summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/mcux-sdk/drivers/csi/fsl_csi.c
diff options
context:
space:
mode:
Diffstat (limited to 'bsps/arm/imxrt/mcux-sdk/drivers/csi/fsl_csi.c')
-rw-r--r--bsps/arm/imxrt/mcux-sdk/drivers/csi/fsl_csi.c1417
1 files changed, 1417 insertions, 0 deletions
diff --git a/bsps/arm/imxrt/mcux-sdk/drivers/csi/fsl_csi.c b/bsps/arm/imxrt/mcux-sdk/drivers/csi/fsl_csi.c
new file mode 100644
index 0000000000..e23fba521b
--- /dev/null
+++ b/bsps/arm/imxrt/mcux-sdk/drivers/csi/fsl_csi.c
@@ -0,0 +1,1417 @@
+/*
+ * Copyright 2017-2021 NXP
+ * All rights reserved.
+ *
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include "fsl_csi.h"
+#if CSI_DRIVER_FRAG_MODE
+#include "fsl_cache.h"
+#endif
+
+#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
+#include "fsl_memory.h"
+#endif
+
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+/* Macro remap. */
+#if (!defined(CSI_CR3_TWO_8BIT_SENSOR_MASK) && defined(CSI_CR3_SENSOR_16BITS_MASK))
+#define CSI_CR3_TWO_8BIT_SENSOR_MASK CSI_CR3_SENSOR_16BITS_MASK
+#endif
+
+/* Component ID definition, used by tools. */
+#ifndef FSL_COMPONENT_ID
+#define FSL_COMPONENT_ID "platform.drivers.csi"
+#endif
+
+/* Two frame buffer loaded to CSI register at most. */
+#define CSI_MAX_ACTIVE_FRAME_NUM 2U
+
+/* CSI driver only support RGB565 and YUV422 in fragment mode, 2 bytes per pixel. */
+#define CSI_FRAG_INPUT_BYTES_PER_PIXEL 2U
+
+#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
+#define CSI_ADDR_CPU_2_IP(addr) (MEMORY_ConvertMemoryMapAddress((uint32_t)(addr), kMEMORY_Local2DMA))
+#define CSI_ADDR_IP_2_CPU(addr) (MEMORY_ConvertMemoryMapAddress((uint32_t)(addr), kMEMORY_DMA2Local))
+#else
+#define CSI_ADDR_CPU_2_IP(addr) (addr)
+#define CSI_ADDR_IP_2_CPU(addr) (addr)
+#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
+
+/*!
+ * @brief Used for conversion between `void*` and `uint32_t`.
+ */
+typedef union pvoid_to_u32
+{
+ void *pvoid;
+ uint32_t u32;
+} pvoid_to_u32_t;
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+
+/*!
+ * @brief Get the instance from the base address
+ *
+ * @param base CSI peripheral base address
+ *
+ * @return The CSI module instance
+ */
+static uint32_t CSI_GetInstance(CSI_Type *base);
+
+#if !CSI_DRIVER_FRAG_MODE
+/*!
+ * @brief Get the delta value of two index in queue.
+ *
+ * @param startIdx Start index.
+ * @param endIdx End index.
+ *
+ * @return The delta between startIdx and endIdx in queue.
+ */
+static uint8_t CSI_TransferGetQueueDelta(uint8_t startIdx, uint8_t endIdx);
+
+/*!
+ * @brief Increase a index value in queue.
+ *
+ * This function increases the index value in the queue, if the index is out of
+ * the queue range, it is reset to 0.
+ *
+ * @param idx The index value to increase.
+ *
+ * @return The index value after increase.
+ */
+static uint8_t CSI_TransferIncreaseQueueIdx(uint8_t idx);
+
+/*!
+ * @brief Get the empty frame buffer count in queue.
+ *
+ * @param base CSI peripheral base address
+ * @param handle Pointer to CSI driver handle.
+ *
+ * @return Number of the empty frame buffer count in queue.
+ */
+static uint32_t CSI_TransferGetEmptyBufferCount(csi_handle_t *handle);
+
+/*!
+ * @brief Get the empty frame buffer.
+ *
+ * This function should only be called when frame buffer count larger than 0.
+ *
+ * @param handle Pointer to CSI driver handle.
+ *
+ * @return Empty buffer
+ */
+static uint32_t CSI_TransferGetEmptyBuffer(csi_handle_t *handle);
+
+/*!
+ * @brief Put the empty frame buffer.
+ *
+ * @param handle Pointer to CSI driver handle.
+ * @param buffer The empty buffer to put.
+ */
+static void CSI_TransferPutEmptyBuffer(csi_handle_t *handle, uint32_t buffer);
+
+/*!
+ * @brief Get the RX frame buffer address.
+ *
+ * @param base CSI peripheral base address.
+ * @param index Buffer index.
+ * @return Frame buffer address.
+ */
+static uint32_t CSI_GetRxBufferAddr(CSI_Type *base, uint8_t index);
+
+/* Typedef for interrupt handler. */
+typedef void (*csi_isr_t)(CSI_Type *base, csi_handle_t *handle);
+
+#else
+
+/* Typedef for interrupt handler to work in fragment mode. */
+typedef void (*csi_isr_t)(CSI_Type *base, csi_frag_handle_t *handle);
+#endif /* CSI_DRIVER_FRAG_MODE */
+
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+/*! @brief Pointers to CSI bases for each instance. */
+static CSI_Type *const s_csiBases[] = CSI_BASE_PTRS;
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+/*! @brief Pointers to CSI clocks for each CSI submodule. */
+static const clock_ip_name_t s_csiClocks[] = CSI_CLOCKS;
+#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
+
+/* Array for the CSI driver handle. */
+#if !CSI_DRIVER_FRAG_MODE
+static csi_handle_t *s_csiHandle[ARRAY_SIZE(s_csiBases)];
+#else
+static csi_frag_handle_t *s_csiHandle[ARRAY_SIZE(s_csiBases)];
+#endif
+
+/* Array of CSI IRQ number. */
+static const IRQn_Type s_csiIRQ[] = CSI_IRQS;
+
+/* CSI ISR for transactional APIs. */
+#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
+static csi_isr_t s_csiIsr = (csi_isr_t)DefaultISR;
+#else
+static csi_isr_t s_csiIsr;
+#endif
+
+/*******************************************************************************
+ * Code
+ ******************************************************************************/
+static uint32_t CSI_GetInstance(CSI_Type *base)
+{
+ uint32_t instance;
+
+ /* Find the instance index from base address mappings. */
+ for (instance = 0; instance < ARRAY_SIZE(s_csiBases); instance++)
+ {
+ if (s_csiBases[instance] == base)
+ {
+ break;
+ }
+ }
+
+ assert(instance < ARRAY_SIZE(s_csiBases));
+
+ return instance;
+}
+
+#if !CSI_DRIVER_FRAG_MODE
+static uint8_t CSI_TransferGetQueueDelta(uint8_t startIdx, uint8_t endIdx)
+{
+ uint8_t ret;
+
+ if (endIdx >= startIdx)
+ {
+ ret = endIdx - startIdx;
+ }
+ else
+ {
+ ret = (uint8_t)(endIdx + CSI_DRIVER_ACTUAL_QUEUE_SIZE - startIdx);
+ }
+
+ return ret;
+}
+
+static uint8_t CSI_TransferIncreaseQueueIdx(uint8_t idx)
+{
+ uint8_t ret;
+
+ /*
+ * Here not use the method:
+ * ret = (idx+1) % CSI_DRIVER_ACTUAL_QUEUE_SIZE;
+ *
+ * Because the mod function might be slow.
