summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libbsp/powerpc/motorola_powerpc/residual
diff options
context:
space:
mode:
authorJoel Sherrill <joel.sherrill@OARcorp.com>1999-06-14 16:51:13 +0000
committerJoel Sherrill <joel.sherrill@OARcorp.com>1999-06-14 16:51:13 +0000
commitba46ffa6169c0927c19d97816286b5ffaf2e9ab2 (patch)
tree2d71e9fa43bed5fe628a202df8710772b7ddb037 /c/src/lib/libbsp/powerpc/motorola_powerpc/residual
parentRegenerated. (diff)
downloadrtems-ba46ffa6169c0927c19d97816286b5ffaf2e9ab2.tar.bz2
This is a large patch from Eric Valette <valette@crf.canon.fr> that was
described in the message following this paragraph. This patch also includes a mcp750 BSP. From valette@crf.canon.fr Mon Jun 14 10:03:08 1999 Date: Tue, 18 May 1999 01:30:14 +0200 (CEST) From: VALETTE Eric <valette@crf.canon.fr> To: joel@oarcorp.com Cc: raguet@crf.canon.fr, rtems-snapshots@oarcorp.com, valette@crf.canon.fr Subject: Questions/Suggestion regarding RTEMS PowerPC code (long) Dear knowledgeable RTEMS powerpc users, As some of you may know, I'm currently finalizing a port of RTEMS on a MCP750 Motorola board. I have done most of it but have some questions to ask before submitting the port. In order to understand some of the changes I have made or would like to make, maybe it is worth describing the MCP750 Motorola board. the MCP750 is a COMPACT PCI powerpc board with : 1) a MPC750 233 MHz processor, 2) a raven bus bridge/PCI controller that implement an OPENPIC compliant interrupt controller, 3) a VIA 82C586 PCI/ISA bridge that offers a PC compliant IO for keyboard, serial line, IDE, and the well known PC 8259 cascaded PIC interrupt architecture model, 4) a DEC 21140 Ethernet controller, 5) the PPCBUG Motorola firmware in flash, 6) A DEC PCI bridge, This architecture is common to most Motorola 60x/7xx board except that : 1) on VME board, the DEC PCI bridge is replaced by a VME chipset, 2) the VIA 82C586 PCI/ISA bridge is replaced by another bridge that is almost fully compatible with the via bridge... So the port should be a rather close basis for many 60x/7xx motorola board... On this board, I already have ported Linux 2.2.3 and use it both as a development and target board. Now the questions/suggestions I have : 1) EXCEPTION CODE ------------------- As far as I know exceptions on PPC are handled like interrupts. I dislike this very much as : a) Except for the decrementer exception (and maybe some other on mpc8xx), exceptions are not recoverable and the handler just need to print the full context and go to the firmware or debugger... b) The interrupt switch is only necessary for the decrementer and external interrupt (at least on 6xx,7xx). c) The full context for exception is never saved and thus cannot be used by debugger... I do understand the most important for interrupts low level code is to save the minimal context enabling to call C code for performance reasons. On non recoverable exception on the other hand, the most important is to save the maximum information concerning proc status in order to analyze the reason of the fault. At least we will need this in order to implement the port of RGDB on PPC ==> I wrote an API for connecting raw exceptions (and thus raw interrupts) for mpc750. It should be valid for most powerpc processors... I hope to find a way to make this coexist with actual code layout. The code is actually located in lib/libcpu/powerpc/mpc750 and is thus optional (provided I write my own version of exec/score/cpu/powerpc/cpu.c ...) See remark about files/directory layout organization in 4) 2) Current Implementation of ISR low level code ----------------------------------------------- I do not understand why the MSR EE flags is cleared again in exec/score/cpu/powerpc/irq_stubs.S #if (PPC_USE_SPRG) mfmsr r5 mfspr r6, sprg2 #else lwz r6,msr_initial(r11) lis r5,~PPC_MSR_DISABLE_MASK@ha ori r5,r5,~PPC_MSR_DISABLE_MASK@l and r6,r6,r5 mfmsr r5 #endif Reading the doc, when a decrementer interrupt or an external interrupt is active, the MSR EE flag is already cleared. BTW if exception/interrupt could occur, it would trash SRR0 and SRR1. In fact the code may be useful to set MSR[RI] that re-enables exception processing. BTW I will need to set other value in MSR to handle interrupts : a) I want the MSR[IR] and MSR[DR] to be set for performance reasons and also because I need DBAT support to have access to PCI memory space as the interrupt controller is in the PCI space. Reading the code, I see others have the same kind of request : /* SCE 980217 * * We need address translation ON when we call our ISR routine mtmsr r5 */ This is just another prof that even the lowest level IRQ code is fundamentally board dependent and not simply processor dependent especially when the processor use external interrupt controller because it has a single interrupt request line... Note that if you look at the PPC code high level interrupt handling code, as the "set_vector" routine that really connects the interrupt is in the BSP/startup/genpvec.c, the fact that IRQ handling is BSP specific is DE-FACTO acknowledged. I know I have already expressed this and understand that this would require some heavy change in the code but believe me you will reach a point where you will not be able to find a compatible while optimum implementation for low level interrupt handling code...) In my case this is already true... So please consider removing low level IRQ handling from exec/score/cpu/* and only let there exception handling code... Exceptions are usually only processor dependent and do not depend on external hardware mechanism to be masked or acknowledged or re-enabled (there are probably exception but ...) I have already done this for pc386 bsp but need to make it again. This time I will even propose an API. 3) R2/R13 manipulation for EABI implementation ---------------------------------------------- I do not understand the handling of r2 and r13 in the EABI case. The specification for r2 says pointer to sdata2, sbss2 section => constant. However I do not see -ffixed-r2 passed to any compilation system in make/custom/* (for info linux does this on PPC). So either this is a default compiler option when choosing powerpc-rtems and thus we do not need to do anything with this register as all the code is compiled with this compiler and linked together OR this register may be used by rtems code and then we do not need any special initialization or handling. The specification for r13 says pointer to the small data area. r13 argumentation is the same except that as far as I know the usage of the small data area requires specific compiler support so that access to variables is compiled via loading the LSB in a register and then using r13 to get full address... It is like a small memory model and it was present in IBM C compilers. => I propose to suppress any specific code for r2 and r13 in the EABI case. 4) Code layout organization (yes again :-)) ------------------------------------------- I think there are a number of design flaws in the way the code is for ppc organized and I will try to point them out. I have been beaten by this again on this new port, and was beaten last year while modifying code for pc386. a) exec/score/cpu/* vs lib/libcpu/cpu/*. I think that too many things are put in exec/score/cpu that have nothing to do with RTEMS internals but are rather related to CPU feature. This include at least : a) registers access routine (e.g GET_MSR_Value), b) interrupt masking/unmasking routines, c) cache_mngt_routine, d) mmu_mngt_routine, e) Routines to connect the raw_exception, raw_interrupt handler, b) lib/libcpu/cpu/powerpc/* With a processor family as exuberant as the powerpc family, and their well known subtle differences (604 vs 750) or unfortunately majors (8xx vs 60x) the directory structure is fine (except maybe the names that are not homogeneous) powerpc ppc421 mpc821 ... I only needed to add mpc750. But the fact that libcpu.a was not produced was a pain and the fact that this organization may duplicates code is also problematic. So, except if the support of automake