summaryrefslogtreecommitdiffstats
path: root/freebsd/sys/opencrypto/skipjack.c
blob: e22044ff74446aa47040209ef660c37ce00379a7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#include <machine/rtems-bsd-kernel-space.h>

/*	$OpenBSD: skipjack.c,v 1.3 2001/05/05 00:31:34 angelos Exp $	*/
/*-
 * Further optimized test implementation of SKIPJACK algorithm 
 * Mark Tillotson <markt@chaos.org.uk>, 25 June 98
 * Optimizations suit RISC (lots of registers) machine best.
 *
 * based on unoptimized implementation of
 * Panu Rissanen <bande@lut.fi> 960624
 *
 * SKIPJACK and KEA Algorithm Specifications 
 * Version 2.0 
 * 29 May 1998
*/

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <rtems/bsd/sys/param.h>

#include <opencrypto/skipjack.h>

static const u_int8_t ftable[0x100] =
{ 
	0xa3, 0xd7, 0x09, 0x83, 0xf8, 0x48, 0xf6, 0xf4, 
	0xb3, 0x21, 0x15, 0x78, 0x99, 0xb1, 0xaf, 0xf9, 
	0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e, 
	0x52, 0x95, 0xd9, 0x1e, 0x4e, 0x38, 0x44, 0x28, 
	0x0a, 0xdf, 0x02, 0xa0, 0x17, 0xf1, 0x60, 0x68, 
	0x12, 0xb7, 0x7a, 0xc3, 0xe9, 0xfa, 0x3d, 0x53, 
	0x96, 0x84, 0x6b, 0xba, 0xf2, 0x63, 0x9a, 0x19, 
	0x7c, 0xae, 0xe5, 0xf5, 0xf7, 0x16, 0x6a, 0xa2, 
	0x39, 0xb6, 0x7b, 0x0f, 0xc1, 0x93, 0x81, 0x1b, 
	0xee, 0xb4, 0x1a, 0xea, 0xd0, 0x91, 0x2f, 0xb8, 
	0x55, 0xb9, 0xda, 0x85, 0x3f, 0x41, 0xbf, 0xe0, 
	0x5a, 0x58, 0x80, 0x5f, 0x66, 0x0b, 0xd8, 0x90, 
	0x35, 0xd5, 0xc0, 0xa7, 0x33, 0x06, 0x65, 0x69, 
	0x45, 0x00, 0x94, 0x56, 0x6d, 0x98, 0x9b, 0x76, 
	0x97, 0xfc, 0xb2, 0xc2, 0xb0, 0xfe, 0xdb, 0x20, 
	0xe1, 0xeb, 0xd6, 0xe4, 0xdd, 0x47, 0x4a, 0x1d, 
	0x42, 0xed, 0x9e, 0x6e, 0x49, 0x3c, 0xcd, 0x43, 
	0x27, 0xd2, 0x07, 0xd4, 0xde, 0xc7, 0x67, 0x18, 
	0x89, 0xcb, 0x30, 0x1f, 0x8d, 0xc6, 0x8f, 0xaa, 
	0xc8, 0x74, 0xdc, 0xc9, 0x5d, 0x5c, 0x31, 0xa4, 
	0x70, 0x88, 0x61, 0x2c, 0x9f, 0x0d, 0x2b, 0x87, 
	0x50, 0x82, 0x54, 0x64, 0x26, 0x7d, 0x03, 0x40, 
	0x34, 0x4b, 0x1c, 0x73, 0xd1, 0xc4, 0xfd, 0x3b, 
	0xcc, 0xfb, 0x7f, 0xab, 0xe6, 0x3e, 0x5b, 0xa5, 
	0xad, 0x04, 0x23, 0x9c, 0x14, 0x51, 0x22, 0xf0, 
	0x29, 0x79, 0x71, 0x7e, 0xff, 0x8c, 0x0e, 0xe2, 
	0x0c, 0xef, 0xbc, 0x72, 0x75, 0x6f, 0x37, 0xa1, 
	0xec, 0xd3, 0x8e, 0x62, 0x8b, 0x86, 0x10, 0xe8, 
	0x08, 0x77, 0x11, 0xbe, 0x92, 0x4f, 0x24, 0xc5, 
	0x32, 0x36, 0x9d, 0xcf, 0xf3, 0xa6, 0xbb, 0xac, 
	0x5e, 0x6c, 0xa9, 0x13, 0x57, 0x25, 0xb5, 0xe3, 
	0xbd, 0xa8, 0x3a, 0x01, 0x05, 0x59, 0x2a, 0x46
};

