#include /*- * Copyright (c) 1982, 1986, 1989, 1990, 1993 * The Regents of the University of California. All rights reserved. * * sendfile(2) and related extensions: * Copyright (c) 1998, David Greenman. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_syscalls.c 8.4 (Berkeley) 2/21/94 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #ifdef COMPAT_FREEBSD32 #include #endif #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #ifdef SCTP #include #include #endif /* SCTP */ #endif /* INET || INET6 */ #ifdef __rtems__ #include #endif /* __rtems__ */ static int sendit(struct thread *td, int s, struct msghdr *mp, int flags); static int recvit(struct thread *td, int s, struct msghdr *mp, void *namelenp); #ifndef __rtems__ static int accept1(struct thread *td, struct accept_args *uap, int compat); static int do_sendfile(struct thread *td, struct sendfile_args *uap, int compat); static int getsockname1(struct thread *td, struct getsockname_args *uap, int compat); static int getpeername1(struct thread *td, struct getpeername_args *uap, int compat); /* * NSFBUFS-related variables and associated sysctls */ int nsfbufs; int nsfbufspeak; int nsfbufsused; SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufs, CTLFLAG_RDTUN, &nsfbufs, 0, "Maximum number of sendfile(2) sf_bufs available"); SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufspeak, CTLFLAG_RD, &nsfbufspeak, 0, "Number of sendfile(2) sf_bufs at peak usage"); SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufsused, CTLFLAG_RD, &nsfbufsused, 0, "Number of sendfile(2) sf_bufs in use"); /* * Convert a user file descriptor to a kernel file entry. A reference on the * file entry is held upon returning. This is lighter weight than * fgetsock(), which bumps the socket reference drops the file reference * count instead, as this approach avoids several additional mutex operations * associated with the additional reference count. If requested, return the * open file flags. */ static int getsock(struct filedesc *fdp, int fd, struct file **fpp, u_int *fflagp) { struct file *fp; int error; fp = NULL; if (fdp == NULL || (fp = fget_unlocked(fdp, fd)) == NULL) { error = EBADF; } else if (fp->f_type != DTYPE_SOCKET) { fdrop(fp, curthread); fp = NULL; error = ENOTSOCK; } else { if (fflagp != NULL) *fflagp = fp->f_flag; error = 0; } *fpp = fp; return (error); } #else /* __rtems__ */ static int rtems_bsd_getsock(int fd, struct file **fpp, u_int *fflagp) { struct file *fp; int error; if ((uint32_t) fd < rtems_libio_number_iops) { fp = rtems_bsd_fd_to_fp(fd); if ((fp->f_io.flags & LIBIO_FLAGS_OPEN) != LIBIO_FLAGS_OPEN) { fp = NULL; error = EBADF; } else if (fp->f_io.pathinfo.handlers != &socketops) { fp = NULL; error = ENOTSOCK; } else { if (fflagp != NULL) { *fflagp = rtems_bsd_libio_flags_to_fflag( fp->f_io.flags); } error = 0; } } else { fp = NULL; error = EBADF; } *fpp = fp; return (error); } #define getsock(fdp, fd, fpp, fflagp) rtems_bsd_getsock(fd, fpp, fflagp) #endif /* __rtems__ */ /* * System call interface to the socket abstraction. */ #if defined(COMPAT_43) #define COMPAT_OLDSOCK #endif #ifndef __rtems__ int socket(td, uap) #else /* __rtems__ */ static int rtems_bsd_socket(td, uap) #endif /* __rtems__ */ struct thread *td; struct socket_args /* { int domain; int type; int protocol; } */ *uap; { #ifndef __rtems__ struct filedesc *fdp; #endif /* __rtems__ */ struct socket *so; struct file *fp; int fd, error; AUDIT_ARG_SOCKET(uap->domain, uap->type, uap->protocol); #ifdef MAC error = mac_socket_check_create(td->td_ucred, uap->domain, uap->type, uap->protocol); if (error) return (error); #endif #ifndef __rtems__ fdp = td->td_proc->p_fd; #endif /* __rtems__ */ error = falloc(td, &fp, &fd); if (error) return (error); /* An extra reference on `fp' has been held for us by falloc(). */ error = socreate(uap->domain, &so, uap->type, uap->protocol, td->td_ucred, td); if (error) { fdclose(fdp, fp, fd, td); } else { finit(fp, FREAD | FWRITE, DTYPE_SOCKET, so, &socketops); td->td_retval[0] = fd; } fdrop(fp, td); return (error); } #ifdef __rtems__ int socket(int domain, int type, int protocol) { struct thread *td = rtems_bsd_get_curthread_or_null(); struct socket_args ua = { .domain = domain, .type = type, .protocol = protocol }; int error; if (td != NULL) { error = rtems_bsd_socket(td, &ua); } else { error = ENOMEM; } if (error == 0) { return td->td_retval[0]; } else { rtems_set_errno_and_return_minus_one(error); } } #endif /* __rtems__ */ #ifndef __rtems__ /* ARGSUSED */ int bind(td, uap) #else /* __rtems__ */ static int kern_bind(struct thread *, int, struct sockaddr *); static int rtems_bsd_bind(td, uap) #endif /* __rtems__ */ struct thread *td; struct bind_args /* { int s; caddr_t name; int namelen; } */ *uap; { struct sockaddr *sa; int error; if ((error = getsockaddr(&sa, uap->name, uap->namelen)) != 0) return (error); error = kern_bind(td, uap->s, sa); free(sa, M_SONAME); return (error); } #ifdef __rtems__ int bind(int socket, const struct sockaddr *address, socklen_t address_len) { struct thread *td = rtems_bsd_get_curthread_or_null(); struct bind_args ua = { .s = socket, .name = (caddr_t) address, .namelen = address_len }; int error; if (td != NULL) { error = rtems_bsd_bind(td, &ua); } else { error = ENOMEM; } return rtems_bsd_error_to_status_and_errno(error); } #endif /* __rtems__ */ int kern_bind(td, fd, sa) struct thread *td; int fd; struct sockaddr *sa; { struct socket *so; struct file *fp; int error; AUDIT_ARG_FD(fd); error = getsock(td->td_proc->p_fd, fd, &fp, NULL); if (error) return (error); so = fp->f_data; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif #ifdef MAC error = mac_socket_check_bind(td->td_ucred, so, sa); if (error == 0) #endif error = sobind(so, sa, td); fdrop(fp, td); return (error); } /* ARGSUSED */ #ifndef __rtems__ int listen(td, uap) #else /* __rtems__ */ static int rtems_bsd_listen(td, uap) #endif /* __rtems__ */ struct thread *td; struct listen_args /* { int s; int backlog; } */ *uap; { struct socket *so; struct file *fp; int error; AUDIT_ARG_FD(uap->s); error = getsock(td->td_proc->p_fd, uap->s, &fp, NULL); if (error == 0) { so = fp->f_data; #ifdef MAC error = mac_socket_check_listen(td->td_ucred, so); if (error == 0) #endif error = solisten(so, uap->backlog, td); fdrop(fp, td); } return(error); } #ifdef __rtems__ int listen(int socket, int backlog) { struct thread *td = rtems_bsd_get_curthread_or_null(); struct listen_args ua = { .s = socket, .backlog = backlog }; int error; if (td != NULL) { error = rtems_bsd_listen(td, &ua); } else { error = ENOMEM; } return rtems_bsd_error_to_status_and_errno(error); } #endif /* __rtems__ */ #ifdef __rtems__ static int kern_accept(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, struct file **fp); #endif /* __rtems__ */ /* * accept1() */ static int accept1(td, uap, compat) struct thread *td; struct accept_args /* { int s; struct sockaddr * __restrict name; socklen_t * __restrict anamelen; } */ *uap; int compat; { struct sockaddr *name; socklen_t namelen; struct file *fp; int error; if (uap->name == NULL) return (kern_accept(td, uap->s, NULL, NULL, NULL)); error = copyin(uap->anamelen, &namelen, sizeof (namelen)); if (error) return (error); error = kern_accept(td, uap->s, &name, &namelen, &fp); /* * return a namelen of zero for older code which might * ignore the return value from accept. */ if (error) { (void) copyout(&namelen, uap->anamelen, sizeof(*uap->anamelen)); return (error); } if (error == 0 && name != NULL) { #ifdef COMPAT_OLDSOCK if (compat) ((struct osockaddr *)name)->sa_family = name->sa_family; #endif error = copyout(name, uap->name, namelen); } if (error == 0) error = copyout(&namelen, uap->anamelen, sizeof(namelen)); if (error) fdclose(td->td_proc->p_fd, fp, td->td_retval[0], td); fdrop(fp, td); free(name, M_SONAME); return (error); } #ifdef __rtems__ int accept(int socket, struct sockaddr *__restrict address, socklen_t *__restrict address_len) { struct thread *td = rtems_bsd_get_curthread_or_null(); struct accept_args ua = { .s = socket, .name = address, .anamelen = address_len }; int error; if (td != NULL) { error = accept1(td, &ua); } else { error = ENOMEM; } if (error == 0) { return td->td_retval[0]; } else { rtems_set_errno_and_return_minus_one(error); } } #endif /* __rtems__ */ int kern_accept(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, struct file **fp) { #ifndef __rtems__ struct filedesc *fdp; #endif /* __rtems__ */ struct file *headfp, *nfp = NULL; struct sockaddr *sa = NULL; int error; struct socket *head, *so; int fd; u_int fflag; pid_t pgid; int tmp; if (name) { *name = NULL; if (*namelen < 0) return (EINVAL); } AUDIT_ARG_FD(s); #ifndef __rtems__ fdp = td->td_proc->p_fd; #endif /* __rtems__ */ error = getsock(fdp, s, &headfp, &fflag); if (error) return (error); head = headfp->f_data; if ((head->so_options & SO_ACCEPTCONN) == 0) { error = EINVAL; goto done; } #ifdef MAC error = mac_socket_check_accept(td->td_ucred, head); if (error != 0) goto done; #endif error = falloc(td, &nfp, &fd); if (error) goto done; ACCEPT_LOCK(); if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->so_comp)) { ACCEPT_UNLOCK(); error = EWOULDBLOCK; goto noconnection; } while (TAILQ_EMPTY(&head->so_comp) && head->so_error == 0) { if (head->so_rcv.sb_state & SBS_CANTRCVMORE) { head->so_error = ECONNABORTED; break; } error = msleep(&head->so_timeo, &accept_mtx, PSOCK | PCATCH, "accept", 0); if (error) { ACCEPT_UNLOCK(); goto noconnection; } } if (head->so_error) { error = head->so_error; head->so_error = 0; ACCEPT_UNLOCK(); goto noconnection; } so = TAILQ_FIRST(&head->so_comp); KASSERT(!(so->so_qstate & SQ_INCOMP), ("accept1: so SQ_INCOMP")); KASSERT(so->so_qstate & SQ_COMP, ("accept1: so not SQ_COMP")); /* * Before changing the flags on the socket, we have to bump the * reference count. Otherwise, if the protocol calls sofree(), * the socket will be released due to a zero refcount. */ SOCK_LOCK(so); /* soref() and so_state update */ soref(so); /* file descriptor reference */ TAILQ_REMOVE(&head->so_comp, so, so_list); head->so_qlen--; so->so_state |= (head->so_state & SS_NBIO); so->so_qstate &= ~SQ_COMP; so->so_head = NULL; SOCK_UNLOCK(so); ACCEPT_UNLOCK(); /* An extra reference on `nfp' has been held for us by falloc(). */ td->td_retval[0] = fd; /* connection has been removed from the listen queue */ KNOTE_UNLOCKED(&head->so_rcv.sb_sel.si_note, 0); pgid = fgetown(&head->so_sigio); if (pgid != 0) fsetown(pgid, &so->so_sigio); finit(nfp, fflag, DTYPE_SOCKET, so, &socketops); /* Sync socket nonblocking/async state with file flags */ tmp = fflag & FNONBLOCK; (void) fo_ioctl(nfp, FIONBIO, &tmp, td->td_ucred, td); tmp = fflag & FASYNC; (void) fo_ioctl(nfp, FIOASYNC, &tmp, td->td_ucred, td); sa = 0; error = soaccept(so, &sa); if (error) { /* * return a namelen of zero for older code which might * ignore the return value from accept. */ if (name) *namelen = 0; goto noconnection; } if (sa == NULL) { if (name) *namelen = 0; goto done; } if (name) { /* check sa_len before it is destroyed */ if (*namelen > sa->sa_len) *namelen = sa->sa_len; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif *name = sa; sa = NULL; } noconnection: if (sa) free(sa, M_SONAME); /* * close the new descriptor, assuming someone hasn't ripped it * out from under us. */ if (error) fdclose(fdp, nfp, fd, td); /* * Release explicitly held references before returning. We return * a reference on nfp to the caller on success if they request it. */ done: if (fp != NULL) { if (error == 0) { *fp = nfp; nfp = NULL; } else *fp = NULL; } if (nfp != NULL) fdrop(nfp, td); fdrop(headfp, td); return (error); } #ifndef __rtems__ int accept(td, uap) struct thread *td; struct accept_args *uap; { return (accept1(td, uap, 0)); } #ifdef COMPAT_OLDSOCK int oaccept(td, uap) struct thread *td; struct accept_args *uap; { return (accept1(td, uap, 1)); } #endif /* COMPAT_OLDSOCK */ #endif /* __rtems__ */ /* ARGSUSED */ #ifndef __rtems__ int #else /* __rtems__ */ static int kern_connect(struct thread *, int, struct sockaddr *); static int rtems_bsd_connect(td, uap) #endif /* __rtems__ */ struct thread *td; struct connect_args /* { int s; caddr_t name; int namelen; } */ *uap; { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error) return (error); error = kern_connect(td, uap->s, sa); free(sa, M_SONAME); return (error); } #ifdef __rtems__ int connect(int socket, const struct sockaddr *address, socklen_t address_len) { struct thread *td = rtems_bsd_get_curthread_or_null(); struct connect_args ua = { .s = socket, .name = (caddr_t) address, .namelen = address_len }; int error; if (td != NULL) { error = rtems_bsd_connect(td, &ua); } else { error = ENOMEM; } return rtems_bsd_error_to_status_and_errno(error); } #endif /* __rtems__ */ int kern_connect(td, fd, sa) struct thread *td; int fd; struct sockaddr *sa; { struct socket *so; struct file *fp; int error; int interrupted = 0; AUDIT_ARG_FD(fd); error = getsock(td->td_proc->p_fd, fd, &fp, NULL); if (error) return (error); so = fp->f_data; if (so->so_state & SS_ISCONNECTING) { error = EALREADY; goto done1; } #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif #ifdef MAC error = mac_socket_check_connect(td->td_ucred, so, sa); if (error) goto bad; #endif error = soconnect(so, sa, td); if (error) goto bad; if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) { error = EINPROGRESS; goto done1; } SOCK_LOCK(so); while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { error = msleep(&so->so_timeo, SOCK_MTX(so), PSOCK | PCATCH, "connec", 0); if (error) { if (error == EINTR || error == ERESTART) interrupted = 1; break; } } if (error == 0) { error = so->so_error; so->so_error = 0; } SOCK_UNLOCK(so); bad: if (!interrupted) so->so_state &= ~SS_ISCONNECTING; if (error == ERESTART) error = EINTR; done1: fdrop(fp, td); return (error); } #ifndef __rtems__ int kern_socketpair(struct thread *td, int domain, int type, int protocol, int *rsv) { struct filedesc *fdp = td->td_proc->p_fd; struct file *fp1, *fp2; struct socket *so1, *so2; int fd, error; AUDIT_ARG_SOCKET(domain, type, protocol); #ifdef MAC /* We might want to have a separate check for socket pairs. */ error = mac_socket_check_create(td->td_ucred, domain, type, protocol); if (error) return (error); #endif error = socreate(domain, &so1, type, protocol, td->td_ucred, td); if (error) return (error); error = socreate(domain, &so2, type, protocol, td->td_ucred, td); if (error) goto free1; /* On success extra reference to `fp1' and 'fp2' is set by falloc. */ error = falloc(td, &fp1, &fd); if (error) goto free2; rsv[0] = fd; fp1->f_data = so1; /* so1 already has ref count */ error = falloc(td, &fp2, &fd); if (error) goto free3; fp2->f_data = so2; /* so2 already has ref count */ rsv[1] = fd; error = soconnect2(so1, so2); if (error) goto free4; if (type == SOCK_DGRAM) { /* * Datagram socket connection is asymmetric. */ error = soconnect2(so2, so1); if (error) goto free4; } finit(fp1, FREAD | FWRITE, DTYPE_SOCKET, fp1->f_data, &socketops); finit(fp2, FREAD | FWRITE, DTYPE_SOCKET, fp2->f_data, &socketops); fdrop(fp1, td); fdrop(fp2, td); return (0); free4: fdclose(fdp, fp2, rsv[1], td); fdrop(fp2, td); free3: fdclose(fdp, fp1, rsv[0], td); fdrop(fp1, td); free2: if (so2 != NULL) (void)soclose(so2); free1: if (so1 != NULL) (void)soclose(so1); return (error); } int socketpair(struct thread *td, struct socketpair_args *uap) { int error, sv[2]; error = kern_socketpair(td, uap->domain, uap->type, uap->protocol, sv); if (error) return (error); error = copyout(sv, uap->rsv, 2 * sizeof(int)); if (error) { (void)kern_close(td, sv[0]); (void)kern_close(td, sv[1]); } return (error); } #endif /* __rtems__ */ #ifdef __rtems__ static int kern_sendit( struct thread *td, int s, struct msghdr *mp, int flags, struct mbuf *control, enum uio_seg segflg); #endif /* __rtems__ */ static int sendit(td, s, mp, flags) struct thread *td; int s; struct msghdr *mp; int flags; { struct mbuf *control; struct sockaddr *to; int error; if (mp->msg_name != NULL) { error = getsockaddr(&to, mp->msg_name, mp->msg_namelen); if (error) { to = NULL; goto bad; } mp->msg_name = to; } else { to = NULL; } if (mp->msg_control) { if (mp->msg_controllen < sizeof(struct cmsghdr) #ifdef COMPAT_OLDSOCK && mp->msg_flags != MSG_COMPAT #endif ) { error = EINVAL; goto bad; } error = sockargs(&control, mp->msg_control, mp->msg_controllen, MT_CONTROL); if (error) goto bad; #ifdef COMPAT_OLDSOCK if (mp->msg_flags == MSG_COMPAT) { struct cmsghdr *cm; M_PREPEND(control, sizeof(*cm), M_WAIT); cm = mtod(control, struct cmsghdr *); cm->cmsg_len = control->m_len; cm->cmsg_level = SOL_SOCKET; cm->cmsg_type = SCM_RIGHTS; } #endif } else { control = NULL; } error = kern_sendit(td, s, mp, flags, control, UIO_USERSPACE); bad: if (to) free(to, M_SONAME); return (error); } int kern_sendit(td, s, mp, flags, control, segflg) struct thread *td; int s; struct msghdr *mp; int flags; struct mbuf *control; enum uio_seg segflg; { struct file *fp; struct uio auio; struct iovec *iov; struct socket *so; int i; int len, error; #ifdef KTRACE struct uio *ktruio = NULL; #endif AUDIT_ARG_FD(s); error = getsock(td->td_proc->p_fd, s, &fp, NULL); if (error) return (error); so = (struct socket *)fp->f_data; #ifdef KTRACE if (mp->msg_name != NULL && KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(mp->msg_name); #endif #ifdef MAC if (mp->msg_name != NULL) { error = mac_socket_check_connect(td->td_ucred, so, mp->msg_name); if (error) goto bad; } error = mac_socket_check_send(td->td_ucred, so); if (error) goto bad; #endif auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = segflg; auio.uio_rw = UIO_WRITE; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { if ((auio.uio_resid += iov->iov_len) < 0) { error = EINVAL; goto bad; } } #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif len = auio.uio_resid; error = sosend(so, mp->msg_name, &auio, 0, control, flags, td); if (error) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; /* Generation of SIGPIPE can be controlled per socket */ if (error == EPIPE && !(so->so_options & SO_NOSIGPIPE) && !(flags & MSG_NOSIGNAL)) { #ifndef __rtems__ PROC_LOCK(td->td_proc); tdksignal(td, SIGPIPE, NULL); PROC_UNLOCK(td->td_proc); #else /* __rtems__ */ /* FIXME: Determine if we really want to use signals */ #endif /* __rtems__ */ } } if (error == 0) td->td_retval[0] = len - auio.uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = td->td_retval[0]; ktrgenio(s, UIO_WRITE, ktruio, error); } #endif bad: fdrop(fp, td); return (error); } #ifndef __rtems__ int sendto(td, uap) #else /* __rtems__ */ static int rtems_bsd_sendto(td, uap) #endif /* __rtems__ */ struct thread *td; struct sendto_args /* { int s; caddr_t buf; size_t len; int flags; caddr_t to; int tolen; } */ *uap; { struct msghdr msg; struct iovec aiov; int error; msg.msg_name = uap->to; msg.msg_namelen = uap->tolen; msg.msg_iov = &aiov; msg.msg_iovlen = 1; msg.msg_control = 0; #ifdef COMPAT_OLDSOCK msg.msg_flags = 0; #endif aiov.iov_base = uap->buf; aiov.iov_len = uap->len; error = sendit(td, uap->s, &msg, uap->flags); return (error); } #ifdef __rtems__ ssize_t sendto(int socket, const void *message, size_t length, int flags, const struct sockaddr *dest_addr, socklen_t dest_len) { struct thread *td = rtems_bsd_get_curthread_or_null(); struct sendto_args ua = { .s = socket, .buf = (caddr_t) message, .len = length, .flags = flags, .to = (caddr_t) dest_addr, .tolen = dest_len }; int error; if (td != NULL) { error = rtems_bsd_sendto(td, &ua); } else { error = ENOMEM; } if (error == 0) { return td->td_retval[0]; } else { rtems_set_errno_and_return_minus_one(error); } } #endif /* __rtems__ */ #ifndef __rtems__ #ifdef COMPAT_OLDSOCK int osend(td, uap) struct thread *td; struct osend_args /* { int s; caddr_t buf; int len; int flags; } */ *uap; { struct msghdr msg; struct iovec aiov; int error; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = 0; error = sendit(td, uap->s, &msg, uap->flags); return (error); } int osendmsg(td, uap) struct thread *td; struct osendmsg_args /* { int s; caddr_t msg; int flags; } */ *uap; { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (struct omsghdr)); if (error) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error) return (error); msg.msg_iov = iov; msg.msg_flags = MSG_COMPAT; error = sendit(td, uap->s, &msg, uap->flags); free(iov, M_IOV); return (error); } #endif #endif /* __rtems__ */ #ifndef __rtems__ int sendmsg(td, uap) #else /* __rtems__ */ static int rtems_bsd_sendmsg(td, uap) #endif /* __rtems__ */ struct thread *td; struct sendmsg_args /* { int s; caddr_t msg; int flags; } */ *uap; { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (msg)); if (error) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error) return (error); msg.msg_iov = iov; #ifdef COMPAT_OLDSOCK msg.msg_flags = 0; #endif error = sendit(td, uap->s, &msg, uap->flags); free(iov, M_IOV); return (error); } #ifdef __rtems__ ssize_t sendmsg(int socket, const struct msghdr *message, int flags) { struct thread *td = rtems_bsd_get_curthread_or_null(); struct sendmsg_args ua = { .s = socket, .msg = message, .flags = flags }; int error; if (td != NULL) { error = rtems_bsd_sendmsg(td, &ua); } else { error = ENOMEM; } if (error == 0) { return td->td_retval[0]; } else { rtems_set_errno_and_return_minus_one(error); } } #endif /* __rtems__ */ #ifdef __rtems__ static #endif /* __rtems__ */ int kern_recvit(td, s, mp, fromseg, controlp) struct thread *td; int s; struct msghdr *mp; enum uio_seg fromseg; struct mbuf **controlp; { struct uio auio; struct iovec *iov; int i; socklen_t len; int error; struct mbuf *m, *control = 0; caddr_t ctlbuf; struct file *fp; struct socket *so; struct sockaddr *fromsa = 0; #ifdef KTRACE struct uio *ktruio = NULL; #endif if(controlp != NULL) *controlp = 0; AUDIT_ARG_FD(s); error = getsock(td->td_proc->p_fd, s, &fp, NULL); if (error) return (error); so = fp->f_data; #ifdef MAC error = mac_socket_check_receive(td->td_ucred, so); if (error) { fdrop(fp, td); return (error); } #endif auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_READ; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { if ((auio.uio_resid += iov->iov_len) < 0) { fdrop(fp, td); return (EINVAL); } } #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif len = auio.uio_resid; error = soreceive(so, &fromsa, &auio, (struct mbuf **)0, (mp->msg_control || controlp) ? &control : (struct mbuf **)0, &mp->msg_flags); if (error) { if (auio.uio_resid != (int)len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; } #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = (int)len - auio.uio_resid; ktrgenio(s, UIO_READ, ktruio, error); } #endif if (error) goto out; td->td_retval[0] = (int)len - auio.uio_resid; if (mp->msg_name) { len = mp->msg_namelen; if (len <= 0 || fromsa == 0) len = 0; else { /* save sa_len before it is destroyed by MSG_COMPAT */ len = MIN(len, fromsa->sa_len); #ifdef COMPAT_OLDSOCK if (mp->msg_flags & MSG_COMPAT) ((struct osockaddr *)fromsa)->sa_family = fromsa->sa_family; #endif if (fromseg == UIO_USERSPACE) { error = copyout(fromsa, mp->msg_name, (unsigned)len); if (error) goto out; } else bcopy(fromsa, mp->msg_name, len); } mp->msg_namelen = len; } if (mp->msg_control && controlp == NULL) { #ifdef COMPAT_OLDSOCK /* * We assume that old recvmsg calls won't receive access * rights and other control info, esp. as control info * is always optional and those options didn't exist in 4.3. * If we receive rights, trim the cmsghdr; anything else * is tossed. */ if (control && mp->msg_flags & MSG_COMPAT) { if (mtod(control, struct cmsghdr *)->cmsg_level != SOL_SOCKET || mtod(control, struct cmsghdr *)->cmsg_type != SCM_RIGHTS) { mp->msg_controllen = 0; goto out; } control->m_len -= sizeof (struct cmsghdr); control->m_data += sizeof (struct cmsghdr); } #endif len = mp->msg_controllen; m = control; mp->msg_controllen = 0; ctlbuf = mp->msg_control; while (m && len > 0) { unsigned int tocopy; if (len >= m->m_len) tocopy = m->m_len; else { mp->msg_flags |= MSG_CTRUNC; tocopy = len; } if ((error = copyout(mtod(m, caddr_t), ctlbuf, tocopy)) != 0) goto out; ctlbuf += tocopy; len -= tocopy; m = m->m_next; } mp->msg_controllen = ctlbuf - (caddr_t)mp->msg_control; } out: fdrop(fp, td); #ifdef KTRACE if (fromsa && KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(fromsa); #endif if (fromsa) free(fromsa, M_SONAME); if (error == 0 && controlp != NULL) *controlp = control; else if (control) m_freem(control); return (error); } static int recvit(td, s, mp, namelenp) struct thread *td; int s; struct msghdr *mp; void *namelenp; { int error; error = kern_recvit(td, s, mp, UIO_USERSPACE, NULL); if (error) return (error); if (namelenp) { error = copyout(&mp->msg_namelen, namelenp, sizeof (socklen_t)); #ifdef COMPAT_OLDSOCK if (mp->msg_flags & MSG_COMPAT) error = 0; /* old recvfrom didn't check */ #endif } return (error); } #ifndef __rtems__ int recvfrom(td, uap) #else /* __rtems__ */ static int rtems_bsd_recvfrom(td, uap) #endif /* __rtems__ */ struct thread *td; struct recvfrom_args /* { int s; caddr_t buf; size_t len; int flags; struct sockaddr * __restrict from; socklen_t * __restrict fromlenaddr; } */ *uap; { struct msghdr msg; struct iovec aiov; int error; if (uap->fromlenaddr) { error = copyin(uap->fromlenaddr, &msg.msg_namelen, sizeof (msg.msg_namelen)); if (error) goto done2; } else { msg.msg_namelen = 0; } msg.msg_name = uap->from; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = uap->flags; error = recvit(td, uap->s, &msg, uap->fromlenaddr); done2: return(error); } #ifdef __rtems__ ssize_t recvfrom(int socket, void *__restrict buffer, size_t length, int flags, struct sockaddr *__restrict address, socklen_t *__restrict address_len) { struct thread *td = rtems_bsd_get_curthread_or_null(); struct recvfrom_args ua = { .s = socket, .buf = buffer, .len = length, .flags = flags, .from = address, .fromlenaddr = address_len }; int error; if (td != NULL) { error = rtems_bsd_recvfrom(td, &ua); } else { error = ENOMEM; } if (error == 0) { return td->td_retval[0]; } else { rtems_set_errno_and_return_minus_one(error); } } #endif /* __rtems__ */ #ifndef __rtems__ #ifdef COMPAT_OLDSOCK int orecvfrom(td, uap) struct thread *td; struct recvfrom_args *uap; { uap->flags |= MSG_COMPAT; return (recvfrom(td, uap)); } #endif #ifdef COMPAT_OLDSOCK int orecv(td, uap) struct thread *td; struct orecv_args /* { int s; caddr_t buf; int len; int flags; } */ *uap; { struct msghdr msg; struct iovec aiov; int error; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = uap->flags; error = recvit(td, uap->s, &msg, NULL); return (error); } /* * Old recvmsg. This code takes advantage of the fact that the old msghdr * overlays the new one, missing only the flags, and with the (old) access * rights where the control fields are now. */ int orecvmsg(td, uap) struct thread *td; struct orecvmsg_args /* { int s; struct omsghdr *msg; int flags; } */ *uap; { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (struct omsghdr)); if (error) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error) return (error); msg.msg_flags = uap->flags | MSG_COMPAT; msg.msg_iov = iov; error = recvit(td, uap->s, &msg, &uap->msg->msg_namelen); if (msg.msg_controllen && error == 0) error = copyout(&msg.msg_controllen, &uap->msg->msg_accrightslen, sizeof (int)); free(iov, M_IOV); return (error); } #endif #endif /* __rtems__ */ #ifndef __rtems__ int recvmsg(td, uap) #else /* __rtems__ */ static int rtems_bsd_recvmsg(td, uap) #endif /* __rtems__ */ struct thread *td; struct recvmsg_args /* { int s; struct msghdr *msg; int flags; } */ *uap; { struct msghdr msg; struct iovec *uiov, *iov; int error; error = copyin(uap->msg, &msg, sizeof (msg)); if (error) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error) return (error); msg.msg_flags = uap->flags; #ifdef COMPAT_OLDSOCK msg.msg_flags &= ~MSG_COMPAT; #endif uiov = msg.msg_iov; msg.msg_iov = iov; error = recvit(td, uap->s, &msg, NULL); if (error == 0) { msg.msg_iov = uiov; error = copyout(&msg, uap->msg, sizeof(msg)); } free(iov, M_IOV); return (error); } #ifdef __rtems__ ssize_t recvmsg(int socket, struct msghdr *message, int flags) { struct thread *td = rtems_bsd_get_curthread_or_null(); struct recvmsg_args ua = { .s = socket, .msg = message, .flags = flags }; int error; if (td != NULL) { error = rtems_bsd_recvmsg(td, &ua); } else { error = ENOMEM; } if (error == 0) { return td->td_retval[0]; } else { rtems_set_errno_and_return_minus_one(error); } } #endif /* __rtems__ */ /* ARGSUSED */ #ifndef __rtems__ int shutdown(td, uap) #else /* __rtems__ */ static int rtems_bsd_shutdown(td, uap) #endif /* __rtems__ */ struct thread *td; struct shutdown_args /* { int s; int how; } */ *uap; { struct socket *so; struct file *fp; int error; AUDIT_ARG_FD(uap->s); error = getsock(td->td_proc->p_fd, uap->s, &fp, NULL); if (error == 0) { so = fp->f_data; error = soshutdown(so, uap->how); fdrop(fp, td); } return (error); } #ifdef __rtems__ int shutdown(int socket, int how) { struct shutdown_args ua = { .s = socket, .how = how }; int error = rtems_bsd_shutdown(NULL, &ua); return rtems_bsd_error_to_status_and_errno(error); } #endif /* __rtems__ */ /* ARGSUSED */ #ifndef __rtems__ int setsockopt(td, uap) #else /* __rtems__ */ static int kern_setsockopt( struct thread *td, int s, int level, int name, void *val, enum uio_seg valseg, socklen_t valsize); static int rtems_bsd_setsockopt(td, uap) #endif /* __rtems__ */ struct thread *td; struct setsockopt_args /* { int s; int level; int name; caddr_t val; int valsize; } */ *uap; { return (kern_setsockopt(td, uap->s, uap->level, uap->name, uap->val, UIO_USERSPACE, uap->valsize)); } #ifdef __rtems__ int setsockopt(int socket, int level, int option_name, const void *option_value, socklen_t option_len) { struct thread *td = rtems_bsd_get_curthread_or_null(); struct setsockopt_args ua = { .s = socket, .level = level, .name = option_name, .val = __DECONST(void *, option_value), .valsize = option_len }; int error; if (td != NULL) { error = rtems_bsd_setsockopt(td, &ua); } else { error = ENOMEM; } return rtems_bsd_error_to_status_and_errno(error); } #endif /* __rtems__ */ int kern_setsockopt(td, s, level, name, val, valseg, valsize) struct thread *td; int s; int level; int name; void *val; enum uio_seg valseg; socklen_t valsize; { int error; struct socket *so; struct file *fp; struct sockopt sopt; if (val == NULL && valsize != 0) return (EFAULT); if ((int)valsize < 0) return (EINVAL); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = level; sopt.sopt_name = name; sopt.sopt_val = val; sopt.sopt_valsize = valsize; switch (valseg) { case UIO_USERSPACE: sopt.sopt_td = td; break; case UIO_SYSSPACE: sopt.sopt_td = NULL; break; default: panic("kern_setsockopt called with bad valseg"); } AUDIT_ARG_FD(s); error = getsock(td->td_proc->p_fd, s, &fp, NULL); if (error == 0) { so = fp->f_data; error = sosetopt(so, &sopt); fdrop(fp, td); } return(error); } /* ARGSUSED */ #ifndef __rtems__ int getsockopt(td, uap) #else /* __rtems__ */ static int kern_getsockopt( struct thread *td, int s, int level, int name, void *val, enum uio_seg valseg, socklen_t *valsize); static int rtems_bsd_getsockopt(td, uap) #endif /* __rtems__ */ struct thread *td; struct getsockopt_args /* { int s; int level; int name; void * __restrict val; socklen_t * __restrict avalsize; } */ *uap; { socklen_t valsize; int error; if (uap->val) { error = copyin(uap->avalsize, &valsize, sizeof (valsize)); if (error) return (error); } error = kern_getsockopt(td, uap->s, uap->level, uap->name, uap->val, UIO_USERSPACE, &valsize); if (error == 0) error = copyout(&valsize, uap->avalsize, sizeof (valsize)); return (error); } #ifdef __rtems__ int getsockopt(int socket, int level, int option_name, void *__restrict option_value, socklen_t *__restrict option_len) { struct thread *td = rtems_bsd_get_curthread_or_null(); struct getsockopt_args ua = { .s = socket, .level = level, .name = option_name, .val = (caddr_t) option_value, .avalsize = option_len }; int error; if (td != NULL) { error = rtems_bsd_getsockopt(td, &ua); } else { error = ENOMEM; } return rtems_bsd_error_to_status_and_errno(error); } #endif /* __rtems__ */ /* * Kernel version of getsockopt. * optval can be a userland or userspace. optlen is always a kernel pointer. */ int kern_getsockopt(td, s, level, name, val, valseg, valsize) struct thread *td; int s; int level; int name; void *val; enum uio_seg valseg; socklen_t *valsize; { int error; struct socket *so; struct file *fp; struct sockopt sopt; if (val == NULL) *valsize = 0; if ((int)*valsize < 0) return (EINVAL); sopt.sopt_dir = SOPT_GET; sopt.sopt_level = level; sopt.sopt_name = name; sopt.sopt_val = val; sopt.sopt_valsize = (size_t)*valsize; /* checked non-negative above */ switch (valseg) { case UIO_USERSPACE: sopt.sopt_td = td; break; case UIO_SYSSPACE: sopt.sopt_td = NULL; break; default: panic("kern_getsockopt called with bad valseg"); } AUDIT_ARG_FD(s); error = getsock(td->td_proc->p_fd, s, &fp, NULL); if (error == 0) { so = fp->f_data; error = sogetopt(so, &sopt); *valsize = sopt.sopt_valsize; fdrop(fp, td); } return (error); } #ifdef __rtems__ int kern_getsockname(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen); #endif /* __rtems__ */ /* * getsockname1() - Get socket name. */ /* ARGSUSED */ static int getsockname1(td, uap, compat) struct thread *td; struct getsockname_args /* { int fdes; struct sockaddr * __restrict asa; socklen_t * __restrict alen; } */ *uap; int compat; { struct sockaddr *sa; socklen_t len; int error; error = copyin(uap->alen, &len, sizeof(len)); if (error) return (error); error = kern_getsockname(td, uap->fdes, &sa, &len); if (error) return (error); if (len != 0) { #ifdef COMPAT_OLDSOCK if (compat) ((struct osockaddr *)sa)->sa_family = sa->sa_family; #endif error = copyout(sa, uap->asa, (u_int)len); } free(sa, M_SONAME); if (error == 0) error = copyout(&len, uap->alen, sizeof(len)); return (error); } #ifdef __rtems__ int getsockname(int socket, struct sockaddr *__restrict address, socklen_t *__restrict address_len) { struct thread *td = rtems_bsd_get_curthread_or_null(); struct getsockname_args ua = { .fdes = socket, .asa = address, .alen = address_len }; int error; if (td != NULL) { error = getsockname1(td, &ua); } else { error = ENOMEM; } return rtems_bsd_error_to_status_and_errno(error); } #endif /* __rtems__ */ int kern_getsockname(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen) { struct socket *so; struct file *fp; socklen_t len; int error; if (*alen < 0) return (EINVAL); AUDIT_ARG_FD(fd); error = getsock(td->td_proc->p_fd, fd, &fp, NULL); if (error) return (error); so = fp->f_data; *sa = NULL; CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_sockaddr)(so, sa); CURVNET_RESTORE(); if (error) goto bad; if (*sa == NULL) len = 0; else len = MIN(*alen, (*sa)->sa_len); *alen = len; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(*sa); #endif bad: fdrop(fp, td); if (error && *sa) { free(*sa, M_SONAME); *sa = NULL; } return (error); } #ifndef __rtems__ int getsockname(td, uap) struct thread *td; struct getsockname_args *uap; { return (getsockname1(td, uap, 0)); } #ifdef COMPAT_OLDSOCK int ogetsockname(td, uap) struct thread *td; struct getsockname_args *uap; { return (getsockname1(td, uap, 1)); } #endif /* COMPAT_OLDSOCK */ #endif /* __rtems__ */ #ifdef __rtems__ static int kern_getpeername(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen); #endif /* __rtems__ */ /* * getpeername1() - Get name of peer for connected socket. */ /* ARGSUSED */ static int getpeername1(td, uap, compat) struct thread *td; struct getpeername_args /* { int fdes; struct sockaddr * __restrict asa; socklen_t * __restrict alen; } */ *uap; int compat; { struct sockaddr *sa; socklen_t len; int error; error = copyin(uap->alen, &len, sizeof (len)); if (error) return (error); error = kern_getpeername(td, uap->fdes, &sa, &len); if (error) return (error); if (len != 0) { #ifdef COMPAT_OLDSOCK if (compat) ((struct osockaddr *)sa)->sa_family = sa->sa_family; #endif error = copyout(sa, uap->asa, (u_int)len); } free(sa, M_SONAME); if (error == 0) error = copyout(&len, uap->alen, sizeof(len)); return (error); } #ifdef __rtems__ int getpeername(int socket, struct sockaddr *__restrict address, socklen_t *__restrict address_len) { struct thread *td = rtems_bsd_get_curthread_or_null(); struct getpeername_args ua = { .fdes = socket, .asa = address, .alen = address_len }; int error; if (td != NULL) { error = getpeername1(td, &ua); } else { error = ENOMEM; } return rtems_bsd_error_to_status_and_errno(error); } #endif /* __rtems__ */ int kern_getpeername(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen) { struct socket *so; struct file *fp; socklen_t len; int error; if (*alen < 0) return (EINVAL); AUDIT_ARG_FD(fd); error = getsock(td->td_proc->p_fd, fd, &fp, NULL); if (error) return (error); so = fp->f_data; if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) { error = ENOTCONN; goto done; } *sa = NULL; CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_peeraddr)(so, sa); CURVNET_RESTORE(); if (error) goto bad; if (*sa == NULL) len = 0; else len = MIN(*alen, (*sa)->sa_len); *alen = len; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(*sa); #endif bad: if (error && *sa) { free(*sa, M_SONAME); *sa = NULL; } done: fdrop(fp, td); return (error); } #ifndef __rtems__ int getpeername(td, uap) struct thread *td; struct getpeername_args *uap; { return (getpeername1(td, uap, 0)); } #ifdef COMPAT_OLDSOCK int ogetpeername(td, uap) struct thread *td; struct ogetpeername_args *uap; { /* XXX uap should have type `getpeername_args *' to begin with. */ return (getpeername1(td, (struct getpeername_args *)uap, 1)); } #endif /* COMPAT_OLDSOCK */ #endif /* __rtems__ */ int sockargs(mp, buf, buflen, type) struct mbuf **mp; caddr_t buf; int buflen, type; { struct sockaddr *sa; struct mbuf *m; int error; if ((u_int)buflen > MLEN) { #ifdef COMPAT_OLDSOCK if (type == MT_SONAME && (u_int)buflen <= 112) buflen = MLEN; /* unix domain compat. hack */ else #endif if ((u_int)buflen > MCLBYTES) return (EINVAL); } m = m_get(M_WAIT, type); if ((u_int)buflen > MLEN) MCLGET(m, M_WAIT); m->m_len = buflen; error = copyin(buf, mtod(m, caddr_t), (u_int)buflen); if (error) (void) m_free(m); else { *mp = m; if (type == MT_SONAME) { sa = mtod(m, struct sockaddr *); #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN if (sa->sa_family == 0 && sa->sa_len < AF_MAX) sa->sa_family = sa->sa_len; #endif sa->sa_len = buflen; } } return (error); } int getsockaddr(namp, uaddr, len) struct sockaddr **namp; caddr_t uaddr; size_t len; { struct