#include /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver. */ #include __FBSDID("$FreeBSD$"); #ifdef HAVE_KERNEL_OPTION_HEADERS #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr, const char *dname); static void tsec_dma_ctl(struct tsec_softc *sc, int state); static void tsec_encap(struct ifnet *ifp, struct tsec_softc *sc, struct mbuf *m0, uint16_t fcb_flags, int *start_tx); static void tsec_free_dma(struct tsec_softc *sc); static void tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr); static int tsec_ifmedia_upd(struct ifnet *ifp); static void tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); static int tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp, uint32_t *paddr); static void tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error); static void tsec_intrs_ctl(struct tsec_softc *sc, int state); static void tsec_init(void *xsc); static void tsec_init_locked(struct tsec_softc *sc); static int tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data); static void tsec_reset_mac(struct tsec_softc *sc); static void tsec_setfilter(struct tsec_softc *sc); static void tsec_set_mac_address(struct tsec_softc *sc); static void tsec_start(struct ifnet *ifp); static void tsec_start_locked(struct ifnet *ifp); static void tsec_stop(struct tsec_softc *sc); static void tsec_tick(void *arg); static void tsec_watchdog(struct tsec_softc *sc); #ifndef __rtems__ static void tsec_add_sysctls(struct tsec_softc *sc); static int tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS); static int tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS); #endif /* __rtems__ */ static void tsec_set_rxic(struct tsec_softc *sc); static void tsec_set_txic(struct tsec_softc *sc); static int tsec_receive_intr_locked(struct tsec_softc *sc, int count); static void tsec_transmit_intr_locked(struct tsec_softc *sc); static void tsec_error_intr_locked(struct tsec_softc *sc, int count); static void tsec_offload_setup(struct tsec_softc *sc); static void tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m); static void tsec_setup_multicast(struct tsec_softc *sc); static int tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu); devclass_t tsec_devclass; DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0); MODULE_DEPEND(tsec, ether, 1, 1, 1); MODULE_DEPEND(tsec, miibus, 1, 1, 1); struct mtx tsec_phy_mtx; int tsec_attach(struct tsec_softc *sc) { uint8_t hwaddr[ETHER_ADDR_LEN]; struct ifnet *ifp; int error = 0; int i; /* Initialize global (because potentially shared) MII lock */ if (!mtx_initialized(&tsec_phy_mtx)) mtx_init(&tsec_phy_mtx, "tsec mii", NULL, MTX_DEF); /* Reset all TSEC counters */ TSEC_TX_RX_COUNTERS_INIT(sc); /* Stop DMA engine if enabled by firmware */ tsec_dma_ctl(sc, 0); /* Reset MAC */ tsec_reset_mac(sc); /* Disable interrupts for now */ tsec_intrs_ctl(sc, 0); /* Configure defaults for interrupts coalescing */ sc->rx_ic_time = 768; sc->rx_ic_count = 16; sc->tx_ic_time = 768; sc->tx_ic_count = 16; tsec_set_rxic(sc); tsec_set_txic(sc); #ifndef __rtems__ tsec_add_sysctls(sc); #endif /* __rtems__ */ /* Allocate a busdma tag and DMA safe memory for TX descriptors. */ error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag, &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC, (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX"); if (error) { tsec_detach(sc); return (ENXIO); } /* Allocate a busdma tag and DMA safe memory for RX descriptors. */ error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag, &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC, (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX"); if (error) { tsec_detach(sc); return (ENXIO); } /* Allocate a busdma tag for TX mbufs. */ error = bus_dma_tag_create(NULL, /* parent */ TSEC_TXBUFFER_ALIGNMENT, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ MCLBYTES * (TSEC_TX_NUM_DESC - 1), /* maxsize */ TSEC_TX_MAX_DMA_SEGS, /* nsegments */ MCLBYTES, 0, /* maxsegsz, flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &sc->tsec_tx_mtag); /* dmat */ if (error) { device_printf(sc->dev, "failed to allocate busdma tag " "(tx mbufs)\n"); tsec_detach(sc); return (ENXIO); } /* Allocate a busdma tag for RX mbufs. */ error = bus_dma_tag_create(NULL, /* parent */ TSEC_RXBUFFER_ALIGNMENT, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, 0, /* maxsegsz, flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &sc->tsec_rx_mtag); /* dmat */ if (error) { device_printf(sc->dev, "failed to allocate busdma tag " "(rx mbufs)\n"); tsec_detach(sc); return (ENXIO); } /* Create TX busdma maps */ for (i = 0; i < TSEC_TX_NUM_DESC; i++) { error = bus_dmamap_create(sc->tsec_tx_mtag, 0, &sc->tx_bufmap[i].map); if (error) { device_printf(sc->dev, "failed to init TX ring\n"); tsec_detach(sc); return (ENXIO); } sc->tx_bufmap[i].map_initialized = 1; } /* Create RX busdma maps and zero mbuf handlers */ for (i = 0; i < TSEC_RX_NUM_DESC; i++) { error = bus_dmamap_create(sc->tsec_rx_mtag, 0, &sc->rx_data[i].map); if (error) { device_printf(sc->dev, "failed to init RX ring\n"); tsec_detach(sc); return (ENXIO); } sc->rx_data[i].mbuf = NULL; } /* Create mbufs for RX buffers */ for (i = 0; i < TSEC_RX_NUM_DESC; i++) { error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map, &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr); if (error) { device_printf(sc->dev, "can't load rx DMA map %d, " "error = %d\n", i, error); tsec_detach(sc); return (error); } } /* Create network interface for upper layers */ ifp = sc->tsec_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(sc->dev, "if_alloc() failed\n"); tsec_detach(sc); return (ENOMEM); } ifp->if_softc = sc; if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST; ifp->if_init = tsec_init; ifp->if_start = tsec_start; ifp->if_ioctl = tsec_ioctl; IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1); ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1; IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = IFCAP_VLAN_MTU; if (sc->is_etsec) ifp->if_capabilities |= IFCAP_HWCSUM; ifp->if_capenable = ifp->if_capabilities; #ifdef DEVICE_POLLING /* Advertise that polling is supported */ ifp->if_capabilities |= IFCAP_POLLING; #endif /* Attach PHY(s) */ error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd, tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY, 0); #ifndef __rtems__ if (error) { device_printf(sc->dev, "attaching PHYs failed\n"); if_free(ifp); sc->tsec_ifp = NULL; tsec_detach(sc); return (error); } sc->tsec_mii = device_get_softc(sc->tsec_miibus); #else /* __rtems__ */ if (error == 0) sc->tsec_mii = device_get_softc(sc->tsec_miibus); else sc->tsec_link = 1; #endif /* __rtems__ */ /* Set MAC address */ tsec_get_hwaddr(sc, hwaddr); ether_ifattach(ifp, hwaddr); return (0); } int tsec_detach(struct tsec_softc *sc) { if (sc->tsec_ifp != NULL) { #ifdef DEVICE_POLLING if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(sc->tsec_ifp); #endif /* Stop TSEC controller and free TX queue */ if (sc->sc_rres) tsec_shutdown(sc->dev); /* Detach network interface */ ether_ifdetach(sc->tsec_ifp); if_free(sc->tsec_ifp); sc->tsec_ifp = NULL; } /* Free DMA resources */ tsec_free_dma(sc); return (0); } int tsec_shutdown(device_t dev) { struct tsec_softc *sc; sc = device_get_softc(dev); TSEC_GLOBAL_LOCK(sc); tsec_stop(sc); TSEC_GLOBAL_UNLOCK(sc); return (0); } int tsec_suspend(device_t dev) { /* TODO not implemented! */ return (0); } int tsec_resume(device_t dev) { /* TODO not implemented! */ return (0); } static void tsec_init(void *xsc) { struct tsec_softc *sc = xsc; TSEC_GLOBAL_LOCK(sc); tsec_init_locked(sc); TSEC_GLOBAL_UNLOCK(sc); } static int tsec_mii_wait(struct tsec_softc *sc, uint32_t flags) { int timeout; /* * The status indicators are not set immediatly after a command. * Discard the first value. */ TSEC_PHY_READ(sc, TSEC_REG_MIIMIND); timeout = TSEC_READ_RETRY; while ((TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) & flags) && --timeout) DELAY(TSEC_READ_DELAY); return (timeout == 0); } static void tsec_init_locked(struct tsec_softc *sc) { struct tsec_desc *tx_desc = sc->tsec_tx_vaddr; struct tsec_desc *rx_desc = sc->tsec_rx_vaddr; struct ifnet *ifp = sc->tsec_ifp; uint32_t val, i; int timeout; if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; TSEC_GLOBAL_LOCK_ASSERT(sc); tsec_stop(sc); /* * These steps are according to the MPC8555E PowerQUICCIII RM: * 14.7 Initialization/Application Information */ /* Step 1: soft reset MAC */ tsec_reset_mac(sc); /* Step 2: Initialize MACCFG2 */ TSEC_WRITE(sc, TSEC_REG_MACCFG2, TSEC_MACCFG2_FULLDUPLEX | /* Full Duplex = 1 */ TSEC_MACCFG2_PADCRC | /* PAD/CRC append */ TSEC_MACCFG2_GMII | /* I/F Mode bit */ TSEC_MACCFG2_PRECNT /* Preamble count = 7 */ ); /* Step 3: Initialize ECNTRL * While the documentation states that R100M is ignored if RPM is * not set, it does seem to be needed to get the orange boxes to * work (which have a Marvell 88E1111 PHY). Go figure. */ /* * XXX kludge - use circumstancial evidence to program ECNTRL * correctly. Ideally we need some board information to guide * us here. */ i = TSEC_READ(sc, TSEC_REG_ID2); val = (i & 0xffff) ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM) /* Sumatra */ : TSEC_ECNTRL_R100M; /* Orange + CDS */ TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val); /* Step 4: Initialize MAC station address */ tsec_set_mac_address(sc); /* * Step 5: Assign a Physical address to the TBI so as to not conflict * with the external PHY physical address */ TSEC_WRITE(sc, TSEC_REG_TBIPA, 5); TSEC_PHY_LOCK(sc); /* Step 6: Reset the management interface */ TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT); /* Step 7: Setup the MII Mgmt clock speed */ TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28); /* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */ timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY); TSEC_PHY_UNLOCK(sc); if (timeout) { if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n"); return; } /* Step 9: Setup the MII Mgmt */ #ifdef __rtems__ if (sc->tsec_mii) #endif /* __rtems__ */ mii_mediachg(sc->tsec_mii); /* Step 10: Clear IEVENT register */ TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff); /* Step 11: Enable interrupts */ #ifdef DEVICE_POLLING /* * ...only if polling is not turned on. Disable interrupts explicitly * if polling is enabled. */ if (ifp->if_capenable & IFCAP_POLLING ) tsec_intrs_ctl(sc, 0); else #endif /* DEVICE_POLLING */ tsec_intrs_ctl(sc, 1); /* Step 12: Initialize IADDRn */ TSEC_WRITE(sc, TSEC_REG_IADDR0, 0); TSEC_WRITE(sc, TSEC_REG_IADDR1, 0); TSEC_WRITE(sc, TSEC_REG_IADDR2, 