+ */
+
+ ret = idx + 1U;
+
+ if (ret >= CSI_DRIVER_ACTUAL_QUEUE_SIZE)
+ {
+ ret = 0U;
+ }
+
+ return ret;
+}
+
+static uint32_t CSI_TransferGetEmptyBufferCount(csi_handle_t *handle)
+{
+ return handle->emptyBufferCnt;
+}
+
+static uint32_t CSI_TransferGetEmptyBuffer(csi_handle_t *handle)
+{
+ pvoid_to_u32_t buf;
+
+ buf.pvoid = handle->emptyBuffer;
+ handle->emptyBufferCnt--;
+ handle->emptyBuffer = *(void **)(buf.pvoid);
+
+ return buf.u32;
+}
+
+static void CSI_TransferPutEmptyBuffer(csi_handle_t *handle, uint32_t buffer)
+{
+ pvoid_to_u32_t buf;
+ buf.u32 = buffer;
+
+ *(void **)(buf.pvoid) = handle->emptyBuffer;
+ handle->emptyBuffer = buf.pvoid;
+ handle->emptyBufferCnt++;
+}
+
+static uint32_t CSI_GetRxBufferAddr(CSI_Type *base, uint8_t index)
+{
+ uint32_t addr;
+
+ if (index != 0U)
+ {
+ addr = CSI_REG_DMASA_FB2(base);
+ }
+ else
+ {
+ addr = CSI_REG_DMASA_FB1(base);
+ }
+
+ return CSI_ADDR_IP_2_CPU(addr);
+}
+
+#endif /* CSI_DRIVER_FRAG_MODE */
+
+/*!
+ * brief Initialize the CSI.
+ *
+ * This function enables the CSI peripheral clock, and resets the CSI registers.
+ *
+ * param base CSI peripheral base address.
+ * param config Pointer to the configuration structure.
+ *
+ * retval kStatus_Success Initialize successfully.
+ * retval kStatus_InvalidArgument Initialize failed because of invalid argument.
+ */
+status_t CSI_Init(CSI_Type *base, const csi_config_t *config)
+{
+ assert(NULL != config);
+ uint32_t reg;
+ uint32_t imgWidth_Bytes;
+ uint8_t busCyclePerPixel;
+
+ imgWidth_Bytes = (uint32_t)config->width * (uint32_t)config->bytesPerPixel;
+
+ /* The image width and frame buffer pitch should be multiple of 8-bytes. */
+ if ((0U != (imgWidth_Bytes & 0x07U)) || (0U != ((uint32_t)config->linePitch_Bytes & 0x07U)))
+ {
+ return kStatus_InvalidArgument;
+ }
+
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ uint32_t instance = CSI_GetInstance(base);
+ CLOCK_EnableClock(s_csiClocks[instance]);
+#endif
+
+ CSI_Reset(base);
+
+ /* Configure CSICR1. CSICR1 has been reset to the default value, so could write it directly. */
+ reg = ((uint32_t)config->workMode) | config->polarityFlags | CSI_CR1_FCC_MASK;
+
+ if (config->useExtVsync)
+ {
+ reg |= CSI_CR1_EXT_VSYNC_MASK;
+ }
+
+ CSI_REG_CR1(base) = reg;
+
+ /*
+ * Generally, CSIIMAG_PARA[IMAGE_WIDTH] indicates how many data bus cycles per line.
+ * One special case is when receiving 24-bit pixels through 8-bit data bus.
+ * In this case, the CSIIMAG_PARA[IMAGE_WIDTH] should be set to the pixel number per line.
+ */
+ if ((kCSI_DataBus8Bit == config->dataBus) && (2U == config->bytesPerPixel))
+ {
+ busCyclePerPixel = 2U;
+ }
+ else
+ {
+ busCyclePerPixel = 1U;
+ }
+
+ if (4U == config->bytesPerPixel)
+ {
+ CSI_REG_CR18(base) |= CSI_CR18_PARALLEL24_EN_MASK;
+ }
+
+ if (kCSI_DataBus16Bit == config->dataBus)
+ {
+ CSI_REG_CR3(base) |= CSI_CR3_TWO_8BIT_SENSOR_MASK;
+ }
+
+ /* Image parameter. */
+ CSI_REG_IMAG_PARA(base) =
+ (((uint32_t)config->width * (uint32_t)busCyclePerPixel) << CSI_IMAG_PARA_IMAGE_WIDTH_SHIFT) |
+ ((uint32_t)(config->height) << CSI_IMAG_PARA_IMAGE_HEIGHT_SHIFT);
+
+ /* The CSI frame buffer bus is 8-byte width. */
+ CSI_REG_FBUF_PARA(base) = (uint32_t)((config->linePitch_Bytes - imgWidth_Bytes) / 8U)
+ << CSI_FBUF_PARA_FBUF_STRIDE_SHIFT;
+
+ /* Enable auto ECC. */
+ CSI_REG_CR3(base) |= CSI_CR3_ECC_AUTO_EN_MASK;
+
+ /*
+ * For better performance.
+ * The DMA burst size could be set to 16 * 8 byte, 8 * 8 byte, or 4 * 8 byte,
+ * choose the best burst size based on bytes per line.
+ */
+ if (0U == (imgWidth_Bytes % (8U * 16U)))
+ {
+ CSI_REG_CR2(base) = CSI_CR2_DMA_BURST_TYPE_RFF(3U);
+ CSI_REG_CR3(base) = (CSI_REG_CR3(base) & ~CSI_CR3_RxFF_LEVEL_MASK) | ((2U << CSI_CR3_RxFF_LEVEL_SHIFT));
+ }
+ else if (0U == (imgWidth_Bytes % (8U * 8U)))
+ {
+ CSI_REG_CR2(base) = CSI_CR2_DMA_BURST_TYPE_RFF(2U);
+ CSI_REG_CR3(base) = (CSI_REG_CR3(base) & ~CSI_CR3_RxFF_LEVEL_MASK) | ((1U << CSI_CR3_RxFF_LEVEL_SHIFT));
+ }
+ else
+ {
+ CSI_REG_CR2(base) = CSI_CR2_DMA_BURST_TYPE_RFF(1U);
+ CSI_REG_CR3(base) = (CSI_REG_CR3(base) & ~CSI_CR3_RxFF_LEVEL_MASK) | ((0U << CSI_CR3_RxFF_LEVEL_SHIFT));
+ }
+
+ CSI_ReflashFifoDma(base, kCSI_RxFifo);
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief De-initialize the CSI.
