summaryrefslogtreecommitdiffstats
path: root/cpukit/score/cpu/sparc64/rtems/score
diff options
context:
space:
mode:
authorChris Johns <chrisj@rtems.org>2017-12-23 18:18:56 +1100
committerSebastian Huber <sebastian.huber@embedded-brains.de>2018-01-25 08:45:26 +0100
commit2afb22b7e1ebcbe40373ff7e0efae7d207c655a9 (patch)
tree44759efe9374f13200a97e96d91bd9a2b7e5ce2a /cpukit/score/cpu/sparc64/rtems/score
parentMAINTAINERS: Add myself to Write After Approval. (diff)
downloadrtems-2afb22b7e1ebcbe40373ff7e0efae7d207c655a9.tar.bz2
Remove make preinstall
A speciality of the RTEMS build system was the make preinstall step. It copied header files from arbitrary locations into the build tree. The header files were included via the -Bsome/build/tree/path GCC command line option. This has at least seven problems: * The make preinstall step itself needs time and disk space. * Errors in header files show up in the build tree copy. This makes it hard for editors to open the right file to fix the error. * There is no clear relationship between source and build tree header files. This makes an audit of the build process difficult. * The visibility of all header files in the build tree makes it difficult to enforce API barriers. For example it is discouraged to use BSP-specifics in the cpukit. * An introduction of a new build system is difficult. * Include paths specified by the -B option are system headers. This may suppress warnings. * The parallel build had sporadic failures on some hosts. This patch removes the make preinstall step. All installed header files are moved to dedicated include directories in the source tree. Let @RTEMS_CPU@ be the target architecture, e.g. arm, powerpc, sparc, etc. Let @RTEMS_BSP_FAMILIY@ be a BSP family base directory, e.g. erc32, imx, qoriq, etc. The new cpukit include directories are: * cpukit/include * cpukit/score/cpu/@RTEMS_CPU@/include * cpukit/libnetworking The new BSP include directories are: * bsps/include * bsps/@RTEMS_CPU@/include * bsps/@RTEMS_CPU@/@RTEMS_BSP_FAMILIY@/include There are build tree include directories for generated files. The include directory order favours the most general header file, e.g. it is not possible to override general header files via the include path order. The "bootstrap -p" option was removed. The new "bootstrap -H" option should be used to regenerate the "headers.am" files. Update #3254.
Diffstat (limited to 'cpukit/score/cpu/sparc64/rtems/score')
-rw-r--r--cpukit/score/cpu/sparc64/rtems/score/cpu.h1051
-rw-r--r--cpukit/score/cpu/sparc64/rtems/score/cpuatomic.h14
-rw-r--r--cpukit/score/cpu/sparc64/rtems/score/cpuimpl.h34
-rw-r--r--cpukit/score/cpu/sparc64/rtems/score/sparc64.h342
-rw-r--r--cpukit/score/cpu/sparc64/rtems/score/types.h45
5 files changed, 0 insertions, 1486 deletions
diff --git a/cpukit/score/cpu/sparc64/rtems/score/cpu.h b/cpukit/score/cpu/sparc64/rtems/score/cpu.h
deleted file mode 100644
index 47041e7d5e..0000000000
--- a/cpukit/score/cpu/sparc64/rtems/score/cpu.h
+++ /dev/null
@@ -1,1051 +0,0 @@
-/**
- * @file
- *
- * @brief SPARC64 CPU Department Source
- *
- * This include file contains information pertaining to the port of
- * the executive to the SPARC64 processor.
- */
-
-/*
- *
- *
- * COPYRIGHT (c) 1989-2006. On-Line Applications Research Corporation (OAR).
- *
- * This file is based on the SPARC cpu.h file. Modifications are made
- * to support the SPARC64 processor.
- * COPYRIGHT (c) 2010. Gedare Bloom.
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.rtems.org/license/LICENSE.
- */
-
-#ifndef _RTEMS_SCORE_CPU_H
-#define _RTEMS_SCORE_CPU_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#include <rtems/score/types.h>
-#include <rtems/score/sparc64.h>
-
-/* conditional compilation parameters */
-
-/*
- * Does the executive manage a dedicated interrupt stack in software?
- *
- * If TRUE, then a stack is allocated in _ISR_Handler_initialization.
- * If FALSE, nothing is done.
- *
- * The SPARC does not have a dedicated HW interrupt stack and one has
- * been implemented in SW.
- */
-
-#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
-
-/*
- * Does the CPU follow the simple vectored interrupt model?
- *
- * If TRUE, then RTEMS allocates the vector table it internally manages.
- * If FALSE, then the BSP is assumed to allocate and manage the vector
- * table
- *
- * SPARC Specific Information:
- *
- * XXX document implementation including references if appropriate
- */
-#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
-
-/*
- * Does this CPU have hardware support for a dedicated interrupt stack?
- *
- * If TRUE, then it must be installed during initialization.
- * If FALSE, then no installation is performed.
- *
- * The SPARC does not have a dedicated HW interrupt stack.
- */
-
-#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
-
-/*
- * Do we allocate a dedicated interrupt stack in the Interrupt Manager?
- *
- * If TRUE, then the memory is allocated during initialization.
- * If FALSE, then the memory is allocated during initialization.
- */
-
-#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
-
-/*
- * Does the RTEMS invoke the user's ISR with the vector number and
- * a pointer to the saved interrupt frame (1) or just the vector
- * number (0)?
- */
-
-#define CPU_ISR_PASSES_FRAME_POINTER FALSE
-
-/*
- * Does the CPU have hardware floating point?
- *
- * If TRUE, then the FLOATING_POINT task attribute is supported.
- * If FALSE, then the FLOATING_POINT task attribute is ignored.
- */
-
-#if ( SPARC_HAS_FPU == 1 )
-#define CPU_HARDWARE_FP TRUE
-#else
-#define CPU_HARDWARE_FP FALSE
-#endif
-#define CPU_SOFTWARE_FP FALSE
-
-/*
- * Are all tasks FLOATING_POINT tasks implicitly?
- *
- * If TRUE, then the FLOATING_POINT task attribute is assumed.
- * If FALSE, then the FLOATING_POINT task attribute is followed.
- */
-
-#define CPU_ALL_TASKS_ARE_FP FALSE
-
-/*
- * Should the IDLE task have a floating point context?