provides a better solution I would like to propose something like this : powerpc mpc421 mpc821 ... mpc750 shared wrapup with the following rules : a) "shared" would act as a source container for sources that may be shared among processors. Needed files would be compiled inside the processor specific directory using the vpath Makefile mechanism. "shared" may also contain compilation code for routine that are really shared and not worth to inline... (did not found many things so far as registers access routine ARE WORTH INLINING)... In the case something is compiled there, it should create libcpushared.a b) layout under processor specific directory is free provided that 1)the result of the compilation process exports : libcpu/powerpc/"PROC"/*.h in $(PROJECT_INCLUDE)/libcpu 2) each processor specific directory creates a library called libcpuspecific.a Note that this organization enables to have a file that is nearly the same than in shared but that must differ because of processor differences... c) "wrapup" should create libcpu.a using libcpushared.a libcpuspecific.a and export it $(PROJECT_INCLUDE)/libcpu The only thing I have no ideal solution is the way to put shared definitions in "shared" and only processor specific definition in "proc". To give a concrete example, most MSR bit definition are shared among PPC processors and only some differs. if we create a single msr.h in shared it will have ifdef. If in msr.h we include libcpu/msr_c.h we will need to have it in each prowerpc specific directory (even empty). Opinions are welcomed ... Note that a similar mechanism exist in libbsp/i386 that also contains a shared directory that is used by several bsp like pc386 and i386ex and a similar wrapup mechanism... NB: I have done this for mpc750 and other processors could just use similar Makefiles... c) The exec/score/cpu/powerpc directory layout. I think the directory layout should be the same than the libcpu/powerpc. As it is not, there are a lot of ifdefs inside the code... And of course low level interrupt handling code should be removed... Besides that I do not understand why 1) things are compiled in the wrap directory, 2) some includes are moved to rtems/score, I think the "preinstall" mechanism enables to put everything in the current directory (or better in a per processor directory), 5) Interrupt handling API ------------------------- Again :-). But I think that using all the features the PIC offers is a MUST for RT system. I already explained in the prologue of this (long and probably boring) mail that the MCP750 boards offers an OPENPIC compliant architecture and that the VIA 82586 PCI/ISA bridge offers a PC compatible IO and PIC mapping. Here is a logical view of the RAVEN/VIA 82586 interrupt mapping : --------- 0 ------ | OPEN | <-----|8259| | PIC | | | 2 ------ |(RAVEN)| | | <-----|8259| | | | | | | 11 | | | | | | <---- | | | | | | | | | | | | --------- ------ | | ^ ------ | VIA PCI/ISA bridge | x -------- PCI interrupts OPENPIC offers interrupt priorities among PCI interrupts and interrupt selective masking. The 8259 offers the same kind of feature. With actual powerpc interrupt code : 1) there is no way to specify priorities among interrupts handler. This is REALLY a bad thing. For me it is as importnat as having priorities for threads... 2) for my implementation, each ISR should contain the code that acknowledge the RAVEN and 8259 cascade, modify interrupt mask on both chips, and reenable interrupt at processor level, ..., restore then on interrupt return,.... This code is actually similar to code located in some genpvec.c powerpc files, 3) I must update _ISR_Nesting_level because irq.inl use it... 4) the libchip code connects the ISR via set_vector but the libchip handler code does not contain any code to manipulate external interrupt controller hardware in order to acknoledge the interrupt or re-enable them (except for the target hardware of course) So this code is broken unless set_vector adds an additionnal prologue/epilogue before calling/returning from in order to acknoledge/mask the raven and the 8259 PICS... => Anyway already EACH BSP MUST REWRITE PART OF INTERRUPT HANDLING CODE TO CORRECTLY IMPLEMENT SET_VECTOR. I would rather offer an API similar to the one provided in libbsp/i386/shared/irq/irq.h so that : 1) Once the driver supplied methods is called the only things the ISR has to do is to worry about the external hardware that triggered the interrupt. Everything on openpic/VIA/processor would have been done by the low levels (same things as set-vector) 2) The caller will need to supply the on/off/isOn routine that are fundamental to correctly implements debuggers/performance monitoring is a portable way 3) A globally configurable interrupt priorities mechanism... I have nothing against providing a compatible set_vector just to make libchip happy but as I have already explained in other mails (months ago), I really think that the ISR connection should be handled by the BSP and that no code containing irq connection should exist the rtems generic layers... Thus I really dislike libchip on this aspect because in a long term it will force to adopt the less reach API for interrupt handling that exists (set_vector). Additional note : I think the _ISR_Is_in_progress() inline routine should be : 1) Put in a processor specific section, 2) Should not rely on a global variable, As : a) on symmetric MP, there is one interrupt level per CPU, b) On processor that have an ISP (e,g 68040), this variable is useless (MSR bit testing could be used) c) On PPC, instead of using the address of the variable via __CPU_IRQ_info.Nest_level a dedicated SPR could be used. NOTE: most of this is also true for _Thread_Dispatch_disable_level END NOTE -------- Please do not take what I said in the mail as a criticism for anyone who submitted ppc code. Any code present helped me a lot understanding PPC behavior. I just wanted by this mail to : 1) try to better understand the actual code, 2) propose concrete ways of enhancing current code by providing an alternative implementation for MCP750. I will make my best effort to try to brake nothing but this is actually hard due to the file layout organisation. 3) make understandable some changes I will probably make if joel let me do them :-) Any comments/objections are welcomed as usual. -- __ / ` Eric Valette /-- __ o _. Canon CRF (___, / (_(_(__ Rue de la touche lambert 35517 Cesson-Sevigne Cedex FRANCE Tel: +33 (0)2 99 87 68 91 Fax: +33 (0)2 99 84 11 30 E-mail: valette@crf.canon.fr
Diffstat (limited to 'c/src/lib/libbsp/powerpc/motorola_powerpc/residual')
-rw-r--r--c/src/lib/libbsp/powerpc/motorola_powerpc/residual/Makefile.in62
-rw-r--r--c/src/lib/libbsp/powerpc/motorola_powerpc/residual/pnp.h643
-rw-r--r--c/src/lib/libbsp/powerpc/motorola_powerpc/residual/residual.c91
-rw-r--r--c/src/lib/libbsp/powerpc/motorola_powerpc/residual/residual.h342
4 files changed, 1138 insertions, 0 deletions
diff --git a/c/src/lib/libbsp/powerpc/motorola_powerpc/residual/Makefile.in b/c/src/lib/libbsp/powerpc/motorola_powerpc/residual/Makefile.in
new file mode 100644
index 0000000000..13467d601f
--- /dev/null
+++ b/c/src/lib/libbsp/powerpc/motorola_powerpc/residual/Makefile.in
@@ -0,0 +1,62 @@
+#
+# $Id$
+#
+
+@SET_MAKE@
+srcdir = @srcdir@
+VPATH = @srcdir@
+RTEMS_ROOT = @top_srcdir@
+PROJECT_ROOT = @PROJECT_ROOT@
+
+INSTALL = @INSTALL@
+
+PGM=${ARCH}/residual.rel
+
+# C source names, if any, go here -- minus the .c
+C_PIECES=$(RESIDUAL_PIECES)
+C_FILES=$(C_PIECES:%=%.c)
+C_O_FILES=$(C_PIECES:%=${ARCH}/%.o)
+
+H_FILES=$(srcdir)/pnp.h $(srcdir)/residual.h
+
+SRCS=$(C_FILES) $(H_FILES)
+OBJS=$(C_O_FILES)
+
+include $(RTEMS_ROOT)/make/custom/$(RTEMS_BSP).cfg
+include $(RTEMS_ROOT)/make/leaf.cfg
+
+RESIDUAL_PIECES=residual
+
+#
+# (OPTIONAL) Add local stuff here using +=
+#
+
+DEFINES +=
+CPPFLAGS +=
+CFLAGS +=
+
+LD_PATHS +=
+LD_LIBS +=
+LDFLAGS +=
+
+#
+# Add your list of files to delete here. The config files
+# already know how to delete some stuff, so you may want
+# to just run 'make clean' first to see what gets missed.