+ *
+ * This function disables the CSI peripheral clock.
+ *
+ * param base CSI peripheral base address.
+ */
+void CSI_Deinit(CSI_Type *base)
+{
+ /* Disable transfer first. */
+ CSI_Stop(base);
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ uint32_t instance = CSI_GetInstance(base);
+ CLOCK_DisableClock(s_csiClocks[instance]);
+#endif
+}
+
+/*!
+ * brief Reset the CSI.
+ *
+ * This function resets the CSI peripheral registers to default status.
+ *
+ * param base CSI peripheral base address.
+ */
+void CSI_Reset(CSI_Type *base)
+{
+ uint32_t csisr;
+
+ /* Disable transfer first. */
+ CSI_Stop(base);
+
+ /* Disable DMA request. */
+ CSI_REG_CR3(base) = 0U;
+
+ /* Reset the fame count. */
+ CSI_REG_CR3(base) |= CSI_CR3_FRMCNT_RST_MASK;
+ while (0U != (CSI_REG_CR3(base) & CSI_CR3_FRMCNT_RST_MASK))
+ {
+ }
+
+ /* Clear the RX FIFO. */
+ CSI_ClearFifo(base, kCSI_AllFifo);
+
+ /* Reflash DMA. */
+ CSI_ReflashFifoDma(base, kCSI_AllFifo);
+
+ /* Clear the status. */
+ csisr = CSI_REG_SR(base);
+ CSI_REG_SR(base) = csisr;
+
+ /* Set the control registers to default value. */
+ CSI_REG_CR1(base) = CSI_CR1_HSYNC_POL_MASK | CSI_CR1_EXT_VSYNC_MASK;
+ CSI_REG_CR2(base) = 0U;
+ CSI_REG_CR3(base) = 0U;
+#if defined(CSI_CR18_CSI_LCDIF_BUFFER_LINES)
+ CSI_REG_CR18(base) = CSI_CR18_AHB_HPROT(0x0DU) | CSI_CR18_CSI_LCDIF_BUFFER_LINES(0x02U);
+#else
+ CSI_REG_CR18(base) = CSI_CR18_AHB_HPROT(0x0DU);
+#endif
+ CSI_REG_FBUF_PARA(base) = 0U;
+ CSI_REG_IMAG_PARA(base) = 0U;
+}
+
+/*!
+ * brief Get the default configuration for to initialize the CSI.
+ *
+ * The default configuration value is:
+ *
+ * code
+ config->width = 320U;
+ config->height = 240U;
+ config->polarityFlags = kCSI_HsyncActiveHigh | kCSI_DataLatchOnRisingEdge;
+ config->bytesPerPixel = 2U;
+ config->linePitch_Bytes = 320U * 2U;
+ config->workMode = kCSI_GatedClockMode;
+ config->dataBus = kCSI_DataBus8Bit;
+ config->useExtVsync = true;
+ endcode
+ *
+ * param config Pointer to the CSI configuration.
+ */
+void CSI_GetDefaultConfig(csi_config_t *config)
+{
+ assert(NULL != config);
+
+ /* Initializes the configure structure to zero. */
+ (void)memset(config, 0, sizeof(*config));
+
+ config->width = 320U;
+ config->height = 240U;
+ config->polarityFlags = (uint32_t)kCSI_HsyncActiveHigh | (uint32_t)kCSI_DataLatchOnRisingEdge;
+ config->bytesPerPixel = 2U;
+ config->linePitch_Bytes = 320U * 2U;
+ config->workMode = kCSI_GatedClockMode;
+ config->dataBus = kCSI_DataBus8Bit;
+ config->useExtVsync = true;
+}
+
+/*!
+ * brief Set the RX frame buffer address.
+ *
+ * param base CSI peripheral base address.
+ * param index Buffer index.
+ * param addr Frame buffer address to set.
+ */
+void CSI_SetRxBufferAddr(CSI_Type *base, uint8_t index, uint32_t addr)
+{
+ addr = CSI_ADDR_CPU_2_IP(addr);
+
+ if (0U != index)
+ {
+ CSI_REG_DMASA_FB2(base) = addr;
+ }
+ else
+ {
+ CSI_REG_DMASA_FB1(base) = addr;
+ }
+}
+
+/*!
+ * brief Clear the CSI FIFO.
+ *
+ * This function clears the CSI FIFO.
+ *
+ * param base CSI peripheral base address.
+ * param fifo The FIFO to clear.
+ */
+void CSI_ClearFifo(CSI_Type *base, csi_fifo_t fifo)
+{
+ uint32_t cr1;
+ uint32_t mask = 0U;
+
+ /* The FIFO could only be cleared when CSICR1[FCC] = 0, so first clear the FCC. */
+ cr1 = CSI_REG_CR1(base);
+ CSI_REG_CR1(base) = (cr1 & ~CSI_CR1_FCC_MASK);
+
+ if (0U != ((uint32_t)fifo & (uint32_t)kCSI_RxFifo))
+ {
+ mask |= CSI_CR1_CLR_RXFIFO_MASK;
+ }
+
+ if (0U != ((uint32_t)fifo & (uint32_t)kCSI_StatFifo))
+ {
+ mask |= CSI_CR1_CLR_STATFIFO_MASK;
+ }
+
+ CSI_REG_CR1(base) = (cr1 & ~CSI_CR1_FCC_MASK) | mask;
+
+ /* Wait clear completed. */
+ while (0U != (CSI_REG_CR1(base) & mask))
+ {
+ }
+
+ /* Recover the FCC. */
+ CSI_REG_CR1(base) = cr1;
+}
+
+/*!
+ * brief Reflash the CSI FIFO DMA.
+ *
+ * This function reflashes the CSI FIFO DMA.
+ *
+ * For RXFIFO, there are two frame buffers. When the CSI module started, it saves
+ * the frames to frame buffer 0 then frame buffer 1, the two buffers will be
+ * written by turns. After reflash DMA using this function, the CSI is reset to
+ * save frame to buffer 0.
+ *
+ * param base CSI peripheral base address.
+ * param fifo The FIFO DMA to reflash.
