/** * @file * * @ingroup rtems_bsd_machine * * @brief TODO. * * File origin from FreeBSD 'sys/amd64/include/bus.h'. * * Conditionally supports PCI IO regions (IO Ports). */ /*- * Copyright (c) 2021 Chris Johns. All rights reserved. * * Copyright (c) 2009, 2015 embedded brains GmbH. All rights reserved. * * embedded brains GmbH * Dornierstr. 4 * 82178 Puchheim * Germany * * * Copyright (c) KATO Takenori, 1999. * * All rights reserved. Unpublished rights reserved under the copyright * laws of Japan. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer as * the first lines of this file unmodified. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1996 Charles M. Hannum. All rights reserved. * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Christopher G. Demetriou * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _RTEMS_BSD_MACHINE_BUS_H_ #define _RTEMS_BSD_MACHINE_BUS_H_ #ifndef _RTEMS_BSD_MACHINE_RTEMS_BSD_KERNEL_SPACE_H_ #error "the header file must be included first" #endif #ifdef __i386__ #error "x86 has its own bus.h; check your include paths are correct" #endif #include /* * BSP PCI Support * * The RTEMS Nexus bus support can optionaly support PC PCI spaces that * mapped to BSP speciic address spaces. Add the following define to * the BSP header file to enable this support: * * #define BSP_HAS_PC_PCI * * If enabled a BSP must support the following IO region calls: * * inb : read 8 bits * outb : write 8 bits * inw : read 16 bits * outw : write 16 bits * inl : read 32 bits * outl : write 32 bits * * The BSP needs to provide the DRAM address space offset * PCI_DRAM_OFFSET. This is the base address of the DRAM as seen by a * PCI master. * * i386 BSPs have a special bus.h file and do not use this file. */ #ifdef BSP_HAS_PC_PCI /* * Values for the bus space tag, not to be used directly by MI code. */ #define BSP_BUS_SPACE_IO 0 /* space is i/o space */ #define BSP_BUS_SPACE_MEM 1 /* space is mem space */ #endif /* BSP_HAS_PC_PCI */ /* * Bus address alignment. */ #define BUS_SPACE_ALIGNED_POINTER(p, t) ALIGNED_POINTER(p, t) /* * Bus address maxima. */ #define BUS_SPACE_MAXADDR_24BIT 0xffffffU #define BUS_SPACE_MAXADDR_32BIT 0xffffffffU #define BUS_SPACE_MAXADDR UINTPTR_MAX #define BUS_SPACE_MAXSIZE_24BIT 0xffffffU #define BUS_SPACE_MAXSIZE_32BIT 0xffffffffU #define BUS_SPACE_MAXSIZE UINTPTR_MAX /* * Bus access. */ #define BUS_SPACE_INVALID_DATA (~0U) #define BUS_SPACE_UNRESTRICTED (~0U) /* * Bus read/write barrier method. */ #define BUS_SPACE_BARRIER_READ 0x01 /* force read barrier */ #define BUS_SPACE_BARRIER_WRITE 0x02 /* force write barrier */ /* * Bus address and size types */ typedef uintptr_t bus_addr_t; typedef uintptr_t bus_size_t; /* * Access methods for bus resources and address space. */ typedef int bus_space_tag_t; typedef uintptr_t bus_space_handle_t; /* * Map a region of device bus space into CPU virtual address space. */ static __inline int bus_space_map(bus_space_tag_t t __unused, bus_addr_t addr, bus_size_t size __unused, int flags __unused, bus_space_handle_t *bshp) { *bshp = addr; return (0); } /* * Unmap a region of device bus space. */ static __inline void bus_space_unmap(bus_space_tag_t bst __unused, bus_space_handle_t bsh __unused, bus_size_t size __unused) { /* Do nothing */ } /* * Get a new handle for a subregion of an already-mapped area of bus space. */ static __inline int bus_space_subregion(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, bus_size_t size, bus_space_handle_t *nbshp) { *nbshp = bsh + ofs; return (0); } /* * Allocate a region of memory that is accessible to devices in bus space. */ int