summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorJoel Sherrill <joel.sherrill@OARcorp.com>1998-10-19 17:30:01 +0000
committerJoel Sherrill <joel.sherrill@OARcorp.com>1998-10-19 17:30:01 +0000
commitdcc1a530205e1700bad868eeee3c30773598ef15 (patch)
treed608fda25a6f36bb64b3b06eaddf0889c24ae349
parentMakefiles in much better shape even though not all files have automatically (diff)
downloadrtems-dcc1a530205e1700bad868eeee3c30773598ef15.tar.bz2
More automatically generated. Many files renamed behind the scenes.
-rw-r--r--doc/supplements/hppa1_1/Makefile63
-rw-r--r--doc/supplements/hppa1_1/TIMES247
-rw-r--r--doc/supplements/hppa1_1/bsp.texi72
-rw-r--r--doc/supplements/hppa1_1/callconv.t33
-rw-r--r--doc/supplements/hppa1_1/cpumodel.texi71
-rw-r--r--doc/supplements/hppa1_1/cputable.texi132
-rw-r--r--doc/supplements/hppa1_1/fatalerr.texi47
-rw-r--r--doc/supplements/hppa1_1/intr.t222
-rw-r--r--doc/supplements/hppa1_1/memmodel.t15
-rw-r--r--doc/supplements/hppa1_1/memmodel.texi15
10 files changed, 45 insertions, 872 deletions
diff --git a/doc/supplements/hppa1_1/Makefile b/doc/supplements/hppa1_1/Makefile
index 9c570b8570..91cdf62344 100644
--- a/doc/supplements/hppa1_1/Makefile
+++ b/doc/supplements/hppa1_1/Makefile
@@ -20,12 +20,14 @@ dirs:
COMMON_FILES=../../common/cpright.texi ../../common/setup.texi
-GENERATED_FILES= \
- cpumodel.texi timing.texi wksheets.texi
+GENERATED_FILES=\
+ cpumodel.texi callconv.texi memmodel.texi intr.texi fatalerr.texi \
+ bsp.texi cputable.texi wksheets.texi
+
+# timing.texi timeBSP.texi
FILES= $(PROJECT).texi \
- bsp.texi callconv.texi cputable.texi fatalerr.texi \
- intr.texi memmodel.texi preface.texi timetbl.texi timedata.texi \
+ preface.texi timetbl.texi timedata.texi \
$(GENERATED_FILES)
info: dirs c_hppa1_1
@@ -55,20 +57,43 @@ cpumodel.texi: cpumodel.t Makefile
-u "Top" \
-n "Calling Conventions" ${*}.t
-# Calling Conventions
-# Memory Model
+callconv.texi: callconv.t Makefile
+ $(BMENU) -p "CPU Model Dependent Features CPU Model Name" \
+ -u "Top" \
+ -n "Memory Model" ${*}.t
+
+memmodel.texi: memmodel.t Makefile
+ $(BMENU) -p "Calling Conventions User-Provided Routines" \
+ -u "Top" \
+ -n "Interrupt Processing" ${*}.t
# Interrupt Chapter:
# 1. Replace Times and Sizes
# 2. Build Node Structure
-intr.texi: intr.t TIMES
- ${REPLACE} -p TIMES intr.t
- mv intr.t.fixed intr.texi
+intr.t: intr_NOTIMES.t SIMHPPA_TIMES
+ ${REPLACE} -p SIMHPPA_TIMES intr_NOTIMES.t
+ mv intr_NOTIMES.t.fixed intr.t
+
+intr.texi: intr.t Makefile
+ $(BMENU) -p "Memory Model Flat Memory Model" \
+ -u "Top" \
+
+fatalerr.texi: fatalerr.t Makefile
+ $(BMENU) -p "Interrupt Processing Interrupt Stack" \
+ -u "Top" \
+ -n "Board Support Packages" ${*}.t
+
+bsp.texi: bsp.t Makefile
+ $(BMENU) -p "Default Fatal Error Processing Default Fatal Error Handler Operations" \
+ -u "Top" \
+ -n "Processor Dependent Information Table" ${*}.t
+
+cputable.texi: cputable.t Makefile
+ $(BMENU) -p "Board Support Packages Processor Initialization" \
+ -u "Top" \
+ -n "Memory Requirements" ${*}.t
-# Fatal Error
-# BSP
-# CPU Table
# Worksheets Chapter:
# 1. Obtain the Shared File
@@ -78,8 +103,8 @@ intr.texi: intr.t TIMES
wksheets_NOTIMES.t: ../../common/wksheets.t
cp ../../common/wksheets.t wksheets_NOTIMES.t
-wksheets.t: wksheets_NOTIMES.t TIMES
- ${REPLACE} -p TIMES wksheets_NOTIMES.t
+wksheets.t: wksheets_NOTIMES.t SIMHPPA_TIMES
+ ${REPLACE} -p SIMHPPA_TIMES wksheets_NOTIMES.t
mv wksheets_NOTIMES.t.fixed wksheets.t
wksheets.texi: wksheets.t Makefile
@@ -105,12 +130,12 @@ timetbl.t: ../../common/timetbl.t
sed -e 's/TIMETABLE_NEXT_LINK/Command and Variable Index/' \
<../../common/timetbl.t >timetbl.t
-timetbl.texi: timetbl.t TIMES
- ${REPLACE} -p TIMES timetbl.t
+timetbl.texi: timetbl.t SIMHPPA_TIMES
+ ${REPLACE} -p SIMHPPA_TIMES timetbl.t
mv timetbl.t.fixed timetbl.texi
-timedata.texi: timedata.t TIMES
- ${REPLACE} -p TIMES timedata.t
+timedata.texi: timedata.t SIMHPPA_TIMES
+ ${REPLACE} -p SIMHPPA_TIMES timedata.t
mv timedata.t.fixed timedata.texi
html: dirs $(FILES)
@@ -123,7 +148,7 @@ clean:
rm -f *.dvi *.ps *.log *.aux *.cp *.fn *.ky *.pg *.toc *.tp *.vr $(BASE)
rm -f $(PROJECT) $(PROJECT)-*
rm -f c_hppa1_1 c_hppa1_1-*
- rm -f timedata.texi timetbl.texi timetbl.t intr.texi
+ rm -f timedata.texi timetbl.texi timetbl.t intr.t
rm -f timing.t timing.texi
rm -f wksheets.t wksheets_NOTIMES.t $(GENERATED_FILES)
rm -f *.fixed _*
diff --git a/doc/supplements/hppa1_1/TIMES b/doc/supplements/hppa1_1/TIMES
deleted file mode 100644
index 311553aa03..0000000000
--- a/doc/supplements/hppa1_1/TIMES
+++ /dev/null
@@ -1,247 +0,0 @@
-#
-# PA-RISC Timing and Size Information
-#
-# $Id$
-#
-
-#
-# CPU Model Information
-#
-RTEMS_BSP simhppa
-RTEMS_CPU_MODEL HP-7100
-#
-# Interrupt Latency
-#
-# NOTE: In general, the text says it is hand-calculated to be
-# RTEMS_MAXIMUM_DISABLE_PERIOD at RTEMS_MAXIMUM_DISABLE_PERIOD_MHZ
-# Mhz and this was last calculated for Release
-# RTEMS_VERSION_FOR_MAXIMUM_DISABLE_PERIOD.
