd, uint32_t mask)
+{
+ assert(tcd != NULL);
+
+ /* Enable Major interrupt */
+ if (0U != (mask & (uint32_t)kEDMA_MajorInterruptEnable))
+ {
+ tcd->CSR |= DMA_CSR_INTMAJOR_MASK;
+ }
+
+ /* Enable Half major interrupt */
+ if (0U != (mask & (uint32_t)kEDMA_HalfInterruptEnable))
+ {
+ tcd->CSR |= DMA_CSR_INTHALF_MASK;
+ }
+}
+
+/*!
+ * brief Disables the interrupt source for the eDMA TCD.
+ *
+ * param tcd Point to the TCD structure.
+ * param mask The mask of interrupt source to be set. Users need to use
+ * the defined edma_interrupt_enable_t type.
+ */
+void EDMA_TcdDisableInterrupts(edma_tcd_t *tcd, uint32_t mask)
+{
+ assert(tcd != NULL);
+
+ /* Disable Major interrupt */
+ if (0U != (mask & (uint32_t)kEDMA_MajorInterruptEnable))
+ {
+ tcd->CSR &= ~(uint16_t)DMA_CSR_INTMAJOR_MASK;
+ }
+
+ /* Disable Half major interrupt */
+ if (0U != (mask & (uint32_t)kEDMA_HalfInterruptEnable))
+ {
+ tcd->CSR &= ~(uint16_t)DMA_CSR_INTHALF_MASK;
+ }
+}
+
+/*!
+ * brief Gets the remaining major loop count from the eDMA current channel TCD.
+ *
+ * This function checks the TCD (Task Control Descriptor) status for a specified
+ * eDMA channel and returns the number of major loop count that has not finished.
+ *
+ * param base eDMA peripheral base address.
+ * param channel eDMA channel number.
+ * return Major loop count which has not been transferred yet for the current TCD.
+ * note 1. This function can only be used to get unfinished major loop count of transfer without
+ * the next TCD, or it might be inaccuracy.
+ * 2. The unfinished/remaining transfer bytes cannot be obtained directly from registers while
+ * the channel is running.
+ * Because to calculate the remaining bytes, the initial NBYTES configured in DMA_TCDn_NBYTES_MLNO
+ * register is needed while the eDMA IP does not support getting it while a channel is active.
+ * In another word, the NBYTES value reading is always the actual (decrementing) NBYTES value the dma_engine
+ * is working with while a channel is running.
+ * Consequently, to get the remaining transfer bytes, a software-saved initial value of NBYTES (for example
+ * copied before enabling the channel) is needed. The formula to calculate it is shown below:
+ * RemainingBytes = RemainingMajorLoopCount * NBYTES(initially configured)
+ */
+uint32_t EDMA_GetRemainingMajorLoopCount(DMA_Type *base, uint32_t channel)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+
+ uint32_t remainingCount = 0;
+
+ if (0U != (DMA_CSR_DONE_MASK & base->TCD[channel].CSR))
+ {
+ remainingCount = 0;
+ }
+ else
+ {
+ /* Calculate the unfinished bytes */
+ if (0U != (base->TCD[channel].CITER_ELINKNO & DMA_CITER_ELINKNO_ELINK_MASK))
+ {
+ remainingCount = (((uint32_t)base->TCD[channel].CITER_ELINKYES & DMA_CITER_ELINKYES_CITER_MASK) >>
+ DMA_CITER_ELINKYES_CITER_SHIFT);
+ }
+ else
+ {
+ remainingCount = (((uint32_t)base->TCD[channel].CITER_ELINKNO & DMA_CITER_ELINKNO_CITER_MASK) >>
+ DMA_CITER_ELINKNO_CITER_SHIFT);
+ }
+ }
+
+ return remainingCount;
+}
+
+/*!
+ * brief Gets the eDMA channel status flags.
+ *
+ * param base eDMA peripheral base address.
+ * param channel eDMA channel number.
+ * return The mask of channel status flags. Users need to use the
+ * _edma_channel_status_flags type to decode the return variables.
+ */
+uint32_t EDMA_GetChannelStatusFlags(DMA_Type *base, uint32_t channel)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+
+ uint32_t retval = 0;
+
+ /* Get DONE bit flag */
+ retval |= (((uint32_t)base->TCD[channel].CSR & DMA_CSR_DONE_MASK) >> DMA_CSR_DONE_SHIFT);
+ /* Get ERROR bit flag */
+ retval |= ((((uint32_t)base->ERR >> channel) & 0x1U) << 1U);
+ /* Get INT bit flag */
+ retval |= ((((uint32_t)base->INT >> channel) & 0x1U) << 2U);
+
+ return retval;
+}
+
+/*!
+ * brief Clears the eDMA channel status flags.
+ *
+ * param base eDMA peripheral base address.
+ * param channel eDMA channel number.
+ * param mask The mask of channel status to be cleared. Users need to use
+ * the defined _edma_channel_status_flags type.
+ */
+void EDMA_ClearChannelStatusFlags(DMA_Type *base, uint32_t channel, uint32_t mask)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+
+ /* Clear DONE bit flag */
+ if (0U != (mask & (uint32_t)kEDMA_DoneFlag))
+ {
+ base->CDNE = (uint8_t)channel;
+ }
+ /* Clear ERROR bit flag */
+ if (0U != (mask & (uint32_t)kEDMA_ErrorFlag))
+ {
+ base->CERR = (uint8_t)channel;
+ }
+ /* Clear INT bit flag */
+ if (0U != (mask & (uint32_t)kEDMA_InterruptFlag))
+ {
+ base->CINT = (uint8_t)channel;
+ }
+}
+
+static uint32_t EDMA_GetInstanceOffset(uint32_t instance)
+{
+ static uint8_t startInstanceNum;
+
+#if defined(DMA0)
+ startInstanceNum = (uint8_t)EDMA_GetInstance(DMA0);
+#elif defined(DMA1)
+ startInstanceNum = (uint8_t)EDMA_GetInstance(DMA1);
+#elif defined(DMA2)
+ startInstanceNum = (uint8_t)EDMA_GetInstance(DMA2);
+#elif defined(DMA3)
+ startInstanceNum = (uint8_t)EDMA_GetInstance(DMA3);
+#endif
+
+ assert(startInstanceNum <= instance);
+
+ return instance - startInstanceNum;
+}
+
+/*!
+ * brief Creates the eDMA handle.
+ *
+ * This function is called if using the transactional API for eDMA. This function
+ * initializes the internal state of the eDMA handle.
+ *
+ * param handle eDMA handle pointer. The eDMA handle stores callback function and
+ * parameters.
+ * param base eDMA peripheral base address.
+ * param channel eDMA channel number.
+ */
+void EDMA_CreateHandle(edma_handle_t *handle, DMA_Type *base, uint32_t channel)
+{
+ assert(handle != NULL);
+ assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL);
+
+ uint32_t edmaInstance;
+ uint32_t channelIndex;
+ edma_tcd_t *tcdRegs;
+
+ /* Zero the handle */
+ (void)memset(handle, 0, sizeof(*handle));
+
+ handle->base = base;
+ handle->channel = (uint8_t)channel;
+
+ /* Get the DMA instance number */
+ edmaInstance = EDMA_GetInstance(base);
+ channelIndex = (EDMA_GetInstanceOffset(edmaInstance) * (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL) + channel;
+ s_EDMAHandle[channelIndex] = handle;
+
+ /* Enable NVIC interrupt */
+ (void)EnableIRQ(s_edmaIRQNumber[edmaInstance][channel]);
+
+ /*
+ Reset TCD registers to zero. Unlike the EDMA_TcdReset(DREQ will be set),
+ CSR will be 0. Because in order to suit EDMA busy check mechanism in
+ EDMA_SubmitTransfer, CSR must be set 0.
+ */
+ tcdRegs = (edma_tcd_t *)(uint32_t)&handle->base->TCD[handle->channel];
+ tcdRegs->SADDR = 0;
+ tcdRegs->SOFF = 0;
+ tcdRegs->ATTR = 0;
+ tcdRegs->NBYTES = 0;
+ tcdRegs->SLAST = 0;
+ tcdRegs->DADDR = 0;
+ tcdRegs->DOFF = 0;
+ tcdRegs->CITER = 0;
+ tcdRegs->DLAST_SGA = 0;
+ tcdRegs->CSR = 0;
+ tcdRegs->BITER = 0;
+}
+
+/*!
+ * brief Installs the TCDs memory pool into the eDMA handle.
+ *
+ * This function is called after the EDMA_CreateHandle to use scatter/gather feature. This function shall only be used
+ * while users need to use scatter gather mode. Scatter gather mode enables EDMA to load a new transfer control block
+ * (tcd) in hardware, and automatically reconfigure that DMA channel for a new transfer.
+ * Users need to prepare tcd memory and also configure tcds using interface EDMA_SubmitTransfer.
+ *
+ * param handle eDMA handle pointer.
+ * param tcdPool A memory pool to store TCDs. It must be 32 bytes aligned.
+ * param tcdSize The number of TCD slots.
+ */
+void EDMA_InstallTCDMemory(edma_handle_t *handle, edma_tcd_t *tcdPool, uint32_t tcdSize)
+{
+ assert(handle != NULL);
+ assert(((uint32_t)tcdPool & 0x1FU) == 0U);
+
+ /* Initialize tcd queue attribute. */
+ /* header should initial as 1, since that it is used to point to the next TCD to be loaded into TCD memory,
+ * In EDMA driver IRQ handler, header will be used to calculate how many tcd has done, for example,
+ * If application submit 4 transfer request, A->B->C->D,
+ * when A finshed, the header is 0, C is the next TCD to be load, since B is already loaded,
+ * according to EDMA driver IRQ handler, tcdDone = C - A - header = 2 - header = 2, but actually only 1 TCD done,
+ * so the issue will be the wrong TCD done count will pass to application in first TCD interrupt.
+ * During first submit, the header should be assigned to 1, since 0 is current one and 1 is next TCD to be loaded,
+ * but software cannot know which submission is the first one, so assign 1 to header here.
+ */
+ handle->header = 1;
+ handle->tcdUsed = 0;
+ handle->tcdSize = (int8_t)tcdSize;
+ handle->flags = 0;
+ handle->tcdPool = tcdPool;
+}
+
+/*!
+ * brief Installs a callback function for the eDMA transfer.
+ *
+ * This callback is called in the eDMA IRQ handler. Use the callback to do something after
+ * the current major loop transfer completes. This function will be called every time one tcd finished transfer.
+ *
+ * param handle eDMA handle pointer.
+ * param callback eDMA callback function pointer.
+ * param userData A parameter for the callback function.
+ */
+void EDMA_SetCallback(edma_handle_t *handle, edma_callback callback, void *userData)
+{
+ assert(handle != NULL);
+
+ handle->callback = callback;
+ handle->userData = userData;
+}
+
+static edma_transfer_size_t EDMA_TransferWidthMapping(uint32_t width)
+{
+ edma_transfer_size_t transferSize = kEDMA_TransferSize1Bytes;
+
+ /* map width to register value */
+ switch (width)
+ {
+ /* width 8bit */
+ case 1U:
+ transferSize = kEDMA_TransferSize1Bytes;
+ break;
+ /* width 16bit */
+ case 2U:
+ transferSize = kEDMA_TransferSize2Bytes;
+ break;
+ /* width 32bit */
+ case 4U:
+ transferSize = kEDMA_TransferSize4Bytes;
+ break;
+#if (defined(FSL_FEATURE_EDMA_SUPPORT_8_BYTES_TRANSFER) && FSL_FEATURE_EDMA_SUPPORT_8_BYTES_TRANSFER)
+ /* width 64bit */
+ case 8U:
+ transferSize = kEDMA_TransferSize8Bytes;
+ break;
+#endif
+#if (defined(FSL_FEATURE_EDMA_SUPPORT_16_BYTES_TRANSFER) && FSL_FEATURE_EDMA_SUPPORT_16_BYTES_TRANSFER)
+ /* width 128bit */
+ case 16U:
+ transferSize = kEDMA_TransferSize16Bytes;
+ break;
+#endif
+ /* width 256bit */
+ case 32U:
+ transferSize = kEDMA_TransferSize32Bytes;
+ break;
+ default:
+ /* All the cases have been listed above, the default clause should not be reached. */
+ assert(false);
+ break;
+ }
+
+ return transferSize;
+}
+
+/*!