- *
- * If TRUE, then the IDLE task is created as a FLOATING_POINT task
- * and it has a floating point context which is switched in and out.
- * If FALSE, then the IDLE task does not have a floating point context.
- */
-
-#define CPU_IDLE_TASK_IS_FP FALSE
-
-/*
- * Should the saving of the floating point registers be deferred
- * until a context switch is made to another different floating point
- * task?
- *
- * If TRUE, then the floating point context will not be stored until
- * necessary. It will remain in the floating point registers and not
- * disturned until another floating point task is switched to.
- *
- * If FALSE, then the floating point context is saved when a floating
- * point task is switched out and restored when the next floating point
- * task is restored. The state of the floating point registers between
- * those two operations is not specified.
- */
-
-#define CPU_USE_DEFERRED_FP_SWITCH TRUE
-
-#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
-
-/*
- * Does this port provide a CPU dependent IDLE task implementation?
- *
- * If TRUE, then the routine _CPU_Thread_Idle_body
- * must be provided and is the default IDLE thread body instead of
- * _CPU_Thread_Idle_body.
- *
- * If FALSE, then use the generic IDLE thread body if the BSP does
- * not provide one.
- */
-
-#define CPU_PROVIDES_IDLE_THREAD_BODY FALSE
-
-/*
- * Does the stack grow up (toward higher addresses) or down
- * (toward lower addresses)?
- *
- * If TRUE, then the grows upward.
- * If FALSE, then the grows toward smaller addresses.
- *
- * The stack grows to lower addresses on the SPARC.
- */
-
-#define CPU_STACK_GROWS_UP FALSE
-
-/* FIXME: Is this the right value? */
-#define CPU_CACHE_LINE_BYTES 32
-
-/*
- * The following is the variable attribute used to force alignment
- * of critical data structures. On some processors it may make
- * sense to have these aligned on tighter boundaries than
- * the minimum requirements of the compiler in order to have as
- * much of the critical data area as possible in a cache line.
- *
- * The SPARC does not appear to have particularly strict alignment
- * requirements. This value (16) was chosen to take advantages of caches.
- *
- * SPARC 64 requirements on floating point alignment is at least 8,
- * and is 16 if quad-word fp instructions are available (e.g. LDQF).
- */
-
-#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( 16 )
-
-/*
- * The following defines the number of bits actually used in the
- * interrupt field of the task mode. How those bits map to the
- * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
- *
- * The SPARC v9 has 16 interrupt levels in the PIL field of the PSR.
- */
-
-#define CPU_MODES_INTERRUPT_MASK 0x0000000F
-
-#define CPU_MAXIMUM_PROCESSORS 32
-
-/*
- * This structure represents the organization of the minimum stack frame
- * for the SPARC. More framing information is required in certain situaions
- * such as when there are a large number of out parameters or when the callee
- * must save floating point registers.
- */
-
-#ifndef ASM
-
-typedef struct {
- uint64_t l0;
- uint64_t l1;
- uint64_t l2;
- uint64_t l3;
- uint64_t l4;
- uint64_t l5;
- uint64_t l6;
- uint64_t l7;
- uint64_t i0;
- uint64_t i1;
- uint64_t i2;
- uint64_t i3;
- uint64_t i4;
- uint64_t i5;
- uint64_t i6_fp;
- uint64_t i7;
- void *structure_return_address;
- /*
- * The following are for the callee to save the register arguments in
- * should this be necessary.
- */
- uint64_t saved_arg0;
- uint64_t saved_arg1;
- uint64_t saved_arg2;
- uint64_t saved_arg3;
- uint64_t saved_arg4;
- uint64_t saved_arg5;
- uint64_t pad0;
-} SPARC64_Minimum_stack_frame;
-
-#endif /* !ASM */
-
-#define CPU_STACK_FRAME_L0_OFFSET 0x00
-#define CPU_STACK_FRAME_L1_OFFSET 0x08
-#define CPU_STACK_FRAME_L2_OFFSET 0x10
-#define CPU_STACK_FRAME_L3_OFFSET 0x18
-#define CPU_STACK_FRAME_L4_OFFSET 0x20
-#define CPU_STACK_FRAME_L5_OFFSET 0x28
-#define CPU_STACK_FRAME_L6_OFFSET 0x30
-#define CPU_STACK_FRAME_L7_OFFSET 0x38
-#define CPU_STACK_FRAME_I0_OFFSET 0x40
-#define CPU_STACK_FRAME_I1_OFFSET 0x48
-#define CPU_STACK_FRAME_I2_OFFSET 0x50
-#define CPU_STACK_FRAME_I3_OFFSET 0x58
-#define CPU_STACK_FRAME_I4_OFFSET 0x60
-#define CPU_STACK_FRAME_I5_OFFSET 0x68
-#define CPU_STACK_FRAME_I6_FP_OFFSET 0x70
-#define CPU_STACK_FRAME_I7_OFFSET 0x78
-#define CPU_STRUCTURE_RETURN_ADDRESS_OFFSET 0x80
-#define CPU_STACK_FRAME_SAVED_ARG0_OFFSET 0x88
-#define CPU_STACK_FRAME_SAVED_ARG1_OFFSET 0x90
-#define CPU_STACK_FRAME_SAVED_ARG2_OFFSET 0x98
-#define CPU_STACK_FRAME_SAVED_ARG3_OFFSET 0xA0
-#define CPU_STACK_FRAME_SAVED_ARG4_OFFSET 0xA8
-#define CPU_STACK_FRAME_SAVED_ARG5_OFFSET 0xB0
-#define CPU_STACK_FRAME_PAD0_OFFSET 0xB8
-
-#define SPARC64_MINIMUM_STACK_FRAME_SIZE 0xC0
-
-/*
- * Contexts
- *
- * Generally there are 2 types of context to save.
- * 1. Interrupt registers to save
- * 2. Task level registers to save
- *
- * This means we have the following 3 context items:
- * 1. task level context stuff:: Context_Control
- * 2. floating point task stuff:: Context_Control_fp
- * 3. special interrupt level context :: Context_Control_interrupt
- *
- * On the SPARC, we are relatively conservative in that we save most
- * of the CPU state in the context area. The ET (enable trap) bit and
- * the CWP (current window pointer) fields of the PSR are considered
- * system wide resources and are not maintained on a per-thread basis.
