#include /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1980, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static const char copyright[] = "@(#) Copyright (c) 1980, 1986, 1991, 1993\n\ The Regents of the University of California. All rights reserved.\n"; #endif /* not lint */ #if 0 #ifndef lint static char sccsid[] = "@(#)vmstat.c 8.1 (Berkeley) 6/6/93"; #endif /* not lint */ #endif #ifdef __rtems__ #define __need_getopt_newlib #include #include #include #endif /* __rtems__ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #define _WANT_VMMETER #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define VMSTAT_XO_VERSION "1" #ifndef __rtems__ static char da[] = "da"; enum x_stats { X_SUM, X_HZ, X_STATHZ, X_NCHSTATS, X_INTRNAMES, X_SINTRNAMES, X_INTRCNT, X_SINTRCNT, X_NINTRCNT }; static struct nlist namelist[] = { [X_SUM] = { .n_name = "_vm_cnt", }, [X_HZ] = { .n_name = "_hz", }, [X_STATHZ] = { .n_name = "_stathz", }, [X_NCHSTATS] = { .n_name = "_nchstats", }, [X_INTRNAMES] = { .n_name = "_intrnames", }, [X_SINTRNAMES] = { .n_name = "_sintrnames", }, [X_INTRCNT] = { .n_name = "_intrcnt", }, [X_SINTRCNT] = { .n_name = "_sintrcnt", }, [X_NINTRCNT] = { .n_name = "_nintrcnt", }, { .n_name = NULL, }, }; static struct devstat_match *matches; static struct device_selection *dev_select; static struct statinfo cur, last; static devstat_select_mode select_mode; static size_t size_cp_times; static long *cur_cp_times, *last_cp_times; static long generation, select_generation; static int hz, hdrcnt, maxshowdevs; static int num_devices, num_devices_specified; static int num_matches, num_selected, num_selections; static char **specified_devices; static struct __vmmeter { uint64_t v_swtch; uint64_t v_trap; uint64_t v_syscall; uint64_t v_intr; uint64_t v_soft; uint64_t v_vm_faults; uint64_t v_io_faults; uint64_t v_cow_faults; uint64_t v_cow_optim; uint64_t v_zfod; uint64_t v_ozfod; uint64_t v_swapin; uint64_t v_swapout; uint64_t v_swappgsin; uint64_t v_swappgsout; uint64_t v_vnodein; uint64_t v_vnodeout; uint64_t v_vnodepgsin; uint64_t v_vnodepgsout; uint64_t v_intrans; uint64_t v_reactivated; uint64_t v_pdwakeups; uint64_t v_pdpages; uint64_t v_pdshortfalls; uint64_t v_dfree; uint64_t v_pfree; uint64_t v_tfree; uint64_t v_forks; uint64_t v_vforks; uint64_t v_rforks; uint64_t v_kthreads; uint64_t v_forkpages; uint64_t v_vforkpages; uint64_t v_rforkpages; uint64_t v_kthreadpages; u_int v_page_size; u_int v_page_count; u_int v_free_reserved; u_int v_free_target; u_int v_free_min; u_int v_free_count; u_int v_wire_count; u_int v_active_count; u_int v_inactive_target; u_int v_inactive_count; u_int v_laundry_count; u_int v_pageout_free_min; u_int v_interrupt_free_min; u_int v_free_severe; } sum, osum; #define VMSTAT_DEFAULT_LINES 20 /* Default number of `winlines'. */ static volatile sig_atomic_t wresized; /* Tty resized when non-zero. */ static int winlines = VMSTAT_DEFAULT_LINES; /* Current number of tty rows. */ static int aflag; static int nflag; static int Pflag; static int hflag; static kvm_t *kd; #else /* __rtems__ */ #define kd ((kvm_t *)0) #endif /* __rtems__ */ #define FORKSTAT 0x01 #define INTRSTAT 0x02 #define MEMSTAT 0x04 #define SUMSTAT 0x08 #define TIMESTAT 0x10 #define VMSTAT 0x20 #define ZMEMSTAT 0x40 #define OBJSTAT 0x80 #ifndef __rtems__ static void cpustats(void); static void pcpustats(u_long, int); static void devstats(void); static void doforkst(void); static void dointr(unsigned int, int); static void doobjstat(void); static void dosum(void); static void dovmstat(unsigned int, int); static void domemstat_malloc(void); #endif /* __rtems__ */ static void domemstat_zone(void); #ifndef __rtems__ static void kread(int, void *, size_t); static void kreado(int, void *, size_t, size_t); static void kreadptr(uintptr_t, void *, size_t); static void needhdr(int); static void needresize(int); static void doresize(void); static void printhdr(int, u_long); #endif /* __rtems__ */ static void usage(void); #ifndef __rtems__ static long pct(long, long); static long long getuptime(void); static char **getdrivedata(char **); #endif /* __rtems__ */ #ifdef __rtems__ static int main(int , char *argv[]); int rtems_bsd_command_vmstat(int argc, char *argv[]) { int exit_code; rtems_bsd_program_lock(); exit_code = rtems_bsd_program_call_main("ping", main, argc, argv); rtems_bsd_program_unlock(); return (exit_code); } #endif /* __rtems__ */ int main(int argc, char *argv[]) { #ifndef __rtems__ char *bp, *buf, *memf, *nlistf; #endif /* __rtems__ */ float f; #ifndef __rtems__ int bufsize, c, reps, todo; size_t len; #else /* __rtems__ */ int c, reps, todo; #endif /* __rtems__ */ unsigned int interval; #ifndef __rtems__ char errbuf[_POSIX2_LINE_MAX]; #endif /* __rtems__ */ #ifdef __rtems__ struct getopt_data getopt_data; memset(&getopt_data, 0, sizeof(getopt_data)); #define optind getopt_data.optind #define optarg getopt_data.optarg #define opterr getopt_data.opterr #define optopt getopt_data.optopt #define getopt(argc, argv, opt) getopt_r(argc, argv, "+" opt, &getopt_data) #endif /* __rtems__ */ #ifndef __rtems__ memf = nlistf = NULL; #endif /* __rtems__ */ interval = reps = todo = 0; #ifndef __rtems__ maxshowdevs = 2; hflag = isatty(1); #endif /* __rtems__ */ argc = xo_parse_args(argc, argv); if (argc < 0) return (argc); while ((c = getopt(argc, argv, "ac:fhHiM:mN:n:oPp:sw:z")) != -1) { switch (c) { #ifndef __rtems__ case 'a': aflag++; break; case 'c': reps = atoi(optarg); break; case 'P': Pflag++; break; case 'f': todo |= FORKSTAT; break; case 'h': hflag = 1; break; case 'H': hflag = 0; break; case 'i': todo |= INTRSTAT; break; case 'M': memf = optarg; break; case 'm': todo |= MEMSTAT; break; case 'N': nlistf = optarg; break; case 'n': nflag = 1; maxshowdevs = atoi(optarg); if (maxshowdevs < 0) xo_errx(1, "number of devices %d is < 0", maxshowdevs); break; case 'o': todo |= OBJSTAT; break; case 'p': if (devstat_buildmatch(optarg, &matches, &num_matches) != 0) xo_errx(1, "%s", devstat_errbuf); break; case 's': todo |= SUMSTAT; break; case 'w': /* Convert to milliseconds. */ f = atof(optarg); interval = f * 1000; break; #endif /* __rtems__ */ case 'z': todo |= ZMEMSTAT; break; case '?': default: usage(); } } argc -= optind; argv += optind; xo_set_version(VMSTAT_XO_VERSION); if (todo == 0) todo = VMSTAT; #ifndef __rtems__ if (memf != NULL) { kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, errbuf); if (kd == NULL) xo_errx(1, "kvm_openfiles: %s", errbuf); } retry_nlist: if (kd != NULL && (c = kvm_nlist(kd, namelist)) != 0) { if (c > 0) { bufsize = 0; len = 0; /* * 'cnt' was renamed to 'vm_cnt'. If 'vm_cnt' is not * found try looking up older 'cnt' symbol. * */ if (namelist[X_SUM].n_type == 0 && strcmp(namelist[X_SUM].n_name, "_vm_cnt") == 0) { namelist[X_SUM].n_name = "_cnt"; goto retry_nlist; } /* * 'nintrcnt' doesn't exist in older kernels, but * that isn't fatal. */ if (namelist[X_NINTRCNT].n_type == 0 && c == 1) goto nlist_ok; for (c = 0; c < (int)(nitems(namelist)); c++) if (namelist[c].n_type == 0) bufsize += strlen(namelist[c].n_name) + 1; bufsize += len + 1; buf = bp = alloca(bufsize); for (c = 0; c < (int)(nitems(namelist)); c++) if (namelist[c].n_type == 0) { xo_error(" %s", namelist[c].n_name); len = strlen(namelist[c].n_name); *bp++ = ' '; memcpy(bp, namelist[c].n_name, len); bp += len; } *bp = '\0'; xo_error("undefined symbols:\n", buf); } else xo_warnx("kvm_nlist: %s", kvm_geterr(kd)); xo_finish(); exit(1); } nlist_ok: if (kd && Pflag) xo_errx(1, "Cannot use -P with crash dumps"); if (todo & VMSTAT) { /* * Make sure that the userland devstat version matches the * kernel devstat version. If not, exit and print a * message informing the user of his mistake. */ if (devstat_checkversion(NULL) < 0) xo_errx(1, "%s", devstat_errbuf); argv = getdrivedata(argv); } #endif /* __rtems__ */ if (*argv) { f = atof(*argv); interval = f * 1000; if (*++argv) reps = atoi(*argv); } if (interval) { if (!reps) reps = -1; } else if (reps) interval = 1 * 1000; #ifndef __rtems__ if (todo & FORKSTAT) doforkst(); if (todo & MEMSTAT) domemstat_malloc(); #endif /* __rtems__ */ if (todo & ZMEMSTAT) domemstat_zone(); #ifndef __rtems__ if (todo & SUMSTAT) dosum(); if (todo & OBJSTAT) doobjstat(); if (todo & INTRSTAT) dointr(interval, reps); if (todo & VMSTAT) dovmstat(interval, reps); #endif /* __rtems__ */ xo_finish(); exit(0); } #ifndef __rtems__ static int mysysctl(const char *name, void *oldp, size_t *oldlenp) { int error; error = sysctlbyname(name, oldp, oldlenp, NULL, 0); if (error != 0 && errno != ENOMEM) xo_err(1, "sysctl(%s)", name); return (error); } static char ** getdrivedata(char **argv) { if ((num_devices = devstat_getnumdevs(NULL)) < 0) xo_errx(1, "%s", devstat_errbuf); cur.dinfo = (struct devinfo *)calloc(1, sizeof(struct devinfo)); last.dinfo = (struct devinfo *)calloc(1, sizeof(struct devinfo)); if (devstat_getdevs(NULL, &cur) == -1) xo_errx(1, "%s", devstat_errbuf); num_devices = cur.dinfo->numdevs; generation = cur.dinfo->generation; specified_devices = malloc(sizeof(char *)); for (num_devices_specified = 0; *argv; ++argv) { if (isdigit(**argv)) break; num_devices_specified++; specified_devices = reallocf(specified_devices, sizeof(char *) * num_devices_specified); if (specified_devices == NULL) { xo_errx(1, "%s", "reallocf (specified_devices)"); } specified_devices[num_devices_specified - 1] = *argv; } dev_select = NULL; if (nflag == 0 && maxshowdevs < num_devices_specified) maxshowdevs = num_devices_specified; /* * People are generally only interested in disk statistics when * they're running vmstat. So, that's what we're going to give * them if they don't specify anything by default. We'll also give * them any other random devices in the system so that we get to * maxshowdevs devices, if that many devices exist. If the user * specifies devices on the command line, either through a pattern * match or by naming them explicitly, we will give the user only * those devices. */ if ((num_devices_specified == 0) && (num_matches == 0)) { if (devstat_buildmatch(da, &matches, &num_matches) != 0) xo_errx(1, "%s", devstat_errbuf); select_mode = DS_SELECT_ADD; } else select_mode = DS_SELECT_ONLY; /* * At this point, selectdevs will almost surely indicate that the * device list has changed, so we don't look for return values of 0 * or 1. If we get back -1, though, there is an error. */ if (devstat_selectdevs(&dev_select, &num_selected, &num_selections, &select_generation, generation, cur.dinfo->devices, num_devices, matches, num_matches, specified_devices, num_devices_specified, select_mode, maxshowdevs, 0) == -1) xo_errx(1, "%s", devstat_errbuf); return(argv); } /* Return system uptime in nanoseconds */ static long long getuptime(void) { struct timespec sp; (void)clock_gettime(CLOCK_UPTIME, &sp); return((long long)sp.tv_sec * 1000000000LL + sp.tv_nsec); } static void fill_vmmeter(struct __vmmeter *vmmp) { struct vmmeter vm_cnt; size_t size; if (kd != NULL) { kread(X_SUM, &vm_cnt, sizeof(vm_cnt)); #define GET_COUNTER(name) \ vmmp->name = kvm_counter_u64_fetch(kd, (u_long)vm_cnt.name) GET_COUNTER(v_swtch); GET_COUNTER(v_trap); GET_COUNTER(v_syscall); GET_COUNTER(v_intr); GET_COUNTER(v_soft); GET_COUNTER(v_vm_faults); GET_COUNTER(v_io_faults); GET_COUNTER(v_cow_faults); GET_COUNTER(v_cow_optim); GET_COUNTER(v_zfod); GET_COUNTER(v_ozfod); GET_COUNTER(v_swapin); GET_COUNTER(v_swapout); GET_COUNTER(v_swappgsin); GET_COUNTER(v_swappgsout); GET_COUNTER(v_vnodein); GET_COUNTER(v_vnodeout); GET_COUNTER(v_vnodepgsin); GET_COUNTER(v_vnodepgsout); GET_COUNTER(v_intrans); GET_COUNTER(v_tfree); GET_COUNTER(v_forks); GET_COUNTER(v_vforks); GET_COUNTER(v_rforks); GET_COUNTER(v_kthreads); GET_COUNTER(v_forkpages); GET_COUNTER(v_vforkpages); GET_COUNTER(v_rforkpages); GET_COUNTER(v_kthreadpages); #undef GET_COUNTER } else { #define GET_VM_STATS(cat, name) do { \ size = sizeof(vmmp->name); \ mysysctl("vm.stats." #cat "." #name, &vmmp->name, &size); \ } while (0) /* sys */ GET_VM_STATS(sys, v_swtch); GET_VM_STATS(sys, v_trap); GET_VM_STATS(sys, v_syscall); GET_VM_STATS(sys, v_intr); GET_VM_STATS(sys, v_soft); /* vm */ GET_VM_STATS(vm, v_vm_faults); GET_VM_STATS(vm, v_io_faults); GET_VM_STATS(vm, v_cow_faults); GET_VM_STATS(vm, v_cow_optim); GET_VM_STATS(vm, v_zfod); GET_VM_STATS(vm, v_ozfod); GET_VM_STATS(vm, v_swapin); GET_VM_STATS(vm, v_swapout); GET_VM_STATS(vm, v_swappgsin); GET_VM_STATS(vm, v_swappgsout); GET_VM_STATS(vm, v_vnodein); GET_VM_STATS(vm, v_vnodeout); GET_VM_STATS(vm, v_vnodepgsin); GET_VM_STATS(vm, v_vnodepgsout); GET_VM_STATS(vm, v_intrans); GET_VM_STATS(vm, v_reactivated); GET_VM_STATS(vm, v_pdwakeups); GET_VM_STATS(vm, v_pdpages); GET_VM_STATS(vm, v_pdshortfalls); GET_VM_STATS(vm, v_dfree); GET_VM_STATS(vm, v_pfree); GET_VM_STATS(vm, v_tfree); GET_VM_STATS(vm, v_page_size); GET_VM_STATS(vm, v_page_count); GET_VM_STATS(vm, v_free_reserved); GET_VM_STATS(vm, v_free_target); GET_VM_STATS(vm, v_free_min); GET_VM_STATS(vm, v_free_count); GET_VM_STATS(vm, v_wire_count); GET_VM_STATS(vm, v_active_count); GET_VM_STATS(vm, v_inactive_target); GET_VM_STATS(vm, v_inactive_count); GET_VM_STATS(vm, v_laundry_count); GET_VM_STATS(vm, v_pageout_free_min); GET_VM_STATS(vm, v_interrupt_free_min); /*GET_VM_STATS(vm, v_free_severe);*/ GET_VM_STATS(vm, v_forks); GET_VM_STATS(vm, v_vforks); GET_VM_STATS(vm, v_rforks); GET_VM_STATS(vm, v_kthreads); GET_VM_STATS(vm, v_forkpages); GET_VM_STATS(vm, v_vforkpages); GET_VM_STATS(vm, v_rforkpages); GET_VM_STATS(vm, v_kthreadpages); #undef GET_VM_STATS } } static void fill_vmtotal(struct vmtotal *vmtp) { size_t size; if (kd != NULL) { /* XXX fill vmtp */ xo_errx(1, "not implemented"); } else { size = sizeof(*vmtp); mysysctl("vm.vmtotal", vmtp, &size); if (size != sizeof(*vmtp)) xo_errx(1, "vm.total size mismatch"); } } /* Determine how many cpu columns, and what index they are in kern.cp_times */ static int getcpuinfo(u_long *maskp, int *maxidp) { long *times; u_long mask; size_t size; int empty, i, j, maxcpu, maxid, ncpus; if (kd != NULL) xo_errx(1, "not implemented"); mask = 0; ncpus = 0; size = sizeof(maxcpu); mysysctl("kern.smp.maxcpus", &maxcpu, &size); if (size != sizeof(maxcpu)) xo_errx(1, "sysctl kern.smp.maxcpus"); size = sizeof(long) * maxcpu * CPUSTATES; times = malloc(size); if (times == NULL) xo_err(1, "malloc %zd bytes", size); mysysctl("kern.cp_times", times, &size); maxid = (size / CPUSTATES / sizeof(long)) - 1; for (i = 0; i <= maxid; i++) { empty = 1; for (j = 0; empty && j < CPUSTATES; j++) { if (times[i * CPUSTATES + j] != 0) empty = 0; } if (!empty) { mask |= (1ul << i); ncpus++; } } if (maskp) *maskp = mask; if (maxidp) *maxidp = maxid; return (ncpus); } static void prthuman(const char *name, uint64_t val, int size) { int flags; char buf[10]; char fmt[128]; snprintf(fmt, sizeof(fmt), "{:%s/%%*s}", name); if (size < 5 || size > 9) xo_errx(1, "doofus"); flags = HN_B | HN_NOSPACE | HN_DECIMAL; humanize_number(buf, size, val, "", HN_AUTOSCALE, flags); xo_attr("value", "%ju", (uintmax_t) val); xo_emit(fmt, size, buf); } static void dovmstat(unsigned int interval, int reps) { struct clockinfo clockrate; struct vmtotal total; struct devinfo *tmp_dinfo; u_long cpumask; size_t size; time_t uptime, halfuptime; int