0); TSEC_WRITE(sc, TSEC_REG_IADDR3, 0); TSEC_WRITE(sc, TSEC_REG_IADDR4, 0); TSEC_WRITE(sc, TSEC_REG_IADDR5, 0); TSEC_WRITE(sc, TSEC_REG_IADDR6, 0); TSEC_WRITE(sc, TSEC_REG_IADDR7, 0); /* Step 13: Initialize GADDRn */ TSEC_WRITE(sc, TSEC_REG_GADDR0, 0); TSEC_WRITE(sc, TSEC_REG_GADDR1, 0); TSEC_WRITE(sc, TSEC_REG_GADDR2, 0); TSEC_WRITE(sc, TSEC_REG_GADDR3, 0); TSEC_WRITE(sc, TSEC_REG_GADDR4, 0); TSEC_WRITE(sc, TSEC_REG_GADDR5, 0); TSEC_WRITE(sc, TSEC_REG_GADDR6, 0); TSEC_WRITE(sc, TSEC_REG_GADDR7, 0); /* Step 14: Initialize RCTRL */ TSEC_WRITE(sc, TSEC_REG_RCTRL, 0); /* Step 15: Initialize DMACTRL */ tsec_dma_ctl(sc, 1); /* Step 16: Initialize FIFO_PAUSE_CTRL */ TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN); /* * Step 17: Initialize transmit/receive descriptor rings. * Initialize TBASE and RBASE. */ TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr); TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr); for (i = 0; i < TSEC_TX_NUM_DESC; i++) { tx_desc[i].bufptr = 0; tx_desc[i].length = 0; tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ? TSEC_TXBD_W : 0); } bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); for (i = 0; i < TSEC_RX_NUM_DESC; i++) { rx_desc[i].bufptr = sc->rx_data[i].paddr; rx_desc[i].length = 0; rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I | ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0); } bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Step 18: Initialize the maximum receive buffer length */ TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES); /* Step 19: Configure ethernet frame sizes */ TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE); tsec_set_mtu(sc, ifp->if_mtu); /* Step 20: Enable Rx and RxBD sdata snooping */ TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN); TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0); /* Step 21: Reset collision counters in hardware */ TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0); TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0); TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0); TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0); TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0); /* Step 22: Mask all CAM interrupts */ TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff); TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff); /* Step 23: Enable Rx and Tx */ val = TSEC_READ(sc, TSEC_REG_MACCFG1); val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN); TSEC_WRITE(sc, TSEC_REG_MACCFG1, val); /* Step 24: Reset TSEC counters for Tx and Rx rings */ TSEC_TX_RX_COUNTERS_INIT(sc); /* Step 25: Setup TCP/IP Off-Load engine */ if (sc->is_etsec) tsec_offload_setup(sc); /* Step 26: Setup multicast filters */ tsec_setup_multicast(sc); /* Step 27: Activate network interface */ ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->tsec_if_flags = ifp->if_flags; sc->tsec_watchdog = 0; /* Schedule watchdog timeout */ callout_reset(&sc->tsec_callout, hz, tsec_tick, sc); } static void tsec_set_mac_address(struct tsec_softc *sc) { uint32_t macbuf[2] = { 0, 0 }; char *macbufp, *curmac; int i; TSEC_GLOBAL_LOCK_ASSERT(sc); KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)), ("tsec_set_mac_address: (%d <= %zd", ETHER_ADDR_LEN, sizeof(macbuf))); macbufp = (char *)macbuf; curmac = (char *)IF_LLADDR(sc->tsec_ifp); /* Correct order of MAC address bytes */ for (i = 1; i <= ETHER_ADDR_LEN; i++) macbufp[ETHER_ADDR_LEN-i] = curmac[i-1]; /* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */ TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]); TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]); } /* * DMA control function, if argument state is: * 0 - DMA engine will be disabled * 1 - DMA engine will be enabled */ static void tsec_dma_ctl(struct tsec_softc *sc, int state) { device_t dev; uint32_t dma_flags, timeout; dev = sc->dev; dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL); switch (state) { case 0: /* Temporarily clear stop graceful stop bits. */ tsec_dma_ctl(sc, 1000); /* Set it again */ dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS); break; case 1000: case 1: /* Set write with response (WWR), wait (WOP) and snoop bits */ dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN | DMACTRL_WWR | DMACTRL_WOP); /* Clear graceful stop bits */ dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS); break; default: device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n", state); } TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags); switch (state) { case 0: /* Wait for DMA stop */ timeout = TSEC_READ_RETRY; while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) & (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC)))) DELAY(TSEC_READ_DELAY); if (timeout == 0) device_printf(dev, "tsec_dma_ctl(): timeout!