- */
-
-#ifndef ASM
-
-typedef struct {
- uint64_t g1;
- uint64_t g2;
- uint64_t g3;
- uint64_t g4;
- uint64_t g5;
- uint64_t g6;
- uint64_t g7;
-
- uint64_t l0;
- uint64_t l1;
- uint64_t l2;
- uint64_t l3;
- uint64_t l4;
- uint64_t l5;
- uint64_t l6;
- uint64_t l7;
-
- uint64_t i0;
- uint64_t i1;
- uint64_t i2;
- uint64_t i3;
- uint64_t i4;
- uint64_t i5;
- uint64_t i6_fp;
- uint64_t i7;
-
- uint64_t o0;
- uint64_t o1;
- uint64_t o2;
- uint64_t o3;
- uint64_t o4;
- uint64_t o5;
- uint64_t o6_sp;
- uint64_t o7;
-
- uint32_t isr_dispatch_disable;
- uint32_t pad;
-} Context_Control;
-
-#define _CPU_Context_Get_SP( _context ) \
- (_context)->o6_sp
-
-#endif /* ASM */
-
-/*
- * Offsets of fields with Context_Control for assembly routines.
- */
-
-#define G1_OFFSET 0x00
-#define G2_OFFSET 0x08
-#define G3_OFFSET 0x10
-#define G4_OFFSET 0x18
-#define G5_OFFSET 0x20
-#define G6_OFFSET 0x28
-#define G7_OFFSET 0x30
-
-#define L0_OFFSET 0x38
-#define L1_OFFSET 0x40
-#define L2_OFFSET 0x48
-#define L3_OFFSET 0x50
-#define L4_OFFSET 0x58
-#define L5_OFFSET 0x60
-#define L6_OFFSET 0x68
-#define L7_OFFSET 0x70
-
-#define I0_OFFSET 0x78
-#define I1_OFFSET 0x80
-#define I2_OFFSET 0x88
-#define I3_OFFSET 0x90
-#define I4_OFFSET 0x98
-#define I5_OFFSET 0xA0
-#define I6_FP_OFFSET 0xA8
-#define I7_OFFSET 0xB0
-
-#define O0_OFFSET 0xB8
-#define O1_OFFSET 0xC0
-#define O2_OFFSET 0xC8
-#define O3_OFFSET 0xD0
-#define O4_OFFSET 0xD8
-#define O5_OFFSET 0xE0
-#define O6_SP_OFFSET 0xE8
-#define O7_OFFSET 0xF0
-
-#define ISR_DISPATCH_DISABLE_STACK_OFFSET 0xF8
-#define ISR_PAD_OFFSET 0xFC
-
-/*
- * The floating point context area.
- */
-
-#ifndef ASM
-
-typedef struct {
- double f0; /* f0-f1 */
- double f2; /* f2-f3 */
- double f4; /* f4-f5 */
- double f6; /* f6-f7 */
- double f8; /* f8-f9 */
- double f10; /* f10-f11 */
- double f12; /* f12-f13 */
- double f14; /* f14-f15 */
- double f16; /* f16-f17 */
- double f18; /* f18-f19 */
- double f20; /* f20-f21 */
- double f22; /* f22-f23 */
- double f24; /* f24-f25 */
- double f26; /* f26-f27 */
- double f28; /* f28-f29 */
- double f30; /* f30-f31 */
- double f32;
- double f34;
- double f36;
- double f38;
- double f40;
- double f42;
- double f44;
- double f46;
- double f48;
- double f50;
- double f52;
- double f54;
- double f56;
- double f58;
- double f60;
- double f62;
- uint64_t fsr;
-} Context_Control_fp;
-
-#endif /* !ASM */
-
-/*
- * Offsets of fields with Context_Control_fp for assembly routines.
- */
-
-#define FO_OFFSET 0x00
-#define F2_OFFSET 0x08
-#define F4_OFFSET 0x10
-#define F6_OFFSET 0x18
-#define F8_OFFSET 0x20
-#define F1O_OFFSET 0x28
-#define F12_OFFSET 0x30
-#define F14_OFFSET 0x38
-#define F16_OFFSET 0x40
-#define F18_OFFSET 0x48
-#define F2O_OFFSET 0x50
-#define F22_OFFSET 0x58
-#define F24_OFFSET 0x60
-#define F26_OFFSET 0x68
-#define F28_OFFSET 0x70
-#define F3O_OFFSET 0x78
-#define F32_OFFSET 0x80
-#define F34_OFFSET 0x88
-#define F36_OFFSET 0x90
-#define F38_OFFSET 0x98
-#define F4O_OFFSET 0xA0
-#define F42_OFFSET 0xA8
-#define F44_OFFSET 0xB0
-#define F46_OFFSET 0xB8
-#define F48_OFFSET 0xC0
-#define F5O_OFFSET 0xC8
-#define F52_OFFSET 0xD0
-#define F54_OFFSET 0xD8
-#define F56_OFFSET 0xE0
-#define F58_OFFSET 0xE8
-#define F6O_OFFSET 0xF0
-#define F62_OFFSET 0xF8
-#define FSR_OFFSET 0x100
-
-#define CONTEXT_CONTROL_FP_SIZE 0x108
-
-#ifndef ASM
-
-/*
- * Context saved on stack for an interrupt.
- *
- * NOTE: The tstate, tpc, and tnpc are saved in this structure
- * to allow resetting the TL while still being able to return
- * from a trap later. The PIL is saved because
- * if this is an external interrupt, we will mask lower
- * priority interrupts until finishing. Even though the y register
- * is deprecated, gcc still uses it.
- */
-
-typedef struct {
- SPARC64_Minimum_stack_frame Stack_frame;
- uint64_t tstate;
- uint64_t tpc;
- uint64_t tnpc;
- uint64_t pil;
- uint64_t y;
- uint64_t g1;
- uint64_t g2;
- uint64_t g3;
- uint64_t g4;
- uint64_t g5;
- uint64_t g6;
- uint64_t g7;
- uint64_t o0;
- uint64_t o1;
- uint64_t o2;
- uint64_t o3;
- uint64_t o4;
- uint64_t o5;
- uint64_t o6_sp;
- uint64_t o7;
- uint64_t tvec;
-} CPU_Interrupt_frame;
-
-#endif /* ASM */
-
-/*
- * Offsets of fields with CPU_Interrupt_frame for assembly routines.