bus_space_alloc(bus_space_tag_t bst __unused, bus_addr_t rstart, bus_addr_t rend, bus_size_t size, bus_size_t align, bus_size_t boundary, int flags, bus_addr_t *addrp, bus_space_handle_t *bshp); /* * Free a region of bus space accessible memory. */ void bus_space_free(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t size); static __inline void bus_space_barrier(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, bus_size_t size, int flags) { /* Do nothing */ } /* * BSP Bus Space Map Support * * A BSP can provide the following as C macros in the BSP header * (bsp.h) to speicalise for special BSP specific bus operations: * * RTEMS_BSP_READ_1 * RTEMS_BSP_READ_2 * RTEMS_BSP_READ_4 * RTEMS_BSP_READ_8 * RTEMS_BSP_WRITE_1 * RTEMS_BSP_WRITE_2 * RTEMS_BSP_WRITE_4 * RTEMS_BSP_WRITE_8 */ static __inline uint8_t bsp_bus_space_read_1(const uint8_t __volatile *bsp) { #if defined(RTEMS_BSP_READ_1) return RTEMS_BSP_READ_1(bsp); #else return (*bsp); #endif } static __inline uint16_t bsp_bus_space_read_2(const uint16_t __volatile *bsp) { #if defined(RTEMS_BSP_READ_2) return RTEMS_BSP_READ_2(bsp); #else return (*bsp); #endif } static __inline uint32_t bsp_bus_space_read_4(const uint32_t __volatile *bsp) { #if defined(RTEMS_BSP_READ_4) return RTEMS_BSP_READ_4(bsp); #else return (*bsp); #endif } static __inline uint64_t bsp_bus_space_read_8(const uint64_t __volatile *bsp) { #if defined(RTEMS_BSP_READ_8) return RTEMS_BSP_READ_8(bsp); #else return (*bsp); #endif } static __inline void bsp_bus_space_write_1(uint8_t __volatile *bsp, uint8_t val) { #if defined(RTEMS_BSP_WRITE_1) RTEMS_BSP_WRITE_1(bsp, val); #else *bsp = val; #endif } static __inline void bsp_bus_space_write_2(uint16_t __volatile *bsp, uint16_t val) { #if defined(RTEMS_BSP_WRITE_2) RTEMS_BSP_WRITE_2(bsp, val); #else *bsp = val; #endif } static __inline void bsp_bus_space_write_4(uint32_t __volatile *bsp, uint32_t val) { #if defined(RTEMS_BSP_WRITE_4) RTEMS_BSP_WRITE_4(bsp, val); #else *bsp = val; #endif } static __inline void bsp_bus_space_write_8(uint64_t __volatile *bsp, uint64_t val) { #if defined(RTEMS_BSP_WRITE_8) RTEMS_BSP_WRITE_8(bsp, val); #else *bsp = val; #endif } /* * Read 1 unit of data from bus space described by the tag, handle and ofs * tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is returned. */ static __inline uint8_t bus_space_read_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs) { #ifdef BSP_HAS_PC_PCI if (bst == BSP_BUS_SPACE_IO) { return inb(bsh + ofs); } #endif uint8_t __volatile *bsp = (uint8_t __volatile *)(bsh + ofs); return bsp_bus_space_read_1(bsp); } static __inline uint16_t bus_space_read_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs) { #ifdef BSP_HAS_PC_PCI if (bst == BSP_BUS_SPACE_IO) { return inw(bsh + ofs); } #endif uint16_t __volatile *bsp = (uint16_t __volatile *)(bsh + ofs); return bsp_bus_space_read_2(bsp); } static __inline uint32_t bus_space_read_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs) { #ifdef BSP_HAS_PC_PCI if (bst == BSP_BUS_SPACE_IO) { return inl(bsh + ofs); } #endif uint32_t __volatile *bsp = (uint32_t __volatile *)(bsh + ofs); return bsp_bus_space_read_4(bsp); } static __inline uint64_t bus_space_read_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs) { #ifdef BSP_HAS_PC_PCI if (bst == BSP_BUS_SPACE_IO) return BUS_SPACE_INVALID_DATA; #endif uint64_t __volatile *bsp = (uint64_t __volatile *)(bsh + ofs); return bsp_bus_space_read_8(bsp); } /* * Write 1 unit of data to bus space described by the tag, handle and ofs * tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is passed by value. */ static __inline void