+# 'make clobber' already includes 'make clean'
+#
+
+CLEAN_ADDITIONS +=
+CLOBBER_ADDITIONS +=
+
+preinstall:
+ $(MKDIR) $(PROJECT_INCLUDE)/bsp
+ $(INSTALL_CHANGE) -m 444 $(H_FILES) $(PROJECT_INCLUDE)/bsp
+
+${PGM}: ${SRCS} ${OBJS}
+ $(make-rel)
+
+all: ${ARCH} $(SRCS) preinstall $(PGM)
+
+# the .rel file built here will be put into libbsp.a by ../wrapup/Makefile
+install: all
diff --git a/c/src/lib/libbsp/powerpc/motorola_powerpc/residual/pnp.h b/c/src/lib/libbsp/powerpc/motorola_powerpc/residual/pnp.h
new file mode 100644
index 0000000000..a97f2631cb
--- /dev/null
+++ b/c/src/lib/libbsp/powerpc/motorola_powerpc/residual/pnp.h
@@ -0,0 +1,643 @@
+/* 11/02/95 */
+/*----------------------------------------------------------------------------*/
+/* Plug and Play header definitions */
+/*----------------------------------------------------------------------------*/
+
+/* Structure map for PnP on PowerPC Reference Platform */
+/* See Plug and Play ISA Specification, Version 1.0, May 28, 1993. It */
+/* (or later versions) is available on Compuserve in the PLUGPLAY area. */
+/* This code has extensions to that specification, namely new short and */
+/* long tag types for platform dependent information */
+
+/* Warning: LE notation used throughout this file */
+
+/* For enum's: if given in hex then they are bit significant, i.e. */
+/* only one bit is on for each enum */
+
+#ifndef _PNP_
+#define _PNP_
+
+#ifndef ASM
+#define MAX_MEM_REGISTERS 9
+#define MAX_IO_PORTS 20
+#define MAX_IRQS 7
+/*#define MAX_DMA_CHANNELS 7*/
+
+/* Interrupt controllers */
+
+#define PNPinterrupt0 "PNP0000" /* AT Interrupt Controller */
+#define PNPinterrupt1 "PNP0001" /* EISA Interrupt Controller */
+#define PNPinterrupt2 "PNP0002" /* MCA Interrupt Controller */
+#define PNPinterrupt3 "PNP0003" /* APIC */
+#define PNPExtInt "IBM000D" /* PowerPC Extended Interrupt Controller */
+
+/* Timers */
+
+#define PNPtimer0 "PNP0100" /* AT Timer */
+#define PNPtimer1 "PNP0101" /* EISA Timer */
+#define PNPtimer2 "PNP0102" /* MCA Timer */
+
+/* DMA controllers */
+
+#define PNPdma0 "PNP0200" /* AT DMA Controller */
+#define PNPdma1 "PNP0201" /* EISA DMA Controller */
+#define PNPdma2 "PNP0202" /* MCA DMA Controller */
+
+/* start of August 15, 1994 additions */
+/* CMOS */
+#define PNPCMOS "IBM0009" /* CMOS */
+
+/* L2 Cache */
+#define PNPL2 "IBM0007" /* L2 Cache */
+
+/* NVRAM */
+#define PNPNVRAM "IBM0008" /* NVRAM */
+
+/* Power Management */
+#define PNPPM "IBM0005" /* Power Management */
+/* end of August 15, 1994 additions */
+
+/* Keyboards */
+
+#define PNPkeyboard0 "PNP0300" /* IBM PC/XT KB Cntlr (83 key, no mouse) */
+#define PNPkeyboard1 "PNP0301" /* Olivetti ICO (102 key) */
+#define PNPkeyboard2 "PNP0302" /* IBM PC/AT KB Cntlr (84 key) */
+#define PNPkeyboard3 "PNP0303" /* IBM Enhanced (101/2 key, PS/2 mouse) */
+#define PNPkeyboard4 "PNP0304" /* Nokia 1050 KB Cntlr */
+#define PNPkeyboard5 "PNP0305" /* Nokia 9140 KB Cntlr */
+#define PNPkeyboard6 "PNP0306" /* Standard Japanese KB Cntlr */
+#define PNPkeyboard7 "PNP0307" /* Microsoft Windows (R) KB Cntlr */
+
+/* Parallel port controllers */
+
+#define PNPparallel0 "PNP0400" /* Standard LPT Parallel Port */
+#define PNPparallel1 "PNP0401" /* ECP Parallel Port */
+#define PNPepp "IBM001C" /* EPP Parallel Port */
+
+/* Serial port controllers */
+
+#define PNPserial0 "PNP0500" /* Standard PC Serial port */
+#define PNPSerial1 "PNP0501" /* 16550A Compatible Serial port */
+
+/* Disk controllers */
+
+#define PNPdisk0 "PNP0600" /* Generic ESDI/IDE/ATA Compat HD Cntlr */
+#define PNPdisk1 "PNP0601" /* Plus Hardcard II */
+#define PNPdisk2 "PNP0602" /* Plus Hardcard IIXL/EZ */
+
+/* Diskette controllers */
+
+#define PNPdiskette0 "PNP0700" /* PC Standard Floppy Disk Controller */
+
+/* Display controllers */
+
+#define PNPdisplay0 "PNP0900" /* VGA Compatible */
+#define PNPdisplay1 "PNP0901" /* Video Seven VGA */
+#define PNPdisplay2 "PNP0902" /* 8514/A Compatible */
+#define PNPdisplay3 "PNP0903" /* Trident VGA */
+#define PNPdisplay4 "PNP0904" /* Cirrus Logic Laptop VGA */
+#define PNPdisplay5 "PNP0905" /* Cirrus Logic VGA */
+#define PNPdisplay6 "PNP0906" /* Tseng ET4000 or ET4000/W32 */
+#define PNPdisplay7 "PNP0907" /* Western Digital VGA */
+#define PNPdisplay8 "PNP0908" /* Western Digital Laptop VGA */
+#define PNPdisplay9 "PNP0909" /* S3 */
+#define PNPdisplayA "PNP090A" /* ATI Ultra Pro/Plus (Mach 32) */
+#define PNPdisplayB "PNP090B" /* ATI Ultra (Mach 8) */
+#define PNPdisplayC "PNP090C" /* XGA Compatible */
+#define PNPdisplayD "PNP090D" /* ATI VGA Wonder */
+#define PNPdisplayE "PNP090E" /* Weitek P9000 Graphics Adapter */
+#define PNPdisplayF "PNP090F" /* Oak Technology VGA */
+
+/* Peripheral busses */
+
+#define PNPbuses0 "PNP0A00" /* ISA Bus */
+#define PNPbuses1 "PNP0A01" /* EISA Bus */
+#define PNPbuses2 "PNP0A02" /* MCA Bus */
+#define PNPbuses3 "PNP0A03" /* PCI Bus */
+#define PNPbuses4 "PNP0A04" /* VESA/VL Bus */
+
+/* RTC, BIOS, planar devices */
+
+#define PNPspeaker0 "PNP0800" /* AT Style Speaker Sound */
+#define PNPrtc0 "PNP0B00" /* AT RTC */
+#define PNPpnpbios0 "PNP0C00" /* PNP BIOS (only created by root enum) */
+#define PNPpnpbios1 "PNP0C01" /* System Board Memory Device */
+#define PNPpnpbios2 "PNP0C02" /* Math Coprocessor */
+#define PNPpnpbios3 "PNP0C03" /* PNP BIOS Event Notification Interrupt */
+
+/* PCMCIA controller */
+
+#define PNPpcmcia0 "PNP0E00" /* Intel 82365 Compatible PCMCIA Cntlr */
+
+/* Mice */
+
+#define PNPmouse0 "PNP0F00" /* Microsoft Bus Mouse */
+#define PNPmouse1 "PNP0F01" /* Microsoft Serial Mouse */
+#define PNPmouse2 "PNP0F02" /* Microsoft Inport Mouse */
+#define PNPmouse3 "PNP0F03" /* Microsoft PS/2 Mouse */
+#define PNPmouse4 "PNP0F04" /* Mousesystems Mouse */
+#define PNPmouse5 "PNP0F05" /* Mousesystems 3 Button Mouse - COM2 */
+#define PNPmouse6 "PNP0F06" /* Genius Mouse - COM1 */
+#define PNPmouse7 "PNP0F07" /* Genius Mouse - COM2 */