- */
-
-#define ISF_TSTATE_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x00
-#define ISF_TPC_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x08
-#define ISF_TNPC_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x10
-#define ISF_PIL_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x18
-#define ISF_Y_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x20
-#define ISF_G1_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x28
-#define ISF_G2_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x30
-#define ISF_G3_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x38
-#define ISF_G4_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x40
-#define ISF_G5_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x48
-#define ISF_G6_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x50
-#define ISF_G7_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x58
-#define ISF_O0_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x60
-#define ISF_O1_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x68
-#define ISF_O2_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x70
-#define ISF_O3_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x78
-#define ISF_O4_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x80
-#define ISF_O5_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x88
-#define ISF_O6_SP_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x90
-#define ISF_O7_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x98
-#define ISF_TVEC_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0xA0
-
-#define CONTEXT_CONTROL_INTERRUPT_FRAME_SIZE SPARC64_MINIMUM_STACK_FRAME_SIZE + 0xA8
-#ifndef ASM
-/*
- * This variable is contains the initialize context for the FP unit.
- * It is filled in by _CPU_Initialize and copied into the task's FP
- * context area during _CPU_Context_Initialize.
- */
-
-extern Context_Control_fp _CPU_Null_fp_context;
-
-/*
- * This flag is context switched with each thread. It indicates
- * that THIS thread has an _ISR_Dispatch stack frame on its stack.
- * By using this flag, we can avoid nesting more interrupt dispatching
- * attempts on a previously interrupted thread's stack.
- */
-
-extern volatile uint32_t _CPU_ISR_Dispatch_disable;
-
-/*
- * The following type defines an entry in the SPARC's trap table.
- *
- * NOTE: The instructions chosen are RTEMS dependent although one is
- * obligated to use two of the four instructions to perform a
- * long jump. The other instructions load one register with the
- * trap type (a.k.a. vector) and another with the psr.
- */
-/* For SPARC V9, we must use 6 of these instructions to perform a long
- * jump, because the _handler value is now 64-bits. We also need to store
- * temporary values in the global register set at this trap level. Because
- * the handler runs at TL > 0 with GL > 0, it should be OK to use g2 and g3
- * to pass parameters to ISR_Handler.
- *
- * The instruction sequence is now more like:
- * rdpr %tstate, %g4
- * setx _handler, %g2, %g3
- * jmp %g3+0
- * mov _vector, %g2
- */
-typedef struct {
- uint32_t rdpr_tstate_g4; /* rdpr %tstate, %g4 */
- uint32_t sethi_of_hh_handler_to_g2; /* sethi %hh(_handler), %g2 */
- uint32_t or_g2_hm_handler_to_g2; /* or %l3, %hm(_handler), %g2 */
- uint32_t sllx_g2_by_32_to_g2; /* sllx %g2, 32, %g2 */
- uint32_t sethi_of_handler_to_g3; /* sethi %hi(_handler), %g3 */
- uint32_t or_g3_g2_to_g3; /* or %g3, %g2, %g3 */
- uint32_t jmp_to_low_of_handler_plus_g3; /* jmp %g3 + %lo(_handler) */
- uint32_t mov_vector_g2; /* mov _vector, %g2 */
-} CPU_Trap_table_entry;
-
-/*
- * This is the set of opcodes for the instructions loaded into a trap
- * table entry. The routine which installs a handler is responsible
- * for filling in the fields for the _handler address and the _vector
- * trap type.
- *
- * The constants following this structure are masks for the fields which
- * must be filled in when the handler is installed.
- */
-
-extern const CPU_Trap_table_entry _CPU_Trap_slot_template;
-
-/*
- * The size of the floating point context area.
- */
-
-#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
-
-#endif
-
-/*
- * Amount of extra stack (above minimum stack size) required by
- * MPCI receive server thread. Remember that in a multiprocessor
- * system this thread must exist and be able to process all directives.
- */
-
-#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
-
-/*
- * This defines the number of entries in the ISR_Vector_table managed
- * by the executive.
- *
- * On the SPARC, there are really only 256 vectors. However, the executive
- * has no easy, fast, reliable way to determine which traps are synchronous
- * and which are asynchronous. By default, synchronous traps return to the
- * instruction which caused the interrupt. So if you install a software
- * trap handler as an executive interrupt handler (which is desirable since
- * RTEMS takes care of window and register issues), then the executive needs
- * to know that the return address is to the trap rather than the instruction
- * following the trap.
- *
- * So vectors 0 through 255 are treated as regular asynchronous traps which
- * provide the "correct" return address. Vectors 256 through 512 are assumed
- * by the executive to be synchronous and to require that the return address
- * be fudged.
- *
- * If you use this mechanism to install a trap handler which must reexecute
- * the instruction which caused the trap, then it should be installed as
- * an asynchronous trap. This will avoid the executive changing the return
- * address.
- */
-/* On SPARC v9, there are 512 vectors. The same philosophy applies to
- * vector installation and use, we just provide a larger table.
- */
-#define CPU_INTERRUPT_NUMBER_OF_VECTORS 512
-#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER 1023
-
-#define SPARC_SYNCHRONOUS_TRAP_BIT_MASK 0x200
-#define SPARC_ASYNCHRONOUS_TRAP( _trap ) (_trap)
-#define SPARC_SYNCHRONOUS_TRAP( _trap ) ((_trap) + 512 )
-
-#define SPARC_REAL_TRAP_NUMBER( _trap ) ((_trap) % 512)
-
-/*
- * This is defined if the port has a special way to report the ISR nesting
- * level. Most ports maintain the variable _ISR_Nest_level.
- */
-
-#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
-
-/*
- * Should be large enough to run all tests. This ensures
- * that a "reasonable" small application should not have any problems.
- *
- * This appears to be a fairly generous number for the SPARC since
- * represents a call depth of about 20 routines based on the minimum
- * stack frame.
- */
-
-#define CPU_STACK_MINIMUM_SIZE (1024*8)
-
-#define CPU_SIZEOF_POINTER 8
-
-/*
- * CPU's worst alignment requirement for data types on a byte boundary. This
- * alignment does not take into account the requirements for the stack.
- *
- * On the SPARC, this is required for double word loads and stores.
- *
- * Note: quad-word loads/stores need alignment of 16, but currently supported
- * architectures do not provide HW implemented quad-word operations.