bus_space_write_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint8_t val) { #ifdef BSP_HAS_PC_PCI if (bst == BSP_BUS_SPACE_IO) { outb(val, bsh + ofs); return; } #endif uint8_t __volatile *bsp = (uint8_t __volatile *)(bsh + ofs); bsp_bus_space_write_1(bsp, val); } static __inline void bus_space_write_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint16_t val) { #ifdef BSP_HAS_PC_PCI if (bst == BSP_BUS_SPACE_IO) { outw(val, bsh + ofs); return; } #endif uint16_t __volatile *bsp = (uint16_t __volatile *)(bsh + ofs); bsp_bus_space_write_2(bsp, val); } static __inline void bus_space_write_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint32_t val) { #ifdef BSP_HAS_PC_PCI if (bst == BSP_BUS_SPACE_IO) { outl(val, bsh + ofs); return; } #endif uint32_t __volatile *bsp = (uint32_t __volatile *)(bsh + ofs); bsp_bus_space_write_4(bsp, val); } static __inline void bus_space_write_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint64_t val) { #ifdef BSP_HAS_PC_PCI if (bst == BSP_BUS_SPACE_IO) { return; } #endif uint64_t __volatile *bsp = (uint64_t __volatile *)(bsh + ofs); bsp_bus_space_write_8(bsp, val); } /* * Read count units of data from bus space described by the tag, handle and * ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is returned in the buffer passed by reference. */ static __inline void bus_space_read_multi_1(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint8_t *bufp, bus_size_t count) { uint8_t __volatile *bsp = (uint8_t __volatile *)(bsh + ofs); while (count-- > 0) { *bufp++ = bsp_bus_space_read_1(bsp); } } static __inline void bus_space_read_multi_2(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint16_t *bufp, bus_size_t count) { uint16_t __volatile *bsp = (uint16_t __volatile *)(bsh + ofs); while (count-- > 0) { *bufp++ = bsp_bus_space_read_2(bsp); } } static __inline void bus_space_read_multi_4(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint32_t *bufp, bus_size_t count) { uint32_t __volatile *bsp = (uint32_t __volatile *)(bsh + ofs); while (count-- > 0) { *bufp++ = bsp_bus_space_read_4(bsp); } } static __inline void bus_space_read_multi_8(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint64_t *bufp, bus_size_t count) { uint64_t __volatile *bsp = (uint64_t __volatile *)(bsh + ofs); while (count-- > 0) { *bufp++ = bsp_bus_space_read_8(bsp); } } /* * Write count units of data to bus space described by the tag, handle and * ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is read from the buffer passed by reference. */ static __inline void bus_space_write_multi_1(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, const uint8_t *bufp, bus_size_t count) { uint8_t __volatile *bsp = (uint8_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_1(bsp, *bufp++); } } static __inline void bus_space_write_multi_2(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, const uint16_t *bufp, bus_size_t count) { uint16_t __volatile *bsp = (uint16_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_2(bsp, *bufp++); } } static __inline void bus_space_write_multi_4(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, const uint32_t *bufp, bus_size_t count) { uint32_t __volatile *bsp = (uint32_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_4(bsp, *bufp++); } } static __inline void bus_space_write_multi_8(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, const uint64_t *bufp, bus_size_t count) { uint64_t __volatile *bsp = (uint64_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_8(bsp, *bufp++); } } /* * Read count units of data from bus space described by the tag, handle and * ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is