sockaddr *sa; int error; if (len > SOCK_MAXADDRLEN) return (ENAMETOOLONG); if (len < offsetof(struct sockaddr, sa_data[0])) return (EINVAL); sa = malloc(len, M_SONAME, M_WAITOK); error = copyin(uaddr, sa, len); if (error) { free(sa, M_SONAME); } else { #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN if (sa->sa_family == 0 && sa->sa_len < AF_MAX) sa->sa_family = sa->sa_len; #endif sa->sa_len = len; *namp = sa; } return (error); } #ifndef __rtems__ #include struct sendfile_sync { struct mtx mtx; struct cv cv; unsigned count; }; /* * Detach mapped page and release resources back to the system. */ void sf_buf_mext(void *addr, void *args) { vm_page_t m; struct sendfile_sync *sfs; m = sf_buf_page(args); sf_buf_free(args); vm_page_lock_queues(); vm_page_unwire(m, 0); /* * Check for the object going away on us. This can * happen since we don't hold a reference to it. * If so, we're responsible for freeing the page. */ if (m->wire_count == 0 && m->object == NULL) vm_page_free(m); vm_page_unlock_queues(); if (addr == NULL) return; sfs = addr; mtx_lock(&sfs->mtx); KASSERT(sfs->count> 0, ("Sendfile sync botchup count == 0")); if (--sfs->count == 0) cv_signal(&sfs->cv); mtx_unlock(&sfs->mtx); } /* * sendfile(2) * * int sendfile(int fd, int s, off_t offset, size_t nbytes, * struct sf_hdtr *hdtr, off_t *sbytes, int flags) * * Send a file specified by 'fd' and starting at 'offset' to a socket * specified by 's'. Send only 'nbytes' of the file or until EOF if nbytes == * 0. Optionally add a header and/or trailer to the socket output. If * specified, write the total number of bytes sent into *sbytes. */ int sendfile(struct thread *td, struct sendfile_args *uap) { return (do_sendfile(td, uap, 0)); } static int do_sendfile(struct thread *td, struct sendfile_args *uap, int compat) { struct sf_hdtr hdtr; struct uio *hdr_uio, *trl_uio; int error; hdr_uio = trl_uio = NULL; if (uap->hdtr != NULL) { error = copyin(uap->hdtr, &hdtr, sizeof(hdtr)); if (error) goto out; if (hdtr.headers != NULL) { error = copyinuio(hdtr.headers, hdtr.hdr_cnt, &hdr_uio); if (error) goto out; } if (hdtr.trailers != NULL) { error = copyinuio(hdtr.trailers, hdtr.trl_cnt, &trl_uio); if (error) goto out; } } error = kern_sendfile(td, uap, hdr_uio, trl_uio, compat); out: if (hdr_uio) free(hdr_uio, M_IOV); if (trl_uio) free(trl_uio, M_IOV); return (error); } #ifdef COMPAT_FREEBSD4 int freebsd4_sendfile(struct thread *td, struct freebsd4_sendfile_args *uap) { struct sendfile_args args; args.fd = uap->fd; args.s = uap->s; args.offset = uap->offset; args.nbytes = uap->nbytes; args.hdtr = uap->hdtr; args.sbytes = uap->sbytes; args.flags = uap->flags; return (do_sendfile(td, &args, 1)); } #endif /* COMPAT_FREEBSD4 */ int kern_sendfile(struct thread *td, struct sendfile_args *uap, struct uio *hdr_uio, struct uio *trl_uio, int compat) { struct file *sock_fp; struct vnode *vp; struct vm_object *obj = NULL; struct socket *so = NULL; struct mbuf *m = NULL; struct sf_buf *sf; struct vm_page *pg; off_t off, xfsize, fsbytes = 0, sbytes = 0, rem = 0; int error, hdrlen = 0, mnw = 0; int vfslocked; struct sendfile_sync *sfs = NULL; /* * The file descriptor must be a regular file and have a * backing VM object. * File offset must be positive. If it goes beyond EOF * we send only the header/trailer and no payload data. */ AUDIT_ARG_FD(uap->fd); if ((error = fgetvp_read(td, uap->fd, &vp)) != 0) goto out; vfslocked = VFS_LOCK_GIANT(vp->v_mount); vn_lock(vp, LK_SHARED | LK_RETRY); if (vp->v_type == VREG) { obj = vp->v_object; if (obj != NULL) { /* * Temporarily increase the backing VM * object's reference count so that a forced * reclamation of its vnode does not * immediately destroy it. */ VM_OBJECT_LOCK(obj); if ((obj->flags & OBJ_DEAD) == 0) { vm_object_reference_locked(obj); VM_OBJECT_UNLOCK(obj); } else { VM_OBJECT_UNLOCK(obj); obj = NULL; } } } VOP_UNLOCK(vp, 0); VFS_UNLOCK_GIANT(vfslocked); if (obj == NULL) { error = EINVAL; goto out; } if (uap->offset < 0) { error = EINVAL; goto out; } /* * The socket must be a stream socket and connected. * Remember if it a blocking or non-blocking socket. */ if ((error = getsock(td->td_proc->p_fd, uap->s, &sock_fp, NULL)) != 0) goto out; so = sock_fp->f_data; if (so->so_type != SOCK_STREAM) { error = EINVAL; goto out; } if ((so->so_state & SS_ISCONNECTED) == 0) { error = ENOTCONN; goto out; } /* * Do not wait on memory allocations but return ENOMEM for * caller to retry later. * XXX: Experimental. */ if (uap->flags & SF_MNOWAIT) mnw = 1; if (uap->flags & SF_SYNC) { sfs = malloc(sizeof *sfs, M_TEMP, M_WAITOK); memset(sfs, 0, sizeof *sfs); mtx_init(&sfs->mtx, "sendfile", NULL, MTX_DEF); cv_init(&sfs->cv, "sendfile"); } #ifdef MAC error = mac_socket_check_send(td->td_ucred, so); if (error) goto out; #endif /* If headers are specified copy them into mbufs. */ if (hdr_uio != NULL) { hdr_uio->uio_td = td; hdr_uio->uio_rw = UIO_WRITE; if (hdr_uio->uio_resid > 0) { /* * In FBSD < 5.0 the nbytes to send also included * the header. If compat is specified subtract the * header size from nbytes. */ if (compat) { if (uap->nbytes > hdr_uio->uio_resid) uap->nbytes -= hdr_uio->uio_resid; else uap->nbytes = 0; } m = m_uiotombuf(hdr_uio, (mnw ? M_NOWAIT : M_WAITOK), 0, 0, 0); if (m == NULL) { error = mnw ? EAGAIN : ENOBUFS; goto out; } hdrlen = m_length(m, NULL); } } /* * Protect against multiple writers to the socket. * * XXXRW: Historically this has assumed non-interruptibility, so now * we implement that, but possibly shouldn't. */ (void)sblock(&so->so_snd, SBL_WAIT | SBL_NOINTR); /* * Loop through the pages of the file, starting with the requested * offset. Get a file page (do I/O if necessary), map the file page * into an sf_buf, attach an mbuf header to the sf_buf, and queue * it on the socket. * This is done in two loops. The inner loop turns as many pages * as it can, up to available socket buffer space, without blocking * into mbufs to have it bulk delivered into the socket send buffer. * The outer loop checks the state and available space of the socket * and takes care of the overall progress. */ for (off = uap->offset, rem = uap->nbytes; ; ) { int loopbytes = 0; int space = 0; int done = 0; /* * Check the socket state for ongoing connection, * no errors and space in socket buffer. * If space is low allow for the remainder of the * file to be processed if it fits the socket buffer. * Otherwise block in waiting for sufficient space * to proceed, or if the socket is nonblocking, return * to userland with EAGAIN while reporting how far * we've come. * We wait until the socket buffer has significant free * space to do bulk sends. This makes good use of file * system read ahead and allows packet segmentation * offloading hardware to take over lots of work. If * we were not careful here we would send off only one * sfbuf at a time. */ SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_lowat < so->so_snd.sb_hiwat / 2) so->so_snd.sb_lowat = so->so_snd.sb_hiwat / 2; retry_space: if (so->so_snd.sb_state & SBS_CANTSENDMORE) { error = EPIPE; SOCKBUF_UNLOCK(&so->so_snd); goto done; } else if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_snd); goto done; } space = sbspace(&so->so_snd); if (space < rem && (space <= 0 || space < so->so_snd.sb_lowat)) { if (so->so_state & SS_NBIO) { SOCKBUF_UNLOCK(&so->so_snd); error = EAGAIN; goto done; } /* * sbwait drops the lock while sleeping. * When we loop back to retry_space the * state may have changed and we retest * for it. */ error = sbwait(&so->so_snd); /* * An error from sbwait usually indicates that we've * been interrupted by a signal. If we've sent anything * then return bytes sent, otherwise return the error. */ if (error) { SOCKBUF_UNLOCK(&so->so_snd); goto done; } goto