- */
-
-#define CPU_ALIGNMENT 8
-
-/*
- * This number corresponds to the byte alignment requirement for the
- * heap handler. This alignment requirement may be stricter than that
- * for the data types alignment specified by CPU_ALIGNMENT. It is
- * common for the heap to follow the same alignment requirement as
- * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap,
- * then this should be set to CPU_ALIGNMENT.
- *
- * NOTE: This does not have to be a power of 2. It does have to
- * be greater or equal to than CPU_ALIGNMENT.
- */
-
-#define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT
-
-/*
- * This number corresponds to the byte alignment requirement for memory
- * buffers allocated by the partition manager. This alignment requirement
- * may be stricter than that for the data types alignment specified by
- * CPU_ALIGNMENT. It is common for the partition to follow the same
- * alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict
- * enough for the partition, then this should be set to CPU_ALIGNMENT.
- *
- * NOTE: This does not have to be a power of 2. It does have to
- * be greater or equal to than CPU_ALIGNMENT.
- */
-
-#define CPU_PARTITION_ALIGNMENT CPU_ALIGNMENT
-
-/*
- * This number corresponds to the byte alignment requirement for the
- * stack. This alignment requirement may be stricter than that for the
- * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT
- * is strict enough for the stack, then this should be set to 0.
- *
- * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
- *
- * The alignment restrictions for the SPARC are not that strict but this
- * should unsure that the stack is always sufficiently alignment that the
- * window overflow, underflow, and flush routines can use double word loads
- * and stores.
- */
-
-#define CPU_STACK_ALIGNMENT 16
-
-#ifndef ASM
-
-/*
- * ISR handler macros
- */
-
-/*
- * Support routine to initialize the RTEMS vector table after it is allocated.
- */
-
-#define _CPU_Initialize_vectors()
-
-/*
- * Disable all interrupts for a critical section. The previous
- * level is returned in _level.
- */
-
- #define _CPU_ISR_Disable( _level ) \
- (_level) = sparc_disable_interrupts()
-
-/*
- * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
- * This indicates the end of a critical section. The parameter
- * _level is not modified.
- */
-
-#define _CPU_ISR_Enable( _level ) \
- sparc_enable_interrupts( _level )
-
-/*
- * This temporarily restores the interrupt to _level before immediately
- * disabling them again. This is used to divide long critical
- * sections into two or more parts. The parameter _level is not
- * modified.
- */
-
-#define _CPU_ISR_Flash( _level ) \
- sparc_flash_interrupts( _level )
-
-RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
-{
- return ( level & SPARC_PSTATE_IE_MASK ) != 0;
-}
-
-/*
- * Map interrupt level in task mode onto the hardware that the CPU
- * actually provides. Currently, interrupt levels which do not
- * map onto the CPU in a straight fashion are undefined.
- */
-
-#define _CPU_ISR_Set_level( _newlevel ) \
- sparc_enable_interrupts( _newlevel)
-
-uint32_t _CPU_ISR_Get_level( void );
-
-/* end of ISR handler macros */
-
-/* Context handler macros */
-
-/*
- * Initialize the context to a state suitable for starting a
- * task after a context restore operation. Generally, this
- * involves:
- *
- * - setting a starting address
- * - preparing the stack
- * - preparing the stack and frame pointers
- * - setting the proper interrupt level in the context
- * - initializing the floating point context
- *
- * NOTE: Implemented as a subroutine for the SPARC port.
- */
-
-void _CPU_Context_Initialize(
- Context_Control *the_context,
- void *stack_base,
- uint32_t size,
- uint32_t new_level,
- void *entry_point,
- bool is_fp,
- void *tls_area
-);
-
-/*
- * This macro is invoked from _Thread_Handler to do whatever CPU
- * specific magic is required that must be done in the context of
- * the thread when it starts.
- *
- * On the SPARC, this is setting the frame pointer so GDB is happy.
- * Make GDB stop unwinding at _Thread_Handler, previous register window
- * Frame pointer is 0 and calling address must be a function with starting
- * with a SAVE instruction. If return address is leaf-function (no SAVE)
- * GDB will not look at prev reg window fp.
- *
- * _Thread_Handler is known to start with SAVE.
- */
-
-#define _CPU_Context_Initialization_at_thread_begin() \
- do { \
- __asm__ volatile ("set _Thread_Handler,%%i7\n"::); \
- } while (0)
-
-/*
- * This routine is responsible for somehow restarting the currently
- * executing task.
- *
- * On the SPARC, this is is relatively painless but requires a small
- * amount of wrapper code before using the regular restore code in
- * of the context switch.
- */
-
-#define _CPU_Context_Restart_self( _the_context ) \
- _CPU_Context_restore( (_the_context) );
-
-/*
- * This routine initializes the FP context area passed to it to.
- *
- * The SPARC allows us to use the simple initialization model
- * in which an "initial" FP context was saved into _CPU_Null_fp_context
- * at CPU initialization and it is simply copied into the destination
- * context.
- */
-
-#define _CPU_Context_Initialize_fp( _destination ) \
- do { \
- *(*(_destination)) = _CPU_Null_fp_context; \
- } while (0)
-
-/* end of Context handler macros */
-
-/* Fatal Error manager macros */
-
-/*
- * This routine copies _error into a known place -- typically a stack
- * location or a register, optionally disables interrupts, and
- * halts/stops the CPU.
- */
-
-#define _CPU_Fatal_halt( _source, _error ) \
- do { \
- uint32_t level; \
- \
- level = sparc_disable_interrupts(); \
- __asm__ volatile ( "mov %0, %%g1 " : "=r" (level) : "0" (level) ); \
- while (1); /* loop forever */ \
- } while (0)
-
-/* end of Fatal Error manager macros */
-
-/* Bitfield handler macros */
-
-/*
- * The SPARC port uses the generic C algorithm for bitfield scan if the
- * CPU model does not have a scan instruction.
- */
-
-#if ( SPARC_HAS_BITSCAN == 0 )
-#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
-#else
-#error "scan instruction not currently supported by RTEMS!!"
-#endif
-
-/* end of Bitfield handler macros */
-
-/* Priority handler handler macros */
-
-/*
- * The SPARC port uses the generic C algorithm for bitfield scan if the
- * CPU model does not have a scan instruction.