+ */
+void CSI_ReflashFifoDma(CSI_Type *base, csi_fifo_t fifo)
+{
+ uint32_t cr3 = 0U;
+
+ if (0U != ((uint32_t)fifo & (uint32_t)kCSI_RxFifo))
+ {
+ cr3 |= CSI_CR3_DMA_REFLASH_RFF_MASK;
+ }
+
+ if (0U != ((uint32_t)fifo & (uint32_t)kCSI_StatFifo))
+ {
+ cr3 |= CSI_CR3_DMA_REFLASH_SFF_MASK;
+ }
+
+ CSI_REG_CR3(base) |= cr3;
+
+ /* Wait clear completed. */
+ while (0U != (CSI_REG_CR3(base) & cr3))
+ {
+ }
+}
+
+/*!
+ * brief Enable or disable the CSI FIFO DMA request.
+ *
+ * param base CSI peripheral base address.
+ * param fifo The FIFO DMA reques to enable or disable.
+ * param enable True to enable, false to disable.
+ */
+void CSI_EnableFifoDmaRequest(CSI_Type *base, csi_fifo_t fifo, bool enable)
+{
+ uint32_t cr3 = 0U;
+
+ if (0U != ((uint32_t)fifo & (uint32_t)kCSI_RxFifo))
+ {
+ cr3 |= CSI_CR3_DMA_REQ_EN_RFF_MASK;
+ }
+
+ if (0U != ((uint32_t)fifo & (uint32_t)kCSI_StatFifo))
+ {
+ cr3 |= CSI_CR3_DMA_REQ_EN_SFF_MASK;
+ }
+
+ if (enable)
+ {
+ CSI_REG_CR3(base) |= cr3;
+ }
+ else
+ {
+ CSI_REG_CR3(base) &= ~cr3;
+ }
+}
+
+/*!
+ * brief Enables CSI interrupt requests.
+ *
+ * param base CSI peripheral base address.
+ * param mask The interrupts to enable, pass in as OR'ed value of ref _csi_interrupt_enable.
+ */
+void CSI_EnableInterrupts(CSI_Type *base, uint32_t mask)
+{
+ CSI_REG_CR1(base) |= (mask & CSI_CR1_INT_EN_MASK);
+ CSI_REG_CR3(base) |= (mask & CSI_CR3_INT_EN_MASK);
+ CSI_REG_CR18(base) |= ((mask & CSI_CR18_INT_EN_MASK) >> 6U);
+}
+
+/*!
+ * brief Disable CSI interrupt requests.
+ *
+ * param base CSI peripheral base address.
+ * param mask The interrupts to disable, pass in as OR'ed value of ref _csi_interrupt_enable.
+ */
+void CSI_DisableInterrupts(CSI_Type *base, uint32_t mask)
+{
+ CSI_REG_CR1(base) &= ~(mask & CSI_CR1_INT_EN_MASK);
+ CSI_REG_CR3(base) &= ~(mask & CSI_CR3_INT_EN_MASK);
+ CSI_REG_CR18(base) &= ~((mask & CSI_CR18_INT_EN_MASK) >> 6U);
+}
+
+#if !CSI_DRIVER_FRAG_MODE
+/*!
+ * brief Initializes the CSI handle.
+ *
+ * This function initializes CSI handle, it should be called before any other
+ * CSI transactional functions.
+ *
+ * param base CSI peripheral base address.
+ * param handle Pointer to the handle structure.
+ * param callback Callback function for CSI transfer.
+ * param userData Callback function parameter.
+ *
+ * retval kStatus_Success Handle created successfully.
+ */
+status_t CSI_TransferCreateHandle(CSI_Type *base,
+ csi_handle_t *handle,
+ csi_transfer_callback_t callback,
+ void *userData)
+{
+ assert(NULL != handle);
+ uint32_t instance;
+
+ (void)memset(handle, 0, sizeof(*handle));
+
+ /* Set the callback and user data. */
+ handle->callback = callback;
+ handle->userData = userData;
+
+ /* Get instance from peripheral base address. */
+ instance = CSI_GetInstance(base);
+
+ /* Save the handle in global variables to support the double weak mechanism. */
+ s_csiHandle[instance] = handle;
+
+ s_csiIsr = CSI_TransferHandleIRQ;
+
+ /* Enable interrupt. */
+ (void)EnableIRQ(s_csiIRQ[instance]);
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Start the transfer using transactional functions.
+ *
+ * When the empty frame buffers have been submit to CSI driver using function
+ * ref CSI_TransferSubmitEmptyBuffer, user could call this function to start
+ * the transfer. The incoming frame will be saved to the empty frame buffer,
+ * and user could be optionally notified through callback function.
+ *
+ * param base CSI peripheral base address.
+ * param handle Pointer to the handle structure.
+ *
+ * retval kStatus_Success Started successfully.
+ * retval kStatus_CSI_NoEmptyBuffer Could not start because no empty frame buffer in queue.
+ */
+status_t CSI_TransferStart(CSI_Type *base, csi_handle_t *handle)
+{
+ assert(NULL != handle);
+
+ uint32_t emptyBufferCount;
+
+ emptyBufferCount = CSI_TransferGetEmptyBufferCount(handle);
+
+ if (emptyBufferCount < 2U)
+ {
+ return kStatus_CSI_NoEmptyBuffer;
+ }
+
+ /*
+ * Write to memory from first completed frame.
+ * DMA base addr switch at the edge of the first data of each frame, thus
+ * if one frame is broken, it could be reset at the next frame.
+ */
+ CSI_REG_CR18(base) = (CSI_REG_CR18(base) & ~CSI_CR18_MASK_OPTION_MASK) | CSI_CR18_MASK_OPTION(0) |
+ CSI_CR18_BASEADDR_SWITCH_SEL_MASK | CSI_CR18_BASEADDR_SWITCH_EN_MASK;
+
+ /* Load the frame buffer to CSI register, there are at least two empty buffers. */
+ CSI_REG_DMASA_FB1(base) = CSI_ADDR_CPU_2_IP(CSI_TransferGetEmptyBuffer(handle));
+ CSI_REG_DMASA_FB2(base) = CSI_ADDR_CPU_2_IP(CSI_TransferGetEmptyBuffer(handle));
+
+ handle->activeBufferNum = CSI_MAX_ACTIVE_FRAME_NUM;
+
+ /* After reflash DMA, the CSI saves frame to frame buffer 0. */
+ CSI_ReflashFifoDma(base, kCSI_RxFifo);
+
+ handle->transferStarted = true;
+
+ CSI_EnableInterrupts(
+ base, (uint32_t)kCSI_RxBuffer1DmaDoneInterruptEnable | (uint32_t)kCSI_RxBuffer0DmaDoneInterruptEnable);
+
+ CSI_Start(base);
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Stop the transfer using transactional functions.
+ *
+ * The driver does not clean the full frame buffers in queue. In other words, after
+ * calling this function, user still could get the full frame buffers in queue
+ * using function ref CSI_TransferGetFullBuffer.
+ *
+ * param base CSI peripheral base address.
+ * param handle Pointer to the handle structure.
+ *
+ * retval kStatus_Success Stoped successfully.