+ * brief Prepares the eDMA transfer structure configurations.
+ *
+ * This function prepares the transfer configuration structure according to the user input.
+ *
+ * param config The user configuration structure of type edma_transfer_t.
+ * param srcAddr eDMA transfer source address.
+ * param srcWidth eDMA transfer source address width(bytes).
+ * param srcOffset source address offset.
+ * param destAddr eDMA transfer destination address.
+ * param destWidth eDMA transfer destination address width(bytes).
+ * param destOffset destination address offset.
+ * param bytesEachRequest eDMA transfer bytes per channel request.
+ * param transferBytes eDMA transfer bytes to be transferred.
+ * note The data address and the data width must be consistent. For example, if the SRC
+ * is 4 bytes, the source address must be 4 bytes aligned, or it results in
+ * source address error (SAE).
+ */
+void EDMA_PrepareTransferConfig(edma_transfer_config_t *config,
+ void *srcAddr,
+ uint32_t srcWidth,
+ int16_t srcOffset,
+ void *destAddr,
+ uint32_t destWidth,
+ int16_t destOffset,
+ uint32_t bytesEachRequest,
+ uint32_t transferBytes)
+{
+ assert(config != NULL);
+ assert(srcAddr != NULL);
+ assert(destAddr != NULL);
+ assert((srcWidth != 0U) && (srcWidth <= 32U) && ((srcWidth & (srcWidth - 1U)) == 0U));
+ assert((destWidth != 0U) && (destWidth <= 32U) && ((destWidth & (destWidth - 1U)) == 0U));
+ assert((transferBytes % bytesEachRequest) == 0U);
+ assert((((uint32_t)(uint32_t *)srcAddr) % srcWidth) == 0U);
+ assert((((uint32_t)(uint32_t *)destAddr) % destWidth) == 0U);
+
+ /* Initializes the configure structure to zero. */
+ (void)memset(config, 0, sizeof(*config));
+
+#if defined FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
+ config->srcAddr = MEMORY_ConvertMemoryMapAddress((uint32_t)(uint32_t *)srcAddr, kMEMORY_Local2DMA);
+ config->destAddr = MEMORY_ConvertMemoryMapAddress((uint32_t)(uint32_t *)destAddr, kMEMORY_Local2DMA);
+#else
+ config->destAddr = (uint32_t)(uint32_t *)destAddr;
+ config->srcAddr = (uint32_t)(uint32_t *)srcAddr;
+#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
+ config->minorLoopBytes = bytesEachRequest;
+ config->majorLoopCounts = transferBytes / bytesEachRequest;
+ config->srcTransferSize = EDMA_TransferWidthMapping(srcWidth);
+ config->destTransferSize = EDMA_TransferWidthMapping(destWidth);
+ config->destOffset = destOffset;
+ config->srcOffset = srcOffset;
+}
+
+/*!
+ * brief Prepares the eDMA transfer structure.
+ *
+ * This function prepares the transfer configuration structure according to the user input.
+ *
+ * param config The user configuration structure of type edma_transfer_t.
+ * param srcAddr eDMA transfer source address.
+ * param srcWidth eDMA transfer source address width(bytes).
+ * param destAddr eDMA transfer destination address.
+ * param destWidth eDMA transfer destination address width(bytes).
+ * param bytesEachRequest eDMA transfer bytes per channel request.
+ * param transferBytes eDMA transfer bytes to be transferred.
+ * param transferType eDMA transfer type.
+ * note The data address and the data width must be consistent. For example, if the SRC
+ * is 4 bytes, the source address must be 4 bytes aligned, or it results in
+ * source address error (SAE).
+ */
+void EDMA_PrepareTransfer(edma_transfer_config_t *config,
+ void *srcAddr,
+ uint32_t srcWidth,
+ void *destAddr,
+ uint32_t destWidth,
+ uint32_t bytesEachRequest,
+ uint32_t transferBytes,
+ edma_transfer_type_t transferType)
+{
+ assert(config != NULL);
+
+ int16_t srcOffset = 0, destOffset = 0;
+
+ switch (transferType)
+ {
+ case kEDMA_MemoryToMemory:
+ destOffset = (int16_t)destWidth;
+ srcOffset = (int16_t)srcWidth;
+ break;
+ case kEDMA_MemoryToPeripheral:
+ destOffset = 0;
+ srcOffset = (int16_t)srcWidth;
+ break;
+ case kEDMA_PeripheralToMemory:
+ destOffset = (int16_t)destWidth;
+ srcOffset = 0;
+ break;
+ case kEDMA_PeripheralToPeripheral:
+ destOffset = 0;
+ srcOffset = 0;
+ break;
+ default:
+ /* All the cases have been listed above, the default clause should not be reached. */
+ assert(false);
+ break;
+ }
+
+ EDMA_PrepareTransferConfig(config, srcAddr, srcWidth, srcOffset, destAddr, destWidth, destOffset, bytesEachRequest,
+ transferBytes);
+}
+
+/*!
+ * brief Submits the eDMA transfer request.
+ *
+ * This function submits the eDMA transfer request according to the transfer configuration structure.
+ * In scatter gather mode, call this function will add a configured tcd to the circular list of tcd pool.
+ * The tcd pools is setup by call function EDMA_InstallTCDMemory before.
+ *
+ * param handle eDMA handle pointer.
+ * param config Pointer to eDMA transfer configuration structure.
+ * retval kStatus_EDMA_Success It means submit transfer request succeed.
+ * retval kStatus_EDMA_QueueFull It means TCD queue is full. Submit transfer request is not allowed.
+ * retval kStatus_EDMA_Busy It means the given channel is busy, need to submit request later.
+ */
+status_t EDMA_SubmitTransfer(edma_handle_t *handle, const edma_transfer_config_t *config)
+{
+ assert(handle != NULL);
+ assert(config != NULL);
+
+ edma_tcd_t *tcdRegs = (edma_tcd_t *)(uint32_t)&handle->base->TCD[handle->channel];
+
+ if (handle->tcdPool == NULL)
+ {
+ /*
+ * Check if EDMA channel is busy:
+ * 1. if channel active bit is set, it implies that minor loop is executing, then channel is busy
+ * 2. if channel active bit is not set and BITER not equal to CITER, it implies that major loop is executing,
+ * then channel is busy
+ *
+ * There is one case can not be covered in below condition:
+ * When transfer request is submitted, but no request from peripheral, that is to say channel sevice doesn't
+ * begin, if application would like to submit another transfer , then the TCD will be overwritten, since the
+ * ACTIVE is 0 and BITER = CITER, for such case, it is a scatter gather(link TCD) case actually, so
+ * application should enabled TCD pool for dynamic scatter gather mode by calling EDMA_InstallTCDMemory.
+ */
+ if (((handle->base->TCD[handle->channel].CSR & DMA_CSR_ACTIVE_MASK) != 0U) ||
+ (((handle->base->TCD[handle->channel].CITER_ELINKNO & DMA_CITER_ELINKNO_CITER_MASK) !=
+ (handle->base->TCD[handle->channel].BITER_ELINKNO & DMA_BITER_ELINKNO_BITER_MASK))))
+ {
+ return kStatus_EDMA_Busy;
+ }
+ else
+ {
+ EDMA_SetTransferConfig(handle->base, handle->channel, config, NULL);
+ /* Enable auto disable request feature */
+ handle->base->TCD[handle->channel].CSR |= DMA_CSR_DREQ_MASK;
+ /* Enable major interrupt */
+ handle->base->TCD[handle->channel].CSR |= DMA_CSR_INTMAJOR_MASK;
+
+ return kStatus_Success;
+ }
+ }
+ else /* Use the TCD queue. */
+ {
+ uint32_t primask;
+ uint16_t csr;
+ int8_t currentTcd;
+ int8_t previousTcd;
+ int8_t nextTcd;
+ int8_t tmpTcdUsed;
+ int8_t tmpTcdSize;
+
+ /* Check if tcd pool is full. */
+ primask = DisableGlobalIRQ();
+ tmpTcdUsed = handle->tcdUsed;
+ tmpTcdSize = handle->tcdSize;
+ if (tmpTcdUsed >= tmpTcdSize)
+ {
+ EnableGlobalIRQ(primask);
+
+ return kStatus_EDMA_QueueFull;
+ }
+ currentTcd = handle->tail;
+ handle->tcdUsed++;
+ /* Calculate index of next TCD */
+ nextTcd = currentTcd + 1;
+ if (nextTcd == handle->tcdSize)
+ {
+ nextTcd = 0;
+ }
+ /* Advance queue tail index */
+ handle->tail = nextTcd;
+ EnableGlobalIRQ(primask);
+ /* Calculate index of previous TCD */
+ previousTcd = currentTcd != 0 ? currentTcd - 1 : (handle->tcdSize - 1);
+ /* Configure current TCD block. */
+ EDMA_TcdReset(&handle->tcdPool[currentTcd]);
+ EDMA_TcdSetTransferConfig(&handle->tcdPool[currentTcd], config, NULL);
+ /* Enable major interrupt */
+ handle->tcdPool[currentTcd].CSR |= DMA_CSR_INTMAJOR_MASK;
+ /* Link current TCD with next TCD for identification of current TCD */
+#if defined FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
+ handle->tcdPool[currentTcd].DLAST_SGA =
+ MEMORY_ConvertMemoryMapAddress((uint32_t)&handle->tcdPool[nextTcd], kMEMORY_Local2DMA);
+#else
+ handle->tcdPool[currentTcd].DLAST_SGA = (uint32_t)&handle->tcdPool[nextTcd];
+#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
+ /* Chain from previous descriptor unless tcd pool size is 1(this descriptor is its own predecessor). */
+ if (currentTcd != previousTcd)
+ {
+ /* Enable scatter/gather feature in the previous TCD block. */
+ csr = handle->tcdPool[previousTcd].CSR | ((uint16_t)DMA_CSR_ESG_MASK);
+ csr &= ~((uint16_t)DMA_CSR_DREQ_MASK);
+ handle->tcdPool[previousTcd].CSR = csr;
+ /*
+ Check if the TCD block in the registers is the previous one (points to current TCD block). It
+ is used to check if the previous TCD linked has been loaded in TCD register. If so, it need to
+ link the TCD register in case link the current TCD with the dead chain when TCD loading occurs
+ before link the previous TCD block.
+ */
+#if defined FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
+ if (tcdRegs->DLAST_SGA ==
+ MEMORY_ConvertMemoryMapAddress((uint32_t)&handle->tcdPool[currentTcd], kMEMORY_Local2DMA))
+#else
+ if (tcdRegs->DLAST_SGA == (uint32_t)&handle->tcdPool[currentTcd])
+#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
+ {
+ /* Clear the DREQ bits for the dynamic scatter gather */
+ tcdRegs->CSR |= DMA_CSR_DREQ_MASK;
+ /* Enable scatter/gather also in the TCD registers. */
+ csr = tcdRegs->CSR | DMA_CSR_ESG_MASK;
+ /* Must write the CSR register one-time, because the transfer maybe finished anytime. */
+ tcdRegs->CSR = csr;
+ /*
+ It is very important to check the ESG bit!