-#
-RTEMS_MAXIMUM_DISABLE_PERIOD TBD
-RTEMS_MAXIMUM_DISABLE_PERIOD_MHZ TBD
-RTEMS_RELEASE_FOR_MAXIMUM_DISABLE_PERIOD TBD
-#
-# Context Switch Times
-#
-RTEMS_NO_FP_CONTEXTS 1
-RTEMS_RESTORE_1ST_FP_TASK 2
-RTEMS_SAVE_INIT_RESTORE_INIT 3
-RTEMS_SAVE_IDLE_RESTORE_INIT 4
-RTEMS_SAVE_IDLE_RESTORE_IDLE 5
-#
-# Task Manager Times
-#
-RTEMS_TASK_CREATE_ONLY 6
-RTEMS_TASK_IDENT_ONLY 7
-RTEMS_TASK_START_ONLY 8
-RTEMS_TASK_RESTART_CALLING_TASK 9
-RTEMS_TASK_RESTART_SUSPENDED_RETURNS_TO_CALLER 9
-RTEMS_TASK_RESTART_BLOCKED_RETURNS_TO_CALLER 10
-RTEMS_TASK_RESTART_READY_RETURNS_TO_CALLER 11
-RTEMS_TASK_RESTART_SUSPENDED_PREEMPTS_CALLER 12
-RTEMS_TASK_RESTART_BLOCKED_PREEMPTS_CALLER 13
-RTEMS_TASK_RESTART_READY_PREEMPTS_CALLER 14
-RTEMS_TASK_DELETE_CALLING_TASK 15
-RTEMS_TASK_DELETE_SUSPENDED_TASK 16
-RTEMS_TASK_DELETE_BLOCKED_TASK 17
-RTEMS_TASK_DELETE_READY_TASK 18
-RTEMS_TASK_SUSPEND_CALLING_TASK 19
-RTEMS_TASK_SUSPEND_RETURNS_TO_CALLER 20
-RTEMS_TASK_RESUME_TASK_READIED_RETURNS_TO_CALLER 21
-RTEMS_TASK_RESUME_TASK_READIED_PREEMPTS_CALLER 22
-RTEMS_TASK_SET_PRIORITY_OBTAIN_CURRENT_PRIORITY 23
-RTEMS_TASK_SET_PRIORITY_RETURNS_TO_CALLER 24
-RTEMS_TASK_SET_PRIORITY_PREEMPTS_CALLER 25
-RTEMS_TASK_MODE_OBTAIN_CURRENT_MODE 26
-RTEMS_TASK_MODE_NO_RESCHEDULE 27
-RTEMS_TASK_MODE_RESCHEDULE_RETURNS_TO_CALLER 28
-RTEMS_TASK_MODE_RESCHEDULE_PREEMPTS_CALLER 29
-RTEMS_TASK_GET_NOTE_ONLY 30
-RTEMS_TASK_SET_NOTE_ONLY 31
-RTEMS_TASK_WAKE_AFTER_YIELD_RETURNS_TO_CALLER 32
-RTEMS_TASK_WAKE_AFTER_YIELD_PREEMPTS_CALLER 33
-RTEMS_TASK_WAKE_WHEN_ONLY 34
-#
-# Interrupt Manager
-#
-RTEMS_INTR_ENTRY_RETURNS_TO_NESTED 35
-RTEMS_INTR_ENTRY_RETURNS_TO_INTERRUPTED_TASK 36
-RTEMS_INTR_ENTRY_RETURNS_TO_PREEMPTING_TASK 37
-RTEMS_INTR_EXIT_RETURNS_TO_NESTED 38
-RTEMS_INTR_EXIT_RETURNS_TO_INTERRUPTED_TASK 39
-RTEMS_INTR_EXIT_RETURNS_TO_PREEMPTING_TASK 40
-#
-# Clock Manager
-#
-RTEMS_CLOCK_SET_ONLY 41
-RTEMS_CLOCK_GET_ONLY 42
-RTEMS_CLOCK_TICK_ONLY 43
-#
-# Timer Manager
-#
-RTEMS_TIMER_CREATE_ONLY 44
-RTEMS_TIMER_IDENT_ONLY 45
-RTEMS_TIMER_DELETE_INACTIVE 46
-RTEMS_TIMER_DELETE_ACTIVE 47
-RTEMS_TIMER_FIRE_AFTER_INACTIVE 48
-RTEMS_TIMER_FIRE_AFTER_ACTIVE 49
-RTEMS_TIMER_FIRE_WHEN_INACTIVE 50
-RTEMS_TIMER_FIRE_WHEN_ACTIVE 51
-RTEMS_TIMER_RESET_INACTIVE 52
-RTEMS_TIMER_RESET_ACTIVE 53
-RTEMS_TIMER_CANCEL_INACTIVE 54
-RTEMS_TIMER_CANCEL_ACTIVE 55
-#
-# Semaphore Manager
-#
-RTEMS_SEMAPHORE_CREATE_ONLY 56
-RTEMS_SEMAPHORE_IDENT_ONLY 57
-RTEMS_SEMAPHORE_DELETE_ONLY 58
-RTEMS_SEMAPHORE_OBTAIN_AVAILABLE 59
-RTEMS_SEMAPHORE_OBTAIN_NOT_AVAILABLE_NO_WAIT 60
-RTEMS_SEMAPHORE_OBTAIN_NOT_AVAILABLE_CALLER_BLOCKS 61
-RTEMS_SEMAPHORE_RELEASE_NO_WAITING_TASKS 62
-RTEMS_SEMAPHORE_RELEASE_TASK_READIED_RETURNS_TO_CALLER 63
-RTEMS_SEMAPHORE_RELEASE_TASK_READIED_PREEMPTS_CALLER 64
-#
-# Message Manager
-#
-RTEMS_MESSAGE_QUEUE_CREATE_ONLY 65
-RTEMS_MESSAGE_QUEUE_IDENT_ONLY 66
-RTEMS_MESSAGE_QUEUE_DELETE_ONLY 67
-RTEMS_MESSAGE_QUEUE_SEND_NO_WAITING_TASKS 68
-RTEMS_MESSAGE_QUEUE_SEND_TASK_READIED_RETURNS_TO_CALLER 69
-RTEMS_MESSAGE_QUEUE_SEND_TASK_READIED_PREEMPTS_CALLER 70
-RTEMS_MESSAGE_QUEUE_URGENT_NO_WAITING_TASKS 71
-RTEMS_MESSAGE_QUEUE_URGENT_TASK_READIED_RETURNS_TO_CALLER 72
-RTEMS_MESSAGE_QUEUE_URGENT_TASK_READIED_PREEMPTS_CALLER 73
-RTEMS_MESSAGE_QUEUE_BROADCAST_NO_WAITING_TASKS 74
-RTEMS_MESSAGE_QUEUE_BROADCAST_TASK_READIED_RETURNS_TO_CALLER 75
-RTEMS_MESSAGE_QUEUE_BROADCAST_TASK_READIED_PREEMPTS_CALLER 76