ncpus, maxid, rate_adj, retval; uptime = getuptime() / 1000000000LL; halfuptime = uptime / 2; rate_adj = 1; ncpus = 1; maxid = 0; cpumask = 0; /* * If the user stops the program (control-Z) and then resumes it, * print out the header again. */ (void)signal(SIGCONT, needhdr); /* * If our standard output is a tty, then install a SIGWINCH handler * and set wresized so that our first iteration through the main * vmstat loop will peek at the terminal's current rows to find out * how many lines can fit in a screenful of output. */ if (isatty(fileno(stdout)) != 0) { wresized = 1; (void)signal(SIGWINCH, needresize); } else { wresized = 0; winlines = VMSTAT_DEFAULT_LINES; } if (kd != NULL) { if (namelist[X_STATHZ].n_type != 0 && namelist[X_STATHZ].n_value != 0) kread(X_STATHZ, &hz, sizeof(hz)); if (!hz) kread(X_HZ, &hz, sizeof(hz)); } else { size = sizeof(clockrate); mysysctl("kern.clockrate", &clockrate, &size); if (size != sizeof(clockrate)) xo_errx(1, "clockrate size mismatch"); hz = clockrate.hz; } if (Pflag) { ncpus = getcpuinfo(&cpumask, &maxid); size_cp_times = sizeof(long) * (maxid + 1) * CPUSTATES; cur_cp_times = calloc(1, size_cp_times); last_cp_times = calloc(1, size_cp_times); } for (hdrcnt = 1;;) { if (!--hdrcnt) printhdr(maxid, cpumask); if (kd != NULL) { if (kvm_getcptime(kd, cur.cp_time) < 0) xo_errx(1, "kvm_getcptime: %s", kvm_geterr(kd)); } else { size = sizeof(cur.cp_time); mysysctl("kern.cp_time", &cur.cp_time, &size); if (size != sizeof(cur.cp_time)) xo_errx(1, "cp_time size mismatch"); } if (Pflag) { size = size_cp_times; mysysctl("kern.cp_times", cur_cp_times, &size); if (size != size_cp_times) xo_errx(1, "cp_times mismatch"); } tmp_dinfo = last.dinfo; last.dinfo = cur.dinfo; cur.dinfo = tmp_dinfo; last.snap_time = cur.snap_time; /* * Here what we want to do is refresh our device stats. * getdevs() returns 1 when the device list has changed. * If the device list has changed, we want to go through * the selection process again, in case a device that we * were previously displaying has gone away. */ switch (devstat_getdevs(NULL, &cur)) { case -1: xo_errx(1, "%s", devstat_errbuf); break; case 1: num_devices = cur.dinfo->numdevs; generation = cur.dinfo->generation; retval = devstat_selectdevs(&dev_select, &num_selected, &num_selections, &select_generation, generation, cur.dinfo->devices, num_devices, matches, num_matches, specified_devices, num_devices_specified, select_mode, maxshowdevs, 0); switch (retval) { case -1: xo_errx(1, "%s", devstat_errbuf); break; case 1: printhdr(maxid, cpumask); break; default: break; } break; default: break; } fill_vmmeter(&sum); fill_vmtotal(&total); xo_open_container("processes"); xo_emit("{:runnable/%1d} {:waiting/%ld} " "{:swapped-out/%ld}", total.t_rq - 1, total.t_dw + total.t_pw, total.t_sw); xo_close_container("processes"); xo_open_container("memory"); #define vmstat_pgtok(a) ((uintmax_t)(a) * (sum.v_page_size >> 10)) #define rate(x) (((x) * rate_adj + halfuptime) / uptime) /* round */ if (hflag) { xo_emit(""); prthuman("available-memory", total.t_avm * (uint64_t)sum.v_page_size, 5); xo_emit(" "); prthuman("free-memory", total.t_free * (uint64_t)sum.v_page_size, 5); xo_emit(" "); } else { xo_emit(" "); xo_emit("{:available-memory/%7ju}", vmstat_pgtok(total.t_avm)); xo_emit(" "); xo_emit("{:free-memory/%7ju}", vmstat_pgtok(total.t_free)); xo_emit(" "); } xo_emit("{:total-page-faults/%5lu} ", (unsigned long)rate(sum.v_vm_faults - osum.v_vm_faults)); xo_close_container("memory"); xo_open_container("paging-rates"); xo_emit("{:page-reactivated/%3lu} ", (unsigned long)rate(sum.v_reactivated - osum.v_reactivated)); xo_emit("{:paged-in/%3lu} ", (unsigned long)rate(sum.v_swapin + sum.v_vnodein - (osum.v_swapin + osum.v_vnodein))); xo_emit("{:paged-out/%3lu} ", (unsigned long)rate(sum.v_swapout + sum.v_vnodeout - (osum.v_swapout + osum.v_vnodeout))); xo_emit("{:freed/%5lu} ", (unsigned long)rate(sum.v_tfree - osum.v_tfree)); xo_emit("{:scanned/%4lu} ", (unsigned long)rate(sum.v_pdpages - osum.v_pdpages)); xo_close_container("paging-rates"); devstats(); xo_open_container("fault-rates"); xo_emit("{:interrupts/%4lu} {:system-calls/%5lu} " "{:context-switches/%5lu}", (unsigned long)rate(sum.v_intr - osum.v_intr), (unsigned long)rate(sum.v_syscall - osum.v_syscall), (unsigned long)rate(sum.v_swtch - osum.v_swtch)); xo_close_container("fault-rates"); if (Pflag) pcpustats(cpumask, maxid); else cpustats(); xo_emit("\n"); xo_flush(); if (reps >= 0 && --reps <= 0) break; osum = sum; uptime = interval; rate_adj = 1000; /* * We round upward to avoid losing low-frequency events * (i.e., >= 1 per interval but < 1 per millisecond). */ if (interval != 1) halfuptime = (uptime + 1) / 2; else halfuptime = 0; (void)usleep(interval * 1000); } } static void printhdr(int maxid, u_long cpumask) { int i, num_shown; num_shown = MIN(num_selected, maxshowdevs); if (hflag) xo_emit("{T:procs} {T:memory} {T:/page%*s}", 19, ""); else xo_emit("{T:procs} {T:memory} {T:/page%*s}", 19, ""); if (num_shown > 1) xo_emit(" {T:/disks %*s}", num_shown * 4 - 7, ""); else if (num_shown == 