#include /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All Rights Reserved. * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved. * Copyright (c) 2018 Matthew Macy * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 */ /* * UNIX Domain (Local) Sockets * * This is an implementation of UNIX (local) domain sockets. Each socket has * an associated struct unpcb (UNIX protocol control block). Stream sockets * may be connected to 0 or 1 other socket. Datagram sockets may be * connected to 0, 1, or many other sockets. Sockets may be created and * connected in pairs (socketpair(2)), or bound/connected to using the file * system name space. For most purposes, only the receive socket buffer is * used, as sending on one socket delivers directly to the receive socket * buffer of a second socket. * * The implementation is substantially complicated by the fact that * "ancillary data", such as file descriptors or credentials, may be passed * across UNIX domain sockets. The potential for passing UNIX domain sockets * over other UNIX domain sockets requires the implementation of a simple * garbage collector to find and tear down cycles of disconnected sockets. * * TODO: * RDM * rethink name space problems * need a proper out-of-band */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include /* XXX must be before */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #ifdef __rtems__ #include #endif /* __rtems__ */ MALLOC_DECLARE(M_FILECAPS); /* * Locking key: * (l) Locked using list lock * (g) Locked using linkage lock */ static uma_zone_t unp_zone; static unp_gen_t unp_gencnt; /* (l) */ static u_int unp_count; /* (l) Count of local sockets. */ static ino_t unp_ino; /* Prototype for fake inode numbers. */ #ifndef __rtems__ static int unp_rights; /* (g) File descriptors in flight. */ #endif /* __rtems__ */ static struct unp_head unp_shead; /* (l) List of stream sockets. */ static struct unp_head unp_dhead; /* (l) List of datagram sockets. */ static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */ struct unp_defer { SLIST_ENTRY(unp_defer) ud_link; struct file *ud_fp; }; #ifndef __rtems__ static SLIST_HEAD(, unp_defer) unp_defers; static int unp_defers_count; #endif /* __rtems__ */ static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; #ifndef __rtems__ /* * Garbage collection of cyclic file descriptor/socket references occurs * asynchronously in a taskqueue context in order to avoid recursion and * reentrance in the UNIX domain socket, file descriptor, and socket layer * code. See unp_gc() for a full description. */ static struct timeout_task unp_gc_task; /* * The close of unix domain sockets attached as SCM_RIGHTS is * postponed to the taskqueue, to avoid arbitrary recursion depth. * The attached sockets might have another sockets attached. */ static struct task unp_defer_task; #endif /* __rtems__ */ /* * Both send and receive buffers are allocated PIPSIZ bytes of buffering for * stream sockets, although the total for sender and receiver is actually * only PIPSIZ. * * Datagram sockets really use the sendspace as the maximum datagram size, * and don't really want to reserve the sendspace. Their recvspace should be * large enough for at least one max-size datagram plus address. */ #ifndef PIPSIZ #define PIPSIZ 8192 #endif static u_long unpst_sendspace = PIPSIZ; static u_long unpst_recvspace = PIPSIZ; static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ static u_long unpdg_recvspace = 4*1024; static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */ static u_long unpsp_recvspace = PIPSIZ; static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain"); static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0, "SOCK_STREAM"); static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM"); static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0, "SOCK_SEQPACKET"); SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, &unpst_sendspace, 0, "Default stream send space."); SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, &unpst_recvspace, 0, "Default stream receive space."); SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, &unpdg_sendspace, 0, "Default datagram send space."); SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, &unpdg_recvspace, 0, "Default datagram receive space."); SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW, &unpsp_sendspace, 0, "Default seqpacket send space."); SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW, &unpsp_recvspace, 0, "Default seqpacket receive space."); #ifndef __rtems__ SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, "File descriptors in flight."); SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD, &unp_defers_count, 0, "File descriptors deferred to taskqueue for close."); #endif /* __rtems__ */ /* * Locking and synchronization: * * Three types of locks exist in the local domain socket implementation: a * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes. * The linkage lock protects the socket count, global generation number, * and stream/datagram global lists. * * The mtxpool lock protects the vnode from being modified while referenced. * Lock ordering requires that it be acquired before any unpcb locks. * * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular * note is that this includes the unp_conn field. So long as the unpcb lock * is held the reference to the unpcb pointed to by unp_conn is valid. If we * require that the unpcb pointed to by unp_conn remain live in cases where * we need to drop the unp_mtx as when we need to acquire the lock for a * second unpcb the caller must first acquire an additional reference on the * second unpcb and then revalidate any state (typically check that unp_conn * is non-NULL) upon requiring the initial unpcb lock. The lock ordering * between unpcbs is the conventional ascending address order. Two helper * routines exist for this: * * - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the * safe ordering. * * - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held * when called. If unp is unlocked and unp2 is subsequently freed * freed will be set to 1. * * The helper routines for references are: * * - unp_pcb_hold(unp): Can be called any time we currently hold a valid * reference to unp. * * - unp_pcb_rele(unp): The caller must hold the unp lock. If we are * releasing the last reference, detach must have been called thus * unp->unp_socket be NULL. * * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer, * allocated in pru_attach() and freed in pru_detach(). The validity of that * pointer is an invariant, so no lock is required to dereference the so_pcb * pointer if a valid socket reference is held by the caller. In practice, * this is always true during operations performed on a socket. Each unpcb * has a back-pointer to its socket, unp_socket, which will be stable under * the same circumstances. * * This pointer may only be safely dereferenced as long as a valid reference * to the unpcb is held. Typically, this reference will be from the socket, * or from another unpcb when the referring unpcb's lock is held (in order * that the reference not be invalidated during use). For example, to follow * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee * that detach is not run clearing unp_socket. * * Blocking with UNIX domain sockets is a tricky issue: unlike most network * protocols, bind() is a non-atomic operation, and connect() requires * potential sleeping in the protocol, due to potentially waiting on local or * distributed file systems. We try to separate "lookup" operations, which * may sleep, and the IPC operations themselves, which typically can occur * with relative atomicity as locks can be held over the entire operation. * * Another tricky issue is simultaneous multi-threaded or multi-process * access to a single UNIX domain socket. These are handled by the flags * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or * binding, both of which involve dropping UNIX domain socket locks in order * to perform namei() and other file system operations. */ static struct rwlock unp_link_rwlock; static struct mtx unp_defers_lock; #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \ "unp_link_rwlock") #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \ RA_LOCKED) #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ RA_UNLOCKED) #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock) #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock) #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock) #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock) #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \ RA_WLOCKED) #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock) #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \ "unp_defer", NULL, MTX_DEF) #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock) #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock) #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK(); #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK(); #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \ "unp", "unp", \ MTX_DUPOK|MTX_DEF) #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx) #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx) #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx) #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx) #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx) #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED) #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED) static int uipc_connect2(struct socket *, struct socket *); static int uipc_ctloutput(struct socket *, struct sockopt *); static int unp_connect(struct socket *, struct sockaddr *, struct thread *); static int unp_connectat(int, struct socket *, struct sockaddr *, struct thread *); static int unp_connect2(struct socket *so, struct socket *so2, int); static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2); #ifndef __rtems__ static void unp_dispose(struct socket *so); static void unp_dispose_mbuf(struct mbuf *); #endif /* __rtems__ */ static void unp_shutdown(struct unpcb *); static void unp_drop(struct unpcb *); #ifndef __rtems__ static void unp_gc(__unused void *, int); static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int)); static void unp_discard(struct file *); static void unp_freerights(struct filedescent **, int); #endif /* __rtems__ */ static void unp_init(void); #ifndef __rtems__ static int unp_internalize(struct mbuf **, struct thread *); static void unp_internalize_fp(struct file *); static int unp_externalize(struct mbuf *, struct mbuf **, int); static int unp_externalize_fp(struct file *); static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *); static void unp_process_defers(void * __unused, int); #endif /* __rtems__ */ static void unp_pcb_hold(struct unpcb *unp) { MPASS(unp->unp_refcount); refcount_acquire(&unp->unp_refcount); } static int unp_pcb_rele(struct unpcb *unp) { int freed; UNP_PCB_LOCK_ASSERT(unp); MPASS(unp->unp_refcount); if ((freed = refcount_release(&unp->unp_refcount))) { /* we got here with having detached? */ MPASS(unp->unp_socket == NULL); UNP_PCB_UNLOCK(unp); UNP_PCB_LOCK_DESTROY(unp); uma_zfree(unp_zone, unp); } return (freed); } static void unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2) { MPASS(unp != unp2); UNP_PCB_UNLOCK_ASSERT(unp); UNP_PCB_UNLOCK_ASSERT(unp2); if ((uintptr_t)unp2 > (uintptr_t)unp) { UNP_PCB_LOCK(unp); UNP_PCB_LOCK(unp2); } else { UNP_PCB_LOCK(unp2); UNP_PCB_LOCK(unp); } } static __noinline void unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p, int *freed) { struct unpcb *unp2; unp2 = *unp2p; unp_pcb_hold(unp2); UNP_PCB_UNLOCK(unp); UNP_PCB_LOCK(unp2); UNP_PCB_LOCK(unp); *freed = unp_pcb_rele(unp2); if (*freed) *unp2p = NULL; } #define unp_pcb_owned_lock2(unp, unp2, freed) do { \ freed = 0; \ UNP_PCB_LOCK_ASSERT(unp); \ UNP_PCB_UNLOCK_ASSERT(unp2); \ MPASS((unp) != (unp2)); \ if (__predict_true(UNP_PCB_TRYLOCK(unp2))) \ break; \ else if ((uintptr_t)(unp2) > (uintptr_t)(unp)) \ UNP_PCB_LOCK(unp2); \ else \ unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed); \ } while (0) /* * Definitions of protocols supported in the LOCAL domain. */ static struct domain localdomain; static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream; static struct pr_usrreqs uipc_usrreqs_seqpacket; static struct protosw localsw[] = { { .pr_type = SOCK_STREAM, .pr_domain = &localdomain, .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS, .pr_ctloutput = &uipc_ctloutput, .pr_usrreqs = &uipc_usrreqs_stream }, { .pr_type = SOCK_DGRAM, .pr_domain = &localdomain, .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS, .pr_ctloutput = &uipc_ctloutput, .pr_usrreqs = &uipc_usrreqs_dgram }, { .pr_type = SOCK_SEQPACKET, .pr_domain = &localdomain, /* * XXXRW: For now, PR_ADDR because soreceive will bump into them * due to our use of sbappendaddr. A new sbappend variants is needed * that supports both atomic record writes and control data. */ .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD| PR_RIGHTS, .pr_ctloutput = &uipc_ctloutput, .pr_usrreqs = &uipc_usrreqs_seqpacket, }, }; static struct domain localdomain = { .dom_family = AF_LOCAL, .dom_name = "local", .dom_init = unp_init, #ifndef __rtems__ .dom_externalize = unp_externalize, .dom_dispose = unp_dispose, #endif /* __rtems__ */ .dom_protosw = localsw, .dom_protoswNPROTOSW = &localsw[nitems(localsw)] }; DOMAIN_SET(local); static void uipc_abort(struct socket *so) { struct unpcb *unp, *unp2; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); UNP_PCB_UNLOCK_ASSERT(unp); UNP_PCB_LOCK(unp); unp2 = unp->unp_conn; if (unp2 != NULL) { unp_pcb_hold(unp2); UNP_PCB_UNLOCK(unp); unp_drop(unp2); } else UNP_PCB_UNLOCK(unp); } static int uipc_accept(struct socket *so, struct sockaddr **nam) { struct unpcb *unp, *unp2; const struct sockaddr *sa; /* * Pass back name of connected socket, if it was bound and we are * still connected (our peer may have closed already!). */ unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); UNP_LINK_RLOCK(); unp2 = unp->unp_conn; if (unp2 != NULL && unp2->unp_addr != NULL) { UNP_PCB_LOCK(unp2); sa = (struct sockaddr *) unp2->unp_addr; bcopy(sa, *nam, sa->sa_len); UNP_PCB_UNLOCK(unp2); } else { sa = &sun_noname; bcopy(sa, *nam, sa->sa_len); } UNP_LINK_RUNLOCK(); return (0); } static int uipc_attach(struct socket *so, int proto, struct thread *td) { u_long sendspace, recvspace; struct unpcb *unp; int error; bool locked; KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL")); if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { switch (so->so_type) { case SOCK_STREAM: sendspace = unpst_sendspace; recvspace = unpst_recvspace; break; case SOCK_DGRAM: sendspace = unpdg_sendspace; recvspace = unpdg_recvspace; break; case SOCK_SEQPACKET: sendspace = unpsp_sendspace; recvspace = unpsp_recvspace; break; default: panic("uipc_attach"); } error = soreserve(so, sendspace, recvspace); if (error) return (error); } unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO); if (unp == NULL) return (ENOBUFS); LIST_INIT(&unp->unp_refs); UNP_PCB_LOCK_INIT(unp); unp->unp_socket = so; so->so_pcb = unp; unp->unp_refcount = 1; if (so->so_listen != NULL) unp->unp_flags |= UNP_NASCENT; if ((locked = UNP_LINK_WOWNED()) == false) UNP_LINK_WLOCK(); unp->unp_gencnt = ++unp_gencnt; unp->unp_ino = ++unp_ino; unp_count++; switch (so->so_type) { case SOCK_STREAM: LIST_INSERT_HEAD(&unp_shead, unp, unp_link); break; case SOCK_DGRAM: LIST_INSERT_HEAD(&unp_dhead, unp, unp_link); break; case SOCK_SEQPACKET: LIST_INSERT_HEAD(&unp_sphead, unp, unp_link); break; default: panic("uipc_attach"); } if (locked == false) UNP_LINK_WUNLOCK(); return (0); } #ifdef __rtems__ static IMFS_jnode_t * rtems_uipc_imfs_initialize(IMFS_jnode_t *node, void *arg) { struct socket *so; struct unpcb *unp; node = IMFS_node_initialize_generic(node, arg); so = IMFS_generic_get_context_by_node(node); unp = sotounpcb(so); unp->unp_vnode = node; return node; } static void rtems_uipc_imfs_destroy(IMFS_jnode_t *node) { struct socket *so; struct unpcb *unp; so = IMFS_generic_get_context_by_node(node); unp = sotounpcb(so); unp->unp_vnode = NULL; IMFS_node_destroy_default(node); } static const IMFS_node_control rtems_uipc_imfs_control = IMFS_GENERIC_INITIALIZER(&socketops, rtems_uipc_imfs_initialize, rtems_uipc_imfs_destroy); static const IMFS_node_control rtems_uipc_imfs_zombi_control = IMFS_GENERIC_INITIALIZER(&rtems_filesystem_handlers_default, NULL, IMFS_node_destroy_default); static void VOP_UNP_DETACH(IMFS_generic_t *vp) { vp->Node.control = &rtems_uipc_imfs_zombi_control; vp->context = NULL; } #endif /* __rtems__ */ static int uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_un *soun = (struct sockaddr_un *)nam; #ifndef __rtems__ struct vattr vattr; int error, namelen; struct nameidata nd; struct unpcb *unp; struct vnode *vp; struct mount *mp; cap_rights_t rights; char *buf; #else /* __rtems__ */ int rv; int error, namelen; struct unpcb *unp; #endif /* __rtems__ */ if (nam->sa_family != AF_UNIX) return (EAFNOSUPPORT); unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); if (soun->sun_len > sizeof(struct sockaddr_un)) return (EINVAL); namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); if (namelen <= 0) return (EINVAL); /* * We don't allow simultaneous bind() calls on a single UNIX domain * socket, so flag in-progress operations, and return an error if an * operation is already in progress. * * Historically, we have not allowed a socket to be rebound, so this * also returns an error. Not allowing re-binding simplifies the * implementation and avoids a great many possible failure modes. */ UNP_PCB_LOCK(unp); if (unp->unp_vnode != NULL) { UNP_PCB_UNLOCK(unp); return (EINVAL); } if (unp->unp_flags & UNP_BINDING) { UNP_PCB_UNLOCK(unp); return (EALREADY); } unp->unp_flags |= UNP_BINDING; UNP_PCB_UNLOCK(unp); #ifndef __rtems__ buf = malloc(namelen + 1, M_TEMP, M_WAITOK); bcopy(soun->sun_path, buf, namelen); buf[namelen] = 0; restart: NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE, UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td); /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ error = namei(&nd); if (error) goto error; vp = nd.ni_vp; if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { NDFREE(&nd, NDF_ONLY_PNBUF); if (nd.ni_dvp == vp) vrele(nd.ni_dvp); else vput(nd.ni_dvp); if (vp != NULL) { vrele(vp); error = EADDRINUSE; goto error; } error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); if (error) goto error; goto restart; } VATTR_NULL(&vattr); vattr.va_type = VSOCK; vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask); #ifdef MAC error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, &vattr); #endif if (error == 0) error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); NDFREE(&nd, NDF_ONLY_PNBUF); vput(nd.ni_dvp); if (error) { vn_finished_write(mp); goto error; } vp = nd.ni_vp; ASSERT_VOP_ELOCKED(vp, "uipc_bind"); #else /* __rtems__ */ soun->sun_path[namelen] = '\0'; rv = IMFS_make_generic_node(soun->sun_path, S_IFSOCK | S_IRWXU | S_IRWXG | S_IRWXO, &rtems_uipc_imfs_control, so); if (rv != 0) { error = errno; goto error; } #endif /* __rtems__ */ soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); UNP_PCB_LOCK(unp); #ifndef __rtems__ VOP_UNP_BIND(vp, unp); unp->unp_vnode = vp; #endif /* __rtems__ */ unp->unp_addr = soun; unp->unp_flags &= ~UNP_BINDING; UNP_PCB_UNLOCK(unp); #ifndef __rtems__ VOP_UNLOCK(vp, 0); vn_finished_write(mp); free(buf, M_TEMP); #endif /* __rtems__ */ return (0); error: UNP_PCB_LOCK(unp); unp->unp_flags &= ~UNP_BINDING; UNP_PCB_UNLOCK(unp); #ifndef __rtems__ free(buf, M_TEMP); #endif /* __rtems__ */ return (error); } static int uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { return (uipc_bindat(AT_FDCWD, so, nam, td)); } static int uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { int error; KASSERT(td == curthread, ("uipc_connect: td != curthread")); error = unp_connect(so, nam, td); return (error); } static int uipc_connectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) { int error; KASSERT(td == curthread, ("uipc_connectat: td != curthread")); error = unp_connectat(fd, so, nam, td); return (error); } static void uipc_close(struct socket *so) { struct unpcb *unp, *unp2; #ifndef __rtems__ struct vnode *vp = NULL; struct mtx *vplock; #else /* __rtems__ */ IMFS_generic_t *vp = NULL; #endif /* __rtems__ */ int freed; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_close: unp == NULL")); #ifndef __rtems__ vplock = NULL; #endif /* __rtems__ */ if ((vp = unp->unp_vnode) != NULL) { #ifndef __rtems__ vplock = mtx_pool_find(mtxpool_sleep, vp); mtx_lock(vplock); #endif /* __rtems__ */ } UNP_PCB_LOCK(unp); if (vp && unp->unp_vnode == NULL) { #ifndef __rtems__ mtx_unlock(vplock); #endif /* __rtems__ */ vp = NULL; } if (vp != NULL) { VOP_UNP_DETACH(vp); unp->unp_vnode = NULL; } unp2 = unp->unp_conn; unp_pcb_hold(unp); if (__predict_false(unp == unp2)) { unp_disconnect(unp, unp2); } else if (unp2 != NULL) { unp_pcb_hold(unp2); unp_pcb_owned_lock2(unp, unp2, freed); unp_disconnect(unp, unp2); if (unp_pcb_rele(unp2) == 0) UNP_PCB_UNLOCK(unp2); } if (unp_pcb_rele(unp) == 0) UNP_PCB_UNLOCK(unp); #ifndef __rtems__ if (vp) { mtx_unlock(vplock); vrele(vp); } #endif /* __rtems__ */ } static int uipc_connect2(struct socket *so1, struct socket *so2) { struct unpcb *unp, *unp2; int error; unp = so1->so_pcb; KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); unp2 = so2->so_pcb; KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL")); if (unp != unp2) unp_pcb_lock2(unp, unp2); else UNP_PCB_LOCK(unp); error = unp_connect2(so1, so2, PRU_CONNECT2); if (unp != unp2) UNP_PCB_UNLOCK(unp2); UNP_PCB_UNLOCK(unp); return (error); } static void uipc_detach(struct socket *so) { struct unpcb *unp, *unp2; #ifndef __rtems__ struct mtx *vplock; #endif /* __rtems__ */ struct sockaddr_un *saved_unp_addr; #ifndef __rtems__ struct vnode *vp; int freeunp, local_unp_rights; #else /* __rtems__ */ IMFS_generic_t *vp; int freeunp; #endif /* __rtems__ */ unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); vp = NULL; #ifndef __rtems__ vplock = NULL; local_unp_rights = 0; #endif /* __rtems__ */ UNP_LINK_WLOCK(); LIST_REMOVE(unp, unp_link); unp->unp_gencnt = ++unp_gencnt; --unp_count; UNP_LINK_WUNLOCK(); UNP_PCB_UNLOCK_ASSERT(unp); restart: if ((vp = unp->unp_vnode) != NULL) { #ifndef __rtems__ vplock = mtx_pool_find(mtxpool_sleep, vp); mtx_lock(vplock); #endif /* __rtems__ */ } UNP_PCB_LOCK(unp); if (unp->unp_vnode != vp && unp->unp_vnode != NULL) { #ifndef __rtems__ if (vplock) mtx_unlock(vplock); #endif /* __rtems__ */ UNP_PCB_UNLOCK(unp); goto restart; } if ((unp->unp_flags & UNP_NASCENT) != 0) { goto teardown; } if ((vp = unp->unp_vnode) != NULL) { VOP_UNP_DETACH(vp); unp->unp_vnode = NULL; } if (__predict_false(unp == unp->unp_conn)) { unp_disconnect(unp, unp); unp2 = NULL; goto connect_self; } if ((unp2 = unp->unp_conn) != NULL) { unp_pcb_owned_lock2(unp, unp2, freeunp); if (freeunp) unp2 = NULL; } unp_pcb_hold(unp); if (unp2 != NULL) { unp_pcb_hold(unp2); unp_disconnect(unp, unp2); if (unp_pcb_rele(unp2) == 0) UNP_PCB_UNLOCK(unp2); } connect_self: UNP_PCB_UNLOCK(unp); UNP_REF_LIST_LOCK(); while (!LIST_EMPTY(&unp->unp_refs)) { struct unpcb *ref = LIST_FIRST(&unp->unp_refs); unp_pcb_hold(ref); UNP_REF_LIST_UNLOCK(); MPASS(ref != unp); UNP_PCB_UNLOCK_ASSERT(ref); unp_drop(ref); UNP_REF_LIST_LOCK(); } UNP_REF_LIST_UNLOCK(); UNP_PCB_LOCK(unp); freeunp = unp_pcb_rele(unp); MPASS(freeunp == 0); #ifndef __rtems__ local_unp_rights = unp_rights; #endif /* __rtems__ */ teardown: unp->unp_socket->so_pcb = NULL; saved_unp_addr = unp->unp_addr; unp->unp_addr = NULL; unp->unp_socket = NULL; freeunp = unp_pcb_rele(unp); if (saved_unp_addr != NULL) free(saved_unp_addr, M_SONAME); if (!freeunp) UNP_PCB_UNLOCK(unp); #ifndef __rtems__ if (vp) { mtx_unlock(vplock); vrele(vp); } if (local_unp_rights) taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1); #endif /* __rtems__ */ } static int uipc_disconnect(struct socket *so) { struct unpcb *unp, *unp2; int freed; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); UNP_PCB_LOCK(unp); if ((unp2 = unp->unp_conn) == NULL) { UNP_PCB_UNLOCK(unp); return (0); } if (__predict_true(unp != unp2)) { unp_pcb_owned_lock2(unp, unp2, freed); if (__predict_false(freed)) { UNP_PCB_UNLOCK(unp); return (0); } unp_pcb_hold(unp2); } unp_pcb_hold(unp); unp_disconnect(unp, unp2); if (unp_pcb_rele(unp) == 0) UNP_PCB_UNLOCK(unp); if ((unp != unp2) && unp_pcb_rele(unp2) == 0) UNP_PCB_UNLOCK(unp2); return (0); } static int uipc_listen(struct socket *so, int backlog, struct thread *td) { struct unpcb *unp; int error; if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET) return (EOPNOTSUPP); unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); UNP_PCB_LOCK(unp); if (unp->unp_vnode == NULL) { /* Already connected or not bound to an address. */ error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ; UNP_PCB_UNLOCK(unp); return (error); } SOCK_LOCK(so); error = solisten_proto_check(so); if (error == 0) { cru2x(td->td_ucred, &unp->unp_peercred); solisten_proto(so, backlog); } SOCK_UNLOCK(so); UNP_PCB_UNLOCK(unp); return (error); } static int uipc_peeraddr(struct socket *so, struct sockaddr **nam) { struct unpcb *unp, *unp2; const struct sockaddr *sa; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); UNP_LINK_RLOCK(); /* * XXX: It seems that this test always fails even when connection is * established. So, this else clause is added as workaround to * return PF_LOCAL sockaddr. */ unp2 = unp->unp_conn; if (unp2 != NULL) { UNP_PCB_LOCK(unp2); if (unp2->unp_addr != NULL) sa = (struct sockaddr *) unp2->unp_addr; else sa = &sun_noname; bcopy(sa, *nam, sa->sa_len); UNP_PCB_UNLOCK(unp2); } else { sa = &sun_noname; bcopy(sa, *nam, sa->sa_len); } UNP_LINK_RUNLOCK(); return (0); } static int uipc_rcvd(struct socket *so, int flags) { struct unpcb *unp, *unp2; struct socket *so2; u_int mbcnt, sbcc; unp = sotounpcb(so); KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET, ("%s: socktype %d", __func__, so->so_type)); /* * Adjust backpressure on sender and wakeup any waiting to write. * * The unp lock is acquired to maintain the validity of the unp_conn * pointer; no lock on unp2 is required as unp2->unp_socket will be * static as long as we don't permit unp2 to disconnect from unp, * which is prevented by the lock on unp. We cache values from * so_rcv to avoid holding the so_rcv lock over the entire * transaction on the remote so_snd. */ SOCKBUF_LOCK(&so->so_rcv); mbcnt = so->so_rcv.sb_mbcnt; sbcc = sbavail(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); /* * There is a benign race condition at this point. If we're planning to * clear SB_STOP, but uipc_send is called on the connected socket at * this instant, it might add data to the sockbuf and set SB_STOP. Then * we would erroneously clear SB_STOP below, even though the sockbuf is * full. The race is benign because the only ill effect is to allow the * sockbuf to exceed its size limit, and the size limits are not * strictly guaranteed anyway. */ UNP_PCB_LOCK(unp); unp2 = unp->unp_conn; if (unp2 == NULL) { UNP_PCB_UNLOCK(unp); return (0); } so2 = unp2->unp_socket; SOCKBUF_LOCK(&so2->so_snd); if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax) so2->so_snd.sb_flags &= ~SB_STOP; sowwakeup_locked(so2); UNP_PCB_UNLOCK(unp); return (0); } static int connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td) { int error; struct unpcb *unp; unp = so->so_pcb; if (unp->unp_conn != NULL) return (EISCONN); error = unp_connect(so, nam, td); if (error) return (error); UNP_PCB_LOCK(unp); if (unp->unp_conn == NULL) { UNP_PCB_UNLOCK(unp); if (error == 0) error = ENOTCONN; } return (error); } static int uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { struct unpcb *unp, *unp2; struct socket *so2; u_int mbcnt, sbcc; int freed, error; unp = sotounpcb(so); KASSERT(unp != NULL, ("%s: unp == NULL", __func__)); KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM || so->so_type == SOCK_SEQPACKET, ("%s: socktype %d", __func__, so->so_type)); freed = error = 0; if (flags & PRUS_OOB) { error = EOPNOTSUPP; goto release; } #ifndef __rtems__ if (control != NULL && (error = unp_internalize(&control, td))) goto release; #endif /* __rtems__ */ unp2 = NULL; switch (so->so_type) { case SOCK_DGRAM: { const struct sockaddr *from; if (nam != NULL) { /* * We return with UNP_PCB_LOCK_HELD so we know that * the reference is live if the pointer is valid. */ if ((error = connect_internal(so, nam, td))) break; MPASS(unp->unp_conn != NULL); unp2 = unp->unp_conn; } else { UNP_PCB_LOCK(unp); /* * Because connect() and send() are non-atomic in a sendto() * with a target address, it's possible that the socket will * have disconnected before the send() can run. In that case * return the slightly counter-intuitive but otherwise * correct error that the socket is not connected. */ if ((unp2 = unp->unp_conn) == NULL) { UNP_PCB_UNLOCK(unp); error = ENOTCONN; break; } } if (__predict_false(unp == unp2)) { if (unp->unp_socket == NULL) { error = ENOTCONN; break; } goto connect_self; } unp_pcb_owned_lock2(unp, unp2, freed); if (__predict_false(freed)) { UNP_PCB_UNLOCK(unp); error = ENOTCONN; break; } /* * The socket referencing unp2 may have been closed * or unp may have been disconnected if the unp lock * was dropped to acquire unp2. */ if (__predict_false(unp->unp_conn == NULL) || unp2->unp_socket == NULL) { UNP_PCB_UNLOCK(unp); if (unp_pcb_rele(unp2) == 0) UNP_PCB_UNLOCK(unp2); error = ENOTCONN; break; } connect_self: if (unp2->unp_flags & UNP_WANTCRED) #ifndef __rtems__ control = unp_addsockcred(td, control); #else /* __rtems__ */ control = NULL; #endif /* __rtems__ */ if (unp->unp_addr != NULL) from = (struct sockaddr *)unp->unp_addr; else from = &sun_noname; so2 = unp2->unp_socket; SOCKBUF_LOCK(&so2->so_rcv); if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) { sorwakeup_locked(so2); m = NULL; control = NULL; } else { SOCKBUF_UNLOCK(&so2->so_rcv); error = ENOBUFS; } if (nam != NULL) unp_disconnect(unp, unp2); if (__predict_true(unp != unp2)) UNP_PCB_UNLOCK(unp2); UNP_PCB_UNLOCK(unp); break; } case SOCK_SEQPACKET: case SOCK_STREAM: if ((so->so_state & SS_ISCONNECTED) == 0) { if (nam != NULL) { if ((error = connect_internal(so, nam, td))) break; } else { error = ENOTCONN; break; } } else if ((unp2 = unp->unp_conn) == NULL) { error = ENOTCONN; break; } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) { error = EPIPE; break; } else { UNP_PCB_LOCK(unp); if ((unp2 = unp->unp_conn) == NULL) { UNP_PCB_UNLOCK(unp); error = ENOTCONN; break; } } unp_pcb_owned_lock2(unp, unp2, freed); UNP_PCB_UNLOCK(unp); if (__predict_false(freed)) { error = ENOTCONN; break; } if ((so2 = unp2->unp_socket) == NULL) { UNP_PCB_UNLOCK(unp2); error = ENOTCONN; break; } SOCKBUF_LOCK(&so2->so_rcv); if (unp2->unp_flags & UNP_WANTCRED) { #ifndef __rtems__ /* * Credentials are passed only once on SOCK_STREAM * and SOCK_SEQPACKET. */ unp2->unp_flags &= ~UNP_WANTCRED; control = unp_addsockcred(td, control); #endif /* __rtems__ */ } /* * Send to paired receive port and wake up readers. Don't * check for space available in the receive buffer if we're * attaching ancillary data; Unix domain sockets only check * for space in the sending sockbuf, and that check is * performed one level up the stack. At that level we cannot * precisely account for the amount of buffer space used * (e.g., because control messages are not yet internalized). */ switch (so->so_type) { case SOCK_STREAM: if (control != NULL) { sbappendcontrol_locked(&so2->so_rcv, m, control); control = NULL; } else sbappend_locked(&so2->so_rcv, m, flags); break; case SOCK_SEQPACKET: { const struct sockaddr *from; from = &sun_noname; if (sbappendaddr_nospacecheck_locked(&so2->so_rcv, from, m, control)) control = NULL; break; } } mbcnt = so2->so_rcv.sb_mbcnt; sbcc = sbavail(&so2->so_rcv); if (sbcc) sorwakeup_locked(so2); else SOCKBUF_UNLOCK(&so2->so_rcv); /* * The PCB lock on unp2 protects the SB_STOP flag. Without it, * it would be possible for uipc_rcvd to be called at this * point, drain the receiving sockbuf, clear SB_STOP, and then * we would set SB_STOP below. That could lead to an empty * sockbuf having SB_STOP set */ SOCKBUF_LOCK(&so->so_snd); if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax) so->so_snd.sb_flags |= SB_STOP; SOCKBUF_UNLOCK(&so->so_snd); UNP_PCB_UNLOCK(unp2); m = NULL; break; } /* * PRUS_EOF is equivalent to pru_send followed by pru_shutdown. */ if (flags & PRUS_EOF) { UNP_PCB_LOCK(unp); socantsendmore(so); unp_shutdown(unp); UNP_PCB_UNLOCK(unp); } if (control != NULL && error != 0) #ifndef __rtems__ unp_dispose_mbuf(control); #else /* __rtems__ */ BSD_ASSERT(0); #endif /* __rtems__ */ release: if (control != NULL) m_freem(control); /* * In case of PRUS_NOTREADY, uipc_ready() is responsible * for freeing memory. */ if (m != NULL && (flags & PRUS_NOTREADY) == 0) m_freem(m); return (error); } static int uipc_ready(struct socket *so, struct mbuf *m, int count) { struct unpcb *unp, *unp2; struct socket *so2; int error; unp = sotounpcb(so); UNP_PCB_LOCK(unp); if ((unp2 = unp->unp_conn) == NULL) { UNP_PCB_UNLOCK(unp); goto error; } if (unp != unp2) { if (UNP_PCB_TRYLOCK(unp2) == 0) { unp_pcb_hold(unp2); UNP_PCB_UNLOCK(unp); UNP_PCB_LOCK(unp2); if (unp_pcb_rele(unp2)) goto error; } else UNP_PCB_UNLOCK(unp); } so2 = unp2->unp_socket; SOCKBUF_LOCK(&so2->so_rcv); if ((error = sbready(&so2->so_rcv, m, count)) == 0) sorwakeup_locked(so2); else SOCKBUF_UNLOCK(&so2->so_rcv); UNP_PCB_UNLOCK(unp2); return (error); error: for (int i = 0; i < count; i++) m = m_free(m); return (ECONNRESET); } static int uipc_sense(struct socket *so, struct stat *sb) { struct unpcb *unp; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); sb->st_blksize = so->so_snd.sb_hiwat; sb->st_dev = NODEV; sb->st_ino = unp->unp_ino; return (0); } static int uipc_shutdown(struct socket *so) { struct unpcb *unp; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); UNP_PCB_LOCK(unp); socantsendmore(so); unp_shutdown(unp); UNP_PCB_UNLOCK(unp); return (0); } static int uipc_sockaddr(struct socket *so, struct sockaddr **nam) { struct unpcb *unp; const struct sockaddr *sa; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); UNP_PCB_LOCK(unp); if (unp->unp_addr != NULL) sa = (struct sockaddr *) unp->unp_addr; else sa = &sun_noname; bcopy(sa, *nam, sa->sa_len); UNP_PCB_UNLOCK(unp); return (0); } static struct pr_usrreqs uipc_usrreqs_dgram = { .pru_abort = uipc_abort, .pru_accept = uipc_accept, .pru_attach = uipc_attach, .pru_bind = uipc_bind, .pru_bindat = uipc_bindat, .pru_connect = uipc_connect, .pru_connectat = uipc_connectat, .pru_connect2 = uipc_connect2, .pru_detach = uipc_detach, .pru_disconnect = uipc_disconnect, .pru_listen = uipc_listen, .pru_peeraddr = uipc_peeraddr, .pru_rcvd = uipc_rcvd, .pru_send = uipc_send, .pru_sense = uipc_sense, .pru_shutdown = uipc_shutdown, .pru_sockaddr = uipc_sockaddr, .pru_soreceive = soreceive_dgram, .pru_close = uipc_close, }; static struct pr_usrreqs uipc_usrreqs_seqpacket = { .pru_abort = uipc_abort, .pru_accept = uipc_accept, .pru_attach = uipc_attach, .pru_bind = uipc_bind, .pru_bindat = uipc_bindat, .pru_connect = uipc_connect, .pru_connectat = uipc_connectat, .pru_connect2 = uipc_connect2, .pru_detach = uipc_detach, .pru_disconnect = uipc_disconnect, .pru_listen = uipc_listen, .pru_peeraddr = uipc_peeraddr, .pru_rcvd = uipc_rcvd, .pru_send = uipc_send, .pru_sense = uipc_sense, .pru_shutdown = uipc_shutdown, .pru_sockaddr = uipc_sockaddr, .pru_soreceive = soreceive_generic, /* XXX: or...? */ .pru_close = uipc_close, }; static struct pr_usrreqs uipc_usrreqs_stream = { .pru_abort = uipc_abort, .pru_accept = uipc_accept, .pru_attach = uipc_attach, .pru_bind = uipc_bind, .pru_bindat = uipc_bindat, .pru_connect = uipc_connect, .pru_connectat = uipc_connectat, .pru_connect2 = uipc_connect2, .pru_detach = uipc_detach, .pru_disconnect = uipc_disconnect, .pru_listen = uipc_listen, .pru_peeraddr = uipc_peeraddr, .pru_rcvd = uipc_rcvd, .pru_send = uipc_send, .pru_ready = uipc_ready, .pru_sense = uipc_sense, .pru_shutdown = uipc_shutdown, .pru_sockaddr = uipc_sockaddr, .pru_soreceive = soreceive_generic, .pru_close = uipc_close, }; static int uipc_ctloutput(struct socket *so, struct sockopt *sopt) { struct unpcb *unp; struct xucred xu; int error, optval; if (sopt->sopt_level != 0) return (EINVAL); unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); error = 0; switch (sopt->sopt_dir) { case SOPT_GET: switch (sopt->sopt_name) { case LOCAL_PEERCRED: UNP_PCB_LOCK(unp); if (unp->unp_flags & UNP_HAVEPC) xu = unp->unp_peercred; else { if (so->so_type == SOCK_STREAM) error = ENOTCONN; else error = EINVAL; } UNP_PCB_UNLOCK(unp); if (error == 0) error = sooptcopyout(sopt, &xu, sizeof(xu)); break; case LOCAL_CREDS: /* Unlocked read. */ optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0; error = sooptcopyout(sopt, &optval, sizeof(optval)); break; case LOCAL_CONNWAIT: /* Unlocked read. */ optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; error = sooptcopyout(sopt, &optval, sizeof(optval)); break; default: error = EOPNOTSUPP; break; } break; case SOPT_SET: switch (sopt->sopt_name) { case LOCAL_CREDS: case LOCAL_CONNWAIT: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) break; #define OPTSET(bit) do { \ UNP_PCB_LOCK(unp); \ if (optval) \ unp->unp_flags |= bit; \ else \ unp->unp_flags &= ~bit; \ UNP_PCB_UNLOCK(unp); \ } while (0) switch (sopt->sopt_name) { case LOCAL_CREDS: OPTSET(UNP_WANTCRED); break; case LOCAL_CONNWAIT: OPTSET(UNP_CONNWAIT); break; default: break; } break; #undef OPTSET default: error = ENOPROTOOPT; break; } break; default: error = EOPNOTSUPP; break; } return (error); } static int unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { return (unp_connectat(AT_FDCWD, so, nam, td)); } static int unp_connectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_un *soun = (struct sockaddr_un *)nam; #ifndef __rtems__ struct vnode *vp; #else /* __rtems__ */ struct IMFS_jnode_tt *vp; #endif /* __rtems__ */ struct socket *so2; struct unpcb *unp, *unp2, *unp3; #ifndef __rtems__ struct nameidata nd; char buf[SOCK_MAXADDRLEN]; #else /* __rtems__ */ rtems_filesystem_eval_path_context_t ctx; int eval_flags; const rtems_filesystem_location_info_t *currentloc; #endif /* __rtems__ */ struct sockaddr *sa; #ifndef __rtems__ cap_rights_t rights; #endif /* __rtems__ */ int error, len, freed; #ifndef __rtems__ struct mtx *vplock; #endif /* __rtems__ */ if (nam->sa_family != AF_UNIX) return (EAFNOSUPPORT); if (nam->sa_len > sizeof(struct sockaddr_un)) return (EINVAL); len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); if (len <= 0) return (EINVAL); #ifndef __rtems__ bcopy(soun->sun_path, buf, len); buf[len] = 0; #endif /* __rtems__ */ unp = sotounpcb(so); UNP_PCB_LOCK(unp); if (unp->unp_flags & UNP_CONNECTING) { UNP_PCB_UNLOCK(unp); return (EALREADY); } unp->unp_flags |= UNP_CONNECTING; UNP_PCB_UNLOCK(unp); sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); #ifndef __rtems__ NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td); error = namei(&nd); if (error) vp = NULL; else vp = nd.ni_vp; ASSERT_VOP_LOCKED(vp, "unp_connect"); NDFREE(&nd, NDF_ONLY_PNBUF); if (error) goto bad; if (vp->v_type != VSOCK) { error = ENOTSOCK; goto bad; } #ifdef MAC error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD); if (error) goto bad; #endif error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); if (error) goto bad; #else /* __rtems__ */ eval_flags = RTEMS_FS_FOLLOW_LINK; currentloc = rtems_filesystem_eval_path_start_with_root_and_current( &ctx, &soun->sun_path[0], (size_t)len, eval_flags, &rtems_filesystem_root, &rtems_filesystem_current); if (currentloc->handlers == &socketops) { vp = currentloc->node_access; } else { vp = NULL; } rtems_filesystem_eval_path_cleanup(&ctx); if (vp == NULL) { error = ENOTSOCK; goto bad; } #endif /* __rtems__ */ unp = sotounpcb(so); KASSERT(unp != NULL, ("unp_connect: unp == NULL")); #ifndef __rtems__ vplock = mtx_pool_find(mtxpool_sleep, vp); mtx_lock(vplock); VOP_UNP_CONNECT(vp, &unp2); if (unp2 == NULL) { error = ECONNREFUSED; goto bad2; } so2 = unp2->unp_socket; #else /* __rtems__ */ so2 = IMFS_generic_get_context_by_node(vp); if (so2 == NULL) { error = ECONNREFUSED; goto bad2; } unp2 = sotounpcb(so2); #endif /* __rtems__ */ if (so->so_type != so2->so_type) { error = EPROTOTYPE; goto bad2; } if (so->so_proto->pr_flags & PR_CONNREQUIRED) { if (so2->so_options & SO_ACCEPTCONN) { CURVNET_SET(so2->so_vnet); so2 = sonewconn(so2, 0); CURVNET_RESTORE(); } else so2 = NULL; if (so2 == NULL) { error = ECONNREFUSED; goto bad2; } unp3 = sotounpcb(so2); unp_pcb_lock2(unp2, unp3); if (unp2->unp_addr != NULL) { bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); unp3->unp_addr = (struct sockaddr_un *) sa; sa = NULL; } unp_copy_peercred(td, unp3, unp, unp2); UNP_PCB_UNLOCK(unp2); unp2 = unp3; unp_pcb_owned_lock2(unp2, unp, freed); if (__predict_false(freed)) { UNP_PCB_UNLOCK(unp2); error = ECONNREFUSED; goto bad2; } #ifdef MAC mac_socketpeer_set_from_socket(so, so2); mac_socketpeer_set_from_socket(so2, so); #endif } else { if (unp == unp2) UNP_PCB_LOCK(unp); else unp_pcb_lock2(unp, unp2); } KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 && sotounpcb(so2) == unp2, ("%s: unp2 %p so2 %p", __func__, unp2, so2)); error = unp_connect2(so, so2, PRU_CONNECT); if (unp != unp2) UNP_PCB_UNLOCK(unp2); UNP_PCB_UNLOCK(unp); bad2: #ifndef __rtems__ mtx_unlock(vplock); #endif /* __rtems__ */ bad: #ifndef __rtems__ if (vp != NULL) { vput(vp); } #endif /* __rtems__ */ free(sa, M_SONAME); UNP_PCB_LOCK(unp); unp->unp_flags &= ~UNP_CONNECTING; UNP_PCB_UNLOCK(unp); return (error); } /* * Set