-RTEMS_MESSAGE_QUEUE_RECEIVE_AVAILABLE 77
-RTEMS_MESSAGE_QUEUE_RECEIVE_NOT_AVAILABLE_NO_WAIT 78
-RTEMS_MESSAGE_QUEUE_RECEIVE_NOT_AVAILABLE_CALLER_BLOCKS 79
-RTEMS_MESSAGE_QUEUE_FLUSH_NO_MESSAGES_FLUSHED 80
-RTEMS_MESSAGE_QUEUE_FLUSH_MESSAGES_FLUSHED 81
-#
-# Event Manager
-#
-RTEMS_EVENT_SEND_NO_TASK_READIED 82
-RTEMS_EVENT_SEND_TASK_READIED_RETURNS_TO_CALLER 83
-RTEMS_EVENT_SEND_TASK_READIED_PREEMPTS_CALLER 84
-RTEMS_EVENT_RECEIVE_OBTAIN_CURRENT_EVENTS 85
-RTEMS_EVENT_RECEIVE_AVAILABLE 86
-RTEMS_EVENT_RECEIVE_NOT_AVAILABLE_NO_WAIT 87
-RTEMS_EVENT_RECEIVE_NOT_AVAILABLE_CALLER_BLOCKS 88
-#
-# Signal Manager
-#
-RTEMS_SIGNAL_CATCH_ONLY 89
-RTEMS_SIGNAL_SEND_RETURNS_TO_CALLER 90
-RTEMS_SIGNAL_SEND_SIGNAL_TO_SELF 91
-RTEMS_SIGNAL_EXIT_ASR_OVERHEAD_RETURNS_TO_CALLING_TASK 92
-RTEMS_SIGNAL_EXIT_ASR_OVERHEAD_RETURNS_TO_PREEMPTING_TASK 93
-#
-# Partition Manager
-#
-RTEMS_PARTITION_CREATE_ONLY 94
-RTEMS_PARTITION_IDENT_ONLY 95
-RTEMS_PARTITION_DELETE_ONLY 96
-RTEMS_PARTITION_GET_BUFFER_AVAILABLE 97
-RTEMS_PARTITION_GET_BUFFER_NOT_AVAILABLE 98
-RTEMS_PARTITION_RETURN_BUFFER_ONLY 99
-#
-# Region Manager
-#
-RTEMS_REGION_CREATE_ONLY 100
-RTEMS_REGION_IDENT_ONLY 101
-RTEMS_REGION_DELETE_ONLY 102
-RTEMS_REGION_GET_SEGMENT_AVAILABLE 103
-RTEMS_REGION_GET_SEGMENT_NOT_AVAILABLE_NO_WAIT 104
-RTEMS_REGION_GET_SEGMENT_NOT_AVAILABLE_CALLER_BLOCKS 105
-RTEMS_REGION_RETURN_SEGMENT_NO_WAITING_TASKS 106
-RTEMS_REGION_RETURN_SEGMENT_TASK_READIED_RETURNS_TO_CALLER 107
-RTEMS_REGION_RETURN_SEGMENT_TASK_READIED_PREEMPTS_CALLER 108
-#
-# Dual-Ported Memory Manager
-#
-RTEMS_PORT_CREATE_ONLY 109
-RTEMS_PORT_IDENT_ONLY 110
-RTEMS_PORT_DELETE_ONLY 111
-RTEMS_PORT_INTERNAL_TO_EXTERNAL_ONLY 112
-RTEMS_PORT_EXTERNAL_TO_INTERNAL_ONLY 113
-#
-# IO Manager
-#
-RTEMS_IO_INITIALIZE_ONLY 114
-RTEMS_IO_OPEN_ONLY 115
-RTEMS_IO_CLOSE_ONLY 116
-RTEMS_IO_READ_ONLY 117
-RTEMS_IO_WRITE_ONLY 118
-RTEMS_IO_CONTROL_ONLY 119
-#
-# Rate Monotonic Manager
-#
-RTEMS_RATE_MONOTONIC_CREATE_ONLY 120
-RTEMS_RATE_MONOTONIC_IDENT_ONLY 121
-RTEMS_RATE_MONOTONIC_CANCEL_ONLY 122
-RTEMS_RATE_MONOTONIC_DELETE_ACTIVE 123
-RTEMS_RATE_MONOTONIC_DELETE_INACTIVE 124
-RTEMS_RATE_MONOTONIC_PERIOD_INITIATE_PERIOD_RETURNS_TO_CALLER 125
-RTEMS_RATE_MONOTONIC_PERIOD_CONCLUDE_PERIOD_CALLER_BLOCKS 126
-RTEMS_RATE_MONOTONIC_PERIOD_OBTAIN_STATUS 127
-#
-# Size Information
-#
-#
-# xxx alloted for numbers
-#
-RTEMS_DATA_SPACE 128
-RTEMS_MINIMUM_CONFIGURATION xx,129
-RTEMS_MAXIMUM_CONFIGURATION xx,130
-# x,xxx alloted for numbers
-RTEMS_CORE_CODE_SIZE x,131
-RTEMS_INITIALIZATION_CODE_SIZE x,132
-RTEMS_TASK_CODE_SIZE x,133
-RTEMS_INTERRUPT_CODE_SIZE x,134
-RTEMS_CLOCK_CODE_SIZE x,135
-RTEMS_TIMER_CODE_SIZE x,136
-RTEMS_SEMAPHORE_CODE_SIZE x,137
-RTEMS_MESSAGE_CODE_SIZE x,138
-RTEMS_EVENT_CODE_SIZE x,139
-RTEMS_SIGNAL_CODE_SIZE x,140
-RTEMS_PARTITION_CODE_SIZE x,141
-RTEMS_REGION_CODE_SIZE x,142
-RTEMS_DPMEM_CODE_SIZE x,143
-RTEMS_IO_CODE_SIZE x,144
-RTEMS_FATAL_ERROR_CODE_SIZE x,145
-RTEMS_RATE_MONOTONIC_CODE_SIZE x,146
-RTEMS_MULTIPROCESSING_CODE_SIZE x,147
-# xxx alloted for numbers
-RTEMS_TIMER_CODE_OPTSIZE 148
-RTEMS_SEMAPHORE_CODE_OPTSIZE 149
-RTEMS_MESSAGE_CODE_OPTSIZE 150
-RTEMS_EVENT_CODE_OPTSIZE 151
-RTEMS_SIGNAL_CODE_OPTSIZE 152
-RTEMS_PARTITION_CODE_OPTSIZE 153
-RTEMS_REGION_CODE_OPTSIZE 154
-RTEMS_DPMEM_CODE_OPTSIZE 155
-RTEMS_IO_CODE_OPTSIZE 156
-RTEMS_RATE_MONOTONIC_CODE_OPTSIZE 157
-RTEMS_MULTIPROCESSING_CODE_OPTSIZE 158