+ Because this hardware design: if DONE bit is set, the ESG bit can not be set. So it can
+ be used to check if the dynamic TCD link operation is successful. If ESG bit is not set
+ and the DLAST_SGA is not the next TCD address(it means the dynamic TCD link succeed and
+ the current TCD block has been loaded into TCD registers), it means transfer finished
+ and TCD link operation fail, so must install TCD content into TCD registers and enable
+ transfer again. And if ESG is set, it means transfer has not finished, so TCD dynamic
+ link succeed.
+ */
+ if (0U != (tcdRegs->CSR & DMA_CSR_ESG_MASK))
+ {
+ tcdRegs->CSR &= ~(uint16_t)DMA_CSR_DREQ_MASK;
+ return kStatus_Success;
+ }
+ /*
+ Check whether the current TCD block is already loaded in the TCD registers. It is another
+ condition when ESG bit is not set: it means the dynamic TCD link succeed and the current
+ TCD block has been loaded into TCD registers.
+ */
+#if defined FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
+ if (tcdRegs->DLAST_SGA ==
+ MEMORY_ConvertMemoryMapAddress((uint32_t)&handle->tcdPool[nextTcd], kMEMORY_Local2DMA))
+#else
+ if (tcdRegs->DLAST_SGA == (uint32_t)&handle->tcdPool[nextTcd])
+#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
+ {
+ return kStatus_Success;
+ }
+ /*
+ If go to this, means the previous transfer finished, and the DONE bit is set.
+ So shall configure TCD registers.
+ */
+ }
+ else if (tcdRegs->DLAST_SGA != 0UL)
+ {
+ /* The current TCD block has been linked successfully. */
+ return kStatus_Success;
+ }
+ else
+ {
+ /*
+ DLAST_SGA is 0 and it means the first submit transfer, so shall configure
+ TCD registers.
+ */
+ }
+ }
+ /* There is no live chain, TCD block need to be installed in TCD registers. */
+ EDMA_InstallTCD(handle->base, handle->channel, &handle->tcdPool[currentTcd]);
+ /* Enable channel request again. */
+ if (0U != (handle->flags & EDMA_TRANSFER_ENABLED_MASK))
+ {
+ handle->base->SERQ = DMA_SERQ_SERQ(handle->channel);
+ }
+
+ return kStatus_Success;
+ }
+}
+
+/*!
+ * brief eDMA starts transfer.
+ *
+ * This function enables the channel request. Users can call this function after submitting the transfer request
+ * or before submitting the transfer request.
+ *
+ * param handle eDMA handle pointer.
+ */
+void EDMA_StartTransfer(edma_handle_t *handle)
+{
+ assert(handle != NULL);
+ uint32_t tmpCSR = 0;
+
+ if (handle->tcdPool == NULL)
+ {
+ handle->base->SERQ = DMA_SERQ_SERQ(handle->channel);
+ }
+ else /* Use the TCD queue. */
+ {
+ uint32_t primask;
+ edma_tcd_t *tcdRegs = (edma_tcd_t *)(uint32_t)&handle->base->TCD[handle->channel];
+
+ handle->flags |= EDMA_TRANSFER_ENABLED_MASK;
+
+ /* Check if there was at least one descriptor submitted since reset (TCD in registers is valid) */
+ if (tcdRegs->DLAST_SGA != 0U)
+ {
+ primask = DisableGlobalIRQ();
+ /* Check if channel request is actually disable. */
+ if ((handle->base->ERQ & ((uint32_t)1U << handle->channel)) == 0U)
+ {
+ /* Check if transfer is paused. */
+ tmpCSR = tcdRegs->CSR;
+ if ((0U == (tmpCSR & DMA_CSR_DONE_MASK)) || (0U != (tmpCSR & DMA_CSR_ESG_MASK)))
+ {
+ /*
+ Re-enable channel request must be as soon as possible, so must put it into
+ critical section to avoid task switching or interrupt service routine.
+ */
+ handle->base->SERQ = DMA_SERQ_SERQ(handle->channel);
+ }
+ }
+ EnableGlobalIRQ(primask);
+ }
+ }
+}
+
+/*!
+ * brief eDMA stops transfer.
+ *
+ * This function disables the channel request to pause the transfer. Users can call EDMA_StartTransfer()
+ * again to resume the transfer.
+ *
+ * param handle eDMA handle pointer.
+ */
+void EDMA_StopTransfer(edma_handle_t *handle)
+{
+ assert(handle != NULL);
+
+ handle->flags &= (~(uint8_t)EDMA_TRANSFER_ENABLED_MASK);
+ handle->base->CERQ = DMA_CERQ_CERQ(handle->channel);
+}
+
+/*!
+ * brief eDMA aborts transfer.
+ *
+ * This function disables the channel request and clear transfer status bits.
+ * Users can submit another transfer after calling this API.
+ *
+ * param handle DMA handle pointer.
+ */
+void EDMA_AbortTransfer(edma_handle_t *handle)
+{
+ handle->base->CERQ = DMA_CERQ_CERQ(handle->channel);
+ /*
+ Clear CSR to release channel. Because if the given channel started transfer,
+ CSR will be not zero. Because if it is the last transfer, DREQ will be set.
+ If not, ESG will be set.
+ */
+ handle->base->TCD[handle->channel].CSR = 0;
+ /* Cancel all next TCD transfer. */
+ handle->base->TCD[handle->channel].DLAST_SGA = 0;
+ /* clear the CITER and BITER to make sure the TCD register in a correct state for next calling of
+ * EDMA_SubmitTransfer */
+ handle->base->TCD[handle->channel].CITER_ELINKNO = 0;
+ handle->base->TCD[handle->channel].BITER_ELINKNO = 0;
+
+ /* Handle the tcd */
+ if (handle->tcdPool != NULL)
+ {
+ handle->header = 1;
+ handle->tail = 0;
+ handle->tcdUsed = 0;
+ }
+}
+
+/*!
+ * brief eDMA IRQ handler for the current major loop transfer completion.
+ *
+ * This function clears the channel major interrupt flag and calls
+ * the callback function if it is not NULL.
+ *
+ * Note:
+ * For the case using TCD queue, when the major iteration count is exhausted, additional operations are performed.
+ * These include the final address adjustments and reloading of the BITER field into the CITER.
+ * Assertion of an optional interrupt request also occurs at this time, as does a possible fetch of a new TCD from
+ * memory using the scatter/gather address pointer included in the descriptor (if scatter/gather is enabled).
+ *
+ * For instance, when the time interrupt of TCD[0] happens, the TCD[1] has already been loaded into the eDMA engine.
+ * As sga and sga_index are calculated based on the DLAST_SGA bitfield lies in the TCD_CSR register, the sga_index
+ * in this case should be 2 (DLAST_SGA of TCD[1] stores the address of TCD[2]). Thus, the "tcdUsed" updated should be
+ * (tcdUsed - 2U) which indicates the number of TCDs can be loaded in the memory pool (because TCD[0] and TCD[1] have
+ * been loaded into the eDMA engine at this point already.).
+ *
+ * For the last two continuous ISRs in a scatter/gather process, they both load the last TCD (The last ISR does not
+ * load a new TCD) from the memory pool to the eDMA engine when major loop completes.
+ * Therefore, ensure that the header and tcdUsed updated are identical for them.
+ * tcdUsed are both 0 in this case as no TCD to be loaded.
+ *
+ * See the "eDMA basic data flow" in the eDMA Functional description section of the Reference Manual for
+ * further details.
+ *
+ * param handle eDMA handle pointer.
+ */
+void EDMA_HandleIRQ(edma_handle_t *handle)
+{
+ assert(handle != NULL);
+
+ bool transfer_done;
+
+ /* Clear EDMA interrupt flag */
+ handle->base->CINT = handle->channel;
+ /* Check if transfer is already finished. */
+ transfer_done = ((handle->base->TCD[handle->channel].CSR & DMA_CSR_DONE_MASK) != 0U);
+
+ if (handle->tcdPool == NULL)
+ {
+ if (handle->callback != NULL)
+ {
+ (handle->callback)(handle, handle->userData, transfer_done, 0);
+ }
+ }
+ else /* Use the TCD queue. Please refer to the API descriptions in the eDMA header file for detailed information. */
+ {
+ uint32_t sga = (uint32_t)handle->base->TCD[handle->channel].DLAST_SGA;
+ uint32_t sga_index;
+ int32_t tcds_done;
+ uint8_t new_header;
+ bool esg = ((handle->base->TCD[handle->channel].CSR & DMA_CSR_ESG_MASK) != 0U);
+
+ /* Get the offset of the next transfer TCD blocks to be loaded into the eDMA engine. */
+#if defined FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
+ sga -= MEMORY_ConvertMemoryMapAddress((uint32_t)handle->tcdPool, kMEMORY_Local2DMA);
+#else
+ sga -= (uint32_t)handle->tcdPool;
+#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
+ /* Get the index of the next transfer TCD blocks to be loaded into the eDMA engine. */
+ sga_index = sga / sizeof(edma_tcd_t);
+ /* Adjust header positions. */
+ if (transfer_done)
+ {
+ /* New header shall point to the next TCD to be loaded (current one is already finished) */
+ new_header = (uint8_t)sga_index;
+ }
+ else
+ {
+ /* New header shall point to this descriptor currently loaded (not finished yet) */
+ new_header = sga_index != 0U ? (uint8_t)sga_index - 1U : (uint8_t)handle->tcdSize - 1U;
+ }
+ /* Calculate the number of finished TCDs */
+ if (new_header == (uint8_t)handle->header)
+ {
+ int8_t tmpTcdUsed = handle->tcdUsed;
+ int8_t tmpTcdSize = handle->tcdSize;
+
+ /* check esg here for the case that application submit only one request, once the request complete:
+ * new_header(1) = handle->header(1)
+ * tcdUsed(1) != tcdSize(>1)
+ * As the application submit only once, so scatter gather must not enabled, then tcds_done should be 1
+ */
+ if ((tmpTcdUsed == tmpTcdSize) || (!esg))
+ {
+ tcds_done = handle->tcdUsed;
+ }
+ else
+ {
+ /* No TCD in the memory are going to be loaded or internal error occurs. */
+ tcds_done = 0;
+ }
+ }
+ else
+ {
+ tcds_done = (int32_t)new_header - (int32_t)handle->header;
+ if (tcds_done < 0)
+ {
+ tcds_done += handle->tcdSize;
+ }
+ /*
+ * While code run to here, it means a TCD transfer Done and a new TCD has loaded to the hardware
+ * so clear DONE here to allow submit scatter gather transfer request in the callback to avoid TCD
+ * overwritten.
+ */
+ if (transfer_done)
+ {
+ handle->base->CDNE = handle->channel;
+ }
+ }
+ /* Advance header which points to the TCD to be loaded into the eDMA engine from memory. */
+ handle->header = (int8_t)new_header;
+ /* Release TCD blocks. tcdUsed is the TCD number which can be used/loaded in the memory pool. */
+ handle->tcdUsed -= (int8_t)tcds_done;
+ /* Invoke callback function. */
+ if (NULL != handle->callback)
+ {
+ (handle->callback)(handle, handle->userData, transfer_done, tcds_done);
+ }
+
+ /*
+ * 1.clear the DONE bit here is meaningful for below cases:
+ * A new TCD has been loaded to EDMA already:
+ * need to clear the DONE bit in the IRQ handler to avoid TCD in EDMA been overwritten
+ * if peripheral request isn't coming before next transfer request.
+ * 2. Don't clear DONE bit for below case,
+ * for the case that transfer request submitted in the privious edma callback, this is a case that doesn't
+ * need scatter gather, so keep DONE bit during the next transfer request submission will re-install the TCD and
+ * the DONE bit will be cleared together with TCD re-installation.