socket peer credentials at connection time. * * The client's PCB credentials are copied from its process structure. The * server's PCB credentials are copied from the socket on which it called * listen(2). uipc_listen cached that process's credentials at the time. */ void unp_copy_peercred(struct thread *td, struct unpcb *client_unp, struct unpcb *server_unp, struct unpcb *listen_unp) { cru2x(td->td_ucred, &client_unp->unp_peercred); client_unp->unp_flags |= UNP_HAVEPC; memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred, sizeof(server_unp->unp_peercred)); server_unp->unp_flags |= UNP_HAVEPC; if (listen_unp->unp_flags & UNP_WANTCRED) client_unp->unp_flags |= UNP_WANTCRED; } static int unp_connect2(struct socket *so, struct socket *so2, int req) { struct unpcb *unp; struct unpcb *unp2; unp = sotounpcb(so); KASSERT(unp != NULL, ("unp_connect2: unp == NULL")); unp2 = sotounpcb(so2); KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); UNP_PCB_LOCK_ASSERT(unp); UNP_PCB_LOCK_ASSERT(unp2); if (so2->so_type != so->so_type) return (EPROTOTYPE); unp2->unp_flags &= ~UNP_NASCENT; unp->unp_conn = unp2; unp_pcb_hold(unp2); unp_pcb_hold(unp); switch (so->so_type) { case SOCK_DGRAM: UNP_REF_LIST_LOCK(); LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); UNP_REF_LIST_UNLOCK(); soisconnected(so); break; case SOCK_STREAM: case SOCK_SEQPACKET: unp2->unp_conn = unp; if (req == PRU_CONNECT && ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) soisconnecting(so); else soisconnected(so); soisconnected(so2); break; default: panic("unp_connect2"); } return (0); } static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2) { struct socket *so, *so2; int freed __unused; KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL")); UNP_PCB_LOCK_ASSERT(unp); UNP_PCB_LOCK_ASSERT(unp2); if (unp->unp_conn == NULL && unp2->unp_conn == NULL) return; MPASS(unp->unp_conn == unp2); unp->unp_conn = NULL; so = unp->unp_socket; so2 = unp2->unp_socket; switch (unp->unp_socket->so_type) { case SOCK_DGRAM: UNP_REF_LIST_LOCK(); LIST_REMOVE(unp, unp_reflink); UNP_REF_LIST_UNLOCK(); if (so) { SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; SOCK_UNLOCK(so); } break; case SOCK_STREAM: case SOCK_SEQPACKET: if (so) soisdisconnected(so); MPASS(unp2->unp_conn == unp); unp2->unp_conn = NULL; if (so2) soisdisconnected(so2); break; } freed = unp_pcb_rele(unp); MPASS(freed == 0); freed = unp_pcb_rele(unp2); MPASS(freed == 0); } /* * unp_pcblist() walks the global list of struct unpcb's to generate a * pointer list, bumping the refcount on each unpcb. It then copies them out * sequentially, validating the generation number on each to see if it has * been detached. All of this is necessary because copyout() may sleep on * disk I/O. */ static int unp_pcblist(SYSCTL_HANDLER_ARGS) { struct unpcb *unp, **unp_list; unp_gen_t gencnt; struct xunpgen *xug; struct unp_head *head; struct xunpcb *xu; u_int i; int error, freeunp, n; switch ((intptr_t)arg1) { case SOCK_STREAM: head = &unp_shead; break; case SOCK_DGRAM: head = &unp_dhead; break; case SOCK_SEQPACKET: head = &unp_sphead; break; default: panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1); } /* * The process of preparing the PCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == NULL) { n = unp_count; req->oldidx = 2 * (sizeof *xug) + (n + n/8) * sizeof(struct xunpcb); return (0); } if (req->newptr != NULL) return (EPERM); /* * OK, now we're committed to doing something. */ xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO); UNP_LINK_RLOCK(); gencnt = unp_gencnt; n = unp_count; UNP_LINK_RUNLOCK(); xug->xug_len = sizeof *xug; xug->xug_count = n; xug->xug_gen = gencnt; xug->xug_sogen = so_gencnt; error = SYSCTL_OUT(req, xug, sizeof *xug); if (error) { free(xug, M_TEMP); return (error); } unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); UNP_LINK_RLOCK(); for (unp = LIST_FIRST(head), i = 0; unp && i < n; unp = LIST_NEXT(unp, unp_link)) { UNP_PCB_LOCK(unp); if (unp->unp_gencnt <= gencnt) { if (cr_cansee(req->td->td_ucred, unp->unp_socket->so_cred)) { UNP_PCB_UNLOCK(unp); continue; } unp_list[i++] = unp; unp_pcb_hold(unp); } UNP_PCB_UNLOCK(unp); } UNP_LINK_RUNLOCK(); n = i; /* In case we lost some during malloc. */ error = 0; xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); for (i = 0; i < n; i++) { unp = unp_list[i]; UNP_PCB_LOCK(unp); freeunp = unp_pcb_rele(unp); if (freeunp == 0 && unp->unp_gencnt <= gencnt) { xu->xu_len = sizeof *xu; xu->xu_unpp = (uintptr_t)unp; /* * XXX - need more locking here to protect against * connect/disconnect races for SMP. */ if (unp->unp_addr != NULL) bcopy(unp->unp_addr, &xu->xu_addr, unp->unp_addr->sun_len); else bzero(&xu->xu_addr, sizeof(xu->xu_addr)); if (unp->unp_conn != NULL && unp->unp_conn->unp_addr != NULL) bcopy(unp->unp_conn->unp_addr, &xu->xu_caddr, unp->unp_conn->unp_addr->sun_len); else bzero(&xu->xu_caddr, sizeof(xu->xu_caddr)); xu->unp_vnode = (uintptr_t)unp->unp_vnode; xu->unp_conn = (uintptr_t)unp->unp_conn; xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs); xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink); xu->unp_gencnt = unp->unp_gencnt; sotoxsocket(unp->unp_socket, &xu->xu_socket); UNP_PCB_UNLOCK(unp); error = SYSCTL_OUT(req, xu, sizeof *xu); } else if (freeunp == 0) UNP_PCB_UNLOCK(unp); } free(xu, M_TEMP); if (!error) { /* * Give the user an updated idea of our state. If the * generation differs from what we told her before, she knows * that something happened while we were processing this * request, and it might be necessary to retry. */ xug->xug_gen = unp_gencnt; xug->xug_sogen = so_gencnt; xug->xug_count = unp_count; error = SYSCTL_OUT(req, xug, sizeof *xug); } free(unp_list, M_TEMP); free(xug, M_TEMP); return (error); } SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", "List of active local datagram sockets"); SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", "List of active local stream sockets"); SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD, (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", "List of active local seqpacket sockets"); static void unp_shutdown(struct unpcb *unp) { struct unpcb *unp2; struct socket *so; UNP_PCB_LOCK_ASSERT(unp); unp2 = unp->unp_conn; if ((unp->unp_socket->so_type == SOCK_STREAM || (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) { so = unp2->unp_socket; if (so != NULL) socantrcvmore(so); } } static void unp_drop(struct unpcb *unp) { struct socket *so = unp->unp_socket; struct unpcb *unp2; int freed; /* * Regardless of whether the socket's peer dropped the connection * with this socket by aborting or disconnecting, POSIX requires * that ECONNRESET is returned. */ /* acquire a reference so that unp isn't freed from underneath us */ UNP_PCB_LOCK(unp); if (so) so->so_error = ECONNRESET; unp2 = unp->unp_conn; if (unp2 == unp) { unp_disconnect(unp, unp2); } else if (unp2 != NULL) { unp_pcb_hold(unp2); unp_pcb_owned_lock2(unp, unp2, freed); unp_disconnect(unp, unp2); if (unp_pcb_rele(unp2) == 0) UNP_PCB_UNLOCK(unp2); } if (unp_pcb_rele(unp) == 0) UNP_PCB_UNLOCK(unp); } #ifndef __rtems__ static void unp_freerights(struct filedescent **fdep, int fdcount) { struct file *fp; int i; KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount)); for (i = 0; i < fdcount; i++) { fp = fdep[i]->fde_file; filecaps_free(&fdep[i]->fde_caps); unp_discard(fp); } free(fdep[0], M_FILECAPS); } static int unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags) { struct thread *td = curthread; /* XXX */ struct cmsghdr *cm = mtod(control, struct cmsghdr *); int i; int *fdp; struct filedesc *fdesc = td->td_proc->p_fd; struct filedescent **fdep; void *data; socklen_t clen = control->m_len, datalen; int error, newfds; u_int newlen; UNP_LINK_UNLOCK_ASSERT(); error = 0; if (controlp != NULL) /* controlp == NULL => free control messages */ *controlp = NULL; while (cm != NULL) { if (sizeof(*cm) > clen || cm->cmsg_len > clen) { error = EINVAL; break; } data = CMSG_DATA(cm); datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; if (cm->cmsg_level == SOL_SOCKET && cm->cmsg_type == SCM_RIGHTS) { newfds = datalen / sizeof(*fdep); if (newfds == 0) goto next; fdep = data; /* If we're not outputting the descriptors free them. */ if (error || controlp == NULL) { unp_freerights(fdep, newfds); goto next; } FILEDESC_XLOCK(fdesc); /* * Now change each pointer