-# xxx alloted for numbers
-RTEMS_BYTES_PER_TASK 159
-RTEMS_BYTES_PER_TIMER 160
-RTEMS_BYTES_PER_SEMAPHORE 161
-RTEMS_BYTES_PER_MESSAGE_QUEUE 162
-RTEMS_BYTES_PER_REGION 163
-RTEMS_BYTES_PER_PARTITION 164
-RTEMS_BYTES_PER_PORT 165
-RTEMS_BYTES_PER_PERIOD 166
-RTEMS_BYTES_PER_EXTENSION 167
-RTEMS_BYTES_PER_FP_TASK 168
-RTEMS_BYTES_PER_NODE 169
-RTEMS_BYTES_PER_GLOBAL_OBJECT 170
-RTEMS_BYTES_PER_PROXY 171
-# x,xxx alloted for numbers
-RTEMS_BYTES_OF_FIXED_SYSTEM_REQUIREMENTS x,172
diff --git a/doc/supplements/hppa1_1/bsp.texi b/doc/supplements/hppa1_1/bsp.texi
deleted file mode 100644
index 716701aa40..0000000000
--- a/doc/supplements/hppa1_1/bsp.texi
+++ /dev/null
@@ -1,72 +0,0 @@
-@c
-@c COPYRIGHT (c) 1988-1998.
-@c On-Line Applications Research Corporation (OAR).
-@c All rights reserved.
-@c
-@c $Id$
-@c
-
-@ifinfo
-@node Board Support Packages, Board Support Packages Introduction, Default Fatal Error Processing Default Fatal Error Handler Operations, Top
-@end ifinfo
-@chapter Board Support Packages
-@ifinfo
-@menu
-* Board Support Packages Introduction::
-* Board Support Packages System Reset::
-* Board Support Packages Processor Initialization::
-@end menu
-@end ifinfo
-
-@ifinfo
-@node Board Support Packages Introduction, Board Support Packages System Reset, Board Support Packages, Board Support Packages
-@end ifinfo
-@section Introduction
-
-An RTEMS Board Support Package (BSP) must be designed
-to support a particular processor and target board combination.
-This chapter presents a discussion of PA-RISC specific BSP
-issues. For more information on developing a BSP, refer to the
-chapter titled Board Support Packages in the RTEMS
-Applications User's Guide.
-
-@ifinfo
-@node Board Support Packages System Reset, Board Support Packages Processor Initialization, Board Support Packages Introduction, Board Support Packages
-@end ifinfo
-@section System Reset
-
-An RTEMS based application is initiated or
-re-initiated when the PA-RISC processor is reset. The behavior
-of a PA-RISC upon reset is implementation defined and thus is
-beyond the scope of this manual.
-
-@ifinfo
-@node Board Support Packages Processor Initialization, Processor Dependent Information Table, Board Support Packages System Reset, Board Support Packages
-@end ifinfo
-@section Processor Initialization
-
-The precise requirements for initialization of a
-particular implementation of the PA-RISC architecture are
-implementation defined. Thus it is impossible to provide exact
-details of this procedure in this manual. However, the
-requirements of RTEMS which must be satisfied by this
-initialization code can be discussed.
-
-RTEMS assumes that interrupts are disabled when the
-initialize_executive directive is invoked. Interrupts are
-enabled automatically by RTEMS as part of the initialize
-executive directive and device driver initialization occurs
-after interrupts are enabled. Thus all interrupt sources should
-be quiescent until the system's device drivers have been
-initialized and installed their interrupt handlers.
-
-If the processor requires initialization of the
-cache, then it should be be done during the reset application
-initialization code.
-
-Finally, the requirements in the Board Support
-Packages chapter of the Applications User's Manual for the
-reset code which is executed before the call to initialize
-executive must be satisfied.