+ */
+ if (transfer_done)
+ {
+ if ((handle->base->TCD[handle->channel].CSR & DMA_CSR_ESG_MASK) != 0U)
+ {
+ handle->base->CDNE = handle->channel;
+ }
+ }
+ }
+}
+
+#if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET) && \
+ (FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET == 4)
+/* 8 channels (Shared): kl28 */
+#if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL == 8U)
+
+#if defined(DMA0)
+void DMA0_04_DriverIRQHandler(void);
+void DMA0_04_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 0U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[0]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 4U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[4]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_15_DriverIRQHandler(void);
+void DMA0_15_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 1U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[1]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 5U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[5]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_26_DriverIRQHandler(void);
+void DMA0_26_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 2U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[2]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 6U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[6]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_37_DriverIRQHandler(void);
+void DMA0_37_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 3U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[3]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 7U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[7]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(DMA1)
+
+#if defined(DMA0)
+void DMA1_04_DriverIRQHandler(void);
+void DMA1_04_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 0U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[8]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 4U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[12]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_15_DriverIRQHandler(void);
+void DMA1_15_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 1U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[9]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 5U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[13]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_26_DriverIRQHandler(void);
+void DMA1_26_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 2U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[10]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 6U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[14]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_37_DriverIRQHandler(void);
+void DMA1_37_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 3U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[11]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 7U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[15]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+#else
+void DMA1_04_DriverIRQHandler(void);
+void DMA1_04_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 0U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[0]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 4U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[4]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_15_DriverIRQHandler(void);
+void DMA1_15_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 1U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[1]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 5U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[5]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_26_DriverIRQHandler(void);
+void DMA1_26_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 2U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[2]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 6U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[6]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_37_DriverIRQHandler(void);
+void DMA1_37_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 3U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[3]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 7U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[7]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+#endif
+#endif /* 8 channels (Shared) */
+#endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET */
+
+#if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET) && \
+ (FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET == 8)
+/* 16 channels (Shared): K32H844P */
+#if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL == 16U)
+
+void DMA0_08_DriverIRQHandler(void);
+void DMA0_08_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 0U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[0]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 8U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[8]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_19_DriverIRQHandler(void);
+void DMA0_19_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 1U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[1]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 9U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[9]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_210_DriverIRQHandler(void);
+void DMA0_210_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 2U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[2]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 10U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[10]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_311_DriverIRQHandler(void);
+void DMA0_311_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 3U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[3]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 11U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[11]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_412_DriverIRQHandler(void);
+void DMA0_412_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 4U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[4]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 12U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[12]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_513_DriverIRQHandler(void);
+void DMA0_513_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 5U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[5]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 13U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[13]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_614_DriverIRQHandler(void);
+void DMA0_614_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 6U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[6]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 14U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[14]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_715_DriverIRQHandler(void);
+void DMA0_715_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 7U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[7]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 15U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[15]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+#if defined(DMA1)
+void DMA1_08_DriverIRQHandler(void);
+void DMA1_08_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 0U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[16]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 8U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[24]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_19_DriverIRQHandler(void);
+void DMA1_19_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 1U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[17]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 9U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[25]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_210_DriverIRQHandler(void);
+void DMA1_210_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 2U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[18]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 10U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[26]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_311_DriverIRQHandler(void);
+void DMA1_311_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 3U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[19]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 11U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[27]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_412_DriverIRQHandler(void);
+void DMA1_412_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 4U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[20]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 12U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[28]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_513_DriverIRQHandler(void);
+void DMA1_513_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 5U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[21]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 13U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[29]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_614_DriverIRQHandler(void);
+void DMA1_614_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 6U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[22]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 14U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[30]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_715_DriverIRQHandler(void);
+void DMA1_715_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 7U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[23]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 15U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[31]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+#endif /* 16 channels (Shared) */
+#endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET */
+
+#if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET) && \
+ (FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET == 16)
+/* 32 channels (Shared): k80 */
+#if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && FSL_FEATURE_EDMA_MODULE_CHANNEL == 32U
+#if defined(DMA0)
+void DMA0_DMA16_DriverIRQHandler(void);
+void DMA0_DMA16_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 0U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[0]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 16U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[16]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_DMA17_DriverIRQHandler(void);
+void DMA1_DMA17_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 1U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[1]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 17U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[17]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA2_DMA18_DriverIRQHandler(void);
+void DMA2_DMA18_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 2U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[2]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 18U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[18]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA3_DMA19_DriverIRQHandler(void);
+void DMA3_DMA19_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 3U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[3]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 19U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[19]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA4_DMA20_DriverIRQHandler(void);
+void DMA4_DMA20_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 4U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[4]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 20U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[20]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA5_DMA21_DriverIRQHandler(void);
+void DMA5_DMA21_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 5U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[5]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 21U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[21]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA6_DMA22_DriverIRQHandler(void);
+void DMA6_DMA22_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 6U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[6]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 22U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[22]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA7_DMA23_DriverIRQHandler(void);
+void DMA7_DMA23_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 7U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[7]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 23U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[23]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA8_DMA24_DriverIRQHandler(void);
+void DMA8_DMA24_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 8U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[8]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 24U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[24]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA9_DMA25_DriverIRQHandler(void);
+void DMA9_DMA25_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 9U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[9]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 25U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[25]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA10_DMA26_DriverIRQHandler(void);
+void DMA10_DMA26_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 10U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[10]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 26U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[26]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA11_DMA27_DriverIRQHandler(void);
+void DMA11_DMA27_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 11U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[11]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 27U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[27]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA12_DMA28_DriverIRQHandler(void);
+void DMA12_DMA28_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 12U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[12]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 28U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[28]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA13_DMA29_DriverIRQHandler(void);
+void DMA13_DMA29_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 13U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[13]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 29U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[29]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA14_DMA30_DriverIRQHandler(void);
+void DMA14_DMA30_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 14U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[14]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 30U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[30]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA15_DMA31_DriverIRQHandler(void);
+void DMA15_DMA31_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 15U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[15]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 31U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[31]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+#else
+void DMA0_DMA16_DriverIRQHandler(void);
+void DMA0_DMA16_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 0U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[0]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 16U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[16]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_DMA17_DriverIRQHandler(void);
+void DMA1_DMA17_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 1U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[1]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 17U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[17]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA2_DMA18_DriverIRQHandler(void);
+void DMA2_DMA18_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 2U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[2]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 18U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[18]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA3_DMA19_DriverIRQHandler(void);
+void DMA3_DMA19_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 3U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[3]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 19U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[19]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA4_DMA20_DriverIRQHandler(void);
+void DMA4_DMA20_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 4U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[4]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 20U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[20]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA5_DMA21_DriverIRQHandler(void);
+void DMA5_DMA21_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 5U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[5]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 21U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[21]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA6_DMA22_DriverIRQHandler(void);
+void DMA6_DMA22_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 6U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[6]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 22U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[22]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA7_DMA23_DriverIRQHandler(void);
+void DMA7_DMA23_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 7U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[7]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 23U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[23]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA8_DMA24_DriverIRQHandler(void);
+void DMA8_DMA24_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 8U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[8]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 24U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[24]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA9_DMA25_DriverIRQHandler(void);
+void DMA9_DMA25_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 9U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[9]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 25U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[25]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA10_DMA26_DriverIRQHandler(void);
+void DMA10_DMA26_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 10U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[10]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 26U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[26]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA11_DMA27_DriverIRQHandler(void);
+void DMA11_DMA27_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 11U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[11]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 27U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[27]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA12_DMA28_DriverIRQHandler(void);
+void DMA12_DMA28_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 12U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[12]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 28U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[28]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA13_DMA29_DriverIRQHandler(void);
+void DMA13_DMA29_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 13U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[13]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 29U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[29]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA14_DMA30_DriverIRQHandler(void);
+void DMA14_DMA30_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 14U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[14]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 30U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[30]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA15_DMA31_DriverIRQHandler(void);
+void DMA15_DMA31_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA1, 15U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[15]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA1, 31U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[31]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+#endif
+#endif /* 32 channels (Shared) */
+#endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET */
+
+#if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET) && \
+ (FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET == 4)
+/* 32 channels (Shared): MCIMX7U5_M4 */
+#if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL == 32U)
+
+void DMA0_0_4_DriverIRQHandler(void);
+void DMA0_0_4_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 0U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[0]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 4U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[4]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_1_5_DriverIRQHandler(void);
+void DMA0_1_5_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 1U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[1]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 5U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[5]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_2_6_DriverIRQHandler(void);
+void DMA0_2_6_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 2U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[2]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 6U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[6]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_3_7_DriverIRQHandler(void);
+void DMA0_3_7_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 3U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[3]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 7U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[7]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_8_12_DriverIRQHandler(void);
+void DMA0_8_12_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 8U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[8]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 12U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[12]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_9_13_DriverIRQHandler(void);
+void DMA0_9_13_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 9U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[9]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 13U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[13]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_10_14_DriverIRQHandler(void);
+void DMA0_10_14_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 10U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[10]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 14U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[14]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_11_15_DriverIRQHandler(void);
+void DMA0_11_15_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 11U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[11]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 15U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[15]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_16_20_DriverIRQHandler(void);
+void DMA0_16_20_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 16U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[16]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 20U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[20]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_17_21_DriverIRQHandler(void);
+void DMA0_17_21_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 17U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[17]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 21U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[21]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_18_22_DriverIRQHandler(void);
+void DMA0_18_22_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 18U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[18]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 22U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[22]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_19_23_DriverIRQHandler(void);
+void DMA0_19_23_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 19U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[19]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 23U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[23]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_24_28_DriverIRQHandler(void);
+void DMA0_24_28_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 24U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[24]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 28U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[28]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_25_29_DriverIRQHandler(void);
+void DMA0_25_29_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 25U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[25]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 29U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[29]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_26_30_DriverIRQHandler(void);
+void DMA0_26_30_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 26U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[26]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 30U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[30]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA0_27_31_DriverIRQHandler(void);
+void DMA0_27_31_DriverIRQHandler(void)
+{
+ if ((EDMA_GetChannelStatusFlags(DMA0, 27U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[27]);
+ }
+ if ((EDMA_GetChannelStatusFlags(DMA0, 31U) & (uint32_t)kEDMA_InterruptFlag) != 0U)
+ {
+ EDMA_HandleIRQ(s_EDMAHandle[31]);
+ }
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif /* 32 channels (Shared): MCIMX7U5 */
+#endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET */
+
+#if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET) && \
+ (FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET == 0)
+/* 4 channels (No Shared): kv10 */
+#if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL > 0)
+
+void DMA0_DriverIRQHandler(void);
+void DMA0_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[0]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA1_DriverIRQHandler(void);
+void DMA1_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[1]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA2_DriverIRQHandler(void);
+void DMA2_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[2]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA3_DriverIRQHandler(void);
+void DMA3_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[3]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+/* 8 channels (No Shared) */
+#if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL > 4U)
+
+void DMA4_DriverIRQHandler(void);
+void DMA4_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[4]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA5_DriverIRQHandler(void);
+void DMA5_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[5]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA6_DriverIRQHandler(void);
+void DMA6_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[6]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA7_DriverIRQHandler(void);
+void DMA7_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[7]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL == 8 */
+
+/* 16 channels (No Shared) */
+#if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL > 8U)
+
+void DMA8_DriverIRQHandler(void);
+void DMA8_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[8]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA9_DriverIRQHandler(void);
+void DMA9_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[9]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA10_DriverIRQHandler(void);
+void DMA10_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[10]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA11_DriverIRQHandler(void);
+void DMA11_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[11]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA12_DriverIRQHandler(void);
+void DMA12_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[12]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA13_DriverIRQHandler(void);
+void DMA13_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[13]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA14_DriverIRQHandler(void);
+void DMA14_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[14]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA15_DriverIRQHandler(void);
+void DMA15_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[15]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL == 16 */
+
+/* 32 channels (No Shared) */
+#if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL > 16U)
+
+void DMA16_DriverIRQHandler(void);
+void DMA16_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[16]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA17_DriverIRQHandler(void);
+void DMA17_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[17]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA18_DriverIRQHandler(void);
+void DMA18_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[18]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA19_DriverIRQHandler(void);
+void DMA19_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[19]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA20_DriverIRQHandler(void);
+void DMA20_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[20]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA21_DriverIRQHandler(void);
+void DMA21_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[21]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA22_DriverIRQHandler(void);
+void DMA22_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[22]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA23_DriverIRQHandler(void);
+void DMA23_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[23]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA24_DriverIRQHandler(void);
+void DMA24_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[24]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA25_DriverIRQHandler(void);
+void DMA25_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[25]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA26_DriverIRQHandler(void);
+void DMA26_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[26]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA27_DriverIRQHandler(void);
+void DMA27_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[27]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA28_DriverIRQHandler(void);
+void DMA28_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[28]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA29_DriverIRQHandler(void);
+void DMA29_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[29]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA30_DriverIRQHandler(void);
+void DMA30_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[30]);
+ SDK_ISR_EXIT_BARRIER;
+}
+
+void DMA31_DriverIRQHandler(void);
+void DMA31_DriverIRQHandler(void)
+{
+ EDMA_HandleIRQ(s_EDMAHandle[31]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL == 32 */
+
+#endif /* 4/8/16/32 channels (No Shared) */
+#endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET */
diff --git a/bsps/arm/imxrt/mcux-sdk/drivers/edma/fsl_edma.h b/bsps/arm/imxrt/mcux-sdk/drivers/edma/fsl_edma.h
new file mode 100644
index 0000000000..3d31f88365
--- /dev/null
+++ b/bsps/arm/imxrt/mcux-sdk/drivers/edma/fsl_edma.h
@@ -0,0 +1,1018 @@
+/*
+ * Copyright (c) 2015, Freescale Semiconductor, Inc.