/*
 * For each key byte generate a table to represent the function 
 *    ftable [in ^ keybyte]
 *
 * These tables used to save an XOR in each stage of the G-function
 * the tables are hopefully pointed to by register allocated variables
 * k0, k1..k9
 */

void
subkey_table_gen (u_int8_t *key, u_int8_t **key_tables)
{
	int i, k;

	for (k = 0; k < 10; k++) {
		u_int8_t   key_byte = key [k];
		u_int8_t * table = key_tables[k];
		for (i = 0; i < 0x100; i++)
			table [i] = ftable [i ^ key_byte];
	}
}


#define g(k0, k1, k2, k3, ih, il, oh, ol) \
{ \
	oh = k##k0 [il] ^ ih; \
	ol = k##k1 [oh] ^ il; \
	oh = k##k2 [ol] ^ oh; \
	ol = k##k3 [oh] ^ ol; \
}

#define g0(ih, il, oh, ol) g(0, 1, 2, 3, ih, il, oh, ol)
#define g4(ih, il, oh, ol) g(4, 5, 6, 7, ih, il, oh, ol)
#define g8(ih, il, oh, ol) g(8, 9, 0, 1, ih, il, oh, ol)
#define g2(ih, il, oh, ol) g(2, 3, 4, 5, ih, il, oh, ol)
#define g6(ih, il, oh, ol) g(6, 7, 8, 9, ih, il, oh, ol)

 
#define g_inv(k0, k1, k2, k3, ih, il, oh, ol) \
{ \
	ol = k##k3 [ih] ^ il; \
	oh = k##k2 [ol] ^ ih; \
	ol = k##k1 [oh] ^ ol; \
	oh = k##k0 [ol] ^ oh; \
}


#define g0_inv(ih, il, oh, ol) g_inv(0, 1, 2, 3, ih, il, oh, ol)
#define g4_inv(ih, il, oh, ol) g_inv(4, 5, 6, 7, ih, il, oh, ol)
#define g8_inv(ih, il, oh, ol) g_inv(8, 9, 0, 1, ih, il, oh, ol)
#define g2_inv(ih, il, oh, ol) g_inv(2, 3, 4, 5, ih, il, oh, ol)
#define g6_inv(ih, il, oh, ol) g_inv(6, 7, 8, 9, ih, il, oh, ol)

/* optimized version of Skipjack algorithm
 *
 * the appropriate g-function is inlined for each round
 *
 * the data movement is minimized by rotating the names of the 
 * variables w1..w4, not their contents (saves 3 moves per round)
 *
 * the loops are completely unrolled (needed to staticize choice of g)
 *
 * compiles to about 470 instructions on a Sparc (gcc -O)
 * which is about 58 instructions per byte, 14 per round.
 * gcc seems to leave in some unnecessary and with 0xFF operations
 * but only in the latter part of the functions.  Perhaps it
 * runs out of resources to properly optimize long inlined function?
 * in theory should get about 11 instructions per round, not 14
 */

void
skipjack_forwards(u_int8_t *plain, u_int8_t *cipher, u_int8_t **key_tables)
{
	u_int8_t wh1 = plain[0];  u_int8_t wl1 = plain[1];
	u_int8_t wh2 = plain[2];  u_int8_t wl2 = plain[3];
	u_int8_t wh3 = plain[4];  u_int8_t wl3 = plain[5];
	u_int8_t wh4 = plain[6];  u_int8_t wl4 = plain[7];

	u_int8_t * k0 = key_tables [0];
	u_int8_t * k1 = key_tables [1];
	u_int8_t * k2 = key_tables [2];
	u_int8_t * k3 = key_tables [3];
	u_int8_t * k4 = key_tables [4];
	u_int8_t * k5 = key_tables [5];
	u_int8_t * k6 = key_tables [6];
	u_int8_t * k7 = key_tables [7];
	u_int8_t * k8 = key_tables [8];
	u_int8_t * k9 = key_tables [9];

	/* first 8 rounds */
	g0 (wh1,wl1, wh1,wl1); wl4 ^= wl1 ^ 1; wh4 ^= wh1;
	g4 (wh4,wl4, wh4,wl4); wl3 ^= wl4 ^ 2; wh3 ^= wh4;
	g8 (wh3,wl3, wh3,wl3); wl2 ^= wl3 ^ 3; wh2 ^= wh3;
	g2 (wh2,wl2, wh2,wl2); wl1 ^= wl2 ^ 4; wh1 ^= wh2;
	g6 (wh1,wl1, wh1,wl1); wl4 ^= wl1 ^ 5; wh4 ^= wh1;
	g0 (wh4,wl4, wh4,wl4); wl3 ^= wl4 ^ 6; wh3 ^= wh4;
	g4 (wh3,wl3, wh3,wl3); wl2 ^= wl3 ^ 7; wh2 ^= wh3;
	g8 (wh2,wl2, wh2,wl2); wl1 ^= wl2 ^ 8; wh1 ^= wh2;