\n"); break; case 1: /* Restart transmission function */ TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); } } /* * Interrupts control function, if argument state is: * 0 - all TSEC interrupts will be masked * 1 - all TSEC interrupts will be unmasked */ static void tsec_intrs_ctl(struct tsec_softc *sc, int state) { device_t dev; dev = sc->dev; switch (state) { case 0: TSEC_WRITE(sc, TSEC_REG_IMASK, 0); break; case 1: TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN | TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN | TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN | TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN); break; default: device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n", state); } } static void tsec_reset_mac(struct tsec_softc *sc) { uint32_t maccfg1_flags; /* Set soft reset bit */ maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1); maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET; TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags); /* Clear soft reset bit */ maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1); maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET; TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags); } static void tsec_watchdog(struct tsec_softc *sc) { struct ifnet *ifp; TSEC_GLOBAL_LOCK_ASSERT(sc); if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0) return; ifp = sc->tsec_ifp; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if_printf(ifp, "watchdog timeout\n"); tsec_stop(sc); tsec_init_locked(sc); } static void tsec_start(struct ifnet *ifp) { struct tsec_softc *sc = ifp->if_softc; TSEC_TRANSMIT_LOCK(sc); tsec_start_locked(ifp); TSEC_TRANSMIT_UNLOCK(sc); } static void tsec_start_locked(struct ifnet *ifp) { struct tsec_softc *sc; struct mbuf *m0; struct tsec_tx_fcb *tx_fcb; int csum_flags; int start_tx; uint16_t fcb_flags; sc = ifp->if_softc; start_tx = 0; TSEC_TRANSMIT_LOCK_ASSERT(sc); if (sc->tsec_link == 0) return; bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (;;) { if (TSEC_FREE_TX_DESC(sc) < TSEC_TX_MAX_DMA_SEGS) { /* No free descriptors */ ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } /* Get packet from the queue */ IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; /* Insert TCP/IP Off-load frame control block */ fcb_flags = 0; csum_flags = m0->m_pkthdr.csum_flags; if (csum_flags) { M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT); if (m0 == NULL) break; if (csum_flags & CSUM_IP) fcb_flags |= TSEC_TX_FCB_IP4 | TSEC_TX_FCB_CSUM_IP; if (csum_flags & CSUM_TCP) fcb_flags |= TSEC_TX_FCB_TCP | TSEC_TX_FCB_CSUM_TCP_UDP; if (csum_flags & CSUM_UDP) fcb_flags |= TSEC_TX_FCB_UDP | TSEC_TX_FCB_CSUM_TCP_UDP; tx_fcb = mtod(m0, struct tsec_tx_fcb *); tx_fcb->flags = fcb_flags; tx_fcb->l3_offset = ETHER_HDR_LEN; tx_fcb->l4_offset = sizeof(struct ip); } tsec_encap(ifp, sc, m0, fcb_flags, &start_tx); } bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); if (start_tx) { /* Enable transmitter and watchdog timer */ TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); sc->tsec_watchdog = 5; } } static void tsec_encap(struct ifnet *ifp, struct tsec_softc *sc, struct mbuf *m0, uint16_t fcb_flags, int *start_tx) { bus_dma_segment_t segs[TSEC_TX_MAX_DMA_SEGS]; int error, i, nsegs; struct tsec_bufmap *tx_bufmap; uint32_t tx_idx; uint16_t flags; TSEC_TRANSMIT_LOCK_ASSERT(sc); tx_idx = sc->tx_idx_head; tx_bufmap = &sc->tx_bufmap[tx_idx]; /* Create mapping in DMA memory */ error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, tx_bufmap->map, m0, segs, &nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { /* Too many segments! Defrag and try again. */ struct mbuf *m = m_defrag(m0, M_NOWAIT); if (m == NULL) { m_freem(m0); return; } m0 = m; error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, tx_bufmap->map, m0, segs, &nsegs, BUS_DMA_NOWAIT); } if (error != 0) { /* Give up. */ m_freem(m0); return; } bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map, BUS_DMASYNC_PREWRITE); tx_bufmap->mbuf = m0; /* * Fill in the TX descriptors back to front so that READY bit in first * descriptor is set last. */ tx_idx = (tx_idx + (uint32_t)nsegs) & (TSEC_TX_NUM_DESC - 1); sc->tx_idx_head = tx_idx; flags = TSEC_TXBD_L | TSEC_TXBD_I | TSEC_TXBD_R | TSEC_TXBD_TC; for (i = nsegs - 1; i >= 0; i--) { struct tsec_desc *tx_desc; tx_idx = (tx_idx - 1) & (TSEC_TX_NUM_DESC - 1); tx_desc = &sc->tsec_tx_vaddr[tx_idx]; tx_desc->length = segs[i].ds_len; tx_desc->bufptr = segs[i].ds_addr; if (i == 0) { wmb(); if (fcb_flags != 0) flags |= TSEC_TXBD_TOE; } /* * Set flags: * - wrap * - checksum * - ready to send * - transmit the CRC sequence after the last data byte * - interrupt after the last buffer */ tx_desc->flags = (tx_idx == (TSEC_TX_NUM_DESC - 1) ? TSEC_TXBD_W : 0) | flags; flags &= ~(TSEC_TXBD_L | TSEC_TXBD_I); } BPF_MTAP(ifp, m0); *start_tx = 1; } static void tsec_setfilter(struct tsec_softc *sc) { struct ifnet *ifp; uint32_t flags; ifp = sc->tsec_ifp; flags = TSEC_READ(sc, TSEC_REG_RCTRL); /* Promiscuous mode */ if (ifp->if_flags & IFF_PROMISC) flags |= TSEC_RCTRL_PROM; else flags &= ~TSEC_RCTRL_PROM; TSEC_WRITE(sc, TSEC_REG_RCTRL, flags); } #ifdef DEVICE_POLLING static poll_handler_t tsec_poll; static int tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { uint32_t ie; struct tsec_softc *sc = ifp->if_softc; int rx_npkts; rx_npkts = 0; TSEC_GLOBAL_LOCK(sc); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { TSEC_GLOBAL_UNLOCK(sc); return (rx_npkts); } if (cmd == POLL_AND_CHECK_STATUS) { tsec_error_intr_locked(sc, count); /* Clear all events reported */ ie = TSEC_READ(sc, TSEC_REG_IEVENT); TSEC_WRITE(sc, TSEC_REG_IEVENT, ie); } tsec_transmit_intr_locked(sc); TSEC_GLOBAL_TO_RECEIVE_LOCK(sc); rx_npkts = tsec_receive_intr_locked(sc, count); TSEC_RECEIVE_UNLOCK(sc); return (rx_npkts); } #endif /* DEVICE_POLLING */ static int tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct tsec_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int mask, error = 0; switch (command) { case SIOCSIFMTU: TSEC_GLOBAL_LOCK(sc); if (tsec_set_mtu(sc, ifr->ifr_mtu)) ifp->if_mtu = ifr->ifr_mtu; else error = EINVAL; TSEC_GLOBAL_UNLOCK(sc); break; case SIOCSIFFLAGS: TSEC_GLOBAL_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if ((sc->tsec_if_flags ^ ifp->if_flags) & IFF_PROMISC) tsec_setfilter(sc); if ((sc->tsec_if_flags ^ ifp->if_flags) & IFF_ALLMULTI) tsec_setup_multicast(sc); } else tsec_init_locked(sc); } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) tsec_stop(sc); sc->tsec_if_flags = ifp->if_flags; TSEC_GLOBAL_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_drv_flags & IFF_DRV_RUNNING) { TSEC_GLOBAL_LOCK(sc); tsec_setup_multicast(sc); TSEC_GLOBAL_UNLOCK(sc); } case SIOCGIFMEDIA: case SIOCSIFMEDIA: #ifdef __rtems__ if (sc->tsec_mii == 0) error = ENXIO; else #endif /* __rtems__ */ error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media, command); break; case SIOCSIFCAP: mask = ifp->if_capenable ^ ifr->ifr_reqcap; if ((mask & IFCAP_HWCSUM) && sc->is_etsec) { TSEC_GLOBAL_LOCK(sc); ifp->if_capenable &= ~IFCAP_HWCSUM; ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap; tsec_offload_setup(sc); TSEC_GLOBAL_UNLOCK(sc); } #ifdef DEVICE_POLLING if (mask & IFCAP_POLLING) { if (ifr->ifr_reqcap & IFCAP_POLLING) { error = ether_poll_register(tsec_poll, ifp); if (error) return (error); TSEC_GLOBAL_LOCK(sc); /* Disable interrupts */ tsec_intrs_ctl(sc, 0); ifp->if_capenable |= IFCAP_POLLING; TSEC_GLOBAL_UNLOCK(sc); } else { error = ether_poll_deregister(ifp); TSEC_GLOBAL_LOCK(sc); /* Enable interrupts */ tsec_intrs_ctl(sc, 1); ifp->if_capenable &= ~IFCAP_POLLING; TSEC_GLOBAL_UNLOCK(sc); } } #endif break; default: error = ether_ioctl(ifp, command, data); } /* Flush buffers if not empty */ if (ifp->if_flags & IFF_UP) tsec_start(ifp); return (error); } static int tsec_ifmedia_upd(struct ifnet *ifp) { struct tsec_softc *sc = ifp->if_softc; struct mii_data *mii; #ifdef __rtems__ if (sc->tsec_mii == NULL) return (0); #endif /* __rtems__ */ TSEC_TRANSMIT_LOCK(sc); mii = sc->tsec_mii; mii_mediachg(mii); TSEC_TRANSMIT_UNLOCK(sc); return (0); } static void tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct tsec_softc *sc = ifp->if_softc; struct mii_data *mii; #ifdef __rtems__ if (sc->tsec_mii == NULL) return (0); #endif /* __rtems__ */ TSEC_TRANSMIT_LOCK(sc); mii = sc->tsec_mii; mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; TSEC_TRANSMIT_UNLOCK(sc); } static int tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp, uint32_t *paddr) { struct mbuf *new_mbuf; bus_dma_segment_t seg[1]; int error, nsegs; KASSERT(mbufp != NULL, ("NULL mbuf pointer!")); new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES); if (new_mbuf == NULL) return (ENOBUFS); new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size; if (*mbufp) { bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(tag, map); } error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs, BUS_DMA_NOWAIT); KASSERT(nsegs == 1, ("Too many segments returned!")); if (nsegs != 1 || error) panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error); #if 0 if (error) { printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n", error); m_freem(new_mbuf); return (ENOBUFS); } #endif #if 0 KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0, ("Wrong alignment of RX buffer!")); #endif bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD); (*mbufp) = new_mbuf; (*paddr) = seg->ds_addr; return (0); } static void tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { u_int32_t *paddr; KASSERT(nseg == 1, ("wrong number of segments, should be 1")); paddr = arg; *paddr = segs->ds_addr; } static int tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr, const char *dname) { int error; /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */ error = bus_dma_tag_create(NULL, /* parent */ PAGE_SIZE, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ dsize, 1, /* maxsize, nsegments */ dsize, 0, /* maxsegsz, flags */ NULL, NULL, /* lockfunc, lockfuncarg */ dtag); /* dmat */ if (error) { device_printf(dev, "failed to allocate busdma %s tag\n", dname); (*vaddr) = NULL; return (ENXIO); } error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO, dmap); if (error) { device_printf(dev, "failed to allocate %s DMA safe memory\n", dname); bus_dma_tag_destroy(*dtag); (*vaddr) = NULL; return (ENXIO); } error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize, tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT); if (error) { device_printf(dev, "cannot get address of the %s " "descriptors\n", dname); bus_dmamem_free(*dtag, *vaddr, *dmap); bus_dma_tag_destroy(*dtag); (*vaddr) = NULL; return (ENXIO); } return (0); } static void tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr) { if (vaddr == NULL) return; /* Unmap descriptors from DMA memory */ bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dtag, dmap); /* Free descriptors memory */ bus_dmamem_free(dtag, vaddr, dmap); /* Destroy descriptors tag */ bus_dma_tag_destroy(dtag); } static void tsec_free_dma(struct tsec_softc *sc) { int i; /* Free TX maps */ for (i = 0; i < TSEC_TX_NUM_DESC; i++) if (sc->tx_bufmap[i].map_initialized) bus_dmamap_destroy(sc->tsec_tx_mtag, sc->tx_bufmap[i].map); /* Destroy tag for TX mbufs */ bus_dma_tag_destroy(sc->tsec_tx_mtag); /* Free RX mbufs and maps */ for (i = 0; i < TSEC_RX_NUM_DESC; i++) { if (sc->rx_data[i].mbuf) { /* Unload buffer from DMA */ bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->tsec_rx_mtag, sc->rx_data[i].map); /* Free buffer */ m_freem(sc->rx_data[i].mbuf); } /* Destroy map for this buffer */ if (sc->rx_data[i].map != NULL) bus_dmamap_destroy(sc->tsec_rx_mtag, sc->rx_data[i].map); } /* Destroy tag for RX mbufs */ bus_dma_tag_destroy(sc->tsec_rx_mtag); /* Unload TX/RX descriptors */ tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap, sc->tsec_tx_vaddr); tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap, sc->tsec_rx_vaddr); } static void tsec_stop(struct tsec_softc *sc) { struct ifnet *ifp; uint32_t tmpval; TSEC_GLOBAL_LOCK_ASSERT(sc); ifp = sc->tsec_ifp; /* Disable interface and watchdog timer */ callout_stop(&sc->tsec_callout); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->tsec_watchdog = 0; /* Disable all interrupts and stop DMA */ tsec_intrs_ctl(sc, 0); tsec_dma_ctl(sc, 0); /* Remove pending data from TX queue */ while (sc->tx_idx_tail != sc->tx_idx_head) { bus_dmamap_sync(sc->tsec_tx_mtag, sc->tx_bufmap[sc->tx_idx_tail].map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->tsec_tx_mtag, sc->tx_bufmap[sc->tx_idx_tail].map); m_freem(sc->tx_bufmap[sc->tx_idx_tail].mbuf); sc->tx_idx_tail = (sc->tx_idx_tail + 1) & (TSEC_TX_NUM_DESC - 1); } /* Disable RX and TX */ tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1); tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN); TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval); DELAY(10); } static void tsec_tick(void *arg) { struct tsec_softc *sc = arg; struct ifnet *ifp; int link; TSEC_GLOBAL_LOCK(sc); tsec_watchdog(sc); ifp = sc->tsec_ifp; link = sc->tsec_link; #ifdef __rtems__ if (sc->tsec_mii != NULL) #endif /* __rtems__ */ mii_tick(sc->tsec_mii); if (link == 0 && sc->tsec_link == 1 && (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))) tsec_start_locked(ifp); /* Schedule another timeout one second from now. */ callout_reset(&sc->tsec_callout, hz, tsec_tick, sc); TSEC_GLOBAL_UNLOCK(sc); } /* * This is the core RX routine. It replenishes mbufs in the descriptor and * sends data which have been dma'ed into host memory to upper layer. * * Loops at most count times if count is > 0, or until done if count < 0. */ static int tsec_receive_intr_locked(struct tsec_softc *sc, int count) { struct tsec_desc *rx_desc; struct ifnet *ifp; struct rx_data_type *rx_data; struct mbuf *m; uint32_t i; int c, rx_npkts; uint16_t flags; TSEC_RECEIVE_LOCK_ASSERT(sc); ifp = sc->tsec_ifp; rx_data = sc->rx_data; rx_npkts = 0; bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (c = 0; ; c++) { if (count >= 0 && count-- == 0) break; rx_desc = TSEC_GET_CUR_RX_DESC(sc); flags = rx_desc->flags; /* Check if there is anything to receive */ if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) { /* * Avoid generating another interrupt */ if (flags & TSEC_RXBD_E) TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF); /* * We didn't consume current descriptor and have to * return it to the queue */ TSEC_BACK_CUR_RX_DESC(sc); break; } if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO | TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) { rx_desc->length = 0; rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I; if (sc->frame != NULL) { m_free(sc->frame); sc->frame = NULL; } continue; } /* Ok... process frame */ i = TSEC_GET_CUR_RX_DESC_CNT(sc); m = rx_data[i].mbuf; m->m_len = rx_desc->length; if (sc->frame != NULL) { if ((flags & TSEC_RXBD_L) != 0) m->m_len -= m_length(sc->frame, NULL); m->m_flags &= ~M_PKTHDR; m_cat(sc->frame, m); } else { sc->frame = m; } m = NULL; if ((flags & TSEC_RXBD_L) != 0) { m = sc->frame; sc->frame = NULL; } if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map, &rx_data[i].mbuf, &rx_data[i].paddr)) { if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); /* * We ran out of mbufs; didn't consume current * descriptor and have to return it to the queue. */ TSEC_BACK_CUR_RX_DESC(sc); break; } /* Attach new buffer to descriptor and clear flags */ rx_desc->bufptr = rx_data[i].paddr; rx_desc->length = 0; rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I; if (m != NULL) { m->m_pkthdr.rcvif = ifp; m_fixhdr(m); m_adj(m, -ETHER_CRC_LEN); if (sc->is_etsec) tsec_offload_process_frame(sc, m); TSEC_RECEIVE_UNLOCK(sc); (*ifp->if_input)(ifp, m); TSEC_RECEIVE_LOCK(sc); rx_npkts++; } } bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Make sure TSEC receiver is not halted. * * Various conditions can stop the TSEC receiver, but not all are * signaled and handled by error interrupt, so make sure the receiver * is running. Writing to TSEC_REG_RSTAT restarts the receiver when * halted, and is harmless if already running. */ TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT); return (rx_npkts); } void tsec_receive_intr(void *arg) { struct tsec_softc *sc = arg; TSEC_RECEIVE_LOCK(sc); #ifdef DEVICE_POLLING