+#define PNPmouse8 "PNP0F08" /* Logitech Serial Mouse */
+#define PNPmouse9 "PNP0F09" /* Microsoft Ballpoint Serial Mouse */
+#define PNPmouseA "PNP0F0A" /* Microsoft PNP Mouse */
+#define PNPmouseB "PNP0F0B" /* Microsoft PNP Ballpoint Mouse */
+
+/* Modems */
+
+#define PNPmodem0 "PNP9000" /* Specific IDs TBD */
+
+/* Network controllers */
+
+#define PNPnetworkC9 "PNP80C9" /* IBM Token Ring */
+#define PNPnetworkCA "PNP80CA" /* IBM Token Ring II */
+#define PNPnetworkCB "PNP80CB" /* IBM Token Ring II/Short */
+#define PNPnetworkCC "PNP80CC" /* IBM Token Ring 4/16Mbs */
+#define PNPnetwork27 "PNP8327" /* IBM Token Ring (All types) */
+#define PNPnetworket "IBM0010" /* IBM Ethernet used by Power PC */
+#define PNPneteisaet "IBM2001" /* IBM Ethernet EISA adapter */
+#define PNPAMD79C970 "IBM0016" /* AMD 79C970 (PCI Ethernet) */
+
+/* SCSI controllers */
+
+#define PNPscsi0 "PNPA000" /* Adaptec 154x Compatible SCSI Cntlr */
+#define PNPscsi1 "PNPA001" /* Adaptec 174x Compatible SCSI Cntlr */
+#define PNPscsi2 "PNPA002" /* Future Domain 16-700 Compat SCSI Cntlr*/
+#define PNPscsi3 "PNPA003" /* Panasonic CDROM Adapter (SBPro/SB16) */
+#define PNPscsiF "IBM000F" /* NCR 810 SCSI Controller */
+#define PNPscsi825 "IBM001B" /* NCR 825 SCSI Controller */
+#define PNPscsi875 "IBM0018" /* NCR 875 SCSI Controller */
+
+/* Sound/Video, Multimedia */
+
+#define PNPmm0 "PNPB000" /* Sound Blaster Compatible Sound Device */
+#define PNPmm1 "PNPB001" /* MS Windows Sound System Compat Device */
+#define PNPmmF "IBM000E" /* Crystal CS4231 Audio Device */
+#define PNPv7310 "IBM0015" /* ASCII V7310 Video Capture Device */
+#define PNPmm4232 "IBM0017" /* Crystal CS4232 Audio Device */
+#define PNPpmsyn "IBM001D" /* YMF 289B chip (Yamaha) */
+#define PNPgp4232 "IBM0012" /* Crystal CS4232 Game Port */
+#define PNPmidi4232 "IBM0013" /* Crystal CS4232 MIDI */
+
+/* Operator Panel */
+#define PNPopctl "IBM000B" /* Operator's panel */
+
+/* Service Processor */
+#define PNPsp "IBM0011" /* IBM Service Processor */
+#define PNPLTsp "IBM001E" /* Lightning/Terlingua Support Processor */
+#define PNPLTmsp "IBM001F" /* Lightning/Terlingua Mini-SP */
+
+/* Memory Controller */
+#define PNPmemctl "IBM000A" /* Memory controller */
+
+/* Graphics Assist */
+#define PNPg_assist "IBM0014" /* Graphics Assist */
+
+/* Miscellaneous Device Controllers */
+#define PNPtablet "IBM0019" /* IBM Tablet Controller */
+
+/* PNP Packet Handles */
+
+#define S1_Packet 0x0A /* Version resource */
+#define S2_Packet 0x15 /* Logical DEVID (without flags) */
+#define S2_Packet_flags 0x16 /* Logical DEVID (with flags) */
+#define S3_Packet 0x1C /* Compatible device ID */
+#define S4_Packet 0x22 /* IRQ resource (without flags) */
+#define S4_Packet_flags 0x23 /* IRQ resource (with flags) */
+#define S5_Packet 0x2A /* DMA resource */
+#define S6_Packet 0x30 /* Depend funct start (w/o priority) */
+#define S6_Packet_priority 0x31 /* Depend funct start (w/ priority) */
+#define S7_Packet 0x38 /* Depend funct end */
+#define S8_Packet 0x47 /* I/O port resource (w/o fixed loc) */
+#define S9_Packet_fixed 0x4B /* I/O port resource (w/ fixed loc) */
+#define S14_Packet 0x71 /* Vendor defined */
+#define S15_Packet 0x78 /* End of resource (w/o checksum) */
+#define S15_Packet_checksum 0x79 /* End of resource (w/ checksum) */
+#define L1_Packet 0x81 /* Memory range */
+#define L1_Shadow 0x20 /* Memory is shadowable */
+#define L1_32bit_mem 0x18 /* 32-bit memory only */
+#define L1_8_16bit_mem 0x10 /* 8- and 16-bit supported */
+#define L1_Decode_Hi 0x04 /* decode supports high address */
+#define L1_Cache 0x02 /* read cacheable, write-through */
+#define L1_Writeable 0x01 /* Memory is writeable */
+#define L2_Packet 0x82 /* ANSI ID string */
+#define L3_Packet 0x83 /* Unicode ID string */
+#define L4_Packet 0x84 /* Vendor defined */
+#define L5_Packet 0x85 /* Large I/O */
+#define L6_Packet 0x86 /* 32-bit Fixed Loc Mem Range Desc */
+#define END_TAG 0x78 /* End of resource */
+#define DF_START_TAG 0x30 /* Dependent function start */
+#define DF_START_TAG_priority 0x31 /* Dependent function start */
+#define DF_END_TAG 0x38 /* Dependent function end */
+#define SUBOPTIMAL_CONFIGURATION 0x2 /* Priority byte sub optimal config */
+
+/* Device Base Type Codes */
+
+typedef enum _PnP_BASE_TYPE {
+ Reserved = 0,
+ MassStorageDevice = 1,
+ NetworkInterfaceController = 2,
+ DisplayController = 3,
+ MultimediaController = 4,
+ MemoryController = 5,
+ BridgeController = 6,
+ CommunicationsDevice = 7,
+ SystemPeripheral = 8,
+ InputDevice = 9,
+ ServiceProcessor = 0x0A, /* 11/2/95 */
+ } PnP_BASE_TYPE;
+
+/* Device Sub Type Codes */
+
+typedef enum _PnP_SUB_TYPE {
+ SCSIController = 0,
+ IDEController = 1,
+ FloppyController = 2,
+ IPIController = 3,
+ OtherMassStorageController = 0x80,
+
+ EthernetController = 0,
+ TokenRingController = 1,
+ FDDIController = 2,
+ OtherNetworkController = 0x80,
+
+ VGAController= 0,
+ SVGAController= 1,
+ XGAController= 2,
+ OtherDisplayController = 0x80,
+
+ VideoController = 0,
+ AudioController = 1,
+ OtherMultimediaController = 0x80,
+
+ RAM = 0,
+ FLASH = 1,
+ OtherMemoryDevice = 0x80,
+
+ HostProcessorBridge = 0,
+ ISABridge = 1,
+ EISABridge = 2,
+ MicroChannelBridge = 3,
+ PCIBridge = 4,
+ PCMCIABridge = 5,
+ VMEBridge = 6,
+ OtherBridgeDevice = 0x80,
+
+ RS232Device = 0,
+ ATCompatibleParallelPort = 1,
+ OtherCommunicationsDevice = 0x80,
+
+ ProgrammableInterruptController = 0,
+ DMAController = 1,
+ SystemTimer = 2,
+ RealTimeClock = 3,
+ L2Cache = 4,
+ NVRAM = 5,
+ PowerManagement = 6,
+ CMOS = 7,
+ OperatorPanel = 8,
+ ServiceProcessorClass1 = 9,
+ ServiceProcessorClass2 = 0xA,
+ ServiceProcessorClass3 = 0xB,
+ GraphicAssist = 0xC,
+ SystemPlanar = 0xF, /* 10/5/95 */
+ OtherSystemPeripheral = 0x80,
+
+ KeyboardController = 0,
+ Digitizer = 1,
+ MouseController = 2,
+ TabletController = 3, /* 10/27/95 */
+ OtherInputController = 0x80,