	/* second 8 rounds */
	wh2 ^= wh1; wl2 ^= wl1 ^ 9 ; g2 (wh1,wl1, wh1,wl1);
	wh1 ^= wh4; wl1 ^= wl4 ^ 10; g6 (wh4,wl4, wh4,wl4);
	wh4 ^= wh3; wl4 ^= wl3 ^ 11; g0 (wh3,wl3, wh3,wl3);
	wh3 ^= wh2; wl3 ^= wl2 ^ 12; g4 (wh2,wl2, wh2,wl2);
	wh2 ^= wh1; wl2 ^= wl1 ^ 13; g8 (wh1,wl1, wh1,wl1);
	wh1 ^= wh4; wl1 ^= wl4 ^ 14; g2 (wh4,wl4, wh4,wl4);
	wh4 ^= wh3; wl4 ^= wl3 ^ 15; g6 (wh3,wl3, wh3,wl3);
	wh3 ^= wh2; wl3 ^= wl2 ^ 16; g0 (wh2,wl2, wh2,wl2);

	/* third 8 rounds */
	g4 (wh1,wl1, wh1,wl1); wl4 ^= wl1 ^ 17; wh4 ^= wh1;
	g8 (wh4,wl4, wh4,wl4); wl3 ^= wl4 ^ 18; wh3 ^= wh4;
	g2 (wh3,wl3, wh3,wl3); wl2 ^= wl3 ^ 19; wh2 ^= wh3;
	g6 (wh2,wl2, wh2,wl2); wl1 ^= wl2 ^ 20; wh1 ^= wh2;
	g0 (wh1,wl1, wh1,wl1); wl4 ^= wl1 ^ 21; wh4 ^= wh1;
	g4 (wh4,wl4, wh4,wl4); wl3 ^= wl4 ^ 22; wh3 ^= wh4;
	g8 (wh3,wl3, wh3,wl3); wl2 ^= wl3 ^ 23; wh2 ^= wh3;
	g2 (wh2,wl2, wh2,wl2); wl1 ^= wl2 ^ 24; wh1 ^= wh2;

	/* last 8 rounds */
	wh2 ^= wh1; wl2 ^= wl1 ^ 25; g6 (wh1,wl1, wh1,wl1);
	wh1 ^= wh4; wl1 ^= wl4 ^ 26; g0 (wh4,wl4, wh4,wl4);
	wh4 ^= wh3; wl4 ^= wl3 ^ 27; g4 (wh3,wl3, wh3,wl3);
	wh3 ^= wh2; wl3 ^= wl2 ^ 28; g8 (wh2,wl2, wh2,wl2);
	wh2 ^= wh1; wl2 ^= wl1 ^ 29; g2 (wh1,wl1, wh1,wl1);
	wh1 ^= wh4; wl1 ^= wl4 ^ 30; g6 (wh4,wl4, wh4,wl4);
	wh4 ^= wh3; wl4 ^= wl3 ^ 31; g0 (wh3,wl3, wh3,wl3);
	wh3 ^= wh2; wl3 ^= wl2 ^ 32; g4 (wh2,wl2, wh2,wl2);

	/* pack into byte vector */
	cipher [0] = wh1;  cipher [1] = wl1;
	cipher [2] = wh2;  cipher [3] = wl2;
	cipher [4] = wh3;  cipher [5] = wl3;
	cipher [6] = wh4;  cipher [7] = wl4;
}


void
skipjack_backwards (u_int8_t *cipher, u_int8_t *plain, u_int8_t **key_tables)
{
	/* setup 4 16-bit portions */
	u_int8_t wh1 = cipher[0];  u_int8_t wl1 = cipher[1];
	u_int8_t wh2 = cipher[2];  u_int8_t wl2 = cipher[3];
	u_int8_t wh3 = cipher[4];  u_int8_t wl3 = cipher[5];
	u_int8_t wh4 = cipher[6];  u_int8_t wl4 = cipher[7];

	u_int8_t * k0 = key_tables [0];
	u_int8_t * k1 = key_tables [1];
	u_int8_t * k2 = key_tables [2];
	u_int8_t * k3 = key_tables [3];
	u_int8_t * k4 = key_tables [4];
	u_int8_t * k5 = key_tables [5];
	u_int8_t * k6 = key_tables [6];
	u_int8_t * k7 = key_tables [7];
	u_int8_t * k8 = key_tables [8];
	u_int8_t * k9 = key_tables [9];