if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) { TSEC_RECEIVE_UNLOCK(sc); return; } #endif /* Confirm the interrupt was received by driver */ TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF); tsec_receive_intr_locked(sc, -1); TSEC_RECEIVE_UNLOCK(sc); } static void tsec_transmit_intr_locked(struct tsec_softc *sc) { struct ifnet *ifp; uint32_t tx_idx; TSEC_TRANSMIT_LOCK_ASSERT(sc); ifp = sc->tsec_ifp; /* Update collision statistics */ if_inc_counter(ifp, IFCOUNTER_COLLISIONS, TSEC_READ(sc, TSEC_REG_MON_TNCL)); /* Reset collision counters in hardware */ TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0); TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0); TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0); TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0); TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0); bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); tx_idx = sc->tx_idx_tail; while (tx_idx != sc->tx_idx_head) { struct tsec_desc *tx_desc; struct tsec_bufmap *tx_bufmap; tx_desc = &sc->tsec_tx_vaddr[tx_idx]; if (tx_desc->flags & TSEC_TXBD_R) { break; } tx_bufmap = &sc->tx_bufmap[tx_idx]; tx_idx = (tx_idx + 1) & (TSEC_TX_NUM_DESC - 1); if (tx_bufmap->mbuf == NULL) continue; /* * This is the last buf in this packet, so unmap and free it. */ bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->tsec_tx_mtag, tx_bufmap->map); m_freem(tx_bufmap->mbuf); tx_bufmap->mbuf = NULL; if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); } sc->tx_idx_tail = tx_idx; bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; tsec_start_locked(ifp); if (sc->tx_idx_tail == sc->tx_idx_head) sc->tsec_watchdog = 0; } void tsec_transmit_intr(void *arg) { struct tsec_softc *sc = arg; TSEC_TRANSMIT_LOCK(sc); #ifdef DEVICE_POLLING if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) { TSEC_TRANSMIT_UNLOCK(sc); return; } #endif /* Confirm the interrupt was received by driver */ TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF); tsec_transmit_intr_locked(sc); TSEC_TRANSMIT_UNLOCK(sc); } static void tsec_error_intr_locked(struct tsec_softc *sc, int count) { struct ifnet *ifp; uint32_t eflags; TSEC_GLOBAL_LOCK_ASSERT(sc); ifp = sc->tsec_ifp; eflags = TSEC_READ(sc, TSEC_REG_IEVENT); /* Clear events bits in hardware */ TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY | TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT | TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC | TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN); /* Check transmitter errors */ if (eflags & TSEC_IEVENT_TXE) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if (eflags & TSEC_IEVENT_LC) if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); } /* Check for discarded frame due to a lack of buffers */ if (eflags & TSEC_IEVENT_BSY) { if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); } if (ifp->if_flags & IFF_DEBUG) if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n", eflags); if (eflags & TSEC_IEVENT_EBERR) { if_printf(ifp, "System bus error occurred during" "DMA transaction (flags: 0x%x)\n", eflags); tsec_init_locked(sc); } if (eflags & TSEC_IEVENT_BABT) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if (eflags & TSEC_IEVENT_BABR) if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); } void tsec_error_intr(void *arg) { struct tsec_softc *sc = arg; TSEC_GLOBAL_LOCK(sc); tsec_error_intr_locked(sc, -1); TSEC_GLOBAL_UNLOCK(sc); } int tsec_miibus_readreg(device_t dev, int phy, int reg) { struct tsec_softc *sc; int timeout; int rv; sc = device_get_softc(dev); TSEC_PHY_LOCK(); TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg); TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, 0); TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE); timeout = tsec_mii_wait(sc, TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY); rv = TSEC_PHY_READ(sc, TSEC_REG_MIIMSTAT); TSEC_PHY_UNLOCK(); if (timeout) device_printf(dev, "Timeout while reading from PHY!\n"); return (rv); } int tsec_miibus_writereg(device_t dev, int phy, int reg, int value) { struct tsec_softc *sc; int timeout; sc = device_get_softc(dev); TSEC_PHY_LOCK(); TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg); TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCON, value); timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY); TSEC_PHY_UNLOCK(); if (timeout) device_printf(dev, "Timeout while writing to PHY!\n"); return (0); } void tsec_miibus_statchg(device_t dev) { struct tsec_softc *sc; struct mii_data *mii; uint32_t ecntrl, id, tmp; int link; sc = device_get_softc(dev); mii = sc->tsec_mii; #ifdef __rtems__ if (mii == NULL) return; #endif /* __rtems__ */ link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0); tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF; if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) tmp |= TSEC_MACCFG2_FULLDUPLEX; else tmp &= ~TSEC_MACCFG2_FULLDUPLEX; switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: case IFM_1000_SX: tmp |= TSEC_MACCFG2_GMII; sc->tsec_link = link; break; case IFM_100_TX: case IFM_10_T: tmp |= TSEC_MACCFG2_MII; sc->tsec_link = link; break; case IFM_NONE: if (link) device_printf(dev, "No speed selected but link " "active!\n"); sc->tsec_link = 0; return; default: sc->tsec_link = 0; device_printf(dev, "Unknown speed (%d), link %s!