to an fd in the global * table to an integer that is the index to the local * fd table entry that we set up to point to the * global one we are transferring. */ newlen = newfds * sizeof(int); *controlp = sbcreatecontrol(NULL, newlen, SCM_RIGHTS, SOL_SOCKET); if (*controlp == NULL) { FILEDESC_XUNLOCK(fdesc); error = E2BIG; unp_freerights(fdep, newfds); goto next; } fdp = (int *) CMSG_DATA(mtod(*controlp, struct cmsghdr *)); if (fdallocn(td, 0, fdp, newfds) != 0) { FILEDESC_XUNLOCK(fdesc); error = EMSGSIZE; unp_freerights(fdep, newfds); m_freem(*controlp); *controlp = NULL; goto next; } for (i = 0; i < newfds; i++, fdp++) { _finstall(fdesc, fdep[i]->fde_file, *fdp, (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0, &fdep[i]->fde_caps); unp_externalize_fp(fdep[i]->fde_file); } /* * The new type indicates that the mbuf data refers to * kernel resources that may need to be released before * the mbuf is freed. */ m_chtype(*controlp, MT_EXTCONTROL); FILEDESC_XUNLOCK(fdesc); free(fdep[0], M_FILECAPS); } else { /* We can just copy anything else across. */ if (error || controlp == NULL) goto next; *controlp = sbcreatecontrol(NULL, datalen, cm->cmsg_type, cm->cmsg_level); if (*controlp == NULL) { error = ENOBUFS; goto next; } bcopy(data, CMSG_DATA(mtod(*controlp, struct cmsghdr *)), datalen); } controlp = &(*controlp)->m_next; next: if (CMSG_SPACE(datalen) < clen) { clen -= CMSG_SPACE(datalen); cm = (struct cmsghdr *) ((caddr_t)cm + CMSG_SPACE(datalen)); } else { clen = 0; cm = NULL; } } m_freem(control); return (error); } #endif /* __rtems__ */ static void unp_zone_change(void *tag) { uma_zone_set_max(unp_zone, maxsockets); } static void unp_init(void) { #ifdef VIMAGE if (!IS_DEFAULT_VNET(curvnet)) return; #endif unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); if (unp_zone == NULL) panic("unp_init"); uma_zone_set_max(unp_zone, maxsockets); uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached"); EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, NULL, EVENTHANDLER_PRI_ANY); LIST_INIT(&unp_dhead); LIST_INIT(&unp_shead); LIST_INIT(&unp_sphead); #ifndef __rtems__ SLIST_INIT(&unp_defers); TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL); TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL); #endif /* __rtems__ */ UNP_LINK_LOCK_INIT(); UNP_DEFERRED_LOCK_INIT(); } #ifndef __rtems__ static int unp_internalize(struct mbuf **controlp, struct thread *td) { struct mbuf *control = *controlp; struct proc *p = td->td_proc; struct filedesc *fdesc = p->p_fd; struct bintime *bt; struct cmsghdr *cm = mtod(control, struct cmsghdr *); struct cmsgcred *cmcred; struct filedescent *fde, **fdep, *fdev; struct file *fp; struct timeval *tv; struct timespec *ts; int i, *fdp; void *data; socklen_t clen = control->m_len, datalen; int error, oldfds; u_int newlen; UNP_LINK_UNLOCK_ASSERT(); error = 0; *controlp = NULL; while (cm != NULL) { if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) { error = EINVAL; goto out; } data = CMSG_DATA(cm); datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; switch (cm->cmsg_type) { /* * Fill in credential information. */ case SCM_CREDS: *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), SCM_CREDS, SOL_SOCKET); if (*controlp == NULL) { error = ENOBUFS; goto out; } cmcred = (struct cmsgcred *) CMSG_DATA(mtod(*controlp, struct cmsghdr *)); cmcred->cmcred_pid = p->p_pid; cmcred->cmcred_uid = td->td_ucred->cr_ruid; cmcred->cmcred_gid = td->td_ucred->cr_rgid; cmcred->cmcred_euid = td->td_ucred->cr_uid; cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); for (i = 0; i < cmcred->cmcred_ngroups; i++) cmcred->cmcred_groups[i] = td->td_ucred->cr_groups[i]; break; case SCM_RIGHTS: oldfds = datalen / sizeof (int); if (oldfds == 0) break; /* * Check that all the FDs passed in refer to legal * files. If not, reject the entire operation. */ fdp = data; FILEDESC_SLOCK(fdesc); for (i = 0; i < oldfds; i++, fdp++) { fp = fget_locked(fdesc, *fdp); if (fp == NULL) { FILEDESC_SUNLOCK(fdesc); error = EBADF; goto out; } if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { FILEDESC_SUNLOCK(fdesc); error = EOPNOTSUPP; goto out; } } /* * Now replace the integer FDs with pointers to the * file structure and capability rights. */ newlen = oldfds * sizeof(fdep[0]); *controlp = sbcreatecontrol(NULL, newlen, SCM_RIGHTS, SOL_SOCKET); if (*controlp == NULL) { FILEDESC_SUNLOCK(fdesc); error = E2BIG; goto out; } fdp = data; fdep = (struct filedescent **) CMSG_DATA(mtod(*controlp, struct cmsghdr *)); fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS, M_WAITOK); for (i = 0; i < oldfds; i++, fdev++, fdp++) { fde = &fdesc->fd_ofiles[*fdp]; fdep[i] = fdev; fdep[i]->fde_file = fde->fde_file; filecaps_copy(&fde->fde_caps, &fdep[i]->fde_caps, true); unp_internalize_fp(fdep[i]->fde_file); } FILEDESC_SUNLOCK(fdesc); break; case SCM_TIMESTAMP: *controlp = sbcreatecontrol(NULL, sizeof(*tv), SCM_TIMESTAMP, SOL_SOCKET); if (*controlp == NULL) { error = ENOBUFS; goto out; } tv = (struct timeval *) CMSG_DATA(mtod(*controlp, struct cmsghdr *)); microtime(tv); break; case SCM_BINTIME: *controlp = sbcreatecontrol(NULL, sizeof(*bt), SCM_BINTIME, SOL_SOCKET); if (*controlp == NULL) { error = ENOBUFS; goto out; } bt = (struct bintime *) CMSG_DATA(mtod(*controlp, struct cmsghdr *)); bintime(bt); break; case SCM_REALTIME: *controlp = sbcreatecontrol(NULL, sizeof(*ts), SCM_REALTIME, SOL_SOCKET); if (*controlp == NULL) { error = ENOBUFS; goto out; } ts = (struct timespec *) CMSG_DATA(mtod(*controlp, struct cmsghdr *)); nanotime(ts); break; case SCM_MONOTONIC: *controlp = sbcreatecontrol(NULL, sizeof(*ts), SCM_MONOTONIC, SOL_SOCKET); if (*controlp == NULL) { error = ENOBUFS; goto out; } ts = (struct timespec *) CMSG_DATA(mtod(*controlp, struct cmsghdr *)); nanouptime(ts); break; default: error = EINVAL; goto out; } controlp = &(*controlp)->m_next; if (CMSG_SPACE(datalen) < clen) { clen -= CMSG_SPACE(datalen); cm = (struct cmsghdr *) ((caddr_t)cm + CMSG_SPACE(datalen)); } else { clen = 0; cm = NULL; } } out: m_freem(control); return (error); } static struct mbuf * unp_addsockcred(struct thread *td, struct mbuf *control) { struct mbuf *m, *n, *n_prev; struct sockcred *sc; const struct cmsghdr *cm; int ngroups; int i; ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET); if (m == NULL) return (control); sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *)); sc->sc_uid = td->td_ucred->cr_ruid; sc->sc_euid = td->td_ucred->cr_uid; sc->sc_gid = td->td_ucred->cr_rgid; sc->sc_egid = td->td_ucred->cr_gid; sc->sc_ngroups = ngroups; for (i = 0; i < sc->sc_ngroups; i++) sc->sc_groups[i] = td->td_ucred->cr_groups[i]; /* * Unlink SCM_CREDS control messages (struct cmsgcred), since just * created SCM_CREDS control message (struct sockcred) has another * format. */ if (control != NULL) for (n = control, n_prev = NULL; n != NULL;) { cm = mtod(n, struct cmsghdr *); if (cm->cmsg_level == SOL_SOCKET && cm->cmsg_type == SCM_CREDS) { if (n_prev == NULL) control = n->m_next; else n_prev->m_next = n->m_next; n = m_free(n); } else { n_prev = n; n = n->m_next; } } /* Prepend it to the head. */ m->m_next = control; return (m); } static struct unpcb * fptounp(struct file *fp) { struct socket *so; if (fp->f_type != DTYPE_SOCKET) return (NULL); if ((so = fp->f_data) == NULL) return (NULL); if (so->so_proto->pr_domain != &localdomain) return (NULL); return sotounpcb(so); } static void unp_discard(struct file *fp) { struct unp_defer *dr; if (unp_externalize_fp(fp)) { dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK); dr->ud_fp = fp; UNP_DEFERRED_LOCK(); SLIST_INSERT_HEAD(&unp_defers, dr, ud_link); UNP_DEFERRED_UNLOCK(); atomic_add_int(&unp_defers_count, 1); taskqueue_enqueue(taskqueue_thread, &unp_defer_task); } else (void) closef(fp, (struct thread *)NULL); } static void unp_process_defers(void *arg __unused, int pending) { struct unp_defer *dr; SLIST_HEAD(, unp_defer) drl; int count; SLIST_INIT(&drl); for (;;) { UNP_DEFERRED_LOCK(); if (SLIST_FIRST(&unp_defers) == NULL) { UNP_DEFERRED_UNLOCK(); break; } SLIST_SWAP(&unp_defers, &drl, unp_defer); UNP_DEFERRED_UNLOCK(); count = 0; while ((dr = SLIST_FIRST(&drl)) != NULL) { SLIST_REMOVE_HEAD(&drl, ud_link); closef(dr->ud_fp, NULL); free(dr, M_TEMP); count++; } atomic_add_int(&unp_defers_count, -count); } } static void unp_internalize_fp(struct file *fp) { struct unpcb *unp; UNP_LINK_WLOCK(); if ((unp = fptounp(fp)) != NULL) { unp->unp_file = fp; unp->unp_msgcount++; } fhold(fp); unp_rights++; UNP_LINK_WUNLOCK(); } static int unp_externalize_fp(struct file *fp) { struct unpcb *unp; int ret; UNP_LINK_WLOCK(); if ((unp = fptounp(fp)) != NULL) { unp->unp_msgcount--; ret = 1; } else ret = 0; unp_rights--; UNP_LINK_WUNLOCK(); return (ret); } /* * unp_defer indicates whether additional work has been defered for a future * pass through unp_gc(). It is thread local and does not require explicit * synchronization. */ static int unp_marked; static int unp_unreachable; static void unp_accessable(struct filedescent **fdep, int fdcount) { struct unpcb *unp; struct file *fp; int i; for (i = 0; i < fdcount; i++) { fp = fdep[i]->fde_file; if ((unp = fptounp(fp)) == NULL) continue; if (unp->unp_gcflag & UNPGC_REF) continue; unp->unp_gcflag &= ~UNPGC_DEAD; unp->unp_gcflag |= UNPGC_REF; unp_marked++; } } static void unp_gc_process(struct unpcb *unp) { struct socket *so, *soa; struct file *fp; /* Already processed. */ if (unp->unp_gcflag & UNPGC_SCANNED) return; fp = unp->unp_file; /* * Check for a socket potentially in a cycle. It must be in a * queue as indicated by msgcount, and this must equal the file * reference count. Note that when msgcount is 0 the file is NULL. */ if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp && unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) { unp->unp_gcflag |= UNPGC_DEAD; unp_unreachable++; return; } so = unp->unp_socket; SOCK_LOCK(so); if (SOLISTENING(so)) { /* * Mark all sockets in our accept queue. */ TAILQ_FOREACH(soa, &so->sol_comp, so_list) { if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) continue; SOCKBUF_LOCK(&soa->so_rcv); unp_scan(soa->so_rcv.sb_mb, unp_accessable); SOCKBUF_UNLOCK(&soa->so_rcv); } } else { /* * Mark all sockets we reference with RIGHTS. */ if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) { SOCKBUF_LOCK(&so->so_rcv); unp_scan(so->so_rcv.sb_mb, unp_accessable); SOCKBUF_UNLOCK(&so->so_rcv); } } SOCK_UNLOCK(so); unp->unp_gcflag |= UNPGC_SCANNED; } static int unp_recycled; SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, "Number of unreachable sockets claimed by the garbage collector."); static int unp_taskcount; SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, "Number of times the garbage collector has run."); static void unp_gc(__unused void *arg, int pending) { struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead, NULL }; struct unp_head **head; struct file *f, **unref; struct unpcb *unp; int i, total; unp_taskcount++; UNP_LINK_RLOCK(); /* * First clear all gc flags from previous runs, apart from * UNPGC_IGNORE_RIGHTS. */ for (head = heads; *head != NULL; head++) LIST_FOREACH(unp, *head, unp_link) unp->unp_gcflag = (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS); /* * Scan marking all reachable sockets with UNPGC_REF. Once a socket * is reachable all of the sockets it references are reachable. * Stop the scan once we do a complete loop without discovering * a new reachable socket. */ do { unp_unreachable = 0; unp_marked = 0; for (head = heads; *head != NULL; head++) LIST_FOREACH(unp, *head, unp_link) unp_gc_process(unp); } while (unp_marked); UNP_LINK_RUNLOCK(); if (unp_unreachable == 0) return; /* * Allocate space for a local list of dead unpcbs. */ unref = malloc(unp_unreachable * sizeof(struct file *), M_TEMP, M_WAITOK); /* * Iterate looking for sockets which have been specifically marked * as as unreachable and store them locally. */ UNP_LINK_RLOCK(); for (total = 0, head = heads; *head != NULL; head++) LIST_FOREACH(unp, *head, unp_link) if ((unp->unp_gcflag & UNPGC_DEAD) != 0) { f = unp->unp_file; if (unp->unp_msgcount == 0 || f == NULL || f->f_count != unp->unp_msgcount) continue; unref[total++] = f; fhold(f); KASSERT(total <= unp_unreachable, ("unp_gc: incorrect unreachable count.")); } UNP_LINK_RUNLOCK(); /* * Now flush all sockets, free'ing rights. This will free the * struct files associated with these sockets but leave each socket * with one remaining ref. */ for (i = 0; i < total; i++) { struct socket *so; so = unref[i]->f_data; CURVNET_SET(so->so_vnet); sorflush(so); CURVNET_RESTORE(); } /* * And finally release the sockets so they can be reclaimed. */ for (i = 0; i < total; i++) fdrop(unref[i], NULL); unp_recycled += total; free(unref, M_TEMP); } static void unp_dispose_mbuf(struct mbuf *m) { if (m) unp_scan(m, unp_freerights); } /* * Synchronize against unp_gc, which can trip over data as we are freeing it. */ static void unp_dispose(struct socket *so) { struct unpcb *unp; unp = sotounpcb(so); UNP_LINK_WLOCK(); unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS; UNP_LINK_WUNLOCK(); if (!SOLISTENING(so)) unp_dispose_mbuf(so->so_rcv.sb_mb); } static void unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int)) { struct mbuf *m; struct cmsghdr *cm; void *data; socklen_t clen, datalen; while (m0 != NULL) { for (m = m0; m; m = m->m_next) { if (m->m_type != MT_CONTROL) continue; cm = mtod(m, struct cmsghdr *); clen = m->m_len; while (cm != NULL) { if (sizeof(*cm) > clen || cm->cmsg_len > clen) break; data = CMSG_DATA(cm); datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; if (cm->cmsg_level == SOL_SOCKET && cm->cmsg_type == SCM_RIGHTS) { (*op)(data, datalen / sizeof(struct filedescent *)); } if (CMSG_SPACE(datalen) < clen) { clen -= CMSG_SPACE(datalen); cm = (struct cmsghdr *) ((caddr_t)cm + CMSG_SPACE(datalen)); } else { clen = 0; cm = NULL; } } } m0 = m0->m_nextpkt; } } /* * A helper function called by VFS before socket-type vnode reclamation. * For an active vnode it clears unp_vnode pointer and decrements unp_vnode * use count. */ void vfs_unp_reclaim(struct vnode *vp) { struct unpcb *unp; int active; struct mtx *vplock; ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim"); KASSERT(vp->v_type == VSOCK, ("vfs_unp_reclaim: vp->v_type != VSOCK")); active = 0; vplock = mtx_pool_find(mtxpool_sleep, vp); mtx_lock(vplock); VOP_UNP_CONNECT(vp, &unp); if (unp == NULL) goto done; UNP_PCB_LOCK(unp); if (unp->unp_vnode == vp) { VOP_UNP_DETACH(vp); unp->unp_vnode = NULL; active = 1; } UNP_PCB_UNLOCK(unp); done: mtx_unlock(vplock); if (active) vunref(vp); } #endif /* __rtems__ */ #ifdef DDB static void db_print_indent(int indent) { int i; for (i = 0; i < indent; i++) db_printf(" "); } static void db_print_unpflags(int unp_flags) { int comma; comma = 0; if (unp_flags & UNP_HAVEPC) { db_printf("%sUNP_HAVEPC", comma ? ", " : ""); comma = 1; } if (unp_flags & UNP_WANTCRED) { db_printf("%sUNP_WANTCRED", comma ? ", " : ""); comma = 1; } if (unp_flags & UNP_CONNWAIT) { db_printf("%sUNP_CONNWAIT", comma ? ", " : ""); comma = 1; } if (unp_flags & UNP_CONNECTING) { db_printf("%sUNP_CONNECTING", comma ? ", " : ""); comma = 1; } if (unp_flags & UNP_BINDING) { db_printf("%sUNP_BINDING", comma ? ", " : ""); comma = 1; } } static void db_print_xucred(int indent, struct xucred *xu) { int comma, i; db_print_indent(indent); db_printf("cr_version: %u cr_uid: %u cr_ngroups: %d\n", xu->cr_version, xu->cr_uid, xu->cr_ngroups); db_print_indent(indent); db_printf("cr_groups: "); comma = 0; for (i = 0; i < xu->cr_ngroups; i++) { db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]); comma = 1; } db_printf("\n"); } static void db_print_unprefs(int indent, struct unp_head *uh) { struct unpcb *unp; int counter; counter = 0; LIST_FOREACH(unp, uh, unp_reflink) { if (counter % 4 == 0) db_print_indent(indent); db_printf("%p ", unp); if (counter % 4 == 3) db_printf("\n"); counter++; } if (counter != 0 && counter % 4 != 0) db_printf("\n"); } DB_SHOW_COMMAND(unpcb, db_show_unpcb) { struct unpcb *unp; if (!have_addr) { db_printf("usage: show unpcb \n"); return; } unp = (struct unpcb *)addr; db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket, unp->unp_vnode); db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino, unp->unp_conn); db_printf("unp_refs:\n"); db_print_unprefs(2, &unp->unp_refs); /* XXXRW: Would be nice to print the full address, if any. */ db_printf("unp_addr: %p\n", unp->unp_addr); db_printf("unp_gencnt: %llu\n", (unsigned long long)unp->unp_gencnt); db_printf("unp_flags: %x (", unp->unp_flags); db_print_unpflags(unp->unp_flags); db_printf(")\n"); db_printf("unp_peercred:\n"); db_print_xucred(2, &unp->unp_peercred); db_printf("unp_refcount: %u\n", unp->unp_refcount); } #endif