+ * Copyright 2016-2022 NXP
+ * All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#ifndef _FSL_EDMA_H_
+#define _FSL_EDMA_H_
+
+#include "fsl_common.h"
+
+/*!
+ * @addtogroup edma
+ * @{
+ */
+
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+
+/*! @name Driver version */
+/*@{*/
+/*! @brief eDMA driver version */
+#define FSL_EDMA_DRIVER_VERSION (MAKE_VERSION(2, 4, 3)) /*!< Version 2.4.3. */
+/*@}*/
+
+/*! @brief Compute the offset unit from DCHPRI3 */
+#define DMA_DCHPRI_INDEX(channel) (((channel) & ~0x03U) | (3U - ((channel)&0x03U)))
+
+/*! @brief eDMA transfer configuration */
+typedef enum _edma_transfer_size
+{
+ kEDMA_TransferSize1Bytes = 0x0U, /*!< Source/Destination data transfer size is 1 byte every time */
+ kEDMA_TransferSize2Bytes = 0x1U, /*!< Source/Destination data transfer size is 2 bytes every time */
+ kEDMA_TransferSize4Bytes = 0x2U, /*!< Source/Destination data transfer size is 4 bytes every time */
+ kEDMA_TransferSize8Bytes = 0x3U, /*!< Source/Destination data transfer size is 8 bytes every time */
+ kEDMA_TransferSize16Bytes = 0x4U, /*!< Source/Destination data transfer size is 16 bytes every time */
+ kEDMA_TransferSize32Bytes = 0x5U, /*!< Source/Destination data transfer size is 32 bytes every time */
+} edma_transfer_size_t;
+
+/*! @brief eDMA modulo configuration */
+typedef enum _edma_modulo
+{
+ kEDMA_ModuloDisable = 0x0U, /*!< Disable modulo */
+ kEDMA_Modulo2bytes, /*!< Circular buffer size is 2 bytes. */
+ kEDMA_Modulo4bytes, /*!< Circular buffer size is 4 bytes. */
+ kEDMA_Modulo8bytes, /*!< Circular buffer size is 8 bytes. */
+ kEDMA_Modulo16bytes, /*!< Circular buffer size is 16 bytes. */
+ kEDMA_Modulo32bytes, /*!< Circular buffer size is 32 bytes. */
+ kEDMA_Modulo64bytes, /*!< Circular buffer size is 64 bytes. */
+ kEDMA_Modulo128bytes, /*!< Circular buffer size is 128 bytes. */
+ kEDMA_Modulo256bytes, /*!< Circular buffer size is 256 bytes. */
+ kEDMA_Modulo512bytes, /*!< Circular buffer size is 512 bytes. */
+ kEDMA_Modulo1Kbytes, /*!< Circular buffer size is 1 K bytes. */
+ kEDMA_Modulo2Kbytes, /*!< Circular buffer size is 2 K bytes. */
+ kEDMA_Modulo4Kbytes, /*!< Circular buffer size is 4 K bytes. */
+ kEDMA_Modulo8Kbytes, /*!< Circular buffer size is 8 K bytes. */
+ kEDMA_Modulo16Kbytes, /*!< Circular buffer size is 16 K bytes. */
+ kEDMA_Modulo32Kbytes, /*!< Circular buffer size is 32 K bytes. */
+ kEDMA_Modulo64Kbytes, /*!< Circular buffer size is 64 K bytes. */
+ kEDMA_Modulo128Kbytes, /*!< Circular buffer size is 128 K bytes. */
+ kEDMA_Modulo256Kbytes, /*!< Circular buffer size is 256 K bytes. */
+ kEDMA_Modulo512Kbytes, /*!< Circular buffer size is 512 K bytes. */
+ kEDMA_Modulo1Mbytes, /*!< Circular buffer size is 1 M bytes. */
+ kEDMA_Modulo2Mbytes, /*!< Circular buffer size is 2 M bytes. */
+ kEDMA_Modulo4Mbytes, /*!< Circular buffer size is 4 M bytes. */
+ kEDMA_Modulo8Mbytes, /*!< Circular buffer size is 8 M bytes. */
+ kEDMA_Modulo16Mbytes, /*!< Circular buffer size is 16 M bytes. */
+ kEDMA_Modulo32Mbytes, /*!< Circular buffer size is 32 M bytes. */
+ kEDMA_Modulo64Mbytes, /*!< Circular buffer size is 64 M bytes. */
+ kEDMA_Modulo128Mbytes, /*!< Circular buffer size is 128 M bytes. */
+ kEDMA_Modulo256Mbytes, /*!< Circular buffer size is 256 M bytes. */
+ kEDMA_Modulo512Mbytes, /*!< Circular buffer size is 512 M bytes. */
+ kEDMA_Modulo1Gbytes, /*!< Circular buffer size is 1 G bytes. */
+ kEDMA_Modulo2Gbytes, /*!< Circular buffer size is 2 G bytes. */
+} edma_modulo_t;
+
+/*! @brief Bandwidth control */
+typedef enum _edma_bandwidth
+{
+ kEDMA_BandwidthStallNone = 0x0U, /*!< No eDMA engine stalls. */
+ kEDMA_BandwidthStall4Cycle = 0x2U, /*!< eDMA engine stalls for 4 cycles after each read/write. */
+ kEDMA_BandwidthStall8Cycle = 0x3U, /*!< eDMA engine stalls for 8 cycles after each read/write. */
+} edma_bandwidth_t;
+
+/*! @brief Channel link type */
+typedef enum _edma_channel_link_type
+{
+ kEDMA_LinkNone = 0x0U, /*!< No channel link */
+ kEDMA_MinorLink, /*!< Channel link after each minor loop */
+ kEDMA_MajorLink, /*!< Channel link while major loop count exhausted */
+} edma_channel_link_type_t;
+
+/*!@brief _edma_channel_status_flags eDMA channel status flags. */
+enum
+{
+ kEDMA_DoneFlag = 0x1U, /*!< DONE flag, set while transfer finished, CITER value exhausted*/
+ kEDMA_ErrorFlag = 0x2U, /*!< eDMA error flag, an error occurred in a transfer */
+ kEDMA_InterruptFlag = 0x4U, /*!< eDMA interrupt flag, set while an interrupt occurred of this channel */
+};
+
+/*! @brief _edma_error_status_flags eDMA channel error status flags. */
+enum
+{
+ kEDMA_DestinationBusErrorFlag = DMA_ES_DBE_MASK, /*!< Bus error on destination address */
+ kEDMA_SourceBusErrorFlag = DMA_ES_SBE_MASK, /*!< Bus error on the source address */
+ kEDMA_ScatterGatherErrorFlag = DMA_ES_SGE_MASK, /*!< Error on the Scatter/Gather address, not 32byte aligned. */
+ kEDMA_NbytesErrorFlag = DMA_ES_NCE_MASK, /*!< NBYTES/CITER configuration error */
+ kEDMA_DestinationOffsetErrorFlag = DMA_ES_DOE_MASK, /*!< Destination offset not aligned with destination size */
+ kEDMA_DestinationAddressErrorFlag = DMA_ES_DAE_MASK, /*!< Destination address not aligned with destination size */
+ kEDMA_SourceOffsetErrorFlag = DMA_ES_SOE_MASK, /*!< Source offset not aligned with source size */
+ kEDMA_SourceAddressErrorFlag = DMA_ES_SAE_MASK, /*!< Source address not aligned with source size*/
+ kEDMA_ErrorChannelFlag = DMA_ES_ERRCHN_MASK, /*!< Error channel number of the cancelled channel number */
+ kEDMA_ChannelPriorityErrorFlag = DMA_ES_CPE_MASK, /*!< Channel priority is not unique. */
+ kEDMA_TransferCanceledFlag = DMA_ES_ECX_MASK, /*!< Transfer cancelled */
+#if defined(FSL_FEATURE_EDMA_CHANNEL_GROUP_COUNT) && (FSL_FEATURE_EDMA_CHANNEL_GROUP_COUNT > 1)
+ kEDMA_GroupPriorityErrorFlag = DMA_ES_GPE_MASK, /*!< Group priority is not unique. */
+#endif
+ kEDMA_ValidFlag = (int)DMA_ES_VLD_MASK, /*!< No error occurred, this bit is 0. Otherwise, it is 1. */
+};
+
+/*! @brief eDMA interrupt source */
+typedef enum _edma_interrupt_enable
+{
+ kEDMA_ErrorInterruptEnable = 0x1U, /*!< Enable interrupt while channel error occurs. */
+ kEDMA_MajorInterruptEnable = DMA_CSR_INTMAJOR_MASK, /*!< Enable interrupt while major count exhausted. */
+ kEDMA_HalfInterruptEnable = DMA_CSR_INTHALF_MASK, /*!< Enable interrupt while major count to half value. */
+} edma_interrupt_enable_t;
+
+/*! @brief eDMA transfer type */
+typedef enum _edma_transfer_type
+{
+ kEDMA_MemoryToMemory = 0x0U, /*!< Transfer from memory to memory */
+ kEDMA_PeripheralToMemory, /*!< Transfer from peripheral to memory */
+ kEDMA_MemoryToPeripheral, /*!< Transfer from memory to peripheral */
+ kEDMA_PeripheralToPeripheral, /*!< Transfer from Peripheral to peripheral */
+} edma_transfer_type_t;
+
+/*! @brief _edma_transfer_status eDMA transfer status */
+enum
+{
+ kStatus_EDMA_QueueFull = MAKE_STATUS(kStatusGroup_EDMA, 0), /*!< TCD queue is full. */
+ kStatus_EDMA_Busy = MAKE_STATUS(kStatusGroup_EDMA, 1), /*!< Channel is busy and can't handle the
+ transfer request. */
+};
+
+/*! @brief eDMA global configuration structure.*/
+typedef struct _edma_config
+{
+ bool enableContinuousLinkMode; /*!< Enable (true) continuous link mode. Upon minor loop completion, the channel
+ activates again if that channel has a minor loop channel link enabled and
+ the link channel is itself. */
+ bool enableHaltOnError; /*!< Enable (true) transfer halt on error. Any error causes the HALT bit to set.