+
+ GeneralMemoryController = 0,
+ } PnP_SUB_TYPE;
+
+/* Device Interface Type Codes */
+
+typedef enum _PnP_INTERFACE {
+ General = 0,
+ GeneralSCSI = 0,
+ GeneralIDE = 0,
+ ATACompatible = 1,
+
+ GeneralFloppy = 0,
+ Compatible765 = 1,
+ NS398_Floppy = 2, /* NS Super I/O wired to use index
+ register at port 398 and data
+ register at port 399 */
+ NS26E_Floppy = 3, /* Ports 26E and 26F */
+ NS15C_Floppy = 4, /* Ports 15C and 15D */
+ NS2E_Floppy = 5, /* Ports 2E and 2F */
+ CHRP_Floppy = 6, /* CHRP Floppy in PR*P system */
+
+ GeneralIPI = 0,
+
+ GeneralEther = 0,
+ GeneralToken = 0,
+ GeneralFDDI = 0,
+
+ GeneralVGA = 0,
+ GeneralSVGA = 0,
+ GeneralXGA = 0,
+
+ GeneralVideo = 0,
+ GeneralAudio = 0,
+ CS4232Audio = 1, /* CS 4232 Plug 'n Play Configured */
+
+ GeneralRAM = 0,
+ GeneralFLASH = 0,
+ PCIMemoryController = 0, /* PCI Config Method */
+ RS6KMemoryController = 1, /* RS6K Config Method */
+
+ GeneralHostBridge = 0,
+ GeneralISABridge = 0,
+ GeneralEISABridge = 0,
+ GeneralMCABridge = 0,
+ GeneralPCIBridge = 0,
+ PCIBridgeDirect = 0,
+ PCIBridgeIndirect = 1,
+ PCIBridgeRS6K = 2,
+ GeneralPCMCIABridge = 0,
+ GeneralVMEBridge = 0,
+
+ GeneralRS232 = 0,
+ COMx = 1,
+ Compatible16450 = 2,
+ Compatible16550 = 3,
+ NS398SerPort = 4, /* NS Super I/O wired to use index
+ register at port 398 and data
+ register at port 399 */
+ NS26ESerPort = 5, /* Ports 26E and 26F */
+ NS15CSerPort = 6, /* Ports 15C and 15D */
+ NS2ESerPort = 7, /* Ports 2E and 2F */
+
+ GeneralParPort = 0,
+ LPTx = 1,
+ NS398ParPort = 2, /* NS Super I/O wired to use index
+ register at port 398 and data
+ register at port 399 */
+ NS26EParPort = 3, /* Ports 26E and 26F */
+ NS15CParPort = 4, /* Ports 15C and 15D */
+ NS2EParPort = 5, /* Ports 2E and 2F */
+
+ GeneralPIC = 0,
+ ISA_PIC = 1,
+ EISA_PIC = 2,
+ MPIC = 3,
+ RS6K_PIC = 4,
+
+ GeneralDMA = 0,
+ ISA_DMA = 1,
+ EISA_DMA = 2,
+
+ GeneralTimer = 0,
+ ISA_Timer = 1,
+ EISA_Timer = 2,
+ GeneralRTC = 0,
+ ISA_RTC = 1,
+
+ StoreThruOnly = 1,
+ StoreInEnabled = 2,
+ RS6KL2Cache = 3,
+
+ IndirectNVRAM = 0, /* Indirectly addressed */
+ DirectNVRAM = 1, /* Memory Mapped */
+ IndirectNVRAM24 = 2, /* Indirectly addressed - 24 bit */
+
+ GeneralPowerManagement = 0,
+ EPOWPowerManagement = 1,
+ PowerControl = 2, /* d1378 */
+
+ GeneralCMOS = 0,
+
+ GeneralOPPanel = 0,
+ HarddiskLight = 1,
+ CDROMLight = 2,
+ PowerLight = 3,
+ KeyLock = 4,
+ ANDisplay = 5, /* AlphaNumeric Display */
+ SystemStatusLED = 6, /* 3 digit 7 segment LED */
+ CHRP_SystemStatusLED = 7, /* CHRP LEDs in PR*P system */
+
+ GeneralServiceProcessor = 0,
+
+ TransferData = 1,
+ IGMC32 = 2,
+ IGMC64 = 3,
+
+ GeneralSystemPlanar = 0, /* 10/5/95 */
+
+ } PnP_INTERFACE;
+
+/* PnP resources */
+
+/* Compressed ASCII is 5 bits per char; 00001=A ... 11010=Z */
+
+typedef struct _SERIAL_ID {
+ unsigned char VendorID0; /* Bit(7)=0 */
+ /* Bits(6:2)=1st character in */
+ /* compressed ASCII */
+ /* Bits(1:0)=2nd character in */
+ /* compressed ASCII bits(4:3) */
+ unsigned char VendorID1; /* Bits(7:5)=2nd character in */
+ /* compressed ASCII bits(2:0) */
+ /* Bits(4:0)=3rd character in */
+ /* compressed ASCII */
+ unsigned char VendorID2; /* Product number - vendor assigned */
+ unsigned char VendorID3; /* Product number - vendor assigned */
+
+/* Serial number is to provide uniqueness if more than one board of same */
+/* type is in system. Must be "FFFFFFFF" if feature not supported. */
+
+ unsigned char Serial0; /* Unique serial number bits (7:0) */
+ unsigned char Serial1; /* Unique serial number bits (15:8) */
+ unsigned char Serial2; /* Unique serial number bits (23:16) */
+ unsigned char Serial3; /* Unique serial number bits (31:24) */
+ unsigned char Checksum;
+ } SERIAL_ID;
+
+typedef enum _PnPItemName {
+ Unused = 0,
+ PnPVersion = 1,
+ LogicalDevice = 2,
+ CompatibleDevice = 3,
+ IRQFormat = 4,
+ DMAFormat = 5,
+ StartDepFunc = 6,
+ EndDepFunc = 7,
+ IOPort = 8,
+ FixedIOPort = 9,
+ Res1 = 10,
+ Res2 = 11,
+ Res3 = 12,
+ SmallVendorItem = 14,
+ EndTag = 15,
+ MemoryRange = 1,
+ ANSIIdentifier = 2,
+ UnicodeIdentifier = 3,
+ LargeVendorItem = 4,
+ MemoryRange32 = 5,
+ MemoryRangeFixed32 = 6,
+ } PnPItemName;
+
+/* Define a bunch of access functions for the bits in the tag field */
+
+/* Tag type - 0 = small; 1 = large */
+#define tag_type(t) (((t) & 0x80)>>7)
+#define set_tag_type(t,v) (t = (t & 0x7f) | ((v)<<7))
+
+/* Small item name is 4 bits - one of PnPItemName enum above */
+#define tag_small_item_name(t) (((t) & 0x78)>>3)
+#define set_tag_small_item_name(t,v) (t = (t & 0x07) | ((v)<<3))
+
+/* Small item count is 3 bits - count of further bytes in packet */
+#define tag_small_count(t) ((t) & 0x07)
+#define set_tag_count(t,v) (t = (t & 0x78) | (v))
+
+/* Large item name is 7 bits - one of PnPItemName enum above */
+#define tag_large_item_name(t) ((t) & 0x7f)
+#define set_tag_large_item_name(t,v) (t = (t | 0x80) | (v))
+
+/* a PnP resource is a bunch of contiguous TAG packets ending with an end tag */
+
+typedef union _PnP_TAG_PACKET {
+ struct _S1_Pack{ /* VERSION PACKET */
+ unsigned char Tag; /* small tag = 0x0a */
+ unsigned char Version[2]; /* PnP version, Vendor version */
+ } S1_Pack;
+
+ struct _S2_Pack{ /* LOGICAL DEVICE ID PACKET */
+ unsigned char Tag; /* small tag = 0x15 or 0x16 */
+ unsigned char DevId[4]; /* Logical device id */
+ unsigned char Flags[2]; /* bit(0) boot device; */
+ /* bit(7:1) cmd in range x31-x37 */
+ /* bit(7:0) cmd in range x28-x3f (opt)*/
+ } S2_Pack;
+
+ struct _S3_Pack{ /* COMPATIBLE DEVICE ID PACKET */
+ unsigned char Tag; /* small tag = 0x1c */
+ unsigned char CompatId[4]; /* Compatible device id */
+ } S3_Pack;
+
+ struct _S4_Pack{ /* IRQ PACKET */
+ unsigned char Tag; /* small tag = 0x22 or 0x23 */
+ unsigned char IRQMask[2]; /* bit(0) is IRQ0, ...; */
+ /* bit(0) is IRQ8 ... */
+ unsigned char IRQInfo; /* optional; assume bit(0)=1; else */
+ /* bit(0) - high true edge sensitive */