1) xo_emit(" {T:disks}"); xo_emit(" {T:faults} "); if (Pflag) { for (i = 0; i <= maxid; i++) { if (cpumask & (1ul << i)) xo_emit(" {T:/cpu%d} ", i); } xo_emit("\n"); } else xo_emit(" {T:cpu}\n"); if (hflag) { xo_emit("{T:r} {T:b} {T:w} {T:avm} {T:fre} {T:flt} {T:re}" " {T:pi} {T:po} {T:fr} {T:sr} "); } else { xo_emit("{T:r} {T:b} {T:w} {T:avm} {T:fre} {T:flt} " "{T:re} {T:pi} {T:po} {T:fr} {T:sr} "); } for (i = 0; i < num_devices; i++) if ((dev_select[i].selected) && (dev_select[i].selected <= maxshowdevs)) xo_emit("{T:/%c%c%d} ", dev_select[i].device_name[0], dev_select[i].device_name[1], dev_select[i].unit_number); xo_emit(" {T:in} {T:sy} {T:cs}"); if (Pflag) { for (i = 0; i <= maxid; i++) { if (cpumask & (1ul << i)) xo_emit(" {T:us} {T:sy} {T:id}"); } xo_emit("\n"); } else xo_emit(" {T:us} {T:sy} {T:id}\n"); if (wresized != 0) doresize(); hdrcnt = winlines; } /* * Force a header to be prepended to the next output. */ static void needhdr(int dummy __unused) { hdrcnt = 1; } /* * When the terminal is resized, force an update of the maximum number of rows * printed between each header repetition. Then force a new header to be * prepended to the next output. */ void needresize(int signo __unused) { wresized = 1; hdrcnt = 1; } /* * Update the global `winlines' count of terminal rows. */ void doresize(void) { struct winsize w; int status; for (;;) { status = ioctl(fileno(stdout), TIOCGWINSZ, &w); if (status == -1 && errno == EINTR) continue; else if (status == -1) xo_err(1, "ioctl"); if (w.ws_row > 3) winlines = w.ws_row - 3; else winlines = VMSTAT_DEFAULT_LINES; break; } /* * Inhibit doresize() calls until we are rescheduled by SIGWINCH. */ wresized = 0; } static long pct(long top, long bot) { long ans; if (bot == 0) return(0); ans = (quad_t)top * 100 / bot; return (ans); } #define PCT(top, bot) pct((long)(top), (long)(bot)) static void dosum(void) { struct nchstats lnchstats; size_t size; long nchtotal; fill_vmmeter(&sum); xo_open_container("summary-statistics"); xo_emit("{:context-switches/%9u} {N:cpu context switches}\n", sum.v_swtch); xo_emit("{:interrupts/%9u} {N:device interrupts}\n", sum.v_intr); xo_emit("{:software-interrupts/%9u} {N:software interrupts}\n", sum.v_soft); xo_emit("{:traps/%9u} {N:traps}\n", sum.v_trap); xo_emit("{:system-calls/%9u} {N:system calls}\n", sum.v_syscall); xo_emit("{:kernel-threads/%9u} {N:kernel threads created}\n", sum.v_kthreads); xo_emit("{:forks/%9u} {N: fork() calls}\n", sum.v_forks); xo_emit("{:vforks/%9u} {N:vfork() calls}\n", sum.v_vforks); xo_emit("{:rforks/%9u} {N:rfork() calls}\n", sum.v_rforks); xo_emit("{:swap-ins/%9u} {N:swap pager pageins}\n", sum.v_swapin); xo_emit("{:swap-in-pages/%9u} {N:swap pager pages paged in}\n", sum.v_swappgsin); xo_emit("{:swap-outs/%9u} {N:swap pager pageouts}\n", sum.v_swapout); xo_emit("{:swap-out-pages/%9u} {N:swap pager pages paged out}\n", sum.v_swappgsout); xo_emit("{:vnode-page-ins/%9u} {N:vnode pager pageins}\n", sum.v_vnodein); xo_emit("{:vnode-page-in-pages/%9u} {N:vnode pager pages paged in}\n", sum.v_vnodepgsin); xo_emit("{:vnode-page-outs/%9u} {N:vnode pager pageouts}\n", sum.v_vnodeout); xo_emit("{:vnode-page-out-pages/%9u} {N:vnode pager pages paged out}\n", sum.v_vnodepgsout); xo_emit("{:page-daemon-wakeups/%9u} {N:page daemon wakeups}\n", sum.v_pdwakeups); xo_emit("{:page-daemon-pages/%9u} {N:pages examined by the page " "daemon}\n", sum.v_pdpages); xo_emit("{:page-reclamation-shortfalls/%9u} {N:clean page reclamation " "shortfalls}\n", sum.v_pdshortfalls); xo_emit("{:reactivated/%9u} {N:pages reactivated by the page daemon}\n", sum.v_reactivated); xo_emit("{:copy-on-write-faults/%9u} {N:copy-on-write faults}\n", sum.v_cow_faults); xo_emit("{:copy-on-write-optimized-faults/%9u} {N:copy-on-write " "optimized faults}\n", sum.v_cow_optim); xo_emit("{:zero-fill-pages/%9u} {N:zero fill pages zeroed}\n", sum.v_zfod); xo_emit("{:zero-fill-prezeroed/%9u} {N:zero fill pages prezeroed}\n", sum.v_ozfod); xo_emit("{:intransit-blocking/%9u} {N:intransit blocking page faults}\n", sum.v_intrans); xo_emit("{:total-faults/%9u} {N:total VM faults taken}\n", sum.v_vm_faults); xo_emit("{:faults-requiring-io/%9u} {N:page faults requiring I\\/O}\n", sum.v_io_faults); xo_emit("{:faults-from-thread-creation/%9u} {N:pages affected by " "kernel thread creation}\n", sum.v_kthreadpages); xo_emit("{:faults-from-fork/%9u} {N:pages affected by fork}()\n", sum.v_forkpages); xo_emit("{:faults-from-vfork/%9u} {N:pages affected by vfork}()\n", sum.v_vforkpages); xo_emit("{:pages-rfork/%9u} {N:pages affected by rfork}()\n", sum.v_rforkpages); xo_emit("{:pages-freed/%9u} {N:pages freed}\n", sum.v_tfree); xo_emit("{:pages-freed-by-daemon/%9u} {N:pages freed by daemon}\n", sum.v_dfree); xo_emit("{:pages-freed-on-exit/%9u} {N:pages freed by exiting processes}\n", sum.v_pfree); xo_emit("{:active-pages/%9u} {N:pages active}\n", sum.v_active_count); xo_emit("{:inactive-pages/%9u} {N:pages inactive}\n", sum.v_inactive_count); xo_emit("{:laundry-pages/%9u} {N:pages in the laundry queue}\n", sum.v_laundry_count); xo_emit("{:wired-pages/%9u} {N:pages