written to the buffer passed by reference and read from successive * bus space addresses. Access is unordered. */ static __inline void bus_space_read_region_1(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint8_t *bufp, bus_size_t count) { uint8_t __volatile *bsp = (uint8_t __volatile *)(bsh + ofs); while (count-- > 0) { *bufp++ = bsp_bus_space_read_1(bsp++); } } static __inline void bus_space_read_region_2(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint16_t *bufp, bus_size_t count) { uint16_t __volatile *bsp = (uint16_t __volatile *)(bsh + ofs); while (count-- > 0) { *bufp++ = bsp_bus_space_read_2(bsp++); } } static __inline void bus_space_read_region_4(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint32_t *bufp, bus_size_t count) { uint32_t __volatile *bsp = (uint32_t __volatile *)(bsh + ofs); while (count-- > 0) { *bufp++ = bsp_bus_space_read_4(bsp++); } } static __inline void bus_space_read_region_8(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint64_t *bufp, bus_size_t count) { uint64_t __volatile *bsp = (uint64_t __volatile *)(bsh + ofs); while (count-- > 0) { *bufp++ = bsp_bus_space_read_8(bsp++); } } /* * Write count units of data from bus space described by the tag, handle and * ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is read from the buffer passed by reference and written to successive * bus space addresses. Access is unordered. */ static __inline void bus_space_write_region_1(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, const uint8_t *bufp, bus_size_t count) { uint8_t __volatile *bsp = (uint8_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_1(bsp++, *bufp++); } } static __inline void bus_space_write_region_2(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, const uint16_t *bufp, bus_size_t count) { uint16_t __volatile *bsp = (uint16_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_2(bsp++, *bufp++); } } static __inline void bus_space_write_region_4(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, const uint32_t *bufp, bus_size_t count) { uint32_t __volatile *bsp = (uint32_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_4(bsp++, *bufp++); } } static __inline void bus_space_write_region_8(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, const uint64_t *bufp, bus_size_t count) { uint64_t __volatile *bsp = (uint64_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_8(bsp++, *bufp++); } } /* * Write count units of data from bus space described by the tag, handle and * ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is passed by value. Writes are unordered. */ static __inline void bus_space_set_multi_1(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint8_t val, bus_size_t count) { uint8_t __volatile *bsp = (uint8_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_1(bsp, val); } } static __inline void bus_space_set_multi_2(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint16_t val, bus_size_t count) { uint16_t __volatile *bsp = (uint16_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_2(bsp, val); } } static __inline void bus_space_set_multi_4(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint32_t val, bus_size_t count) { uint32_t __volatile *bsp = (uint32_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_4(bsp, val); } } static __inline void bus_space_set_multi_8(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint64_t val, bus_size_t count) { uint64_t __volatile *bsp = (uint64_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_8(bsp, val); } } /* * Write count units of data from bus space described by