+ Subsequently, all service requests are ignored until the HALT bit is cleared.*/
+ bool enableRoundRobinArbitration; /*!< Enable (true) round robin channel arbitration method or fixed priority
+ arbitration is used for channel selection */
+ bool enableDebugMode; /*!< Enable(true) eDMA debug mode. When in debug mode, the eDMA stalls the start of
+ a new channel. Executing channels are allowed to complete. */
+} edma_config_t;
+
+/*!
+ * @brief eDMA transfer configuration
+ *
+ * This structure configures the source/destination transfer attribute.
+ */
+typedef struct _edma_transfer_config
+{
+ uint32_t srcAddr; /*!< Source data address. */
+ uint32_t destAddr; /*!< Destination data address. */
+ edma_transfer_size_t srcTransferSize; /*!< Source data transfer size. */
+ edma_transfer_size_t destTransferSize; /*!< Destination data transfer size. */
+ int16_t srcOffset; /*!< Sign-extended offset applied to the current source address to
+ form the next-state value as each source read is completed. */
+ int16_t destOffset; /*!< Sign-extended offset applied to the current destination address to
+ form the next-state value as each destination write is completed. */
+ uint32_t minorLoopBytes; /*!< Bytes to transfer in a minor loop*/
+ uint32_t majorLoopCounts; /*!< Major loop iteration count. */
+} edma_transfer_config_t;
+
+/*! @brief eDMA channel priority configuration */
+typedef struct _edma_channel_Preemption_config
+{
+ bool enableChannelPreemption; /*!< If true: a channel can be suspended by other channel with higher priority */
+ bool enablePreemptAbility; /*!< If true: a channel can suspend other channel with low priority */
+ uint8_t channelPriority; /*!< Channel priority */
+} edma_channel_Preemption_config_t;
+
+/*! @brief eDMA minor offset configuration */
+typedef struct _edma_minor_offset_config
+{
+ bool enableSrcMinorOffset; /*!< Enable(true) or Disable(false) source minor loop offset. */
+ bool enableDestMinorOffset; /*!< Enable(true) or Disable(false) destination minor loop offset. */
+ uint32_t minorOffset; /*!< Offset for a minor loop mapping. */
+} edma_minor_offset_config_t;
+
+/*!
+ * @brief eDMA TCD.
+ *
+ * This structure is same as TCD register which is described in reference manual,
+ * and is used to configure the scatter/gather feature as a next hardware TCD.
+ */
+typedef struct _edma_tcd
+{
+ __IO uint32_t SADDR; /*!< SADDR register, used to save source address */
+ __IO uint16_t SOFF; /*!< SOFF register, save offset bytes every transfer */
+ __IO uint16_t ATTR; /*!< ATTR register, source/destination transfer size and modulo */
+ __IO uint32_t NBYTES; /*!< Nbytes register, minor loop length in bytes */
+ __IO uint32_t SLAST; /*!< SLAST register */
+ __IO uint32_t DADDR; /*!< DADDR register, used for destination address */
+ __IO uint16_t DOFF; /*!< DOFF register, used for destination offset */
+ __IO uint16_t CITER; /*!< CITER register, current minor loop numbers, for unfinished minor loop.*/
+ __IO uint32_t DLAST_SGA; /*!< DLASTSGA register, next tcd address used in scatter-gather mode */
+ __IO uint16_t CSR; /*!< CSR register, for TCD control status */
+ __IO uint16_t BITER; /*!< BITER register, begin minor loop count. */
+} edma_tcd_t;
+
+/*! @brief Callback for eDMA */
+struct _edma_handle;
+
+/*! @brief Define callback function for eDMA.
+ *
+ * This callback function is called in the EDMA interrupt handle.
+ * In normal mode, run into callback function means the transfer users need is done.
+ * In scatter gather mode, run into callback function means a transfer control block (tcd) is finished. Not
+ * all transfer finished, users can get the finished tcd numbers using interface EDMA_GetUnusedTCDNumber.
+ *
+ * @param handle EDMA handle pointer, users shall not touch the values inside.
+ * @param userData The callback user parameter pointer. Users can use this parameter to involve things users need to
+ * change in EDMA callback function.
+ * @param transferDone If the current loaded transfer done. In normal mode it means if all transfer done. In scatter
+ * gather mode, this parameter shows is the current transfer block in EDMA register is done. As the
+ * load of core is different, it will be different if the new tcd loaded into EDMA registers while
+ * this callback called. If true, it always means new tcd still not loaded into registers, while
+ * false means new tcd already loaded into registers.
+ * @param tcds How many tcds are done from the last callback. This parameter only used in scatter gather mode. It
+ * tells user how many tcds are finished between the last callback and this.
+ */
+typedef void (*edma_callback)(struct _edma_handle *handle, void *userData, bool transferDone, uint32_t tcds);
+
+/*! @brief eDMA transfer handle structure */
+typedef struct _edma_handle
+{
+ edma_callback callback; /*!< Callback function for major count exhausted. */
+ void *userData; /*!< Callback function parameter. */
+ DMA_Type *base; /*!< eDMA peripheral base address. */
+ edma_tcd_t *tcdPool; /*!< Pointer to memory stored TCDs. */
+ uint8_t channel; /*!< eDMA channel number. */
+ volatile int8_t header; /*!< The first TCD index. Should point to the next TCD to be loaded into the eDMA engine. */
+ volatile int8_t tail; /*!< The last TCD index. Should point to the next TCD to be stored into the memory pool. */
+ volatile int8_t tcdUsed; /*!< The number of used TCD slots. Should reflect the number of TCDs can be used/loaded in
+ the memory. */
+ volatile int8_t tcdSize; /*!< The total number of TCD slots in the queue. */
+ uint8_t flags; /*!< The status of the current channel. */
+} edma_handle_t;
+
+/*******************************************************************************
+ * APIs
+ ******************************************************************************/
+#if defined(__cplusplus)
+extern "C" {
+#endif /* __cplusplus */
+
+/*!
+ * @name eDMA initialization and de-initialization
+ * @{
+ */
+
+/*!
+ * @brief Initializes the eDMA peripheral.
+ *
+ * This function ungates the eDMA clock and configures the eDMA peripheral according
+ * to the configuration structure.
+ *
+ * @param base eDMA peripheral base address.
+ * @param config A pointer to the configuration structure, see "edma_config_t".
+ * @note This function enables the minor loop map feature.
+ */
+void EDMA_Init(DMA_Type *base, const edma_config_t *config);
+
+/*!
+ * @brief Deinitializes the eDMA peripheral.
+ *
+ * This function gates the eDMA clock.
+ *
+ * @param base eDMA peripheral base address.
+ */
+void EDMA_Deinit(DMA_Type *base);
+
+/*!
+ * @brief Push content of TCD structure into hardware TCD register.
+ *
+ * @param base EDMA peripheral base address.
+ * @param channel EDMA channel number.
+ * @param tcd Point to TCD structure.
+ */
+void EDMA_InstallTCD(DMA_Type *base, uint32_t channel, edma_tcd_t *tcd);
+
+/*!
+ * @brief Gets the eDMA default configuration structure.
+ *
+ * This function sets the configuration structure to default values.
+ * The default configuration is set to the following values.
+ * @code
+ * config.enableContinuousLinkMode = false;
+ * config.enableHaltOnError = true;
+ * config.enableRoundRobinArbitration = false;
+ * config.enableDebugMode = false;
+ * @endcode
+ *
+ * @param config A pointer to the eDMA configuration structure.
+ */
+void EDMA_GetDefaultConfig(edma_config_t *config);
+
+/*!
+ * @brief Enable/Disable continuous channel link mode.
+ *
+ * @note Do not use continuous link mode with a channel linking to itself if there is only one minor loop
+ * iteration per service request, for example, if the channel's NBYTES value is the same as either
+ * the source or destination size. The same data transfer profile can be achieved by simply
+ * increasing the NBYTES value, which provides more efficient, faster processing.
+ *
+ * @param base EDMA peripheral base address.
+ * @param enable true is enable, false is disable.
+ */
+static inline void EDMA_EnableContinuousChannelLinkMode(DMA_Type *base, bool enable)
+{
+ if (enable)
+ {
+ base->CR |= DMA_CR_CLM_MASK;
+ }
+ else
+ {
+ base->CR &= ~DMA_CR_CLM_MASK;
+ }
+}
+
+/*!
+ * @brief Enable/Disable minor loop mapping.
+ *
+ * The TCDn.word2 is redefined to include individual enable fields, an offset field, and the
+ * NBYTES field.
+ *
+ * @param base EDMA peripheral base address.
+ * @param enable true is enable, false is disable.
+ */
+static inline void EDMA_EnableMinorLoopMapping(DMA_Type *base, bool enable)
+{
+ if (enable)
+ {
+ base->CR |= DMA_CR_EMLM_MASK;
+ }
+ else
+ {
+ base->CR &= ~DMA_CR_EMLM_MASK;
+ }
+}
+
+/* @} */
+/*!
+ * @name eDMA Channel Operation
+ * @{
+ */
+
+/*!
+ * @brief Sets all TCD registers to default values.
+ *
+ * This function sets TCD registers for this channel to default values.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ * @note This function must not be called while the channel transfer is ongoing
+ * or it causes unpredictable results.
+ * @note This function enables the auto stop request feature.
+ */
+void EDMA_ResetChannel(DMA_Type *base, uint32_t channel);
+
+/*!
+ * @brief Configures the eDMA transfer attribute.
+ *
+ * This function configures the transfer attribute, including source address, destination address,
+ * transfer size, address offset, and so on. It also configures the scatter gather feature if the
+ * user supplies the TCD address.
+ * Example:
+ * @code
+ * edma_transfer_t config;
+ * edma_tcd_t tcd;
+ * config.srcAddr = ..;
+ * config.destAddr = ..;
+ * ...
+ * EDMA_SetTransferConfig(DMA0, channel, &config, &stcd);
+ * @endcode
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ * @param config Pointer to eDMA transfer configuration structure.
+ * @param nextTcd Point to TCD structure. It can be NULL if users
+ * do not want to enable scatter/gather feature.
+ * @note If nextTcd is not NULL, it means scatter gather feature is enabled
+ * and DREQ bit is cleared in the previous transfer configuration, which
+ * is set in the eDMA_ResetChannel.
+ */
+void EDMA_SetTransferConfig(DMA_Type *base,
+ uint32_t channel,
+ const edma_transfer_config_t *config,
+ edma_tcd_t *nextTcd);
+
+/*!
+ * @brief Configures the eDMA minor offset feature.
+ *
+ * The minor offset means that the signed-extended value is added to the source address or destination
+ * address after each minor loop.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ * @param config A pointer to the minor offset configuration structure.
+ */
+void EDMA_SetMinorOffsetConfig(DMA_Type *base, uint32_t channel, const edma_minor_offset_config_t *config);
+
+/*!
+ * @brief Configures the eDMA channel preemption feature.
+ *
+ * This function configures the channel preemption attribute and the priority of the channel.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number
+ * @param config A pointer to the channel preemption configuration structure.
+ */
+void EDMA_SetChannelPreemptionConfig(DMA_Type *base, uint32_t channel, const edma_channel_Preemption_config_t *config);
+
+/*!
+ * @brief Sets the channel link for the eDMA transfer.