+ */
+status_t CSI_TransferStop(CSI_Type *base, csi_handle_t *handle)
+{
+ assert(NULL != handle);
+ uint8_t activeBufferNum;
+ uint8_t bufIdx;
+
+ CSI_Stop(base);
+ CSI_DisableInterrupts(
+ base, (uint32_t)kCSI_RxBuffer1DmaDoneInterruptEnable | (uint32_t)kCSI_RxBuffer0DmaDoneInterruptEnable);
+
+ activeBufferNum = handle->activeBufferNum;
+
+ handle->transferStarted = false;
+ handle->activeBufferNum = 0;
+
+ /*
+ * Put active buffers to empty queue.
+ *
+ * If there is only one active frame buffers, then FB0 and FB1 use the same address,
+ * put FB0 to empty buffer queue is OK.
+ */
+ for (bufIdx = 0; bufIdx < activeBufferNum; bufIdx++)
+ {
+ CSI_TransferPutEmptyBuffer(handle, CSI_GetRxBufferAddr(base, bufIdx));
+ }
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Submit empty frame buffer to queue.
+ *
+ * This function could be called before ref CSI_TransferStart or after ref
+ * CSI_TransferStart. If there is no room in queue to store the empty frame
+ * buffer, this function returns error.
+ *
+ * param base CSI peripheral base address.
+ * param handle Pointer to the handle structure.
+ * param frameBuffer Empty frame buffer to submit.
+ *
+ * retval kStatus_Success Started successfully.
+ * retval kStatus_CSI_QueueFull Could not submit because there is no room in queue.
+ */
+status_t CSI_TransferSubmitEmptyBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t frameBuffer)
+{
+ uint32_t csicr1;
+
+ /* Disable the interrupt to protect the index information in handle. */
+ csicr1 = CSI_REG_CR1(base);
+
+ CSI_REG_CR1(base) = (csicr1 & ~(CSI_CR1_FB2_DMA_DONE_INTEN_MASK | CSI_CR1_FB1_DMA_DONE_INTEN_MASK));
+
+ /* Save the empty frame buffer address to queue. */
+ CSI_TransferPutEmptyBuffer(handle, frameBuffer);
+
+ CSI_REG_CR1(base) = csicr1;
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Get one full frame buffer from queue.
+ *
+ * After the transfer started using function ref CSI_TransferStart, the incoming
+ * frames will be saved to the empty frame buffers in queue. This function gets
+ * the full-filled frame buffer from the queue. If there is no full frame buffer
+ * in queue, this function returns error.
+ *
+ * param base CSI peripheral base address.
+ * param handle Pointer to the handle structure.
+ * param frameBuffer Full frame buffer.
+ *
+ * retval kStatus_Success Started successfully.
+ * retval kStatus_CSI_NoFullBuffer There is no full frame buffer in queue.
+ */
+status_t CSI_TransferGetFullBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t *frameBuffer)
+{
+ uint32_t csicr1;
+ status_t status;
+ uint8_t queueReadIdx;
+ uint8_t queueWriteIdx;
+
+ queueReadIdx = handle->queueReadIdx;
+ queueWriteIdx = handle->queueWriteIdx;
+
+ /* No full frame buffer. */
+ if (queueReadIdx == queueWriteIdx)
+ {
+ status = kStatus_CSI_NoFullBuffer;
+ }
+ else
+ {
+ /* Disable the interrupt to protect the index information in handle. */
+ csicr1 = CSI_REG_CR1(base);
+
+ CSI_REG_CR1(base) = (csicr1 & ~(CSI_CR1_FB2_DMA_DONE_INTEN_MASK | CSI_CR1_FB1_DMA_DONE_INTEN_MASK));
+
+ *frameBuffer = handle->frameBufferQueue[handle->queueReadIdx];
+
+ handle->queueReadIdx = CSI_TransferIncreaseQueueIdx(handle->queueReadIdx);
+
+ CSI_REG_CR1(base) = csicr1;
+
+ status = kStatus_Success;
+ }
+
+ return status;
+}
+
+/*!
+ * brief CSI IRQ handle function.
+ *
+ * This function handles the CSI IRQ request to work with CSI driver transactional
+ * APIs.
+ *
+ * param base CSI peripheral base address.
+ * param handle CSI handle pointer.
+ */
+void CSI_TransferHandleIRQ(CSI_Type *base, csi_handle_t *handle)
+{
+ uint8_t queueWriteIdx;
+ uint8_t queueReadIdx;
+ uint8_t dmaDoneBufferIdx;
+ uint32_t frameBuffer;
+ uint32_t csisr = CSI_REG_SR(base);
+
+ /* Clear the error flags. */
+ CSI_REG_SR(base) = csisr;
+
+ /*
+ * If both frame buffer 0 and frame buffer 1 flags assert, driver does not
+ * know which frame buffer ready just now, so skip them.
+ */
+ if ((csisr & (CSI_SR_DMA_TSF_DONE_FB2_MASK | CSI_SR_DMA_TSF_DONE_FB1_MASK)) ==
+ (CSI_SR_DMA_TSF_DONE_FB2_MASK | CSI_SR_DMA_TSF_DONE_FB1_MASK))
+ {
+ ; /* Skip the frames. */
+ }
+ else if (0U != (csisr & (CSI_SR_DMA_TSF_DONE_FB2_MASK | CSI_SR_DMA_TSF_DONE_FB1_MASK)))
+ {
+ if (0U != (csisr & CSI_SR_DMA_TSF_DONE_FB2_MASK))
+ {
+ dmaDoneBufferIdx = 1;
+ }
+ else
+ {
+ dmaDoneBufferIdx = 0;
+ }
+
+ if (handle->activeBufferNum == CSI_MAX_ACTIVE_FRAME_NUM)
+ {
+ queueWriteIdx = handle->queueWriteIdx;
+ queueReadIdx = handle->queueReadIdx;
+
+ if (CSI_TransferGetQueueDelta(queueReadIdx, queueWriteIdx) < CSI_DRIVER_QUEUE_SIZE)
+ {
+ /* Put the full frame buffer to full buffer queue. */
+ frameBuffer = CSI_GetRxBufferAddr(base, dmaDoneBufferIdx);
+ handle->frameBufferQueue[queueWriteIdx] = frameBuffer;
+
+ handle->queueWriteIdx = CSI_TransferIncreaseQueueIdx(queueWriteIdx);
+
+ handle->activeBufferNum--;
+
+ if (NULL != handle->callback)
+ {
+ handle->callback(base, handle, kStatus_CSI_FrameDone, handle->userData);
+ }
+ }
+ else
+ {
+ }
+ }
+
+ /*
+ * User may submit new frame buffer in callback, so recheck activeBufferNum here,
+ * if there is only one active buffer in CSI device, the two buffer registers
+ * are both set to the frame buffer address.