-
-
diff --git a/doc/supplements/hppa1_1/callconv.t b/doc/supplements/hppa1_1/callconv.t
index 7f433ef39a..570120a7e3 100644
--- a/doc/supplements/hppa1_1/callconv.t
+++ b/doc/supplements/hppa1_1/callconv.t
@@ -6,24 +6,8 @@
@c $Id$
@c
-@ifinfo
-@node Calling Conventions, Calling Conventions Introduction, CPU Model Dependent Features CPU Model Name, Top
-@end ifinfo
@chapter Calling Conventions
-@ifinfo
-@menu
-* Calling Conventions Introduction::
-* Calling Conventions Processor Background::
-* Calling Conventions Calling Mechanism::
-* Calling Conventions Register Usage::
-* Calling Conventions Parameter Passing::
-* Calling Conventions User-Provided Routines::
-@end menu
-@end ifinfo
-
-@ifinfo
-@node Calling Conventions Introduction, Calling Conventions Processor Background, Calling Conventions, Calling Conventions
-@end ifinfo
+
@section Introduction
Each high-level language compiler generates
@@ -50,9 +34,6 @@ This chapter describes the calling conventions used
by the GNU C and standard HP-UX compilers for the PA-RISC
architecture.
-@ifinfo
-@node Calling Conventions Processor Background, Calling Conventions Calling Mechanism, Calling Conventions Introduction, Calling Conventions
-@end ifinfo
@section Processor Background
The PA-RISC architecture supports a simple yet
@@ -72,9 +53,6 @@ not automatically save or restore any registers. It is the
responsibility of the high-level language compiler to define the
register preservation and usage convention.
-@ifinfo
-@node Calling Conventions Calling Mechanism, Calling Conventions Register Usage, Calling Conventions Processor Background, Calling Conventions
-@end ifinfo
@section Calling Mechanism
All RTEMS directives are invoked as standard
@@ -82,9 +60,6 @@ subroutines via a bl or a blr instruction with the return address
assumed to be in r2 and return to the user application via the
bv instruction.
-@ifinfo
-@node Calling Conventions Register Usage, Calling Conventions Parameter Passing, Calling Conventions Calling Mechanism, Calling Conventions
-@end ifinfo
@section Register Usage
As discussed above, the bl and blr instructions do
@@ -131,9 +106,6 @@ possible to modify the PA-RISC specific code such that all tasks
are considered floating point only when this option is not used.
@end itemize
-@ifinfo
-@node Calling Conventions Parameter Passing, Calling Conventions User-Provided Routines, Calling Conventions Register Usage, Calling Conventions
-@end ifinfo
@section Parameter Passing
RTEMS assumes that the first four (4) arguments are
@@ -160,9 +132,6 @@ as the stack pointer. The standard stack frame consists of a
minimum of sixty-four (64) bytes and is the responsibility of
the callee to maintain.
-@ifinfo
-@node Calling Conventions User-Provided Routines, Memory Model, Calling Conventions Parameter Passing, Calling Conventions
-@end ifinfo
@section User-Provided Routines
All user-provided routines invoked by RTEMS, such as
diff --git a/doc/supplements/hppa1_1/cpumodel.texi b/doc/supplements/hppa1_1/cpumodel.texi
deleted file mode 100644
index 1a4d357697..0000000000
--- a/doc/supplements/hppa1_1/cpumodel.texi
+++ /dev/null
@@ -1,71 +0,0 @@
-@c
-@c COPYRIGHT (c) 1988-1998.
-@c On-Line Applications Research Corporation (OAR).
-@c All rights reserved.
-@c
-@c $Id$
-@c
-
-@ifinfo
-@node CPU Model Dependent Features, CPU Model Dependent Features Introduction, Preface, Top
-@end ifinfo
-@chapter CPU Model Dependent Features
-@ifinfo
-@menu
-* CPU Model Dependent Features Introduction::
-* CPU Model Dependent Features CPU Model Name::
-@end menu
-@end ifinfo
-
-@ifinfo
-@node CPU Model Dependent Features Introduction, CPU Model Dependent Features CPU Model Name, CPU Model Dependent Features, CPU Model Dependent Features
-@end ifinfo
-@section Introduction
-
-Microprocessors are generally classified into
-families with a variety of CPU models or implementations within
-that family. Within a processor family, there is a high level
-of binary compatibility. This family may be based on either an
-architectural specification or on maintaining compatibility with
-a popular processor. Recent microprocessor families such as the
-SPARC or PA-RISC are based on an architectural specification
-which is independent or any particular CPU model or
-implementation. Older families such as the M68xxx and the iX86
-evolved as the manufacturer strived to produce higher
-performance processor models which maintained binary
-compatibility with older models.
-
-RTEMS takes advantage of the similarity of the
-various models within a CPU family. Although the models do vary
-in significant ways, the high level of compatibility makes it
-possible to share the bulk of the CPU dependent executive code
-across the entire family. Each processor family supported by
-RTEMS has a list of features which vary between CPU models
-within a family. For example, the most common model dependent
-feature regardless of CPU family is the presence or absence of a
-floating point unit or coprocessor. When defining the list of
-features present on a particular CPU model, one simply notes
-that floating point hardware is or is not present and defines a
-single constant appropriately. Conditional compilation is
-utilized to include the appropriate source code for this CPU
-model's feature set. It is important to note that this means
-that RTEMS is thus compiled using the appropriate feature set
-and compilation flags optimal for this CPU model used. The
-alternative would be to generate a binary which would execute on
-all family members using only the features which were always
-present.
-
-This chapter presents the set of features which vary
-across PA-RISC implementations and are of importance to RTEMS.
-The set of CPU model feature macros are defined in the file
-c/src/exec/score/cpu/hppa1_1/hppa.h based upon the particular CPU
-model defined on the compilation command line.
-
-@ifinfo
-@node CPU Model Dependent Features CPU Model Name, Calling Conventions, CPU Model Dependent Features Introduction, CPU Model Dependent Features
-@end ifinfo
-@section CPU Model Name
-
-The macro CPU_MODEL_NAME is a string which designates
-the name of this CPU model. For example, for the Hewlett Packard
-PA-7100 CPU model, this macro is set to the string "hppa 7100".
diff --git a/doc/supplements/hppa1_1/cputable.texi b/doc/supplements/hppa1_1/cputable.texi
deleted file mode 100644
index 9ea5c1e415..0000000000
--- a/doc/supplements/hppa1_1/cputable.texi
+++ /dev/null
@@ -1,132 +0,0 @@
-@c
-@c COPYRIGHT (c) 1988-1998.