+ *
+ * This function configures either the minor link or the major link mode. The minor link means that the channel link is
+ * triggered every time CITER decreases by 1. The major link means that the channel link is triggered when the CITER is
+ * exhausted.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ * @param linkType A channel link type, which can be one of the following:
+ * @arg kEDMA_LinkNone
+ * @arg kEDMA_MinorLink
+ * @arg kEDMA_MajorLink
+ * @param linkedChannel The linked channel number.
+ * @note Users should ensure that DONE flag is cleared before calling this interface, or the configuration is invalid.
+ */
+void EDMA_SetChannelLink(DMA_Type *base, uint32_t channel, edma_channel_link_type_t linkType, uint32_t linkedChannel);
+
+/*!
+ * @brief Sets the bandwidth for the eDMA transfer.
+ *
+ * Because the eDMA processes the minor loop, it continuously generates read/write sequences
+ * until the minor count is exhausted. The bandwidth forces the eDMA to stall after the completion of
+ * each read/write access to control the bus request bandwidth seen by the crossbar switch.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ * @param bandWidth A bandwidth setting, which can be one of the following:
+ * @arg kEDMABandwidthStallNone
+ * @arg kEDMABandwidthStall4Cycle
+ * @arg kEDMABandwidthStall8Cycle
+ */
+void EDMA_SetBandWidth(DMA_Type *base, uint32_t channel, edma_bandwidth_t bandWidth);
+
+/*!
+ * @brief Sets the source modulo and the destination modulo for the eDMA transfer.
+ *
+ * This function defines a specific address range specified to be the value after (SADDR + SOFF)/(DADDR + DOFF)
+ * calculation is performed or the original register value. It provides the ability to implement a circular data
+ * queue easily.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ * @param srcModulo A source modulo value.
+ * @param destModulo A destination modulo value.
+ */
+void EDMA_SetModulo(DMA_Type *base, uint32_t channel, edma_modulo_t srcModulo, edma_modulo_t destModulo);
+
+#if defined(FSL_FEATURE_EDMA_ASYNCHRO_REQUEST_CHANNEL_COUNT) && FSL_FEATURE_EDMA_ASYNCHRO_REQUEST_CHANNEL_COUNT
+/*!
+ * @brief Enables an async request for the eDMA transfer.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ * @param enable The command to enable (true) or disable (false).
+ */
+static inline void EDMA_EnableAsyncRequest(DMA_Type *base, uint32_t channel, bool enable)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_DMAMUX_MODULE_CHANNEL);
+
+ base->EARS &= ~((uint32_t)1U << channel);
+ base->EARS |= ((uint32_t)(true == enable ? 1U : 0U) << channel);
+}
+#endif /* FSL_FEATURE_EDMA_ASYNCHRO_REQUEST_CHANNEL_COUNT */
+
+/*!
+ * @brief Enables an auto stop request for the eDMA transfer.
+ *
+ * If enabling the auto stop request, the eDMA hardware automatically disables the hardware channel request.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ * @param enable The command to enable (true) or disable (false).
+ */
+static inline void EDMA_EnableAutoStopRequest(DMA_Type *base, uint32_t channel, bool enable)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_DMAMUX_MODULE_CHANNEL);
+
+ base->TCD[channel].CSR =
+ (uint16_t)((base->TCD[channel].CSR & (~DMA_CSR_DREQ_MASK)) | DMA_CSR_DREQ((true == enable ? 1U : 0U)));
+}
+
+/*!
+ * @brief Enables the interrupt source for the eDMA transfer.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ * @param mask The mask of interrupt source to be set. Users need to use
+ * the defined edma_interrupt_enable_t type.
+ */
+void EDMA_EnableChannelInterrupts(DMA_Type *base, uint32_t channel, uint32_t mask);
+
+/*!
+ * @brief Disables the interrupt source for the eDMA transfer.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ * @param mask The mask of the interrupt source to be set. Use
+ * the defined edma_interrupt_enable_t type.
+ */
+void EDMA_DisableChannelInterrupts(DMA_Type *base, uint32_t channel, uint32_t mask);
+
+/*!
+ * @brief Configures the eDMA channel TCD major offset feature.
+ *
+ * Adjustment value added to the source address at the completion of the major iteration count
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel edma channel number.
+ * @param sourceOffset source address offset will be applied to source address after major loop done.
+ * @param destOffset destination address offset will be applied to source address after major loop done.
+ */
+void EDMA_SetMajorOffsetConfig(DMA_Type *base, uint32_t channel, int32_t sourceOffset, int32_t destOffset);
+
+/* @} */
+/*!
+ * @name eDMA TCD Operation
+ * @{
+ */
+
+/*!
+ * @brief Sets all fields to default values for the TCD structure.
+ *
+ * This function sets all fields for this TCD structure to default value.
+ *
+ * @param tcd Pointer to the TCD structure.
+ * @note This function enables the auto stop request feature.
+ */
+void EDMA_TcdReset(edma_tcd_t *tcd);
+
+/*!
+ * @brief Configures the eDMA TCD transfer attribute.
+ *
+ * The TCD is a transfer control descriptor. The content of the TCD is the same as the hardware TCD registers.
+ * The TCD is used in the scatter-gather mode.
+ * This function configures the TCD transfer attribute, including source address, destination address,
+ * transfer size, address offset, and so on. It also configures the scatter gather feature if the
+ * user supplies the next TCD address.
+ * Example:
+ * @code
+ * edma_transfer_t config = {
+ * ...
+ * }
+ * edma_tcd_t tcd __aligned(32);
+ * edma_tcd_t nextTcd __aligned(32);
+ * EDMA_TcdSetTransferConfig(&tcd, &config, &nextTcd);
+ * @endcode
+ *
+ * @param tcd Pointer to the TCD structure.
+ * @param config Pointer to eDMA transfer configuration structure.
+ * @param nextTcd Pointer to the next TCD structure. It can be NULL if users
+ * do not want to enable scatter/gather feature.
+ * @note TCD address should be 32 bytes aligned or it causes an eDMA error.
+ * @note If the nextTcd is not NULL, the scatter gather feature is enabled
+ * and DREQ bit is cleared in the previous transfer configuration, which
+ * is set in the EDMA_TcdReset.
+ */
+void EDMA_TcdSetTransferConfig(edma_tcd_t *tcd, const edma_transfer_config_t *config, edma_tcd_t *nextTcd);
+
+/*!
+ * @brief Configures the eDMA TCD minor offset feature.
+ *
+ * A minor offset is a signed-extended value added to the source address or a destination
+ * address after each minor loop.
+ *
+ * @param tcd A point to the TCD structure.
+ * @param config A pointer to the minor offset configuration structure.
+ */
+void EDMA_TcdSetMinorOffsetConfig(edma_tcd_t *tcd, const edma_minor_offset_config_t *config);
+
+/*!
+ * @brief Sets the channel link for the eDMA TCD.
+ *
+ * This function configures either a minor link or a major link. The minor link means the channel link is
+ * triggered every time CITER decreases by 1. The major link means that the channel link is triggered when the CITER is
+ * exhausted.
+ *
+ * @note Users should ensure that DONE flag is cleared before calling this interface, or the configuration is invalid.
+ * @param tcd Point to the TCD structure.
+ * @param linkType Channel link type, it can be one of:
+ * @arg kEDMA_LinkNone
+ * @arg kEDMA_MinorLink
+ * @arg kEDMA_MajorLink
+ * @param linkedChannel The linked channel number.
+ */
+void EDMA_TcdSetChannelLink(edma_tcd_t *tcd, edma_channel_link_type_t linkType, uint32_t linkedChannel);
+
+/*!
+ * @brief Sets the bandwidth for the eDMA TCD.
+ *
+ * Because the eDMA processes the minor loop, it continuously generates read/write sequences
+ * until the minor count is exhausted. The bandwidth forces the eDMA to stall after the completion of
+ * each read/write access to control the bus request bandwidth seen by the crossbar switch.
+ * @param tcd A pointer to the TCD structure.
+ * @param bandWidth A bandwidth setting, which can be one of the following:
+ * @arg kEDMABandwidthStallNone
+ * @arg kEDMABandwidthStall4Cycle
+ * @arg kEDMABandwidthStall8Cycle
+ */
+static inline void EDMA_TcdSetBandWidth(edma_tcd_t *tcd, edma_bandwidth_t bandWidth)
+{
+ assert(tcd != NULL);
+ assert(((uint32_t)tcd & 0x1FU) == 0U);
+
+ tcd->CSR = (uint16_t)((tcd->CSR & (~DMA_CSR_BWC_MASK)) | DMA_CSR_BWC(bandWidth));
+}
+
+/*!
+ * @brief Sets the source modulo and the destination modulo for the eDMA TCD.
+ *
+ * This function defines a specific address range specified to be the value after (SADDR + SOFF)/(DADDR + DOFF)
+ * calculation is performed or the original register value. It provides the ability to implement a circular data
+ * queue easily.
+ *
+ * @param tcd A pointer to the TCD structure.
+ * @param srcModulo A source modulo value.
+ * @param destModulo A destination modulo value.
+ */
+void EDMA_TcdSetModulo(edma_tcd_t *tcd, edma_modulo_t srcModulo, edma_modulo_t destModulo);
+
+/*!
+ * @brief Sets the auto stop request for the eDMA TCD.
+ *
+ * If enabling the auto stop request, the eDMA hardware automatically disables the hardware channel request.
+ *
+ * @param tcd A pointer to the TCD structure.
+ * @param enable The command to enable (true) or disable (false).
+ */
+static inline void EDMA_TcdEnableAutoStopRequest(edma_tcd_t *tcd, bool enable)
+{
+ assert(tcd != NULL);
+ assert(((uint32_t)tcd & 0x1FU) == 0U);
+
+ tcd->CSR = (uint16_t)((tcd->CSR & (~DMA_CSR_DREQ_MASK)) | DMA_CSR_DREQ((true == enable ? 1U : 0U)));
+}
+
+/*!
+ * @brief Enables the interrupt source for the eDMA TCD.
+ *
+ * @param tcd Point to the TCD structure.
+ * @param mask The mask of interrupt source to be set. Users need to use
+ * the defined edma_interrupt_enable_t type.
+ */
+void EDMA_TcdEnableInterrupts(edma_tcd_t *tcd, uint32_t mask);
+
+/*!
+ * @brief Disables the interrupt source for the eDMA TCD.
+ *
+ * @param tcd Point to the TCD structure.
+ * @param mask The mask of interrupt source to be set. Users need to use
+ * the defined edma_interrupt_enable_t type.
+ */
+void EDMA_TcdDisableInterrupts(edma_tcd_t *tcd, uint32_t mask);
+
+/*!
+ * @brief Configures the eDMA TCD major offset feature.
+ *
+ * Adjustment value added to the source address at the completion of the major iteration count
+ *
+ * @param tcd A point to the TCD structure.
+ * @param sourceOffset source address offset wiil be applied to source address after major loop done.
+ * @param destOffset destination address offset will be applied to source address after major loop done.
+ */
+void EDMA_TcdSetMajorOffsetConfig(edma_tcd_t *tcd, int32_t sourceOffset, int32_t destOffset);
+
+/*! @} */
+/*!
+ * @name eDMA Channel Transfer Operation
+ * @{
+ */
+
+/*!
+ * @brief Enables the eDMA hardware channel request.
+ *
+ * This function enables the hardware channel request.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ */
+static inline void EDMA_EnableChannelRequest(DMA_Type *base, uint32_t channel)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_DMAMUX_MODULE_CHANNEL);
+
+ base->SERQ = DMA_SERQ_SERQ(channel);
+}
+
+/*!
+ * @brief Disables the eDMA hardware channel request.