+ */
+ if (handle->activeBufferNum < CSI_MAX_ACTIVE_FRAME_NUM)
+ {
+ if (CSI_TransferGetEmptyBufferCount(handle) > 0U)
+ {
+ /* Get the empty frameBuffer, and submit to CSI device. */
+ CSI_SetRxBufferAddr(base, dmaDoneBufferIdx, CSI_TransferGetEmptyBuffer(handle));
+ handle->activeBufferNum++;
+ }
+ else
+ {
+ /* If there is only one active frame buffer, then the two CSI
+ * output buffer address are all set to this frame buffer.
+ */
+ frameBuffer = CSI_GetRxBufferAddr(base, dmaDoneBufferIdx ^ 1U);
+ CSI_SetRxBufferAddr(base, dmaDoneBufferIdx, frameBuffer);
+ }
+ }
+ }
+ else
+ {
+ }
+}
+
+#else /* CSI_DRIVER_FRAG_MODE */
+
+#if defined(__CC_ARM)
+__asm void CSI_ExtractYFromYUYV(void *datBase, const void *dmaBase, size_t count)
+{
+ /* clang-format off */
+ push {r4-r7, lr}
+10
+ LDMIA R1!, {r3-r6}
+ bfi r7, r3, #0, #8 /* Y0 */
+ bfi ip, r5, #0, #8 /* Y4 */
+ lsr r3, r3, #16
+ lsr r5, r5, #16
+ bfi r7, r3, #8, #8 /* Y1 */
+ bfi ip, r5, #8, #8 /* Y5 */
+ bfi r7, r4, #16, #8 /* Y2 */
+ bfi ip, r6, #16, #8 /* Y6 */
+ lsr r4, r4, #16
+ lsr r6, r6, #16
+ bfi r7, r4, #24, #8 /* Y3 */
+ bfi ip, r6, #24, #8 /* Y7 */
+ STMIA r0!, {r7, ip}
+ subs r2, #8
+ bne %b10
+ pop {r4-r7, pc}
+ /* clang-format on */
+}
+
+__asm void CSI_ExtractYFromUYVY(void *datBase, const void *dmaBase, size_t count)
+{
+ /* clang-format off */
+ push {r4-r7, lr}
+10
+ LDMIA R1!, {r3-r6}
+ lsr r3, r3, #8
+ lsr r5, r5, #8
+ bfi r7, r3, #0, #8 /* Y0 */
+ bfi ip, r5, #0, #8 /* Y4 */
+ lsr r3, r3, #16
+ lsr r5, r5, #16
+ bfi r7, r3, #8, #8 /* Y1 */
+ bfi ip, r5, #8, #8 /* Y5 */
+ lsr r4, r4, #8
+ lsr r6, r6, #8
+ bfi r7, r4, #16, #8 /* Y2 */
+ bfi ip, r6, #16, #8 /* Y6 */
+ lsr r4, r4, #16
+ lsr r6, r6, #16
+ bfi r7, r4, #24, #8 /* Y3 */
+ bfi ip, r6, #24, #8 /* Y7 */
+ STMIA r0!, {r7, ip}
+ subs r2, #8
+ bne %b10
+ pop {r4-r7, pc}
+ /* clang-format on */
+}
+
+#elif (defined(__GNUC__) || defined(__ICCARM__)) || defined(__ARMCC_VERSION)
+#if defined(__ICCARM__)
+#pragma diag_suppress = Pe940
+#endif
+__attribute__((naked)) void CSI_ExtractYFromYUYV(void *datBase, const void *dmaBase, size_t count);
+void CSI_ExtractYFromYUYV(void *datBase, const void *dmaBase, size_t count)
+{
+ /* clang-format off */
+ __asm volatile(
+ " push {r1-r7, r12, lr} \n"
+ "loop0: \n"
+ " ldmia r1!, {r3-r6} \n"
+ " bfi r7, r3, #0, #8 \n" /* Y0 */
+ " bfi r12, r5, #0, #8 \n" /* Y4 */
+ " lsr r3, r3, #16 \n"
+ " lsr r5, r5, #16 \n"
+ " bfi r7, r3, #8, #8 \n" /* Y1 */
+ " bfi r12, r5, #8, #8 \n" /* Y5 */
+ " bfi r7, r4, #16, #8 \n" /* Y2 */
+ " bfi r12, r6, #16, #8 \n" /* Y6 */
+ " lsr r4, r4, #16 \n"
+ " lsr r6, r6, #16 \n"
+ " bfi r7, r4, #24, #8 \n" /* Y3 */
+ " bfi r12, r6, #24, #8 \n" /* Y7 */
+ " stmia r0!, {r7, r12} \n"
+ " subs r2, #8 \n"
+ " bne loop0 \n"
+ " pop {r1-r7, r12, pc} \n");
+ /* clang-format on */
+}
+
+__attribute__((naked)) void CSI_ExtractYFromUYVY(void *datBase, const void *dmaBase, size_t count);
+void CSI_ExtractYFromUYVY(void *datBase, const void *dmaBase, size_t count)
+{
+ /* clang-format off */
+ __asm volatile(
+ " push {r1-r7, r12, lr} \n"
+ "loop1: \n"
+ " ldmia r1!, {r3-r6} \n"
+ " lsr r3, r3, #8 \n"
+ " lsr r5, r5, #8 \n"
+ " bfi r7, r3, #0, #8 \n" /* Y0 */
+ " bfi r12, r5, #0, #8 \n" /* Y4 */
+ " lsr r3, r3, #16 \n"
+ " lsr r5, r5, #16 \n"
+ " bfi r7, r3, #8, #8 \n" /* Y1 */
+ " bfi r12, r5, #8, #8 \n" /* Y5 */
+ " lsr r4, r4, #8 \n"
+ " lsr r6, r6, #8 \n"
+ " bfi r7, r4, #16, #8 \n" /* Y2 */
+ " bfi r12, r6, #16, #8 \n" /* Y6 */
+ " lsr r4, r4, #16 \n"
+ " lsr r6, r6, #16 \n"
+ " bfi r7, r4, #24, #8 \n" /* Y3 */
+ " bfi r12, r6, #24, #8 \n" /* Y7 */
+ " stmia r0!, {r7, r12} \n"
+ " subs r2, #8 \n"
+ " bne loop1 \n"
+ " pop {r1-r7, r12, pc} \n");
+ /* clang-format on */
+}
+#if defined(__ICCARM__)
+#pragma diag_default = Pe940
+#endif
+#else
+#error Toolchain not supported.
+#endif
+
+static void CSI_MemCopy(void *pDest, const void *pSrc, size_t cnt)
+{
+ (void)memcpy(pDest, pSrc, cnt);
+}
+
+/*!
+ * brief Initialize the CSI to work in fragment mode.
+ *
+ * This function enables the CSI peripheral clock, and resets the CSI registers.
+ *
+ * param base CSI peripheral base address.