+ /* bit(1) - low true edge sensitive */
+ /* bit(2) - high true level sensitive*/
+ /* bit(3) - low true level sensitive */
+ /* bit(7:4) - must be 0 */
+ } S4_Pack;
+
+ struct _S5_Pack{ /* DMA PACKET */
+ unsigned char Tag; /* small tag = 0x2a */
+ unsigned char DMAMask; /* bit(0) is channel 0 ... */
+ unsigned char DMAInfo;
+ } S5_Pack;
+
+ struct _S6_Pack{ /* START DEPENDENT FUNCTION PACKET */
+ unsigned char Tag; /* small tag = 0x30 or 0x31 */
+ unsigned char Priority; /* Optional; if missing then x01; else*/
+ /* x00 = best possible */
+ /* x01 = acceptible */
+ /* x02 = sub-optimal but functional */
+ } S6_Pack;
+
+ struct _S7_Pack{ /* END DEPENDENT FUNCTION PACKET */
+ unsigned char Tag; /* small tag = 0x38 */
+ } S7_Pack;
+
+ struct _S8_Pack{ /* VARIABLE I/O PORT PACKET */
+ unsigned char Tag; /* small tag x47 */
+ unsigned char IOInfo; /* x0 = decode only bits(9:0); */
+#define ISAAddr16bit 0x01 /* x01 = decode bits(15:0) */
+ unsigned char RangeMin[2]; /* Min base address */
+ unsigned char RangeMax[2]; /* Max base address */
+ unsigned char IOAlign; /* base alignmt, incr in 1B blocks */
+ unsigned char IONum; /* number of contiguous I/O ports */
+ } S8_Pack;
+
+ struct _S9_Pack{ /* FIXED I/O PORT PACKET */
+ unsigned char Tag; /* small tag = 0x4b */
+ unsigned char Range[2]; /* base address 10 bits */
+ unsigned char IONum; /* number of contiguous I/O ports */
+ } S9_Pack;
+
+ struct _S14_Pack{ /* VENDOR DEFINED PACKET */
+ unsigned char Tag; /* small tag = 0x7m m = 1-7 */
+ union _S14_Data{
+ unsigned char Data[7]; /* Vendor defined */
+ struct _S14_PPCPack{ /* Pr*p s14 pack */
+ unsigned char Type; /* 00=non-IBM */
+ unsigned char PPCData[6]; /* Vendor defined */
+ } S14_PPCPack;
+ } S14_Data;
+ } S14_Pack;
+
+ struct _S15_Pack{ /* END PACKET */
+ unsigned char Tag; /* small tag = 0x78 or 0x79 */
+ unsigned char Check; /* optional - checksum */
+ } S15_Pack;
+
+ struct _L1_Pack{ /* MEMORY RANGE PACKET */
+ unsigned char Tag; /* large tag = 0x81 */
+ unsigned char Count0; /* x09 */
+ unsigned char Count1; /* x00 */
+ unsigned char Data[9]; /* a variable array of bytes, */
+ /* count in tag */
+ } L1_Pack;
+
+ struct _L2_Pack{ /* ANSI ID STRING PACKET */
+ unsigned char Tag; /* large tag = 0x82 */
+ unsigned char Count0; /* Length of string */
+ unsigned char Count1;
+ unsigned char Identifier[1]; /* a variable array of bytes, */
+ /* count in tag */
+ } L2_Pack;
+
+ struct _L3_Pack{ /* UNICODE ID STRING PACKET */
+ unsigned char Tag; /* large tag = 0x83 */
+ unsigned char Count0; /* Length + 2 of string */
+ unsigned char Count1;
+ unsigned char Country0; /* TBD */
+ unsigned char Country1; /* TBD */
+ unsigned char Identifier[1]; /* a variable array of bytes, */
+ /* count in tag */
+ } L3_Pack;
+
+ struct _L4_Pack{ /* VENDOR DEFINED PACKET */
+ unsigned char Tag; /* large tag = 0x84 */
+ unsigned char Count0;
+ unsigned char Count1;
+ union _L4_Data{
+ unsigned char Data[1]; /* a variable array of bytes, */
+ /* count in tag */
+ struct _L4_PPCPack{ /* Pr*p L4 packet */
+ unsigned char Type; /* 00=non-IBM */
+ unsigned char PPCData[1]; /* a variable array of bytes, */
+ /* count in tag */
+ } L4_PPCPack;
+ } L4_Data;
+ } L4_Pack;
+
+ struct _L5_Pack{
+ unsigned char Tag; /* large tag = 0x85 */
+ unsigned char Count0; /* Count = 17 */
+ unsigned char Count1;
+ unsigned char Data[17];
+ } L5_Pack;
+
+ struct _L6_Pack{
+ unsigned char Tag; /* large tag = 0x86 */
+ unsigned char Count0; /* Count = 9 */
+ unsigned char Count1;
+ unsigned char Data[9];
+ } L6_Pack;
+
+ } PnP_TAG_PACKET;
+
+#endif /* ASM */
+#endif /* ndef _PNP_ */
diff --git a/c/src/lib/libbsp/powerpc/motorola_powerpc/residual/residual.c b/c/src/lib/libbsp/powerpc/motorola_powerpc/residual/residual.c
new file mode 100644
index 0000000000..ca0aa0fc1b
--- /dev/null
+++ b/c/src/lib/libbsp/powerpc/motorola_powerpc/residual/residual.c
@@ -0,0 +1,91 @@
+#include <bsp/residual.h>
+#include <libcpu/io.h>
+#include <libcpu/byteorder.h>
+
+
+static int same_DevID(unsigned short vendor,
+ unsigned short Number,
+ char * str)
+{
+ static unsigned const char hexdigit[]="0123456789ABCDEF";
+ if (strlen(str)!=7) return 0;
+ if ( ( ((vendor>>10)&0x1f)+'A'-1 == str[0]) &&
+ ( ((vendor>>5)&0x1f)+'A'-1 == str[1]) &&
+ ( (vendor&0x1f)+'A'-1 == str[2]) &&
+ (hexdigit[(Number>>12)&0x0f] == str[3]) &&
+ (hexdigit[(Number>>8)&0x0f] == str[4]) &&
+ (hexdigit[(Number>>4)&0x0f] == str[5]) &&
+ (hexdigit[Number&0x0f] == str[6]) ) return 1;
+ return 0;
+}
+
+PPC_DEVICE *residual_find_device(RESIDUAL *res,unsigned long BusMask,
+ unsigned char * DevID,
+ int BaseType,
+ int SubType,
+ int Interface,
+ int n)
+{
+ int i;
+ if ( !res || !res->ResidualLength ) return NULL;
+ for (i=0; i<res->ActualNumDevices; i++) {
+#define Dev res->Devices[i].DeviceId
+ if ( (Dev.BusId&BusMask) &&
+ (BaseType==-1 || Dev.BaseType==BaseType) &&
+ (SubType==-1 || Dev.SubType==SubType) &&
+ (Interface==-1 || Dev.Interface==Interface) &&
+ (DevID==NULL || same_DevID((Dev.DevId>>16)&0xffff,
+ Dev.DevId&0xffff, DevID)) &&
+ !(n--) ) return res->Devices+i;
+#undef Dev
+ }
+ return 0;
+}
+
+PnP_TAG_PACKET *PnP_find_packet(unsigned char *p,
+ unsigned packet_tag,
+ int n)
+{
+ unsigned mask, masked_tag, size;
+ if(!p) return 0;
+ if (tag_type(packet_tag)) mask=0xff; else mask=0xF8;
+ masked_tag = packet_tag&mask;
+ for(; *p != END_TAG; p+=size) {
+ if ((*p & mask) == masked_tag && !(n--))
+ return (PnP_TAG_PACKET *) p;
+ if (tag_type(*p))
+ size=ld_le16((unsigned short *)(p+1))+3;
+ else
+ size=tag_small_count(*p)+1;
+ }
+ return 0; /* not found */
+}
+
+PnP_TAG_PACKET *PnP_find_small_vendor_packet(unsigned char *p,
+ unsigned packet_type,
+ int n)
+{
+ int next=0;
+ while (p) {
+ p = (unsigned char *) PnP_find_packet(p, 0x70, next);
+ if (p && p[1]==packet_type && !(n--))
+ return (PnP_TAG_PACKET *) p;
+ next = 1;
+ };
+ return 0; /* not found */
+}
+