- */
-
-#if ( SPARC_HAS_BITSCAN == 1 )
-#error "scan instruction not currently supported by RTEMS!!"
-#endif
-
-/* end of Priority handler macros */
-
-/* functions */
-
-/*
- * _CPU_Initialize
- *
- * This routine performs CPU dependent initialization.
- */
-
-void _CPU_Initialize(void);
-
-/*
- * _CPU_ISR_install_raw_handler
- *
- * This routine installs new_handler to be directly called from the trap
- * table.
- */
-
-void _CPU_ISR_install_raw_handler(
- uint32_t vector,
- proc_ptr new_handler,
- proc_ptr *old_handler
-);
-
-/*
- * _CPU_ISR_install_vector
- *
- * This routine installs an interrupt vector.
- */
-
-void _CPU_ISR_install_vector(
- uint64_t vector,
- proc_ptr new_handler,
- proc_ptr *old_handler
-);
-
-#if (CPU_PROVIDES_IDLE_THREAD_BODY == TRUE)
-
-/*
- * _CPU_Thread_Idle_body
- *
- * Some SPARC implementations have low power, sleep, or idle modes. This
- * tries to take advantage of those models.
- */
-
-void *_CPU_Thread_Idle_body( uintptr_t ignored );
-
-#endif /* CPU_PROVIDES_IDLE_THREAD_BODY */
-
-/*
- * _CPU_Context_switch
- *
- * This routine switches from the run context to the heir context.
- */
-
-void _CPU_Context_switch(
- Context_Control *run,
- Context_Control *heir
-);
-
-/*
- * _CPU_Context_restore
- *
- * This routine is generally used only to restart self in an
- * efficient manner.
- */
-
-void _CPU_Context_restore(
- Context_Control *new_context
-) RTEMS_NO_RETURN;
-
-/*
- * _CPU_Context_save_fp
- *
- * This routine saves the floating point context passed to it.
- */
-
-void _CPU_Context_save_fp(
- Context_Control_fp **fp_context_ptr
-);
-
-/*
- * _CPU_Context_restore_fp
- *
- * This routine restores the floating point context passed to it.
- */
-
-void _CPU_Context_restore_fp(
- Context_Control_fp **fp_context_ptr
-);
-
-static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
-{
- /* TODO */
-}
-
-static inline void _CPU_Context_validate( uintptr_t pattern )
-{
- while (1) {
- /* TODO */
- }
-}
-
-/* FIXME */
-typedef CPU_Interrupt_frame CPU_Exception_frame;
-
-void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
-
-/*
- * CPU_swap_u32
- *
- * The following routine swaps the endian format of an unsigned int.
- * It must be static because it is referenced indirectly.
- *
- * This version will work on any processor, but if you come across a better
- * way for the SPARC PLEASE use it. The most common way to swap a 32-bit
- * entity as shown below is not any more efficient on the SPARC.
- *
- * swap least significant two bytes with 16-bit rotate
- * swap upper and lower 16-bits
- * swap most significant two bytes with 16-bit rotate
- *
- * It is not obvious how the SPARC can do significantly better than the
- * generic code. gcc 2.7.0 only generates about 12 instructions for the
- * following code at optimization level four (i.e. -O4).
- */
-
-static inline uint32_t CPU_swap_u32(
- uint32_t value
-)
-{
- uint32_t byte1, byte2, byte3, byte4, swapped;
-
- byte4 = (value >> 24) & 0xff;
- byte3 = (value >> 16) & 0xff;
- byte2 = (value >> 8) & 0xff;
- byte1 = value & 0xff;
-
- swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
- return( swapped );
-}
-
-#define CPU_swap_u16( value ) \
- (((value&0xff) << 8) | ((value >> 8)&0xff))
-
-typedef uint32_t CPU_Counter_ticks;
-
-CPU_Counter_ticks _CPU_Counter_read( void );
-
-static inline CPU_Counter_ticks _CPU_Counter_difference(
- CPU_Counter_ticks second,
- CPU_Counter_ticks first
-)
-{
- return second - first;
-}
-
-#endif /* ASM */
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
diff --git a/cpukit/score/cpu/sparc64/rtems/score/cpuatomic.h b/cpukit/score/cpu/sparc64/rtems/score/cpuatomic.h
deleted file mode 100644
index 598ee76b20..0000000000
--- a/cpukit/score/cpu/sparc64/rtems/score/cpuatomic.h
+++ /dev/null
@@ -1,14 +0,0 @@
-/*
- * COPYRIGHT (c) 2012-2013 Deng Hengyi.
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.rtems.org/license/LICENSE.
- */
-
-#ifndef _RTEMS_SCORE_ATOMIC_CPU_H
-#define _RTEMS_SCORE_ATOMIC_CPU_H
-
-#include <rtems/score/cpustdatomic.h>
-
-#endif /* _RTEMS_SCORE_ATOMIC_CPU_H */
diff --git a/cpukit/score/cpu/sparc64/rtems/score/cpuimpl.h b/cpukit/score/cpu/sparc64/rtems/score/cpuimpl.h
deleted file mode 100644
index 789f2badd9..0000000000
--- a/cpukit/score/cpu/sparc64/rtems/score/cpuimpl.h
+++ /dev/null
@@ -1,34 +0,0 @@
-/**
- * @file
- *
- * @brief CPU Port Implementation API
- */
-
-/*
- * Copyright (c) 2013 embedded brains GmbH
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.rtems.org/license/LICENSE.
- */
-
-#ifndef _RTEMS_SCORE_CPUIMPL_H
-#define _RTEMS_SCORE_CPUIMPL_H
-
-#include <rtems/score/cpu.h>
-
-#define CPU_PER_CPU_CONTROL_SIZE 0
-
-#ifndef ASM
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* ASM */
-
-#endif /* _RTEMS_SCORE_CPUIMPL_H */
diff --git a/cpukit/score/cpu/sparc64/rtems/score/sparc64.h b/cpukit/score/cpu/sparc64/rtems/score/sparc64.h
deleted file mode 100644
index d20c2ff509..0000000000
--- a/cpukit/score/cpu/sparc64/rtems/score/sparc64.h
+++ /dev/null
@@ -1,342 +0,0 @@
-/**
- * @file
- *
- * @brief Information Required to Build RTEMS for a Particular Member
- * of the SPARC Family
- *
- * This include file contains information pertaining to the SPARC
- * processor family.