-@c On-Line Applications Research Corporation (OAR).
-@c All rights reserved.
-@c
-@c $Id$
-@c
-
-@ifinfo
-@node Processor Dependent Information Table, Processor Dependent Information Table Introduction, Board Support Packages Processor Initialization, Top
-@end ifinfo
-@chapter Processor Dependent Information Table
-@ifinfo
-@menu
-* Processor Dependent Information Table Introduction::
-* Processor Dependent Information Table CPU Dependent Information Table::
-@end menu
-@end ifinfo
-
-@ifinfo
-@node Processor Dependent Information Table Introduction, Processor Dependent Information Table CPU Dependent Information Table, Processor Dependent Information Table, Processor Dependent Information Table
-@end ifinfo
-@section Introduction
-
-Any highly processor dependent information required
-to describe a processor to RTEMS is provided in the CPU
-Dependent Information Table. This table is not required for all
-processors supported by RTEMS. This chapter describes the
-contents, if any, for a particular processor type.
-
-@ifinfo
-@node Processor Dependent Information Table CPU Dependent Information Table, Memory Requirements, Processor Dependent Information Table Introduction, Processor Dependent Information Table
-@end ifinfo
-@section CPU Dependent Information Table
-
-The PA-RISC version of the RTEMS CPU Dependent
-Information Table contains the information required to interface
-a Board Support Package and RTEMS on the PA-RISC. This
-information is provided to allow RTEMS to interoperate
-effectively with the BSP. The C structure definition is given
-here:
-
-@example
-typedef struct @{
- void (*pretasking_hook)( void );
- void (*predriver_hook)( void );
- void (*postdriver_hook)( void );
- void (*idle_task)( void );
- boolean do_zero_of_workspace;
- unsigned32 idle_task_stack_size;
- unsigned32 interrupt_stack_size;
- unsigned32 extra_mpci_receive_server_stack;
- void * (*stack_allocate_hook)( unsigned32 );
- void (*stack_free_hook)( void * );
- /* end of fields required on all CPUs */
-
- hppa_rtems_isr_entry spurious_handler;
-
- unsigned32 itimer_clicks_per_microsecond; /* for use by Clock driver */
-@} rtems_cpu_table;
-@end example
-
-@table @code
-@item pretasking_hook
-is the address of the
-user provided routine which is invoked once RTEMS initialization
-is complete but before interrupts and tasking are enabled. This
-field may be NULL to indicate that the hook is not utilized.
-
-@item predriver_hook
-is the address of the user provided
-routine which is invoked with tasking enabled immediately before
-the MPCI and device drivers are initialized. RTEMS
-initialization is complete, interrupts and tasking are enabled,
-but no device drivers are initialized. This field may be NULL to
-indicate that the hook is not utilized.
-
-@item postdriver_hook
-is the address of the user provided
-routine which is invoked with tasking enabled immediately after
-the MPCI and device drivers are initialized. RTEMS
-initialization is complete, interrupts and tasking are enabled,
-and the device drivers are initialized. This field may be NULL
-to indicate that the hook is not utilized.
-
-@item idle_task
-is the address of the optional user
-provided routine which is used as the system's IDLE task. If
-this field is not NULL, then the RTEMS default IDLE task is not
-used. This field may be NULL to indicate that the default IDLE
-is to be used.
-
-@item do_zero_of_workspace
-indicates whether RTEMS should
-zero the Workspace as part of its initialization. If set to
-TRUE, the Workspace is zeroed. Otherwise, it is not.
-
-@item idle_task_stack_size
-is the size of the RTEMS idle task stack in bytes.
-If this number is less than MINIMUM_STACK_SIZE, then the
-idle task's stack will be MINIMUM_STACK_SIZE in byte.
-
-@item interrupt_stack_size
-is the size of the RTEMS allocated interrupt stack in bytes.
-This value must be at least as large as MINIMUM_STACK_SIZE.
-
-@item extra_mpci_receive_server_stack
-is the extra stack space allocated for the RTEMS MPCI receive server task
-in bytes. The MPCI receive server may invoke nearly all directives and
-may require extra stack space on some targets.
-
-@item stack_allocate_hook
-is the address of the optional user provided routine which allocates
-memory for task stacks. If this hook is not NULL, then a stack_free_hook
-must be provided as well.
-
-@item stack_free_hook
-is the address of the optional user provided routine which frees
-memory for task stacks. If this hook is not NULL, then a stack_allocate_hook
-must be provided as well.
-
-@item spurious_handler
-is the address of the optional user provided routine which is invoked
-when a spurious external interrupt occurs. A spurious interrupt is one
-for which no handler is installed.
-
-@item itimer_clicks_per_microsecond
-is the number of countdowns in the on-CPU timer which corresponds
-to a microsecond. This is a function of the clock speed of the CPU
-being used.
-
-@end table
diff --git a/doc/supplements/hppa1_1/fatalerr.texi b/doc/supplements/hppa1_1/fatalerr.texi
deleted file mode 100644
index 90fba387d5..0000000000
--- a/doc/supplements/hppa1_1/fatalerr.texi
+++ /dev/null
@@ -1,47 +0,0 @@
-@c
-@c COPYRIGHT (c) 1988-1998.
-@c On-Line Applications Research Corporation (OAR).
-@c All rights reserved.
-@c
-@c $Id$
-@c
-
-@ifinfo
-@node Default Fatal Error Processing, Default Fatal Error Processing Introduction, Interrupt Processing Disabling of Interrupts by RTEMS, Top
-@end ifinfo
-@chapter Default Fatal Error Processing
-@ifinfo
-@menu
-* Default Fatal Error Processing Introduction::
-* Default Fatal Error Processing Default Fatal Error Handler Operations::
-@end menu
-@end ifinfo
-
-@ifinfo
-@node Default Fatal Error Processing Introduction, Default Fatal Error Processing Default Fatal Error Handler Operations, Default Fatal Error Processing, Default Fatal Error Processing
-@end ifinfo
-@section Introduction
-
-Upon detection of a fatal error by either the
-application or RTEMS the fatal error manager is invoked. The
-fatal error manager will invoke a user-supplied fatal error
-handler. If no user-supplied handler is configured, the RTEMS
-provided default fatal error handler is invoked. If the
-user-supplied fatal error handler returns to the executive the
-default fatal error handler is then invoked. This chapter
-describes the precise operations of the default fatal error
-handler.