the tag, handle and * ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is passed by value and written to successive bus space addresses. * Writes are unordered. */ static __inline void bus_space_set_region_1(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint8_t val, bus_size_t count) { uint8_t __volatile *bsp = (uint8_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_1(bsp++, val); } } static __inline void bus_space_set_region_2(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint16_t val, bus_size_t count) { uint16_t __volatile *bsp = (uint16_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_2(bsp++, val); } } static __inline void bus_space_set_region_4(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint32_t val, bus_size_t count) { uint32_t __volatile *bsp = (uint32_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_4(bsp++, val); } } static __inline void bus_space_set_region_8(bus_space_tag_t bst __unused, bus_space_handle_t bsh, bus_size_t ofs, uint64_t val, bus_size_t count) { uint64_t __volatile *bsp = (uint64_t __volatile *)(bsh + ofs); while (count-- > 0) { bsp_bus_space_write_8(bsp++, val); } } /* * Copy count units of data from bus space described by the tag and the first * handle and ofs pair to bus space described by the tag and the second handle * and ofs pair. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. * The data is read from successive bus space addresses and also written to * successive bus space addresses. Both reads and writes are unordered. */ static __inline void bus_space_copy_region_1(bus_space_tag_t bst __unused, bus_space_handle_t bsh1, bus_size_t ofs1, bus_space_handle_t bsh2, bus_size_t ofs2, bus_size_t count) { uint8_t __volatile *dst = (uint8_t __volatile *)(bsh1 + ofs1); uint8_t __volatile *src = (uint8_t __volatile *)(bsh2 + ofs2); if (dst > src) { src += count - 1; dst += count - 1; while (count-- > 0) { bsp_bus_space_write_1(dst, bsp_bus_space_read_1(src)); src--; dst--; } } else { while (count-- > 0) { bsp_bus_space_write_1(dst, bsp_bus_space_read_1(src)); src++; dst++; } } } static __inline void bus_space_copy_region_2(bus_space_tag_t bst __unused, bus_space_handle_t bsh1, bus_size_t ofs1, bus_space_handle_t bsh2, bus_size_t ofs2, bus_size_t count) { uint16_t __volatile *dst = (uint16_t __volatile *)(bsh1 + ofs1); uint16_t __volatile *src = (uint16_t __volatile *)(bsh2 + ofs2);; if (dst > src) { src += count - 1; dst += count - 1; while (count-- > 0) { bsp_bus_space_write_2(dst, bsp_bus_space_read_2(src)); src--; dst--; } } else { while (count-- > 0) { bsp_bus_space_write_2(dst, bsp_bus_space_read_2(src)); src++; dst++; } } } static __inline void bus_space_copy_region_4(bus_space_tag_t bst __unused, bus_space_handle_t bsh1, bus_size_t ofs1, bus_space_handle_t bsh2, bus_size_t ofs2, bus_size_t count) { uint32_t __volatile *dst = (uint32_t __volatile *)(bsh1 + ofs1); uint32_t __volatile *src = (uint32_t __volatile *)(bsh2 + ofs2);; if (dst > src) { src += count - 1; dst += count - 1; while (count-- > 0) { bsp_bus_space_write_4(dst, bsp_bus_space_read_4(src)); src--; dst--; } } else { while (count-- > 0) { bsp_bus_space_write_4(dst, bsp_bus_space_read_4(src)); src++; dst++; } } } static __inline void bus_space_copy_region_8(bus_space_tag_t bst __unused, bus_space_handle_t bsh1, bus_size_t ofs1, bus_space_handle_t bsh2, bus_size_t ofs2, bus_size_t count) { uint64_t __volatile *dst = (uint64_t __volatile *)(bsh1 + ofs1); uint64_t __volatile *src = (uint64_t __volatile *)(bsh2 + ofs2);; if (dst > src) { src += count - 1; dst += count - 1; while (count-- > 