- */
-
-/*
- * COPYRIGHT (c) 1989-1999. On-Line Applications Research Corporation (OAR).
- *
- * This file is based on the SPARC sparc.h file. Modifications are made
- * to support the SPARC64 processor.
- * COPYRIGHT (c) 2010. Gedare Bloom.
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.rtems.org/license/LICENSE.
- */
-
-#ifndef _RTEMS_SCORE_SPARC_H
-#define _RTEMS_SCORE_SPARC_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*
- * This file contains the information required to build
- * RTEMS for a particular member of the "sparc" family. It does
- * this by setting variables to indicate which implementation
- * dependent features are present in a particular member
- * of the family.
- *
- * Currently recognized feature flags:
- *
- * + SPARC_HAS_FPU
- * 0 - no HW FPU
- * 1 - has HW FPU (assumed to be compatible w/90C602)
- *
- * + SPARC_HAS_BITSCAN
- * 0 - does not have scan instructions
- * 1 - has scan instruction (not currently implemented)
- *
- * + SPARC_NUMBER_OF_REGISTER_WINDOWS
- * 8 is the most common number supported by SPARC implementations.
- * SPARC_PSR_CWP_MASK is derived from this value.
- */
-
-/*
- * Some higher end SPARCs have a bitscan instructions. It would
- * be nice to take advantage of them. Right now, there is no
- * port to a CPU model with this feature and no (untested) code
- * that is based on this feature flag.
- */
-
-#define SPARC_HAS_BITSCAN 0
-
-/*
- * This should be OK until a port to a higher end SPARC processor
- * is made that has more than 8 register windows. If this cannot
- * be determined based on multilib settings (v7/v8/v9), then the
- * cpu_asm.S code that depends on this will have to move to libcpu.
- *
- * SPARC v9 supports from 3 to 32 register windows.
- * N_REG_WINDOWS = 8 on UltraSPARC T1 (impl. dep. #2-V8).
- */
-
-#define SPARC_NUMBER_OF_REGISTER_WINDOWS 8
-
-/*
- * This should be determined based on some soft float derived
- * cpp predefine but gcc does not currently give us that information.
- */
-
-
-#if defined(_SOFT_FLOAT)
-#define SPARC_HAS_FPU 0
-#else
-#define SPARC_HAS_FPU 1
-#endif
-
-#if SPARC_HAS_FPU
-#define CPU_MODEL_NAME "w/FPU"
-#else
-#define CPU_MODEL_NAME "w/soft-float"
-#endif
-
-/*
- * Define the name of the CPU family.
- */
-
-#define CPU_NAME "SPARC"
-
-/*
- * Miscellaneous constants
- */
-
-/*
- * The PSR is deprecated and deleted.
- *
- * The following registers represent fields of the PSR:
- * PIL - Processor Interrupt Level register
- * CWP - Current Window Pointer register
- * VER - Version register
- * CCR - Condition Codes Register
- * PSTATE - Processor State register
- */
-
-/*
- * PSTATE masks and starting bit positions
- *
- * NOTE: Reserved bits are ignored.
- */
-
-#define SPARC_PSTATE_AG_MASK 0x00000001 /* bit 0 */
-#define SPARC_PSTATE_IE_MASK 0x00000002 /* bit 1 */
-#define SPARC_PSTATE_PRIV_MASK 0x00000004 /* bit 2 */
-#define SPARC_PSTATE_AM_MASK 0x00000008 /* bit 3 */
-#define SPARC_PSTATE_PEF_MASK 0x00000010 /* bit 4 */
-#define SPARC_PSTATE_MM_MASK 0x00000040 /* bit 6 */
-#define SPARC_PSTATE_TLE_MASK 0x00000100 /* bit 8 */
-#define SPARC_PSTATE_CLE_MASK 0x00000200 /* bit 9 */
-
-#define SPARC_PSTATE_AG_BIT_POSITION 0 /* bit 0 */
-#define SPARC_PSTATE_IE_BIT_POSITION 1 /* bit 1 */
-#define SPARC_PSTATE_PRIV_BIT_POSITION 2 /* bit 2 */
-#define SPARC_PSTATE_AM_BIT_POSITION 3 /* bit 3 */
-#define SPARC_PSTATE_PEF_BIT_POSITION 4 /* bit 4 */
-#define SPARC_PSTATE_MM_BIT_POSITION 6 /* bit 6 */
-#define SPARC_PSTATE_TLE_BIT_POSITION 8 /* bit 8 */
-#define SPARC_PSTATE_CLE_BIT_POSITION 9 /* bit 9 */
-
-#define SPARC_FPRS_FEF_MASK 0x0100 /* bit 2 */
-#define SPARC_FPRS_FEF_BIT_POSITION 2 /* bit 2 */
-
-#define SPARC_TSTATE_IE_MASK 0x00000200 /* bit 9 */
-
-#define SPARC_SOFTINT_TM_MASK 0x00000001 /* bit 0 */
-#define SPARC_SOFTINT_SM_MASK 0x00010000 /* bit 16 */
-#define SPARC_SOFTINT_TM_BIT_POSITION 1 /* bit 0 */
-#define SPARC_SOFTINT_SM_BIT_POSITION 17 /* bit 16 */
-
-#define STACK_BIAS (2047)
-
-#ifdef ASM
-
-/*
- * To enable the FPU we need to set both PSTATE.pef and FPRS.fef
- */
-
-#define sparc64_enable_FPU(rtmp1) \
- rdpr %pstate, rtmp1; \
- or rtmp1, SPARC_PSTATE_PEF_MASK, rtmp1; \
- wrpr %g0, rtmp1, %pstate; \
- rd %fprs, rtmp1; \
- or rtmp1, SPARC_FPRS_FEF_MASK, rtmp1; \
- wr %g0, rtmp1, %fprs
-
-
-#endif
-
-#ifndef ASM
-
-/*
- * Standard nop
- */
-
-#define nop() \
- do { \
- __asm__ volatile ( "nop" ); \
- } while ( 0 )
-
-/*
- * Get and set the pstate
- */
-
-#define sparc64_get_pstate( _pstate ) \
- do { \
- (_pstate) = 0; \
- __asm__ volatile( "rdpr %%pstate, %0" : "=r" (_pstate) : "0" (_pstate) ); \
- } while ( 0 )
-
-#define sparc64_set_pstate( _pstate ) \