retry_space; } SOCKBUF_UNLOCK(&so->so_snd); /* * Reduce space in the socket buffer by the size of * the header mbuf chain. * hdrlen is set to 0 after the first loop. */ space -= hdrlen; /* * Loop and construct maximum sized mbuf chain to be bulk * dumped into socket buffer. */ while(space > loopbytes) { vm_pindex_t pindex; vm_offset_t pgoff; struct mbuf *m0; VM_OBJECT_LOCK(obj); /* * Calculate the amount to transfer. * Not to exceed a page, the EOF, * or the passed in nbytes. */ pgoff = (vm_offset_t)(off & PAGE_MASK); xfsize = omin(PAGE_SIZE - pgoff, obj->un_pager.vnp.vnp_size - uap->offset - fsbytes - loopbytes); if (uap->nbytes) rem = (uap->nbytes - fsbytes - loopbytes); else rem = obj->un_pager.vnp.vnp_size - uap->offset - fsbytes - loopbytes; xfsize = omin(rem, xfsize); xfsize = omin(space - loopbytes, xfsize); if (xfsize <= 0) { VM_OBJECT_UNLOCK(obj); done = 1; /* all data sent */ break; } /* * Attempt to look up the page. Allocate * if not found or wait and loop if busy. */ pindex = OFF_TO_IDX(off); pg = vm_page_grab(obj, pindex, VM_ALLOC_NOBUSY | VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_RETRY); /* * Check if page is valid for what we need, * otherwise initiate I/O. * If we already turned some pages into mbufs, * send them off before we come here again and * block. */ if (pg->valid && vm_page_is_valid(pg, pgoff, xfsize)) VM_OBJECT_UNLOCK(obj); else if (m != NULL) error = EAGAIN; /* send what we already got */ else if (uap->flags & SF_NODISKIO) error = EBUSY; else { int bsize, resid; /* * Ensure that our page is still around * when the I/O completes. */ vm_page_io_start(pg); VM_OBJECT_UNLOCK(obj); /* * Get the page from backing store. */ vfslocked = VFS_LOCK_GIANT(vp->v_mount); error = vn_lock(vp, LK_SHARED); if (error != 0) goto after_read; bsize = vp->v_mount->mnt_stat.f_iosize; /* * XXXMAC: Because we don't have fp->f_cred * here, we pass in NOCRED. This is probably * wrong, but is consistent with our original * implementation. */ error = vn_rdwr(UIO_READ, vp, NULL, MAXBSIZE, trunc_page(off), UIO_NOCOPY, IO_NODELOCKED | IO_VMIO | ((MAXBSIZE / bsize) << IO_SEQSHIFT), td->td_ucred, NOCRED, &resid, td); VOP_UNLOCK(vp, 0); after_read: VFS_UNLOCK_GIANT(vfslocked); VM_OBJECT_LOCK(obj); vm_page_io_finish(pg); if (!error) VM_OBJECT_UNLOCK(obj); mbstat.sf_iocnt++; } if (error) { vm_page_lock_queues(); vm_page_unwire(pg, 0); /* * See if anyone else might know about * this page. If not and it is not valid, * then free it. */ if (pg->wire_count == 0 && pg->valid == 0 && pg->busy == 0 && !(pg->oflags & VPO_BUSY) && pg->hold_count == 0) { vm_page_free(pg); } vm_page_unlock_queues(); VM_OBJECT_UNLOCK(obj); if (error == EAGAIN) error = 0; /* not a real error */ break; } /* * Get a sendfile buf. When allocating the * first buffer for mbuf chain, we usually * wait as long as necessary, but this wait * can be interrupted. For consequent * buffers, do not sleep, since several * threads might exhaust the buffers and then * deadlock. */ sf = sf_buf_alloc(pg, (mnw || m != NULL) ? SFB_NOWAIT : SFB_CATCH); if (sf == NULL) { mbstat.sf_allocfail++; vm_page_lock_queues(); vm_page_unwire(pg, 0); /* * XXX: Not same check as above!? */ if (pg->wire_count == 0 && pg->object == NULL) vm_page_free(pg); vm_page_unlock_queues(); if (m == NULL) error = (mnw ? EAGAIN : EINTR); break; } /* * Get an mbuf and set it up as having * external storage. */ m0 = m_get((mnw ? M_NOWAIT : M_WAITOK), MT_DATA); if (m0 == NULL) { error = (mnw ? EAGAIN : ENOBUFS); sf_buf_mext((void *)sf_buf_kva(sf), sf); break; } MEXTADD(m0, sf_buf_kva(sf), PAGE_SIZE, sf_buf_mext, sfs, sf, M_RDONLY, EXT_SFBUF); m0->m_data = (char *)sf_buf_kva(sf) + pgoff; m0->m_len = xfsize; /* Append to mbuf chain. */ if (m != NULL) m_cat(m, m0); else m = m0; /* Keep track of bits processed. */ loopbytes += xfsize; off += xfsize; if (sfs != NULL) { mtx_lock(&sfs->mtx); sfs->count++; mtx_unlock(&sfs->mtx); } } /* Add the buffer chain to the socket buffer. */ if (m != NULL) { int mlen, err; mlen = m_length(m, NULL); SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { error = EPIPE; SOCKBUF_UNLOCK(&so->so_snd); goto done; } SOCKBUF_UNLOCK(&so->so_snd); CURVNET_SET(so->so_vnet); /* Avoid error aliasing. */ err = (*so->so_proto->pr_usrreqs->pru_send) (so, 0, m, NULL, NULL, td); CURVNET_RESTORE(); if (err == 0) { /* * We need two counters to get the * file offset and nbytes to send * right: * - sbytes contains the total amount * of bytes sent, including headers. * - fsbytes contains the total amount * of bytes sent from the file. */ sbytes += mlen; fsbytes += mlen; if (hdrlen) { fsbytes -= hdrlen; hdrlen = 0; } } else if (error == 0) error = err; m = NULL; /* pru_send always consumes */ } /* Quit outer loop on error or when we're done. */ if (done) break; if (error) goto done; } /* * Send trailers. Wimp out and use writev(2). */ if (trl_uio != NULL) { sbunlock(&so->so_snd); error = kern_writev(td, uap->s, trl_uio); if (error == 0) sbytes += td->td_retval[0]; goto out; } done: sbunlock(&so->so_snd); out: /* * If there was no error we have to clear td->td_retval[0] * because it may have been set by writev. */ if (error == 0) { td->td_retval[0] = 0; } if (uap->sbytes != NULL) { copyout(&sbytes, uap->sbytes, sizeof(off_t)); } if (obj != NULL) vm_object_deallocate(obj); if (vp != NULL) { vfslocked = VFS_LOCK_GIANT(vp->v_mount); vrele(vp); VFS_UNLOCK_GIANT(vfslocked); } if (so) fdrop(sock_fp, td); if (m) m_freem(m); if (sfs != NULL) { mtx_lock(&sfs->mtx); if (sfs->count != 0) cv_wait(&sfs->cv, &sfs->mtx); KASSERT(sfs->count == 0, ("sendfile sync still busy")); cv_destroy(&sfs->cv); mtx_destroy(&sfs->mtx); free(sfs, M_TEMP); } if (error == ERESTART) error = EINTR; return (error); } /* * SCTP syscalls. * Functionality only compiled in if SCTP is defined in the kernel Makefile, * otherwise all return EOPNOTSUPP. * XXX: We should make this loadable one day. */ int sctp_peeloff(td, uap) struct thread *td; struct sctp_peeloff_args /* { int sd; caddr_t name; } */ *uap; { #if (defined(INET) || defined(INET6)) && defined(SCTP) struct filedesc *fdp; struct file *nfp = NULL; int error; struct socket *head, *so; int fd; u_int fflag; fdp = td->td_proc->p_fd; AUDIT_ARG_FD(uap->sd); error = fgetsock(td, uap->sd, &head, &fflag); if (error) goto done2; if (head->so_proto->pr_protocol != IPPROTO_SCTP) { error = EOPNOTSUPP; goto done; } error = sctp_can_peel_off(head, (sctp_assoc_t)uap->name); if (error) goto done; /* * At this point we know we do have a assoc to pull * we proceed to get the fd setup. This may block * but that is ok. */ error = falloc(td, &nfp, &fd); if (error) goto done; td->td_retval[0] = fd; CURVNET_SET(head->so_vnet); so = sonewconn(head, SS_ISCONNECTED); if (so == NULL) goto noconnection; /* * Before changing the flags on the socket, we have to bump the * reference count. Otherwise, if the protocol calls sofree(), * the socket will be released due to a zero refcount. */ SOCK_LOCK(so); soref(so); /* file descriptor reference */ SOCK_UNLOCK(so); ACCEPT_LOCK(); TAILQ_REMOVE(&head->so_comp, so, so_list); head->so_qlen--; so->so_state |= (head->so_state & SS_NBIO); so->so_state &= ~SS_NOFDREF; so->so_qstate &= ~SQ_COMP; so->so_head = NULL; ACCEPT_UNLOCK(); finit(nfp, fflag, DTYPE_SOCKET, so, &socketops); error = sctp_do_peeloff(head, so, (sctp_assoc_t)uap->name); if (error) goto noconnection; if (head->so_sigio != NULL) fsetown(fgetown(&head->so_sigio), &so->so_sigio); noconnection: /* * close the new descriptor, assuming someone hasn't ripped it * out from under us. */ if (error) fdclose(fdp, nfp, fd, td); /* * Release explicitly held references before returning. */ CURVNET_RESTORE(); done: if (nfp != NULL) fdrop(nfp, td); fputsock(head); done2: return (error); #else /* SCTP */ return (EOPNOTSUPP); #endif /* SCTP */ } int sctp_generic_sendmsg (td, uap) struct thread *td; struct sctp_generic_sendmsg_args /* { int sd, caddr_t msg, int mlen, caddr_t to, __socklen_t tolen, struct sctp_sndrcvinfo *sinfo, int flags } */ *uap; { #if (defined(INET) || defined(INET6)) && defined(SCTP) struct sctp_sndrcvinfo sinfo, *u_sinfo = NULL; struct socket *so; struct file *fp = NULL; int error = 0, len; struct sockaddr *to = NULL; #ifdef KTRACE struct uio *ktruio = NULL; #endif struct uio auio; struct iovec iov[1]; if (uap->sinfo) { error = copyin(uap->sinfo, &sinfo, sizeof (sinfo)); if (error) return (error); u_sinfo = &sinfo; } if (uap->tolen) { error = getsockaddr(&to, uap->to, uap->tolen); if (error) { to = NULL; goto sctp_bad2; } } AUDIT_ARG_FD(uap->sd); error = getsock(td->td_proc->p_fd, uap->sd, &fp, NULL); if (error) goto sctp_bad; #ifdef KTRACE if (to && (KTRPOINT(td, KTR_STRUCT))) ktrsockaddr(to); #endif iov[0].iov_base = uap->msg; iov[0].iov_len = uap->mlen; so = (struct socket *)fp->f_data; if (so->so_proto->pr_protocol != IPPROTO_SCTP) { error = EOPNOTSUPP; goto sctp_bad; } #ifdef MAC error = mac_socket_check_send(td->td_ucred, so); if (error) goto sctp_bad; #endif /* MAC */ auio.uio_iov = iov; auio.uio_iovcnt = 1; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_WRITE; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; len = auio.uio_resid = uap->mlen; CURVNET_SET(so->so_vnet); error = sctp_lower_sosend(so, to, &auio, (struct mbuf *)NULL, (struct mbuf *)NULL, uap->flags, u_sinfo, td); CURVNET_RESTORE(); if (error) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; /* Generation of SIGPIPE can be controlled per socket. */ if (error == EPIPE && !(so->so_options & SO_NOSIGPIPE) && !(uap->flags & MSG_NOSIGNAL)) { PROC_LOCK(td->td_proc); tdksignal(td, SIGPIPE, NULL); PROC_UNLOCK(td->td_proc); } } if (error == 0) td->td_retval[0] = len - auio.uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = td->td_retval[0]; ktrgenio(uap->sd, UIO_WRITE, ktruio, error); } #endif /* KTRACE */ sctp_bad: if (fp) fdrop(fp, td); sctp_bad2: if (to) free(to, M_SONAME); return (error); #else /* SCTP */ return (EOPNOTSUPP); #endif /* SCTP */ } int sctp_generic_sendmsg_iov(td, uap) struct thread *td; struct sctp_generic_sendmsg_iov_args /* { int sd, struct iovec *iov, int iovlen, caddr_t to, __socklen_t tolen, struct sctp_sndrcvinfo *sinfo, int flags } */ *uap; { #if (defined(INET) || defined(INET6)) && defined(SCTP) struct sctp_sndrcvinfo sinfo, *u_sinfo = NULL; struct socket *so; struct file *fp = NULL; int error=0, len, i; struct sockaddr *to = NULL; #ifdef KTRACE struct uio *ktruio = NULL; #endif struct uio auio; struct iovec *iov, *tiov; if (uap->sinfo) { error = copyin(uap->sinfo, &sinfo, sizeof (sinfo)); if (error) return (error); u_sinfo = &sinfo; } if (uap->tolen) { error = getsockaddr(&to, uap->to, uap->tolen); if (error) { to = NULL; goto sctp_bad2; } } AUDIT_ARG_FD(uap->sd); error = getsock(td->td_proc->p_fd, uap->sd, &fp, NULL); if (error) goto sctp_bad1; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) error = freebsd32_copyiniov((struct iovec32 *)uap->iov, uap->iovlen, &iov, EMSGSIZE); else #endif error = copyiniov(uap->iov, uap->iovlen, &iov, EMSGSIZE); if (error) goto sctp_bad1; #ifdef KTRACE if (to && (KTRPOINT(td, KTR_STRUCT))) ktrsockaddr(to); #endif so = (struct socket *)fp->f_data; if (so->so_proto->pr_protocol != IPPROTO_SCTP) { error = EOPNOTSUPP; goto sctp_bad; } #ifdef MAC error = mac_socket_check_send(td->td_ucred, so); if (error) goto sctp_bad; #endif /* MAC */ auio.uio_iov = iov; auio.uio_iovcnt = uap->iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_WRITE; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; tiov = iov; for (i = 0; i iovlen; i++, tiov++) { if ((auio.uio_resid += tiov->iov_len) < 0) { error = EINVAL; goto sctp_bad; } } len = auio.uio_resid; CURVNET_SET(so->so_vnet); error = sctp_lower_sosend(so, to, &auio, (struct mbuf *)NULL, (struct mbuf *)NULL, uap->flags, u_sinfo, td); CURVNET_RESTORE(); if (error) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; /* Generation of SIGPIPE can be controlled per socket */ if (error == EPIPE && !(so->so_options & SO_NOSIGPIPE) && !(uap->flags & MSG_NOSIGNAL)) { PROC_LOCK(td->td_proc); tdksignal(td, SIGPIPE, NULL); PROC_UNLOCK(td->td_proc); } } if (error == 0) td->td_retval[0] = len - auio.uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = td->td_retval[0]; ktrgenio(uap->sd, UIO_WRITE, ktruio, error); } #endif /* KTRACE */ sctp_bad: free(iov, M_IOV); sctp_bad1: if (fp) fdrop(fp, td); sctp_bad2: if (to) free(to, M_SONAME); return (error); #else /* SCTP */ return (EOPNOTSUPP); #endif /* SCTP */ } int sctp_generic_recvmsg(td, uap) struct thread *td; struct sctp_generic_recvmsg_args /* { int sd, struct iovec *iov, int iovlen, struct sockaddr *from, __socklen_t *fromlenaddr, struct sctp_sndrcvinfo *sinfo, int *msg_flags } */ *uap; { #if (defined(INET) || defined(INET6)) && defined(SCTP) u_int8_t sockbufstore[256]; struct uio auio; struct iovec *iov, *tiov; struct sctp_sndrcvinfo sinfo; struct socket *so; struct file *fp = NULL; struct sockaddr *fromsa; int fromlen; int len, i, msg_flags; int error = 0; #ifdef KTRACE struct uio *ktruio = NULL; #endif AUDIT_ARG_FD(uap->sd); error = getsock(td->td_proc->p_fd, uap->sd, &fp, NULL); if (error) { return (error); } #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) error = freebsd32_copyiniov((struct iovec32 *)uap->iov, uap->iovlen, &iov, EMSGSIZE); else #endif error = copyiniov(uap->iov, uap->iovlen, &iov, EMSGSIZE); if (error) goto out1; so = fp->f_data; if (so->so_proto->pr_protocol != IPPROTO_SCTP) { error = EOPNOTSUPP; goto out; } #ifdef MAC error = mac_socket_check_receive(td->td_ucred, so); if (error) { goto out; } #endif /* MAC */ if (uap->fromlenaddr) { error = copyin(uap->fromlenaddr, &fromlen, sizeof (fromlen)); if (error) { goto out; } } else { fromlen = 0; } if (uap->msg_flags) { error = copyin(uap->msg_flags, &msg_flags, sizeof (int)); if (error) { goto out; } } else { msg_flags = 0; } auio.uio_iov = iov; auio.uio_iovcnt = uap->iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_READ; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; tiov = iov; for (i = 0; i iovlen; i++, tiov++) { if ((auio.uio_resid += tiov->iov_len) < 0) { error = EINVAL; goto out; } } len = auio.uio_resid; fromsa = (struct sockaddr *)sockbufstore; #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif /* KTRACE */ memset(&sinfo, 0, sizeof(struct sctp_sndrcvinfo)); CURVNET_SET(so->so_vnet); error = sctp_sorecvmsg(so, &auio, (struct mbuf **)NULL, fromsa, fromlen, &msg_flags, (struct sctp_sndrcvinfo *)&sinfo, 1); CURVNET_RESTORE(); if (error) { if (auio.uio_resid != (int)len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; } else { if (uap->sinfo) error = copyout(&sinfo, uap->sinfo, sizeof (sinfo)); } #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = (int)len - auio.uio_resid; ktrgenio(uap->sd, UIO_READ, ktruio, error); } #endif /* KTRACE */ if (error) goto out; td->td_retval[0] = (int)len - auio.uio_resid; if (fromlen && uap->from) { len = fromlen; if (len <= 0 || fromsa == 0) len = 0; else { len = MIN(len, fromsa->sa_len); error = copyout(fromsa, uap->from, (unsigned)len); if (error) goto out; } error = copyout(&len, uap->fromlenaddr, sizeof (socklen_t)); if (error) { goto out; } } #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(fromsa); #endif if (uap->msg_flags) { error = copyout(&msg_flags, uap->msg_flags, sizeof (int)); if (error) { goto out; } } out: free(iov, M_IOV); out1: if (fp) fdrop(fp, td); return (error); #else /* SCTP */ return (EOPNOTSUPP); #endif /* SCTP */ } #endif /* __rtems__ */