+PnP_TAG_PACKET *PnP_find_large_vendor_packet(unsigned char *p,
+ unsigned packet_type,
+ int n)
+{
+ int next=0;
+ while (p) {
+ p = (unsigned char *) PnP_find_packet(p, 0x84, next);
+ if (p && p[3]==packet_type && !(n--))
+ return (PnP_TAG_PACKET *) p;
+ next = 1;
+ };
+ return 0; /* not found */
+}
+
diff --git a/c/src/lib/libbsp/powerpc/motorola_powerpc/residual/residual.h b/c/src/lib/libbsp/powerpc/motorola_powerpc/residual/residual.h
new file mode 100644
index 0000000000..c4734d1ccf
--- /dev/null
+++ b/c/src/lib/libbsp/powerpc/motorola_powerpc/residual/residual.h
@@ -0,0 +1,342 @@
+/* 7/18/95 */
+/*----------------------------------------------------------------------------*/
+/* Residual Data header definitions and prototypes */
+/*----------------------------------------------------------------------------*/
+
+/* Structure map for RESIDUAL on PowerPC Reference Platform */
+/* residual.h - Residual data structure passed in r3. */
+/* Load point passed in r4 to boot image. */
+/* For enum's: if given in hex then they are bit significant, */
+/* i.e. only one bit is on for each enum */
+/* Reserved fields must be filled with zeros. */
+
+#ifndef _RESIDUAL_
+#define _RESIDUAL_
+
+#ifndef ASM
+
+#define MAX_CPUS 32 /* These should be set to the maximum */
+#define MAX_MEMS 64 /* number possible for this system. */
+#define MAX_DEVICES 256 /* Changing these will change the */
+#define AVE_PNP_SIZE 32 /* structure, hence the version of */
+#define MAX_MEM_SEGS 64 /* this header file. */
+
+/*----------------------------------------------------------------------------*/
+/* Public structures... */
+/*----------------------------------------------------------------------------*/
+
+#include "pnp.h"
+
+typedef enum _L1CACHE_TYPE {
+ NoneCAC = 0,
+ SplitCAC = 1,
+ CombinedCAC = 2
+ } L1CACHE_TYPE;
+
+typedef enum _TLB_TYPE {
+ NoneTLB = 0,
+ SplitTLB = 1,
+ CombinedTLB = 2
+ } TLB_TYPE;
+
+typedef enum _FIRMWARE_SUPPORT {
+ Conventional = 0x01,
+ OpenFirmware = 0x02,
+ Diagnostics = 0x04,
+ LowDebug = 0x08,
+ Multiboot = 0x10,
+ LowClient = 0x20,
+ Hex41 = 0x40,
+ FAT = 0x80,
+ ISO9660 = 0x0100,
+ SCSI_InitiatorID_Override = 0x0200,
+ Tape_Boot = 0x0400,
+ FW_Boot_Path = 0x0800
+ } FIRMWARE_SUPPORT;
+
+typedef enum _FIRMWARE_SUPPLIERS {
+ IBMFirmware = 0x00,
+ MotoFirmware = 0x01, /* 7/18/95 */
+ FirmWorks = 0x02, /* 10/5/95 */
+ Bull = 0x03, /* 04/03/96 */
+ } FIRMWARE_SUPPLIERS;
+
+typedef enum _ENDIAN_SWITCH_METHODS {
+ UsePort92 = 0x01,
+ UsePCIConfigA8 = 0x02,
+ UseFF001030 = 0x03,
+ } ENDIAN_SWITCH_METHODS;
+
+typedef enum _SPREAD_IO_METHODS {
+ UsePort850 = 0x00,
+/*UsePCIConfigA8 = 0x02,*/
+ } SPREAD_IO_METHODS;
+
+typedef struct _VPD {
+
+ /* Box dependent stuff */
+ unsigned char PrintableModel[32]; /* Null terminated string.
+ Must be of the form:
+ vvv,<20h>,<model designation>,<0x0>
+ where vvv is the vendor ID
+ e.g. IBM PPS MODEL 6015<0x0> */
+ unsigned char Serial[16]; /* 12/94:
+ Serial Number; must be of the form:
+ vvv<serial number> where vvv is the
+ vendor ID.
+ e.g. IBM60151234567<20h><20h> */
+ unsigned char Reserved[48];
+ unsigned long FirmwareSupplier; /* See FirmwareSuppliers enum */
+ unsigned long FirmwareSupports; /* See FirmwareSupport enum */
+ unsigned long NvramSize; /* Size of nvram in bytes */
+ unsigned long NumSIMMSlots;
+ unsigned short EndianSwitchMethod; /* See EndianSwitchMethods enum */
+ unsigned short SpreadIOMethod; /* See SpreadIOMethods enum */
+ unsigned long SmpIar;
+ unsigned long RAMErrLogOffset; /* Heap offset to error log */
+ unsigned long Reserved5;
+ unsigned long Reserved6;
+ unsigned long ProcessorHz; /* Processor clock frequency in Hertz */
+ unsigned long ProcessorBusHz; /* Processor bus clock frequency */
+ unsigned long Reserved7;
+ unsigned long TimeBaseDivisor; /* (Bus clocks per timebase tic)*1000 */
+ unsigned long WordWidth; /* Word width in bits */
+ unsigned long PageSize; /* Page size in bytes */
+ unsigned long CoherenceBlockSize; /* Unit of transfer in/out of cache
+ for which coherency is maintained;
+ normally <= CacheLineSize. */
+ unsigned long GranuleSize; /* Unit of lock allocation to avoid */
+ /* false sharing of locks. */
+
+ /* L1 Cache variables */
+ unsigned long CacheSize; /* L1 Cache size in KB. This is the */
+ /* total size of the L1, whether */
+ /* combined or split */
+ unsigned long CacheAttrib; /* L1CACHE_TYPE */
+ unsigned long CacheAssoc; /* L1 Cache associativity. Use this
+ for combined cache. If split, put
+ zeros here. */
+ unsigned long CacheLineSize; /* L1 Cache line size in bytes. Use
+ for combined cache. If split, put
+ zeros here. */
+ /* For split L1 Cache: (= combined if combined cache) */
+ unsigned long I_CacheSize;
+ unsigned long I_CacheAssoc;
+ unsigned long I_CacheLineSize;
+ unsigned long D_CacheSize;
+ unsigned long D_CacheAssoc;
+ unsigned long D_CacheLineSize;
+
+ /* Translation Lookaside Buffer variables */
+ unsigned long TLBSize; /* Total number of TLBs on the system */
+ unsigned long TLBAttrib; /* Combined I+D or split TLB */
+ unsigned long TLBAssoc; /* TLB Associativity. Use this for
+ combined TLB. If split, put zeros
+ here. */
+ /* For split TLB: (= combined if combined TLB) */
+ unsigned long I_TLBSize;
+ unsigned long I_TLBAssoc;
+ unsigned long D_TLBSize;
+ unsigned long D_TLBAssoc;
+
+ unsigned long ExtendedVPD; /* Offset to extended VPD area;
+ null if unused */
+ } VPD;
+
+typedef enum _DEVICE_FLAGS {
+ Enabled = 0x4000, /* 1 - PCI device is enabled */
+ Integrated = 0x2000,
+ Failed = 0x1000, /* 1 - device failed POST code tests */
+ Static = 0x0800, /* 0 - dynamically configurable
+ 1 - static */
+ Dock = 0x0400, /* 0 - not a docking station device
+ 1 - is a docking station device */
+ Boot = 0x0200, /* 0 - device cannot be used for BOOT
+ 1 - can be a BOOT device */
+ Configurable = 0x0100, /* 1 - device is configurable */
+ Disableable = 0x80, /* 1 - device can be disabled */