-
-@ifinfo
-@node Default Fatal Error Processing Default Fatal Error Handler Operations, Board Support Packages, Default Fatal Error Processing Introduction, Default Fatal Error Processing
-@end ifinfo
-@section Default Fatal Error Handler Operations
-
-The default fatal error handler which is invoked by
-the fatal_error_occurred directive when there is no user handler
-configured or the user handler returns control to RTEMS. The
-default fatal error handler disables processor interrupts (i.e.
-sets the I bit in the PSW register to 0), places the error code
-in r1, and executes a break instruction to simulate a halt
-processor instruction.
-
diff --git a/doc/supplements/hppa1_1/intr.t b/doc/supplements/hppa1_1/intr.t
deleted file mode 100644
index 70a1d3a27f..0000000000
--- a/doc/supplements/hppa1_1/intr.t
+++ /dev/null
@@ -1,222 +0,0 @@
-@c
-@c COPYRIGHT (c) 1988-1998.
-@c On-Line Applications Research Corporation (OAR).
-@c All rights reserved.
-@c
-@c $Id$
-@c
-
-@ifinfo
-@node Interrupt Processing, Interrupt Processing Introduction, Memory Model Flat Memory Model, Top
-@end ifinfo
-@chapter Interrupt Processing
-@ifinfo
-@menu
-* Interrupt Processing Introduction::
-* Interrupt Processing Vectoring of Interrupt Handler::
-* Interrupt Processing Interrupt Stack Frame::
-* Interrupt Processing External Interrupts and Traps::
-* Interrupt Processing Interrupt Levels::
-* Interrupt Processing Disabling of Interrupts by RTEMS::
-@end menu
-@end ifinfo
-
-@ifinfo
-@node Interrupt Processing Introduction, Interrupt Processing Vectoring of Interrupt Handler, Interrupt Processing, Interrupt Processing
-@end ifinfo
-@section Introduction
-
-Different types of processors respond to the
-occurence of an interrupt in their own unique fashion. In
-addition, each processor type provides a control mechanism to
-allow for the proper handling of an interrupt. The processor
-dependent response to the interrupt modifies the current
-execution state and results in a change in the execution stream.
-Most processors require that an interrupt handler utilize some
-special control mechanisms to return to the normal processing
-stream. Although RTEMS hides many of the processor dependent
-details of interrupt processing, it is important to understand
-how the RTEMS interrupt manager is mapped onto the processor's
-unique architecture. Discussed in this chapter are the PA-RISC's
-interrupt response and control mechanisms as they pertain to
-RTEMS.
-
-@ifinfo
-@node Interrupt Processing Vectoring of Interrupt Handler, Interrupt Processing Interrupt Stack Frame, Interrupt Processing Introduction, Interrupt Processing
-@end ifinfo
-@section Vectoring of Interrupt Handler
-
-Upon receipt of an interrupt the PA-RISC
-automatically performs the following actions:
-
-@itemize @bullet
-@item The PSW (Program Status Word) is saved in the IPSW
-(Interrupt Program Status Word).
-
-@item The current privilege level is set to 0.
-
-@item The following defined bits in the PSW are set:
-
-@item E bit is set to the default endian bit
-
-@item M bit is set to 1 if the interrupt is a high-priority
-machine check and 0 otherwise
-
-@item Q bit is set to zero thuse freezing the IIA
-(Instruction Address) queues
-
-@item C and D bits are set to zero thus disabling all
-protection and translation.
-
-@item I bit is set to zero this disabling all external,
-powerfail, and low-priority machine check interrupts.
-
-@item All others bits are set to zero.
-
-@item General purpose registers r1, r8, r9, r16, r17, r24, and
-r25 are copied to the shadow registers.
-
-@item Execution begins at the address given by the formula:
-Interruption Vector Address + (32 * interrupt vector number).
-@end itemize
-
-Once the processor has completed the actions it is is
-required to perform for each interrupt, the RTEMS interrupt
-management code (the beginning of which is stored in the
-Interruption Vector Table) gains control and performs the
-following actions upon each interrupt:
-
-@itemize @bullet
-@item returns the processor to "virtual mode" thus reenabling
-all code and data address translation.
-
-@item saves all necessary interrupt state information
-
-@item saves all floating point registers
-
-@item saves all integer registers
-
-@item switches the current stack to the interrupt stack
-
-@item dispatches to the appropriate user provided interrupt
-service routine (ISR). If the ISR was installed with the
-interrupt_catch directive, then it will be executed at this.
-Because, the RTEMS interrupt handler saves all registers which
-are not preserved according to the calling conventions and
-invokes the application's ISR, the ISR can easily be written in
-a high-level language.
-@end itemize
-
-RTEMS refers to the combination of the interrupt
-state information and registers saved when vectoring an
-interrupt as the Interrupt Stack Frame (ISF). A nested
-interrupt is processed similarly by the PA-RISC and RTEMS with
-the exception that the nested interrupt occurred while executing
-on the interrupt stack and, thus, the current stack need not be
-switched.
-
-@ifinfo
-@node Interrupt Processing Interrupt Stack Frame, Interrupt Processing External Interrupts and Traps, Interrupt Processing Vectoring of Interrupt Handler, Interrupt Processing
-@end ifinfo
-@section Interrupt Stack Frame
-
-The PA-RISC architecture does not alter the stack
-while processing interrupts. However, RTEMS does save
-information on the stack as part of processing an interrupt.
-This following shows the format of the Interrupt Stack Frame for
-the PA-RISC as defined by RTEMS:
-
-@example
-@group
- +------------------------+
- | Interrupt Context | 0xXXX
- +------------------------+
- | Integer Context | 0xXXX
- +------------------------+
- | Floating Point Context | 0xXXX
- +------------------------+
-@end group
-@end example
-
-@ifinfo
-@node Interrupt Processing External Interrupts and Traps, Interrupt Processing Interrupt Levels, Interrupt Processing Interrupt Stack Frame, Interrupt Processing
-@end ifinfo
-@section External Interrupts and Traps
-
-In addition to the thirty-two unique interrupt
-sources supported by the PA-RISC architecture, RTEMS also
-supports the installation of handlers for each of the thirty-two
-external interrupts supported by the PA-RISC architecture.