0) { bsp_bus_space_write_8(dst, bsp_bus_space_read_8(src)); src--; dst--; } } else { while (count-- > 0) { bsp_bus_space_write_8(dst, bsp_bus_space_read_8(src)); src++; dst++; } } } /* * Stream accesses are the same as normal accesses on RTEMS; there are no * supported bus systems with an endianess different from the host one. */ #define bus_space_read_stream_1(t, h, o) \ bus_space_read_1(t, h, o) #define bus_space_read_stream_2(t, h, o) \ bus_space_read_2(t, h, o) #define bus_space_read_stream_4(t, h, o) \ bus_space_read_4(t, h, o) #define bus_space_read_stream_8(t, h, o) \ bus_space_read_8(t, h, o) #define bus_space_read_multi_stream_1(t, h, o, a, c) \ bus_space_read_multi_1(t, h, o, a, c) #define bus_space_read_multi_stream_2(t, h, o, a, c) \ bus_space_read_multi_2(t, h, o, a, c) #define bus_space_read_multi_stream_4(t, h, o, a, c) \ bus_space_read_multi_4(t, h, o, a, c) #define bus_space_read_multi_stream_8(t, h, o, a, c) \ bus_space_read_multi_8(t, h, o, a, c) #define bus_space_write_stream_1(t, h, o, v) \ bus_space_write_1(t, h, o, v) #define bus_space_write_stream_2(t, h, o, v) \ bus_space_write_2(t, h, o, v) #define bus_space_write_stream_4(t, h, o, v) \ bus_space_write_4(t, h, o, v) #define bus_space_write_stream_8(t, h, o, v) \ bus_space_write_8(t, h, o, v) #define bus_space_write_multi_stream_1(t, h, o, a, c) \ bus_space_write_multi_1(t, h, o, a, c) #define bus_space_write_multi_stream_2(t, h, o, a, c) \ bus_space_write_multi_2(t, h, o, a, c) #define bus_space_write_multi_stream_4(t, h, o, a, c) \ bus_space_write_multi_4(t, h, o, a, c) #define bus_space_write_multi_stream_8(t, h, o, a, c) \ bus_space_write_multi_8(t, h, o, a, c) #define bus_space_set_multi_stream_1(t, h, o, v, c) \ bus_space_set_multi_1(t, h, o, v, c) #define bus_space_set_multi_stream_2(t, h, o, v, c) \ bus_space_set_multi_2(t, h, o, v, c) #define bus_space_set_multi_stream_4(t, h, o, v, c) \ bus_space_set_multi_4(t, h, o, v, c) #define bus_space_set_multi_stream_8(t, h, o, v, c) \ bus_space_set_multi_8(t, h, o, v, c) #define bus_space_read_region_stream_1(t, h, o, a, c) \ bus_space_read_region_1(t, h, o, a, c) #define bus_space_read_region_stream_2(t, h, o, a, c) \ bus_space_read_region_2(t, h, o, a, c) #define bus_space_read_region_stream_4(t, h, o, a, c) \ bus_space_read_region_4(t, h, o, a, c) #define bus_space_read_region_stream_8(t, h, o, a, c) \ bus_space_read_region_8(t, h, o, a, c) #define bus_space_write_region_stream_1(t, h, o, a, c) \ bus_space_write_region_1(t, h, o, a, c) #define bus_space_write_region_stream_2(t, h, o, a, c) \ bus_space_write_region_2(t, h, o, a, c) #define bus_space_write_region_stream_4(t, h, o, a, c) \ bus_space_write_region_4(t, h, o, a, c) #define bus_space_write_region_stream_8(t, h, o, a, c) \ bus_space_write_region_8(t, h, o, a, c) #define bus_space_set_region_stream_1(t, h, o, v, c) \ bus_space_set_region_1(t, h, o, v, c) #define bus_space_set_region_stream_2(t, h, o, v, c) \ bus_space_set_region_2(t, h, o, v, c) #define bus_space_set_region_stream_4(t, h, o, v, c) \ bus_space_set_region_4(t, h, o, v, c) #define bus_space_set_region_stream_8(t, h, o, v, c) \ bus_space_set_region_8(t, h, o, v, c) #define bus_space_copy_region_stream_1(t, h1, o1, h2, o2, c) \ bus_space_copy_region_1(t, h1, o1, h2, o2, c) #define bus_space_copy_region_stream_2(t, h1, o1, h2, o2, c) \ bus_space_copy_region_2(t, h1, o1, h2, o2, c) #define bus_space_copy_region_stream_4(t, h1, o1, h2, o2, c) \ bus_space_copy_region_4(t, h1, o1, h2, o2, c) #define bus_space_copy_region_stream_8(t, h1, o1, h2, o2, c) \ bus_space_copy_region_8(t, h1, o1, h2, o2, c) #include #endif /* _RTEMS_BSD_MACHINE_BUS_H_ */