- do { \
- __asm__ volatile ( \
- "wrpr %%g0, %0, %%pstate " : "=r" ((_pstate)) : "0" ((_pstate)) ); \
- } while ( 0 )
-
-/*
- * Get and set the PIL
- */
-
-#define sparc64_get_pil( _pil ) \
- do { \
- (_pil) = 0; \
- __asm__ volatile( "rdpr %%pil, %0" : "=r" (_pil) : "0" (_pil) ); \
- } while ( 0 )
-
-#define sparc64_set_pil( _pil ) \
- do { \
- __asm__ volatile ( "wrpr %%g0, %0, %%pil " : "=r" ((_pil)) : "0" ((_pil)) ); \
- } while ( 0 )
-
-
-/*
- * Get and set the TBA
- */
-
-#define sparc64_get_tba( _tba ) \
- do { \
- (_tba) = 0; /* to avoid unitialized warnings */ \
- __asm__ volatile( "rdpr %%tba, %0" : "=r" (_tba) : "0" (_tba) ); \
- } while ( 0 )
-
-#define sparc64_set_tba( _tba ) \
- do { \
- __asm__ volatile( "wrpr %%g0, %0, %%tba" : "=r" (_tba) : "0" (_tba) ); \
- } while ( 0 )
-
-/*
- * Get and set the TL (trap level)
- */
-
-#define sparc64_get_tl( _tl ) \
- do { \
- (_tl) = 0; /* to avoid unitialized warnings */ \
- __asm__ volatile( "rdpr %%tl, %0" : "=r" (_tl) : "0" (_tl) ); \
- } while ( 0 )
-
-#define sparc64_set_tl( _tl ) \
- do { \
- __asm__ volatile( "wrpr %%g0, %0, %%tl" : "=r" (_tl) : "0" (_tl) ); \
- } while ( 0 )
-
-
-/*
- * read the stick register
- *
- * Note:
- * stick asr=24, mnemonic=stick
- * Note: stick does not appear to be a valid ASR for US3, although it is
- * implemented in US3i.
- */
-#define sparc64_read_stick( _stick ) \
- do { \
- (_stick) = 0; \
- __asm__ volatile( "rd %%stick, %0" : "=r" (_stick) : "0" (_stick) ); \
- } while ( 0 )
-
-/*
- * write the stick_cmpr register
- *
- * Note:
- * stick_cmpr asr=25, mnemonic=stick_cmpr
- * Note: stick_cmpr does not appear to be a valid ASR for US3, although it is
- * implemented in US3i.
- */
-#define sparc64_write_stick_cmpr( _stick_cmpr ) \
- do { \
- __asm__ volatile( "wr %%g0, %0, %%stick_cmpr" : "=r" (_stick_cmpr) \
- : "0" (_stick_cmpr) ); \
- } while ( 0 )
-
-/*
- * read the Tick register
- */
-#define sparc64_read_tick( _tick ) \
- do { \
- (_tick) = 0; \
- __asm__ volatile( "rd %%tick, %0" : "=r" (_tick) : "0" (_tick) ); \
- } while ( 0 )
-
-/*
- * write the tick_cmpr register
- */
-#define sparc64_write_tick_cmpr( _tick_cmpr ) \
- do { \
- __asm__ volatile( "wr %%g0, %0, %%tick_cmpr" : "=r" (_tick_cmpr) \
- : "0" (_tick_cmpr) ); \
- } while ( 0 )
-
-/*
- * Clear the softint register.
- *
- * sun4u and sun4v: softint_clr asr = 21, with mnemonic clear_softint
- */
-#define sparc64_clear_interrupt_bits( _bit_mask ) \
- do { \
- __asm__ volatile( "wr %%g0, %0, %%clear_softint" : "=r" (_bit_mask) \
- : "0" (_bit_mask)); \
- } while ( 0 )
-
-/************* DEPRECATED ****************/
-/* Note: Although the y register is deprecated, gcc still uses it */
-/*
- * Get and set the Y
- */
-
-#define sparc_get_y( _y ) \
- do { \
- __asm__ volatile( "rd %%y, %0" : "=r" (_y) : "0" (_y) ); \
- } while ( 0 )
-
-#define sparc_set_y( _y ) \
- do { \
- __asm__ volatile( "wr %0, %%y" : "=r" (_y) : "0" (_y) ); \
- } while ( 0 )
-
-/************* /DEPRECATED ****************/
-
-/*
- * Manipulate the interrupt level in the pstate
- */
-
-uint32_t sparc_disable_interrupts(void);
-void sparc_enable_interrupts(uint32_t);
-
-#define sparc_flash_interrupts( _level ) \
- do { \
- uint32_t _ignored; \
- \
- sparc_enable_interrupts( (_level) ); \
- _ignored = sparc_disable_interrupts(); \
- (void) _ignored; \
- } while ( 0 )
-
-#define sparc64_get_interrupt_level( _level ) \
- do { \
- _level = 0; \
- sparc64_get_pil( _level ); \
- } while ( 0 )
-
-#endif /* !ASM */
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* _RTEMS_SCORE_SPARC_H */
diff --git a/cpukit/score/cpu/sparc64/rtems/score/types.h b/cpukit/score/cpu/sparc64/rtems/score/types.h
deleted file mode 100644
index faf50b7a55..0000000000
--- a/cpukit/score/cpu/sparc64/rtems/score/types.h
+++ /dev/null
@@ -1,45 +0,0 @@
-/**
- * @file
- *
- * @brief SPARC64 CPU Type Definitions
- *
- * This include file contains type definitions pertaining to the
- * SPARC-v9 processor family.
- */
-
-/*
- * COPYRIGHT (c) 1989-1999. On-Line Applications Research Corporation (OAR).
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.rtems.org/license/LICENSE.
- */
-
-#ifndef _RTEMS_SCORE_TYPES_H
-#define _RTEMS_SCORE_TYPES_H
-
-#include <rtems/score/basedefs.h>
-
-#ifndef ASM
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*
- * This section defines the basic types for this processor.
- */
-
-/** Type that can store a 32-bit integer or a pointer. */
-typedef uintptr_t CPU_Uint32ptr;
-
-typedef void sparc_isr;
-typedef void ( *sparc_isr_entry )( void );
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* !ASM */
-
-#endif