-Except for interrupt vector 4, each of the interrupt vectors 0
-through 31 may be associated with a user-provided interrupt
-handler. Interrupt vector 4 is used for external interrupts.
-When an external interrupt occurs, the RTEMS external interrupt
-handler is invoked and the actual interrupt source is indicated
-by status bits in the EIR (External Interrupt Request) register.
-The RTEMS external interrupt handler (or interrupt vector four)
-examines the EIR to determine which interrupt source requires
-servicing.
-
-RTEMS supports sixty-four interrupt vectors for the
-PA-RISC. Vectors 0 through 31 map to the normal interrupt
-sources while RTEMS interrupt vectors 32 through 63 are directly
-associated with the external interrupt sources indicated by bits
-0 through 31 in the EIR.
-
-The exact set of interrupt sources which are checked
-for by the RTEMS external interrupt handler and the order in
-which they are checked are configured by the user in the CPU
-Configuration Table. If an external interrupt occurs which does
-not have a handler configured, then the spurious interrupt
-handler will be invoked. The spurious interrupt handler may
-also be specifiec by the user in the CPU Configuration Table.
-
-@ifinfo
-@node Interrupt Processing Interrupt Levels, Interrupt Processing Disabling of Interrupts by RTEMS, Interrupt Processing External Interrupts and Traps, Interrupt Processing
-@end ifinfo
-@section Interrupt Levels
-
-Two levels (enabled and disabled) of interrupt
-priorities are supported by the PA-RISC architecture. Level
-zero (0) indicates that interrupts are fully enabled (i.e. the I
-bit of the PSW is 1). Level one (1) indicates that interrupts
-are disabled (i.e. the I bit of the PSW is 0). Thirty-two
-independent sources of external interrupts are supported by the
-PA-RISC architecture. Each of these interrupts sources may be
-individually enabled or disabled. When processor interrupts are
-disabled, all sources of external interrupts are ignored. When
-processor interrupts are enabled, the EIR (External Interrupt
-Request) register is used to determine which sources are
-currently allowed to generate interrupts.
-
-Although RTEMS supports 256 interrupt levels, the
-PA-RISC architecture only supports two. RTEMS interrupt level 0
-indicates that interrupts are enabled and level 1 indicates that
-interrupts are disabled. All other RTEMS interrupt levels are
-undefined and their behavior is unpredictable.
-
-@ifinfo
-@node Interrupt Processing Disabling of Interrupts by RTEMS, Default Fatal Error Processing, Interrupt Processing Interrupt Levels, Interrupt Processing
-@end ifinfo
-@section Disabling of Interrupts by RTEMS
-
-During the execution of directive calls, critical
-sections of code may be executed. When these sections are
-encountered, RTEMS disables external interrupts by setting the I
-bit in the PSW to 0 before the execution of this section and
-restores them to the previous level upon completion of the
-section. RTEMS has been optimized to insure that interrupts are
-disabled for less than XXX instructions when compiled with GNU
-CC at optimization level 4. The exact execution time will vary
-based on the based on the processor implementation, amount of
-cache, the number of wait states for primary memory, and
-processor speed present on the target board.
-
-Non-maskable interrupts (NMI) such as high-priority
-machine checks cannot be disabled, and ISRs which execute at
-this level MUST NEVER issue RTEMS system calls. If a directive
-is invoked, unpredictable results may occur due to the inability
-of RTEMS to protect its critical sections. However, ISRs that
-make no system calls may safely execute as non-maskable
-interrupts.
-
diff --git a/doc/supplements/hppa1_1/memmodel.t b/doc/supplements/hppa1_1/memmodel.t
index 9efece3c62..b246998e75 100644
--- a/doc/supplements/hppa1_1/memmodel.t
+++ b/doc/supplements/hppa1_1/memmodel.t
@@ -6,20 +6,8 @@
@c $Id$
@c
-@ifinfo
-@node Memory Model, Memory Model Introduction, Calling Conventions User-Provided Routines, Top
-@end ifinfo
@chapter Memory Model
-@ifinfo
-@menu
-* Memory Model Introduction::
-* Memory Model Flat Memory Model::
-@end menu
-@end ifinfo
-@ifinfo
-@node Memory Model Introduction, Memory Model Flat Memory Model, Memory Model, Memory Model
-@end ifinfo
@section Introduction
A processor may support any combination of memory
@@ -31,9 +19,6 @@ memory of any kind. The appropriate memory model for RTEMS
provided by the targeted processor and related characteristics
of that model are described in this chapter.
-@ifinfo
-@node Memory Model Flat Memory Model, Interrupt Processing, Memory Model Introduction, Memory Model
-@end ifinfo
@section Flat Memory Model
RTEMS supports applications in which the application
diff --git a/doc/supplements/hppa1_1/memmodel.texi b/doc/supplements/hppa1_1/memmodel.texi
index 9efece3c62..b246998e75 100644
--- a/doc/supplements/hppa1_1/memmodel.texi
+++ b/doc/supplements/hppa1_1/memmodel.texi
@@ -6,20 +6,8 @@
@c $Id$
@c
-@ifinfo
-@node Memory Model, Memory Model Introduction, Calling Conventions User-Provided Routines, Top
-@end ifinfo
@chapter Memory Model
-@ifinfo
-@menu
-* Memory Model Introduction::
-* Memory Model Flat Memory Model::
-@end menu
-@end ifinfo
-@ifinfo
-@node Memory Model Introduction, Memory Model Flat Memory Model, Memory Model, Memory Model
-@end ifinfo
@section Introduction
A processor may support any combination of memory
@@ -31,9 +19,6 @@ memory of any kind. The appropriate memory model for RTEMS
provided by the targeted processor and related characteristics
of that model are described in this chapter.
-@ifinfo
-@node Memory Model Flat Memory Model, Interrupt Processing, Memory Model Introduction, Memory Model
-@end ifinfo
@section Flat Memory Model
RTEMS supports applications in which the application