+ PowerManaged = 0x40, /* 0 - not managed; 1 - managed */
+ ReadOnly = 0x20, /* 1 - device is read only */
+ Removable = 0x10, /* 1 - device is removable */
+ ConsoleIn = 0x08,
+ ConsoleOut = 0x04,
+ Input = 0x02,
+ Output = 0x01
+ } DEVICE_FLAGS;
+
+typedef enum _BUS_ID {
+ ISADEVICE = 0x01,
+ EISADEVICE = 0x02,
+ PCIDEVICE = 0x04,
+ PCMCIADEVICE = 0x08,
+ PNPISADEVICE = 0x10,
+ MCADEVICE = 0x20,
+ MXDEVICE = 0x40, /* Devices on mezzanine bus */
+ PROCESSORDEVICE = 0x80, /* Devices on processor bus */
+ VMEDEVICE = 0x100,
+ } BUS_ID;
+
+typedef struct _DEVICE_ID {
+ unsigned long BusId; /* See BUS_ID enum above */
+ unsigned long DevId; /* Big Endian format */
+ unsigned long SerialNum; /* For multiple usage of a single
+ DevId */
+ unsigned long Flags; /* See DEVICE_FLAGS enum above */
+ unsigned char BaseType; /* See pnp.h for bit definitions */
+ unsigned char SubType; /* See pnp.h for bit definitions */
+ unsigned char Interface; /* See pnp.h for bit definitions */
+ unsigned char Spare;
+ } DEVICE_ID;
+
+typedef union _BUS_ACCESS {
+ struct _PnPAccess{
+ unsigned char CSN;
+ unsigned char LogicalDevNumber;
+ unsigned short ReadDataPort;
+ } PnPAccess;
+ struct _ISAAccess{
+ unsigned char SlotNumber; /* ISA Slot Number generally not
+ available; 0 if unknown */
+ unsigned char LogicalDevNumber;
+ unsigned short ISAReserved;
+ } ISAAccess;
+ struct _MCAAccess{
+ unsigned char SlotNumber;
+ unsigned char LogicalDevNumber;
+ unsigned short MCAReserved;
+ } MCAAccess;
+ struct _PCMCIAAccess{
+ unsigned char SlotNumber;
+ unsigned char LogicalDevNumber;
+ unsigned short PCMCIAReserved;
+ } PCMCIAAccess;
+ struct _EISAAccess{
+ unsigned char SlotNumber;
+ unsigned char FunctionNumber;
+ unsigned short EISAReserved;
+ } EISAAccess;
+ struct _PCIAccess{
+ unsigned char BusNumber;
+ unsigned char DevFuncNumber;
+ unsigned short PCIReserved;
+ } PCIAccess;
+ struct _ProcBusAccess{
+ unsigned char BusNumber;
+ unsigned char BUID;
+ unsigned short ProcBusReserved;
+ } ProcBusAccess;
+ } BUS_ACCESS;
+
+/* Per logical device information */
+typedef struct _PPC_DEVICE {
+ DEVICE_ID DeviceId;
+ BUS_ACCESS BusAccess;
+
+ /* The following three are offsets into the DevicePnPHeap */
+ /* All are in PnP compressed format */
+ unsigned long AllocatedOffset; /* Allocated resource description */
+ unsigned long PossibleOffset; /* Possible resource description */
+ unsigned long CompatibleOffset; /* Compatible device identifiers */
+ } PPC_DEVICE;
+
+typedef enum _CPU_STATE {
+ CPU_GOOD = 0, /* CPU is present, and active */
+ CPU_GOOD_FW = 1, /* CPU is present, and in firmware */
+ CPU_OFF = 2, /* CPU is present, but inactive */
+ CPU_FAILED = 3, /* CPU is present, but failed POST */
+ CPU_NOT_PRESENT = 255 /* CPU not present */
+ } CPU_STATE;
+
+typedef struct _PPC_CPU {
+ unsigned long CpuType; /* Result of mfspr from Processor
+ Version Register (PVR).
+ PVR(0-15) = Version (e.g. 601)
+ PVR(16-31 = EC Level */
+ unsigned char CpuNumber; /* CPU Number for this processor */
+ unsigned char CpuState; /* CPU State, see CPU_STATE enum */
+ unsigned short Reserved;
+ } PPC_CPU;
+
+typedef struct _PPC_MEM {
+ unsigned long SIMMSize; /* 0 - absent or bad
+ 8M, 32M (in MB) */
+ } PPC_MEM;
+
+typedef enum _MEM_USAGE {
+ Other = 0x8000,
+ ResumeBlock = 0x4000, /* for use by power management */
+ SystemROM = 0x2000, /* Flash memory (populated) */
+ UnPopSystemROM = 0x1000, /* Unpopulated part of SystemROM area */
+ IOMemory = 0x0800,
+ SystemIO = 0x0400,
+ SystemRegs = 0x0200,
+ PCIAddr = 0x0100,
+ PCIConfig = 0x80,
+ ISAAddr = 0x40,
+ Unpopulated = 0x20, /* Unpopulated part of System Memory */
+ Free = 0x10, /* Free part of System Memory */
+ BootImage = 0x08, /* BootImage part of System Memory */
+ FirmwareCode = 0x04, /* FirmwareCode part of System Memory */
+ FirmwareHeap = 0x02, /* FirmwareHeap part of System Memory */
+ FirmwareStack = 0x01 /* FirmwareStack part of System Memory*/
+ } MEM_USAGE;
+
+typedef struct _MEM_MAP {
+ unsigned long Usage; /* See MEM_USAGE above */
+ unsigned long BasePage; /* Page number measured in 4KB pages */
+ unsigned long PageCount; /* Page count measured in 4KB pages */
+ } MEM_MAP;
+
+typedef struct _RESIDUAL {
+ unsigned long ResidualLength; /* Length of Residual */
+ unsigned char Version; /* of this data structure */
+ unsigned char Revision; /* of this data structure */
+ unsigned short EC; /* of this data structure */
+ /* VPD */
+ VPD VitalProductData;
+ /* CPU */
+ unsigned short MaxNumCpus; /* Max CPUs in this system */
+ unsigned short ActualNumCpus; /* ActualNumCpus < MaxNumCpus means */
+ /* that there are unpopulated or */
+ /* otherwise unusable cpu locations */
+ PPC_CPU Cpus[MAX_CPUS];
+ /* Memory */
+ unsigned long TotalMemory; /* Total amount of memory installed */
+ unsigned long GoodMemory; /* Total amount of good memory */
+ unsigned long ActualNumMemSegs;
+ MEM_MAP Segs[MAX_MEM_SEGS];
+ unsigned long ActualNumMemories;
+ PPC_MEM Memories[MAX_MEMS];
+ /* Devices */
+ unsigned long ActualNumDevices;
+ PPC_DEVICE Devices[MAX_DEVICES];
+ unsigned char DevicePnPHeap[2*MAX_DEVICES*AVE_PNP_SIZE];
+ } RESIDUAL;
+
+#ifndef NULL
+#define NULL 0
+#endif
+
+extern RESIDUAL residualCopy;
+
+extern void print_residual_device_info(void);
+#ifndef __BOOT__
+extern PPC_DEVICE *residual_find_device(RESIDUAL *res, unsigned long BusMask,
+ unsigned char * DevID, int BaseType,
+ int SubType, int Interface, int n);
+#else
+extern PPC_DEVICE *residual_find_device(unsigned long BusMask,
+ unsigned char * DevID, int BaseType,
+ int SubType, int Interface, int n);
+#endif
+extern PnP_TAG_PACKET *PnP_find_packet(unsigned char *p, unsigned packet_tag,
+ int n);
+extern PnP_TAG_PACKET *PnP_find_small_vendor_packet(unsigned char *p,
+ unsigned packet_type,
+ int n);
+extern PnP_TAG_PACKET *PnP_find_large_vendor_packet(unsigned char *p,
+ unsigned packet_type,
+ int n);
+#endif /* ASM */
+#endif /* ndef _RESIDUAL_ */
+