+ */
+void CSI_FragModeInit(CSI_Type *base)
+{
+#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
+ uint32_t instance = CSI_GetInstance(base);
+ CLOCK_EnableClock(s_csiClocks[instance]);
+#endif
+
+ CSI_Reset(base);
+}
+
+/*!
+ * brief De-initialize the CSI.
+ *
+ * This function disables the CSI peripheral clock.
+ *
+ * param base CSI peripheral base address.
+ */
+void CSI_FragModeDeinit(CSI_Type *base)
+{
+ CSI_Deinit(base);
+}
+
+/*!
+ * brief Create handle for CSI work in fragment mode.
+ *
+ * param base CSI peripheral base address.
+ * param handle Pointer to the transactional handle.
+ * param config Pointer to the configuration structure.
+ * param callback Callback function for CSI transfer.
+ * param userData Callback function parameter.
+ *
+ * retval kStatus_Success Initialize successfully.
+ * retval kStatus_InvalidArgument Initialize failed because of invalid argument.
+ */
+status_t CSI_FragModeCreateHandle(CSI_Type *base,
+ csi_frag_handle_t *handle,
+ const csi_frag_config_t *config,
+ csi_frag_transfer_callback_t callback,
+ void *userData)
+{
+ assert(NULL != config);
+ uint32_t reg;
+ uint32_t instance;
+ uint32_t imgWidth_Bytes;
+
+ if (config->dataBus != kCSI_DataBus8Bit)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ imgWidth_Bytes = (uint32_t)config->width * CSI_FRAG_INPUT_BYTES_PER_PIXEL;
+
+ /* The image buffer line width should be multiple of 8-bytes. */
+ if ((imgWidth_Bytes & 0x07U) != 0U)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Camera frame height must be dividable by DMA buffer line. */
+ if (config->height % config->dmaBufferLine != 0U)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ (void)memset(handle, 0, sizeof(*handle));
+ handle->callback = callback;
+ handle->userData = userData;
+ handle->height = config->height;
+ handle->width = config->width;
+ handle->maxLinePerFrag = config->dmaBufferLine;
+ handle->dmaBytePerLine = config->width * CSI_FRAG_INPUT_BYTES_PER_PIXEL;
+ handle->isDmaBufferCachable = config->isDmaBufferCachable;
+
+ /* Get instance from peripheral base address. */
+ instance = CSI_GetInstance(base);
+ /* Save the handle in global variables to support the double weak mechanism. */
+ s_csiHandle[instance] = handle;
+
+ s_csiIsr = CSI_FragModeTransferHandleIRQ;
+
+ (void)EnableIRQ(s_csiIRQ[instance]);
+
+ /* Configure CSICR1. CSICR1 has been reset to the default value, so could write it directly. */
+ reg = ((uint32_t)config->workMode) | config->polarityFlags | CSI_CR1_FCC_MASK;
+
+ if (config->useExtVsync)
+ {
+ reg |= CSI_CR1_EXT_VSYNC_MASK;
+ }
+
+ CSI_REG_CR1(base) = reg;
+
+ /* No stride. */
+ CSI_REG_FBUF_PARA(base) = 0;
+
+ /* Enable auto ECC. */
+ CSI_REG_CR3(base) |= CSI_CR3_ECC_AUTO_EN_MASK;
+
+ /*
+ * For better performance.
+ * The DMA burst size could be set to 16 * 8 byte, 8 * 8 byte, or 4 * 8 byte,
+ * choose the best burst size based on bytes per line.
+ */
+ if (0U == (imgWidth_Bytes % (8U * 16U)))
+ {
+ CSI_REG_CR2(base) = CSI_CR2_DMA_BURST_TYPE_RFF(3U);
+ CSI_REG_CR3(base) = (CSI_REG_CR3(base) & ~CSI_CR3_RxFF_LEVEL_MASK) | ((2U << CSI_CR3_RxFF_LEVEL_SHIFT));
+ }
+ else if (0U == (imgWidth_Bytes % (8U * 8U)))
+ {
+ CSI_REG_CR2(base) = CSI_CR2_DMA_BURST_TYPE_RFF(2U);
+ CSI_REG_CR3(base) = (CSI_REG_CR3(base) & ~CSI_CR3_RxFF_LEVEL_MASK) | ((1U << CSI_CR3_RxFF_LEVEL_SHIFT));
+ }
+ else
+ {
+ CSI_REG_CR2(base) = CSI_CR2_DMA_BURST_TYPE_RFF(1U);
+ CSI_REG_CR3(base) = (CSI_REG_CR3(base) & ~CSI_CR3_RxFF_LEVEL_MASK) | ((0U << CSI_CR3_RxFF_LEVEL_SHIFT));
+ }
+
+ CSI_REG_DMASA_FB1(base) = CSI_ADDR_CPU_2_IP(config->dmaBufferAddr0);
+ CSI_REG_DMASA_FB2(base) = CSI_ADDR_CPU_2_IP(config->dmaBufferAddr1);
+
+ if (handle->isDmaBufferCachable)
+ {
+ DCACHE_CleanInvalidateByRange(
+ config->dmaBufferAddr0,
+ (uint32_t)config->dmaBufferLine * (uint32_t)config->width * CSI_FRAG_INPUT_BYTES_PER_PIXEL);
+ DCACHE_CleanInvalidateByRange(
+ config->dmaBufferAddr1,
+ (uint32_t)config->dmaBufferLine * (uint32_t)config->width * CSI_FRAG_INPUT_BYTES_PER_PIXEL);
+ }
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Start to capture a image.
+ *
+ * param base CSI peripheral base address.
+ * param handle Pointer to the transactional handle.
+ * param config Pointer to the capture configuration.
+ *
+ * retval kStatus_Success Initialize successfully.
+ * retval kStatus_InvalidArgument Initialize failed because of invalid argument.
+ */
+status_t CSI_FragModeTransferCaptureImage(CSI_Type *base,
+ csi_frag_handle_t *handle,
+ const csi_frag_capture_config_t *config)
+{
+ assert(NULL != config);
+
+ uint16_t windowWidth;
+
+ /*
+ * If no special window setting, capture full frame.
+ * If capture window, then capture 1 one each fragment.