wired down}\n", sum.v_wire_count); xo_emit("{:free-pages/%9u} {N:pages free}\n", sum.v_free_count); xo_emit("{:bytes-per-page/%9u} {N:bytes per page}\n", sum.v_page_size); if (kd != NULL) { kread(X_NCHSTATS, &lnchstats, sizeof(lnchstats)); } else { size = sizeof(lnchstats); mysysctl("vfs.cache.nchstats", &lnchstats, &size); if (size != sizeof(lnchstats)) xo_errx(1, "vfs.cache.nchstats size mismatch"); } nchtotal = lnchstats.ncs_goodhits + lnchstats.ncs_neghits + lnchstats.ncs_badhits + lnchstats.ncs_falsehits + lnchstats.ncs_miss + lnchstats.ncs_long; xo_emit("{:total-name-lookups/%9ld} {N:total name lookups}\n", nchtotal); xo_emit("{P:/%9s} {N:cache hits} " "({:positive-cache-hits/%ld}% pos + " "{:negative-cache-hits/%ld}% {N:neg}) " "system {:cache-hit-percent/%ld}% per-directory\n", "", PCT(lnchstats.ncs_goodhits, nchtotal), PCT(lnchstats.ncs_neghits, nchtotal), PCT(lnchstats.ncs_pass2, nchtotal)); xo_emit("{P:/%9s} {L:deletions} {:deletions/%ld}%, " "{L:falsehits} {:false-hits/%ld}%, " "{L:toolong} {:too-long/%ld}%\n", "", PCT(lnchstats.ncs_badhits, nchtotal), PCT(lnchstats.ncs_falsehits, nchtotal), PCT(lnchstats.ncs_long, nchtotal)); xo_close_container("summary-statistics"); } static void doforkst(void) { fill_vmmeter(&sum); xo_open_container("fork-statistics"); xo_emit("{:fork/%u} {N:forks}, {:fork-pages/%u} {N:pages}, " "{L:average} {:fork-average/%.2f}\n", sum.v_forks, sum.v_forkpages, sum.v_forks == 0 ? 0.0 : (double)sum.v_forkpages / sum.v_forks); xo_emit("{:vfork/%u} {N:vforks}, {:vfork-pages/%u} {N:pages}, " "{L:average} {:vfork-average/%.2f}\n", sum.v_vforks, sum.v_vforkpages, sum.v_vforks == 0 ? 0.0 : (double)sum.v_vforkpages / sum.v_vforks); xo_emit("{:rfork/%u} {N:rforks}, {:rfork-pages/%u} {N:pages}, " "{L:average} {:rfork-average/%.2f}\n", sum.v_rforks, sum.v_rforkpages, sum.v_rforks == 0 ? 0.0 : (double)sum.v_rforkpages / sum.v_rforks); xo_close_container("fork-statistics"); } static void devstats(void) { long double busy_seconds, transfers_per_second; long tmp; int di, dn, state; for (state = 0; state < CPUSTATES; ++state) { tmp = cur.cp_time[state]; cur.cp_time[state] -= last.cp_time[state]; last.cp_time[state] = tmp; } busy_seconds = cur.snap_time - last.snap_time; xo_open_list("device"); for (dn = 0; dn < num_devices; dn++) { if (dev_select[dn].selected == 0 || dev_select[dn].selected > maxshowdevs) continue; di = dev_select[dn].position; if (devstat_compute_statistics(&cur.dinfo->devices[di], &last.dinfo->devices[di], busy_seconds, DSM_TRANSFERS_PER_SECOND, &transfers_per_second, DSM_NONE) != 0) xo_errx(1, "%s", devstat_errbuf); xo_open_instance("device"); xo_emit("{ekq:name/%c%c%d}{:transfers/%3.0Lf} ", dev_select[dn].device_name[0], dev_select[dn].device_name[1], dev_select[dn].unit_number, transfers_per_second); xo_close_instance("device"); } xo_close_list("device"); } static void percent(const char *name, double pctv, int *over) { int l; char buf[10]; char fmt[128]; snprintf(fmt, sizeof(fmt), " {:%s/%%*s}", name); l = snprintf(buf, sizeof(buf), "%.0f", pctv); if (l == 1 && *over) { xo_emit(fmt, 1, buf); (*over)--; } else xo_emit(fmt, 2, buf); if (l > 2) (*over)++; } static void cpustats(void) { double lpct, total; int state, over; total = 0; for (state = 0; state < CPUSTATES; ++state) total += cur.cp_time[state]; if (total > 0) lpct = 100.0 / total; else lpct = 0.0; over = 0; xo_open_container("cpu-statistics"); percent("user", (cur.cp_time[CP_USER] + cur.cp_time[CP_NICE]) * lpct, &over); percent("system", (cur.cp_time[CP_SYS] + cur.cp_time[CP_INTR]) * lpct, &over); percent("idle", cur.cp_time[CP_IDLE] * lpct, &over); xo_close_container("cpu-statistics"); } static void pcpustats(u_long cpumask, int maxid) { double lpct, total; long tmp; int i, over, state; /* devstats does this for cp_time */ for (i = 0; i <= maxid; i++) { if ((cpumask & (1ul << i)) == 0) continue; for (state = 0; state < CPUSTATES; ++state) { tmp = cur_cp_times[i * CPUSTATES + state]; cur_cp_times[i * CPUSTATES + state] -= last_cp_times[i * CPUSTATES + state]; last_cp_times[i * CPUSTATES + state] = tmp; } } over = 0; xo_open_list("cpu"); for (i = 0; i <= maxid; i++) { if ((cpumask & (1ul << i)) == 0) continue; xo_open_instance("cpu"); xo_emit("{ke:name/%d}", i); total = 0; for (state = 0; state < CPUSTATES; ++state) total += cur_cp_times[i * CPUSTATES + state]; if (total) lpct = 100.0 / total; else lpct = 0.0; percent("user", (cur_cp_times[i * CPUSTATES + CP_USER] + cur_cp_times[i * CPUSTATES + CP_NICE]) * lpct, &over); percent("system", (cur_cp_times[i * CPUSTATES + CP_SYS] + cur_cp_times[i * CPUSTATES + CP_INTR]) * lpct, &over); percent("idle", cur_cp_times[i * CPUSTATES + CP_IDLE] * lpct, &over); xo_close_instance("cpu"); } xo_close_list("cpu"); } static unsigned int read_intrcnts(unsigned long **intrcnts) { size_t intrcntlen; uintptr_t kaddr; if (kd != NULL) { kread(X_SINTRCNT, &intrcntlen, sizeof(intrcntlen)); if ((*intrcnts = malloc(intrcntlen)) == NULL) err(1, "malloc()"); if (namelist[X_NINTRCNT].n_type == 0) kread(X_INTRCNT, *intrcnts, intrcntlen); else { kread(X_INTRCNT, &kaddr, sizeof(kaddr)); kreadptr(kaddr, *intrcnts, intrcntlen); } } else { for (*intrcnts = NULL, intrcntlen = 1024; ; intrcntlen *= 2) { *intrcnts = reallocf(*intrcnts, intrcntlen); if (*intrcnts == NULL) err(1, "reallocf()"); if (mysysctl("hw.intrcnt", *intrcnts, &intrcntlen) == 0) break; } } return (intrcntlen / sizeof(unsigned long)); } static void print_intrcnts(unsigned long *intrcnts, unsigned long *old_intrcnts, char *intrnames, unsigned int nintr, size_t istrnamlen, long long period_ms) { unsigned long *intrcnt, *old_intrcnt; char *intrname; uint64_t inttotal, old_inttotal, total_count, total_rate; unsigned long count, rate; unsigned int i; inttotal = 0; old_inttotal = 0; intrname = intrnames; xo_open_list("interrupt"); for (i = 0, intrcnt=intrcnts, old_intrcnt=old_intrcnts; i < nintr; i++) { if (intrname[0] != '\0' && (*intrcnt != 0 || aflag)) { count = *intrcnt - *old_intrcnt; rate = ((uint64_t)count * 1000 + period_ms / 2) / period_ms; xo_open_instance("interrupt"); xo_emit("{d:name/%-*s}{ket:name/%s} " "{:total/%20lu} {:rate/%10lu}\n", (int)istrnamlen, intrname, intrname, count, rate); xo_close_instance("interrupt"); } intrname += strlen(intrname) + 1; inttotal += *intrcnt++; old_inttotal += *old_intrcnt++; } total_count = inttotal - old_inttotal; total_rate = (total_count * 1000 + period_ms / 2) / period_ms; xo_close_list("interrupt"); xo_emit("{L:/%-*s} {:total-interrupts/%20ju} " "{:total-rate/%10ju}\n", (int)istrnamlen, "Total", (uintmax_t)total_count, (uintmax_t)total_rate); } static void dointr(unsigned int interval, int reps) { unsigned long *intrcnts, *old_intrcnts; char *intrname, *intrnames; long long period_ms, old_uptime, uptime; size_t clen, inamlen, istrnamlen; uintptr_t kaddr; unsigned int nintr; old_intrcnts = NULL; uptime = getuptime(); /* Get the names of each interrupt source */ if (kd != NULL) { kread(X_SINTRNAMES, &inamlen, sizeof(inamlen)); if ((intrnames = malloc(inamlen)) == NULL) xo_err(1, "malloc()"); if (namelist[X_NINTRCNT].n_type == 0) kread(X_INTRNAMES, intrnames, inamlen); else { kread(X_INTRNAMES, &kaddr, sizeof(kaddr)); kreadptr(kaddr, intrnames, inamlen); } } else { for (intrnames = NULL, inamlen = 1024; ; inamlen *= 2) { if ((intrnames = reallocf(intrnames, inamlen)) == NULL) xo_err(1, "reallocf()"); if (mysysctl("hw.intrnames", intrnames, &inamlen) == 0) break; } } /* Determine the length of the longest interrupt name */ intrname = intrnames; istrnamlen = strlen("interrupt"); while(*intrname != '\0') { clen = strlen(intrname); if (clen > istrnamlen) istrnamlen = clen; intrname += strlen(intrname) + 1; } xo_emit("{T:/%-*s} {T:/%20s} {T:/%10s}\n", (int)istrnamlen, "interrupt", "total", "rate"); /* * Loop reps times printing differential interrupt counts. If reps is * zero, then run just once, printing total counts */ xo_open_container("interrupt-statistics"); period_ms = uptime / 1000000; while(1) { nintr = read_intrcnts(&intrcnts); /* * Initialize old_intrcnts to 0 for the first pass, so * print_intrcnts will print total interrupts since boot */ if (old_intrcnts == NULL) { old_intrcnts = calloc(nintr, sizeof(unsigned long)); if (old_intrcnts == NULL) xo_err(1, "calloc()"); } print_intrcnts(intrcnts, old_intrcnts, intrnames, nintr, istrnamlen, period_ms); xo_flush(); free(old_intrcnts); old_intrcnts = intrcnts; if (reps >= 0 && --reps <= 0) break; usleep(interval * 1000); old_uptime = uptime; uptime = getuptime(); period_ms = (uptime - old_uptime) / 1000000; } xo_close_container("interrupt-statistics"); } static void domemstat_malloc(void) { struct memory_type_list *mtlp; struct memory_type *mtp; int error, first, i; mtlp = memstat_mtl_alloc(); if (mtlp == NULL) { xo_warn("memstat_mtl_alloc"); return; } if (kd == NULL) { if (memstat_sysctl_malloc(mtlp, 0) < 0) { xo_warnx("memstat_sysctl_malloc: %s", memstat_strerror(memstat_mtl_geterror(mtlp))); return; } } else { if (memstat_kvm_malloc(mtlp, kd) < 0) { error = memstat_mtl_geterror(mtlp); if (error == MEMSTAT_ERROR_KVM) xo_warnx("memstat_kvm_malloc: %s", kvm_geterr(kd)); else xo_warnx("memstat_kvm_malloc: %s", memstat_strerror(error)); } } xo_open_container("malloc-statistics"); xo_emit("{T:/%13s} {T:/%5s} {T:/%6s} {T:/%7s} {T:/%8s} {T:Size(s)}\n", "Type", "InUse", "MemUse", "HighUse", "Requests"); xo_open_list("memory"); for (mtp = memstat_mtl_first(mtlp); mtp != NULL; mtp = memstat_mtl_next(mtp)) { if (memstat_get_numallocs(mtp) == 0 && memstat_get_count(mtp) == 0) continue; xo_open_instance("memory"); xo_emit("{k:type/%13s/%s} {:in-use/%5ju} " "{:memory-use/%5ju}{U:K} {:high-use/%7s} " "{:requests/%8ju} ", memstat_get_name(mtp), (uintmax_t)memstat_get_count(mtp), ((uintmax_t)memstat_get_bytes(mtp) + 1023) / 1024, "-", (uintmax_t)memstat_get_numallocs(mtp)); first = 1; xo_open_list("size"); for (i = 0; i < 32; i++) { if (memstat_get_sizemask(mtp) & (1 << i)) { if (!first) xo_emit(","); xo_emit("{l:size/%d}", 1 << (i + 4)); first = 0; } } xo_close_list("size"); xo_close_instance("memory"); xo_emit("\n"); } xo_close_list("memory"); xo_close_container("malloc-statistics"); memstat_mtl_free(mtlp); } #endif /* __rtems__ */ static void domemstat_zone(void) { struct memory_type_list *mtlp; struct memory_type *mtp; #ifndef __rtems__ int error; #endif /* __rtems__ */ char name[MEMTYPE_MAXNAME + 1]; mtlp = memstat_mtl_alloc(); if (mtlp == NULL) { xo_warn("memstat_mtl_alloc"); return; } if (kd == NULL) { if (memstat_sysctl_uma(mtlp, 0) < 0) { xo_warnx("memstat_sysctl_uma: %s", memstat_strerror(memstat_mtl_geterror(mtlp))); return; } } else { #ifndef __rtems__ if (memstat_kvm_uma(mtlp, kd) < 0) { error = memstat_mtl_geterror(mtlp); if (error == MEMSTAT_ERROR_KVM) xo_warnx("memstat_kvm_uma: %s", kvm_geterr(kd)); else xo_warnx("memstat_kvm_uma: %s", memstat_strerror(error)); } #else /* __rtems__ */ xo_warn("memstat_kvm_uma"); return; #endif /* __rtems__ */ } xo_open_container("memory-zone-statistics"); xo_emit("{T:/%-20s} {T:/%6s} {T:/%6s} {T:/%8s} {T:/%8s} {T:/%8s} " "{T:/%4s} {T:/%4s}\n\n", "ITEM", "SIZE", "LIMIT", "USED", "FREE", "REQ", "FAIL", "SLEEP"); xo_open_list("zone"); for (mtp = memstat_mtl_first(mtlp); mtp != NULL; mtp = memstat_mtl_next(mtp)) { strlcpy(name, memstat_get_name(mtp), MEMTYPE_MAXNAME); strcat(name, ":"); xo_open_instance("zone"); xo_emit("{d:name/%-20s}{ke:name/%s} {:size/%6ju}, " "{:limit/%6ju},{:used/%8ju}," "{:free/%8ju},{:requests/%8ju}," "{:fail/%4ju},{:sleep/%4ju}\n", name, memstat_get_name(mtp), (uintmax_t)memstat_get_size(mtp), (uintmax_t)memstat_get_countlimit(mtp), (uintmax_t)memstat_get_count(mtp), (uintmax_t)memstat_get_free(mtp), (uintmax_t)memstat_get_numallocs(mtp), (uintmax_t)memstat_get_failures(mtp), (uintmax_t)memstat_get_sleeps(mtp)); xo_close_instance("zone"); } memstat_mtl_free(mtlp); xo_close_list("zone"); xo_close_container("memory-zone-statistics"); xo_emit("\n"); } #ifndef __rtems__ static void display_object(struct kinfo_vmobject *kvo) { const char *str; xo_open_instance("object"); xo_emit("{:resident/%5ju} ", (uintmax_t)kvo->kvo_resident); xo_emit("{:active/%5ju} ", (uintmax_t)kvo->kvo_active); xo_emit("{:inactive/%5ju} ", (uintmax_t)kvo->kvo_inactive); xo_emit("{:refcount/%3d} ", kvo->kvo_ref_count); xo_emit("{:shadowcount/%3d} ", kvo->kvo_shadow_count); switch (kvo->kvo_memattr) { #ifdef VM_MEMATTR_UNCACHEABLE case VM_MEMATTR_UNCACHEABLE: str = "UC"; break; #endif #ifdef VM_MEMATTR_WRITE_COMBINING case VM_MEMATTR_WRITE_COMBINING: str = "WC"; break; #endif #ifdef VM_MEMATTR_WRITE_THROUGH case VM_MEMATTR_WRITE_THROUGH: str = "WT"; break; #endif #ifdef VM_MEMATTR_WRITE_PROTECTED case VM_MEMATTR_WRITE_PROTECTED: str = "WP"; break; #endif #ifdef VM_MEMATTR_WRITE_BACK case VM_MEMATTR_WRITE_BACK: str = "WB"; break; #endif #ifdef VM_MEMATTR_WEAK_UNCACHEABLE case VM_MEMATTR_WEAK_UNCACHEABLE: str = "UC-"; break; #endif #ifdef VM_MEMATTR_WB_WA case VM_MEMATTR_WB_WA: str = "WB"; break; #endif #ifdef VM_MEMATTR_NOCACHE case VM_MEMATTR_NOCACHE: str = "NC"; break; #endif #ifdef VM_MEMATTR_DEVICE case VM_MEMATTR_DEVICE: str = "DEV"; break; #endif #ifdef VM_MEMATTR_CACHEABLE case VM_MEMATTR_CACHEABLE: str = "C"; break; #endif #ifdef VM_MEMATTR_PREFETCHABLE case VM_MEMATTR_PREFETCHABLE: str = "PRE"; break; #endif default: str = "??"; break; } xo_emit("{:attribute/%-3s} ", str); switch (kvo->kvo_type) { case KVME_TYPE_NONE: str = "--"; break; case KVME_TYPE_DEFAULT: str = "df"; break; case KVME_TYPE_VNODE: str = "vn"; break; case KVME_TYPE_SWAP: str = "sw"; break; case KVME_TYPE_DEVICE: str = "dv"; break; case KVME_TYPE_PHYS: str = "ph"; break; case KVME_TYPE_DEAD: str = "dd"; break; case KVME_TYPE_SG: str = "sg"; break; case KVME_TYPE_MGTDEVICE: str = "md"; break; case KVME_TYPE_UNKNOWN: default: str = "??"; break; } xo_emit("{:type/%-2s} ", str); xo_emit("{:path/%-s}\n", kvo->kvo_path); xo_close_instance("object"); } static void doobjstat(void) { struct kinfo_vmobject *kvo; int cnt, i; kvo = kinfo_getvmobject(&cnt); if (kvo == NULL) { xo_warn("Failed to fetch VM object list"); return; } xo_emit("{T:RES/%5s} {T:ACT/%5s} {T:INACT/%5s} {T:REF/%3s} {T:SHD/%3s} " "{T:CM/%3s} {T:TP/%2s} {T:PATH/%s}\n"); xo_open_list("object"); for (i = 0; i < cnt; i++) display_object(&kvo[i]); free(kvo); xo_close_list("object"); } /* * kread reads something from the kernel, given its nlist index. */ static void kreado(int nlx, void *addr, size_t size, size_t offset) { const char *sym; if (namelist[nlx].n_type == 0 || namelist[nlx].n_value == 0) { sym = namelist[nlx].n_name; if (*sym == '_') ++sym; xo_errx(1, "symbol %s not defined", sym); } if ((size_t)kvm_read(kd, namelist[nlx].n_value + offset, addr, size) != size) { sym = namelist[nlx].n_name; if (*sym == '_') ++sym; xo_errx(1, "%s: %s", sym, kvm_geterr(kd)); } } static void kread(int nlx, void *addr, size_t size) { kreado(nlx, addr, size, 0); } #endif /* __rtems__ */ static void kreadptr(uintptr_t addr, void *buf, size_t size) { if ((size_t)kvm_read(kd, addr, buf, size) != size) xo_errx(1, "%s", kvm_geterr(kd)); } static void __dead2 usage(void) { xo_error("%s%s", "usage: vmstat [-afHhimoPsz] [-M core [-N system]] [-c count] [-n devs]\n", " [-p type,if,pass] [-w wait] [disks] [wait [count]]\n"); xo_finish(); exit(1); }