	/* first 8 rounds */
	g4_inv (wh2,wl2, wh2,wl2); wl3 ^= wl2 ^ 32; wh3 ^= wh2;
	g0_inv (wh3,wl3, wh3,wl3); wl4 ^= wl3 ^ 31; wh4 ^= wh3;
	g6_inv (wh4,wl4, wh4,wl4); wl1 ^= wl4 ^ 30; wh1 ^= wh4;
	g2_inv (wh1,wl1, wh1,wl1); wl2 ^= wl1 ^ 29; wh2 ^= wh1;
	g8_inv (wh2,wl2, wh2,wl2); wl3 ^= wl2 ^ 28; wh3 ^= wh2;
	g4_inv (wh3,wl3, wh3,wl3); wl4 ^= wl3 ^ 27; wh4 ^= wh3;
	g0_inv (wh4,wl4, wh4,wl4); wl1 ^= wl4 ^ 26; wh1 ^= wh4;
	g6_inv (wh1,wl1, wh1,wl1); wl2 ^= wl1 ^ 25; wh2 ^= wh1;

	/* second 8 rounds */
	wh1 ^= wh2; wl1 ^= wl2 ^ 24; g2_inv (wh2,wl2, wh2,wl2);
	wh2 ^= wh3; wl2 ^= wl3 ^ 23; g8_inv (wh3,wl3, wh3,wl3);
	wh3 ^= wh4; wl3 ^= wl4 ^ 22; g4_inv (wh4,wl4, wh4,wl4);
	wh4 ^= wh1; wl4 ^= wl1 ^ 21; g0_inv (wh1,wl1, wh1,wl1);
	wh1 ^= wh2; wl1 ^= wl2 ^ 20; g6_inv (wh2,wl2, wh2,wl2);
	wh2 ^= wh3; wl2 ^= wl3 ^ 19; g2_inv (wh3,wl3, wh3,wl3);
	wh3 ^= wh4; wl3 ^= wl4 ^ 18; g8_inv (wh4,wl4, wh4,wl4);
	wh4 ^= wh1; wl4 ^= wl1 ^ 17; g4_inv (wh1,wl1, wh1,wl1);

	/* third 8 rounds */
	g0_inv (wh2,wl2, wh2,wl2); wl3 ^= wl2 ^ 16; wh3 ^= wh2;
	g6_inv (wh3,wl3, wh3,wl3); wl4 ^= wl3 ^ 15; wh4 ^= wh3;
	g2_inv (wh4,wl4, wh4,wl4); wl1 ^= wl4 ^ 14; wh1 ^= wh4;
	g8_inv (wh1,wl1, wh1,wl1); wl2 ^= wl1 ^ 13; wh2 ^= wh1;
	g4_inv (wh2,wl2, wh2,wl2); wl3 ^= wl2 ^ 12; wh3 ^= wh2;
	g0_inv (wh3,wl3, wh3,wl3); wl4 ^= wl3 ^ 11; wh4 ^= wh3;
	g6_inv (wh4,wl4, wh4,wl4); wl1 ^= wl4 ^ 10; wh1 ^= wh4;
	g2_inv (wh1,wl1, wh1,wl1); wl2 ^= wl1 ^ 9;  wh2 ^= wh1;

	/* last 8 rounds */
	wh1 ^= wh2; wl1 ^= wl2 ^ 8; g8_inv (wh2,wl2, wh2,wl2);
	wh2 ^= wh3; wl2 ^= wl3 ^ 7; g4_inv (wh3,wl3, wh3,wl3);
	wh3 ^= wh4; wl3 ^= wl4 ^ 6; g0_inv (wh4,wl4, wh4,wl4);
	wh4 ^= wh1; wl4 ^= wl1 ^ 5; g6_inv (wh1,wl1, wh1,wl1);
	wh1 ^= wh2; wl1 ^= wl2 ^ 4; g2_inv (wh2,wl2, wh2,wl2);
	wh2 ^= wh3; wl2 ^= wl3 ^ 3; g8_inv (wh3,wl3, wh3,wl3);
	wh3 ^= wh4; wl3 ^= wl4 ^ 2; g4_inv (wh4,wl4, wh4,wl4);
	wh4 ^= wh1; wl4 ^= wl1 ^ 1; g0_inv (wh1,wl1, wh1,wl1);

	/* pack into byte vector */
	plain [0] = wh1;  plain [1] = wl1;
	plain [2] = wh2;  plain [3] = wl2;
	plain [4] = wh3;  plain [5] = wl3;
	plain [6] = wh4;  plain [7] = wl4;
}