+ */
+ if (config->window != NULL)
+ {
+ handle->windowULX = config->window->windowULX;
+ handle->windowULY = config->window->windowULY;
+ handle->windowLRX = config->window->windowLRX;
+ handle->windowLRY = config->window->windowLRY;
+ handle->linePerFrag = 1;
+ }
+ else
+ {
+ handle->windowULX = 0;
+ handle->windowULY = 0;
+ handle->windowLRX = handle->width - 1U;
+ handle->windowLRY = handle->height - 1U;
+ handle->linePerFrag = handle->maxLinePerFrag;
+ }
+
+ windowWidth = handle->windowLRX - handle->windowULX + 1U;
+
+ if (config->outputGrayScale)
+ {
+ /* When output format is gray, the window width must be multiple value of 8. */
+ if (windowWidth % 8U != 0U)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ handle->datBytePerLine = windowWidth;
+ if (handle->inputFormat == kCSI_FragInputYUYV)
+ {
+ handle->copyFunc = CSI_ExtractYFromYUYV;
+ }
+ else
+ {
+ handle->copyFunc = CSI_ExtractYFromUYVY;
+ }
+ }
+ else
+ {
+ handle->datBytePerLine = windowWidth * CSI_FRAG_INPUT_BYTES_PER_PIXEL;
+ handle->copyFunc = CSI_MemCopy;
+ }
+
+ handle->dmaCurLine = 0;
+ handle->outputBuffer = (uint32_t)config->buffer;
+ handle->datCurWriteAddr = (uint32_t)config->buffer;
+
+ /* Image parameter. */
+ CSI_REG_IMAG_PARA(base) =
+ (((uint32_t)handle->width * CSI_FRAG_INPUT_BYTES_PER_PIXEL) << CSI_IMAG_PARA_IMAGE_WIDTH_SHIFT) |
+ ((uint32_t)(handle->linePerFrag) << CSI_IMAG_PARA_IMAGE_HEIGHT_SHIFT);
+
+ /*
+ * Write to memory from first completed frame.
+ * DMA base addr switch at dma transfer done.
+ */
+ CSI_REG_CR18(base) = (CSI_REG_CR18(base) & ~CSI_CR18_MASK_OPTION_MASK) | CSI_CR18_MASK_OPTION(0);
+
+ CSI_EnableInterrupts(base, (uint32_t)kCSI_StartOfFrameInterruptEnable |
+ (uint32_t)kCSI_RxBuffer1DmaDoneInterruptEnable |
+ (uint32_t)kCSI_RxBuffer0DmaDoneInterruptEnable);
+
+ return kStatus_Success;
+}
+
+/*!
+ * brief Abort image capture.
+ *
+ * Abort image capture initialized by ref CSI_FragModeTransferCaptureImage.
+ *
+ * param base CSI peripheral base address.
+ * param handle Pointer to the transactional handle.
+ */
+void CSI_FragModeTransferAbortCaptureImage(CSI_Type *base, csi_frag_handle_t *handle)
+{
+ CSI_Stop(base);
+ CSI_DisableInterrupts(base, (uint32_t)kCSI_StartOfFrameInterruptEnable |
+ (uint32_t)kCSI_RxBuffer1DmaDoneInterruptEnable |
+ (uint32_t)kCSI_RxBuffer0DmaDoneInterruptEnable);
+}
+
+/*!
+ * brief CSI IRQ handle function.
+ *
+ * This function handles the CSI IRQ request to work with CSI driver fragment mode
+ * APIs.
+ *
+ * param base CSI peripheral base address.
+ * param handle CSI handle pointer.
+ */
+void CSI_FragModeTransferHandleIRQ(CSI_Type *base, csi_frag_handle_t *handle)
+{
+ uint32_t csisr = CSI_REG_SR(base);
+ uint32_t dmaBufAddr;
+ uint16_t line;
+ pvoid_to_u32_t memSrc;
+ pvoid_to_u32_t memDest;
+
+ /* Clear the error flags. */
+ CSI_REG_SR(base) = csisr;
+
+ /* Start of frame, clear the FIFO and start receiving. */
+ if (0U != (csisr & (uint32_t)kCSI_StartOfFrameFlag))
+ {
+ /* Reflash the DMA and enable RX DMA request. */
+ CSI_REG_CR3(base) |= (CSI_CR3_DMA_REFLASH_RFF_MASK | CSI_CR3_DMA_REQ_EN_RFF_MASK);
+ CSI_Start(base);
+ handle->dmaCurLine = 0;
+ handle->datCurWriteAddr = handle->outputBuffer;
+ }
+ else if ((csisr & (CSI_SR_DMA_TSF_DONE_FB2_MASK | CSI_SR_DMA_TSF_DONE_FB1_MASK)) != 0U)
+ {
+ if ((csisr & CSI_SR_DMA_TSF_DONE_FB1_MASK) == CSI_SR_DMA_TSF_DONE_FB1_MASK)
+ {
+ dmaBufAddr = CSI_REG_DMASA_FB1(base);
+ }
+ else
+ {
+ dmaBufAddr = CSI_REG_DMASA_FB2(base);
+ }
+
+ dmaBufAddr = CSI_ADDR_IP_2_CPU(dmaBufAddr);
+
+ if (handle->isDmaBufferCachable)
+ {
+ DCACHE_InvalidateByRange(dmaBufAddr, (uint32_t)handle->dmaBytePerLine * (uint32_t)handle->linePerFrag);
+ }
+
+ /* Copy from DMA buffer to user data buffer. */
+ dmaBufAddr += ((uint32_t)handle->windowULX * CSI_FRAG_INPUT_BYTES_PER_PIXEL);
+
+ for (line = 0; line < handle->linePerFrag; line++)
+ {
+ if (handle->dmaCurLine + line > handle->windowLRY)
+ {
+ /* out of window range */
+ break;
+ }
+ else if (handle->dmaCurLine + line >= handle->windowULY)
+ {
+ memDest.u32 = handle->datCurWriteAddr;
+ memSrc.u32 = dmaBufAddr;
+
+ handle->copyFunc(memDest.pvoid, memSrc.pvoid, handle->datBytePerLine);
+ handle->datCurWriteAddr += handle->datBytePerLine;
+ dmaBufAddr += handle->dmaBytePerLine;
+ }
+ else
+ {
+ ; /* For MISRA C-2012 Rule 15.7 */
+ }
+ }
+
+ handle->dmaCurLine += handle->linePerFrag;
+
+ if (handle->dmaCurLine >= handle->height)
+ {
+ CSI_Stop(base);
+ CSI_DisableInterrupts(base, (uint32_t)kCSI_StartOfFrameInterruptEnable |
+ (uint32_t)kCSI_RxBuffer1DmaDoneInterruptEnable |
+ (uint32_t)kCSI_RxBuffer0DmaDoneInterruptEnable);
+
+ /* Image captured. Stop the CSI. */
+ if (NULL != handle->callback)
+ {
+ handle->callback(base, handle, kStatus_CSI_FrameDone, handle->userData);
+ }
+ }
+ }
+ else
+ {
+ }
+}
+#endif /* CSI_DRIVER_FRAG_MODE */
+
+#if defined(CSI)
+void CSI_DriverIRQHandler(void);
+void CSI_DriverIRQHandler(void)
+{
+ s_csiIsr(CSI, s_csiHandle[0]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif
+
+#if defined(CSI0)
+void CSI0_DriverIRQHandler(void);
+void CSI0_DriverIRQHandler(void)
+{
+ s_csiIsr(CSI, s_csiHandle[0]);
+ SDK_ISR_EXIT_BARRIER;
+}
+#endif