+ *
+ * This function disables the hardware channel request.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ */
+static inline void EDMA_DisableChannelRequest(DMA_Type *base, uint32_t channel)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_DMAMUX_MODULE_CHANNEL);
+
+ base->CERQ = DMA_CERQ_CERQ(channel);
+}
+
+/*!
+ * @brief Starts the eDMA transfer by using the software trigger.
+ *
+ * This function starts a minor loop transfer.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ */
+static inline void EDMA_TriggerChannelStart(DMA_Type *base, uint32_t channel)
+{
+ assert(channel < (uint32_t)FSL_FEATURE_DMAMUX_MODULE_CHANNEL);
+
+ base->SSRT = DMA_SSRT_SSRT(channel);
+}
+
+/*! @} */
+/*!
+ * @name eDMA Channel Status Operation
+ * @{
+ */
+
+/*!
+ * @brief Gets the remaining major loop count from the eDMA current channel TCD.
+ *
+ * This function checks the TCD (Task Control Descriptor) status for a specified
+ * eDMA channel and returns the number of major loop count that has not finished.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ * @return Major loop count which has not been transferred yet for the current TCD.
+ * @note 1. This function can only be used to get unfinished major loop count of transfer without
+ * the next TCD, or it might be inaccuracy.
+ * 2. The unfinished/remaining transfer bytes cannot be obtained directly from registers while
+ * the channel is running.
+ * Because to calculate the remaining bytes, the initial NBYTES configured in DMA_TCDn_NBYTES_MLNO
+ * register is needed while the eDMA IP does not support getting it while a channel is active.
+ * In another word, the NBYTES value reading is always the actual (decrementing) NBYTES value the dma_engine
+ * is working with while a channel is running.
+ * Consequently, to get the remaining transfer bytes, a software-saved initial value of NBYTES (for example
+ * copied before enabling the channel) is needed. The formula to calculate it is shown below:
+ * RemainingBytes = RemainingMajorLoopCount * NBYTES(initially configured)
+ */
+uint32_t EDMA_GetRemainingMajorLoopCount(DMA_Type *base, uint32_t channel);
+
+/*!
+ * @brief Gets the eDMA channel error status flags.
+ *
+ * @param base eDMA peripheral base address.
+ * @return The mask of error status flags. Users need to use the
+ * _edma_error_status_flags type to decode the return variables.
+ */
+static inline uint32_t EDMA_GetErrorStatusFlags(DMA_Type *base)
+{
+ return base->ES;
+}
+
+/*!
+ * @brief Gets the eDMA channel status flags.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ * @return The mask of channel status flags. Users need to use the
+ * _edma_channel_status_flags type to decode the return variables.
+ */
+uint32_t EDMA_GetChannelStatusFlags(DMA_Type *base, uint32_t channel);
+
+/*!
+ * @brief Clears the eDMA channel status flags.
+ *
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ * @param mask The mask of channel status to be cleared. Users need to use
+ * the defined _edma_channel_status_flags type.
+ */
+void EDMA_ClearChannelStatusFlags(DMA_Type *base, uint32_t channel, uint32_t mask);
+
+/*! @} */
+/*!
+ * @name eDMA Transactional Operation
+ */
+
+/*!
+ * @brief Creates the eDMA handle.
+ *
+ * This function is called if using the transactional API for eDMA. This function
+ * initializes the internal state of the eDMA handle.
+ *
+ * @param handle eDMA handle pointer. The eDMA handle stores callback function and
+ * parameters.
+ * @param base eDMA peripheral base address.
+ * @param channel eDMA channel number.
+ */
+void EDMA_CreateHandle(edma_handle_t *handle, DMA_Type *base, uint32_t channel);
+
+/*!
+ * @brief Installs the TCDs memory pool into the eDMA handle.
+ *
+ * This function is called after the EDMA_CreateHandle to use scatter/gather feature. This function shall only be used
+ * while users need to use scatter gather mode. Scatter gather mode enables EDMA to load a new transfer control block
+ * (tcd) in hardware, and automatically reconfigure that DMA channel for a new transfer.
+ * Users need to prepare tcd memory and also configure tcds using interface EDMA_SubmitTransfer.
+ *
+ * @param handle eDMA handle pointer.
+ * @param tcdPool A memory pool to store TCDs. It must be 32 bytes aligned.
+ * @param tcdSize The number of TCD slots.
+ */
+void EDMA_InstallTCDMemory(edma_handle_t *handle, edma_tcd_t *tcdPool, uint32_t tcdSize);
+
+/*!
+ * @brief Installs a callback function for the eDMA transfer.
+ *
+ * This callback is called in the eDMA IRQ handler. Use the callback to do something after
+ * the current major loop transfer completes. This function will be called every time one tcd finished transfer.
+ *
+ * @param handle eDMA handle pointer.
+ * @param callback eDMA callback function pointer.
+ * @param userData A parameter for the callback function.
+ */
+void EDMA_SetCallback(edma_handle_t *handle, edma_callback callback, void *userData);
+
+/*!
+ * @brief Prepares the eDMA transfer structure configurations.
+ *
+ * This function prepares the transfer configuration structure according to the user input.
+ *
+ * @param config The user configuration structure of type edma_transfer_t.
+ * @param srcAddr eDMA transfer source address.
+ * @param srcWidth eDMA transfer source address width(bytes).
+ * @param srcOffset source address offset.
+ * @param destAddr eDMA transfer destination address.
+ * @param destWidth eDMA transfer destination address width(bytes).
+ * @param destOffset destination address offset.
+ * @param bytesEachRequest eDMA transfer bytes per channel request.
+ * @param transferBytes eDMA transfer bytes to be transferred.
+ * @note The data address and the data width must be consistent. For example, if the SRC
+ * is 4 bytes, the source address must be 4 bytes aligned, or it results in
+ * source address error (SAE).
+ */
+void EDMA_PrepareTransferConfig(edma_transfer_config_t *config,
+ void *srcAddr,
+ uint32_t srcWidth,
+ int16_t srcOffset,
+ void *destAddr,
+ uint32_t destWidth,
+ int16_t destOffset,
+ uint32_t bytesEachRequest,
+ uint32_t transferBytes);
+
+/*!
+ * @brief Prepares the eDMA transfer structure.
+ *
+ * This function prepares the transfer configuration structure according to the user input.
+ *
+ * @param config The user configuration structure of type edma_transfer_t.
+ * @param srcAddr eDMA transfer source address.
+ * @param srcWidth eDMA transfer source address width(bytes).
+ * @param destAddr eDMA transfer destination address.
+ * @param destWidth eDMA transfer destination address width(bytes).
+ * @param bytesEachRequest eDMA transfer bytes per channel request.
+ * @param transferBytes eDMA transfer bytes to be transferred.
+ * @param transferType eDMA transfer type.
+ * @note The data address and the data width must be consistent. For example, if the SRC
+ * is 4 bytes, the source address must be 4 bytes aligned, or it results in
+ * source address error (SAE).
+ */
+void EDMA_PrepareTransfer(edma_transfer_config_t *config,
+ void *srcAddr,
+ uint32_t srcWidth,
+ void *destAddr,
+ uint32_t destWidth,
+ uint32_t bytesEachRequest,
+ uint32_t transferBytes,
+ edma_transfer_type_t transferType);
+
+/*!
+ * @brief Submits the eDMA transfer request.
+ *
+ * This function submits the eDMA transfer request according to the transfer configuration structure.
+ * In scatter gather mode, call this function will add a configured tcd to the circular list of tcd pool.
+ * The tcd pools is setup by call function EDMA_InstallTCDMemory before.
+ *
+ * @param handle eDMA handle pointer.
+ * @param config Pointer to eDMA transfer configuration structure.
+ * @retval kStatus_EDMA_Success It means submit transfer request succeed.
+ * @retval kStatus_EDMA_QueueFull It means TCD queue is full. Submit transfer request is not allowed.
+ * @retval kStatus_EDMA_Busy It means the given channel is busy, need to submit request later.
+ */
+status_t EDMA_SubmitTransfer(edma_handle_t *handle, const edma_transfer_config_t *config);
+
+/*!
+ * @brief eDMA starts transfer.
+ *
+ * This function enables the channel request. Users can call this function after submitting the transfer request
+ * or before submitting the transfer request.
+ *
+ * @param handle eDMA handle pointer.
+ */
+void EDMA_StartTransfer(edma_handle_t *handle);
+
+/*!
+ * @brief eDMA stops transfer.
+ *
+ * This function disables the channel request to pause the transfer. Users can call EDMA_StartTransfer()
+ * again to resume the transfer.
+ *
+ * @param handle eDMA handle pointer.
+ */
+void EDMA_StopTransfer(edma_handle_t *handle);
+
+/*!
+ * @brief eDMA aborts transfer.
+ *
+ * This function disables the channel request and clear transfer status bits.
+ * Users can submit another transfer after calling this API.
+ *
+ * @param handle DMA handle pointer.
+ */
+void EDMA_AbortTransfer(edma_handle_t *handle);
+
+/*!
+ * @brief Get unused TCD slot number.
+ *
+ * This function gets current tcd index which is run. If the TCD pool pointer is NULL, it will return 0.
+ *
+ * @param handle DMA handle pointer.
+ * @return The unused tcd slot number.
+ */
+static inline uint32_t EDMA_GetUnusedTCDNumber(edma_handle_t *handle)
+{
+ int8_t tmpTcdSize = handle->tcdSize;
+ int8_t tmpTcdUsed = handle->tcdUsed;
+ return ((uint32_t)tmpTcdSize - (uint32_t)tmpTcdUsed);
+}
+
+/*!
+ * @brief Get the next tcd address.
+ *
+ * This function gets the next tcd address. If this is last TCD, return 0.
+ *
+ * @param handle DMA handle pointer.
+ * @return The next TCD address.
+ */
+static inline uint32_t EDMA_GetNextTCDAddress(edma_handle_t *handle)
+{
+ return (uint32_t)(handle->base->TCD[handle->channel].DLAST_SGA);
+}
+
+/*!
+ * @brief eDMA IRQ handler for the current major loop transfer completion.
+ *
+ * This function clears the channel major interrupt flag and calls
+ * the callback function if it is not NULL.
+ *
+ * Note:
+ * For the case using TCD queue, when the major iteration count is exhausted, additional operations are performed.
+ * These include the final address adjustments and reloading of the BITER field into the CITER.
+ * Assertion of an optional interrupt request also occurs at this time, as does a possible fetch of a new TCD from
+ * memory using the scatter/gather address pointer included in the descriptor (if scatter/gather is enabled).
+ *
+ * For instance, when the time interrupt of TCD[0] happens, the TCD[1] has already been loaded into the eDMA engine.
+ * As sga and sga_index are calculated based on the DLAST_SGA bitfield lies in the TCD_CSR register, the sga_index
+ * in this case should be 2 (DLAST_SGA of TCD[1] stores the address of TCD[2]). Thus, the "tcdUsed" updated should be
+ * (tcdUsed - 2U) which indicates the number of TCDs can be loaded in the memory pool (because TCD[0] and TCD[1] have
+ * been loaded into the eDMA engine at this point already.).
+ *
+ * For the last two continuous ISRs in a scatter/gather process, they both load the last TCD (The last ISR does not
+ * load a new TCD) from the memory pool to the eDMA engine when major loop completes.
+ * Therefore, ensure that the header and tcdUsed updated are identical for them.
+ * tcdUsed are both 0 in this case as no TCD to be loaded.
+ *
+ * See the "eDMA basic data flow" in the eDMA Functional description section of the Reference Manual for
+ * further details.
+ *
+ * @param handle eDMA handle pointer.
+ */
+void EDMA_HandleIRQ(edma_handle_t *handle);
+
+/* @} */
+
+#if defined(__cplusplus)
+}
+#endif /* __cplusplus */
+
+/* @} */
+
+#endif /*_FSL_EDMA_H_*/