\n", IFM_SUBTYPE(mii->mii_media_active), ((link) ? "up" : "down")); return; } TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp); /* XXX kludge - use circumstantial evidence for reduced mode. */ id = TSEC_READ(sc, TSEC_REG_ID2); if (id & 0xffff) { ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M; ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0; TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl); } } #ifndef __rtems__ static void tsec_add_sysctls(struct tsec_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *children; struct sysctl_oid *tree; ctx = device_get_sysctl_ctx(sc->dev); children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal", CTLFLAG_RD, 0, "TSEC Interrupts coalescing"); children = SYSCTL_CHILDREN(tree); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time", CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time, "I", "IC RX time threshold (0-65535)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count", CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count, "I", "IC RX frame count threshold (0-255)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time", CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time, "I", "IC TX time threshold (0-65535)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count", CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count, "I", "IC TX frame count threshold (0-255)"); } /* * With Interrupt Coalescing (IC) active, a transmit/receive frame * interrupt is raised either upon: * * - threshold-defined period of time elapsed, or * - threshold-defined number of frames is received/transmitted, * whichever occurs first. * * The following sysctls regulate IC behaviour (for TX/RX separately): * * dev.tsec..int_coal.rx_time * dev.tsec..int_coal.rx_count * dev.tsec..int_coal.tx_time * dev.tsec..int_coal.tx_count * * Values: * * - 0 for either time or count disables IC on the given TX/RX path * * - count: 1-255 (expresses frame count number; note that value of 1 is * effectively IC off) * * - time: 1-65535 (value corresponds to a real time period and is * expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer * threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps, * 100 Mbps, or 1Gbps, respectively. For detailed discussion consult the * TSEC reference manual. */ static int tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS) { int error; uint32_t time; struct tsec_softc *sc = (struct tsec_softc *)arg1; time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time; error = sysctl_handle_int(oidp, &time, 0, req); if (error != 0) return (error); if (time > 65535) return (EINVAL); TSEC_IC_LOCK(sc); if (arg2 == TSEC_IC_RX) { sc->rx_ic_time = time; tsec_set_rxic(sc); } else { sc->tx_ic_time = time; tsec_set_txic(sc); } TSEC_IC_UNLOCK(sc); return (0); } static int tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS) { int error; uint32_t count; struct tsec_softc *sc = (struct tsec_softc *)arg1; count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count; error = sysctl_handle_int(oidp, &count, 0, req); if (error != 0) return (error); if (count > 255) return (EINVAL); TSEC_IC_LOCK(sc); if (arg2 == TSEC_IC_RX) { sc->rx_ic_count = count; tsec_set_rxic(sc); } else { sc->tx_ic_count = count; tsec_set_txic(sc); } TSEC_IC_UNLOCK(sc); return (0); } #endif /* __rtems__ */ static void tsec_set_rxic(struct tsec_softc *sc) { uint32_t rxic_val; if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0) /* Disable RX IC */ rxic_val = 0; else { rxic_val = 0x80000000; rxic_val |= (sc->rx_ic_count << 21); rxic_val |= sc->rx_ic_time; } TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val); } static void tsec_set_txic(struct tsec_softc *sc) { uint32_t txic_val; if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0) /* Disable TX IC */ txic_val = 0; else { txic_val = 0x80000000; txic_val |= (sc->tx_ic_count << 21); txic_val |= sc->tx_ic_time; } TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val); } static void tsec_offload_setup(struct tsec_softc *sc) { struct ifnet *ifp = sc->tsec_ifp; uint32_t reg; TSEC_GLOBAL_LOCK_ASSERT(sc); reg = TSEC_READ(sc, TSEC_REG_TCTRL); reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist = TSEC_CHECKSUM_FEATURES; else ifp->if_hwassist = 0; TSEC_WRITE(sc, TSEC_REG_TCTRL, reg); reg = TSEC_READ(sc, TSEC_REG_RCTRL); reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP); reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX; if (ifp->if_capenable & IFCAP_RXCSUM) reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP_PARSE_L234; TSEC_WRITE(sc, TSEC_REG_RCTRL, reg); } static void tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m) { struct tsec_rx_fcb rx_fcb; int csum_flags = 0; int protocol, flags; TSEC_RECEIVE_LOCK_ASSERT(sc); m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb)); flags = rx_fcb.flags; protocol = rx_fcb.protocol; if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) { csum_flags |= CSUM_IP_CHECKED; if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0) csum_flags |= CSUM_IP_VALID; } if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) && TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) && (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) { csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xFFFF; } m->m_pkthdr.csum_flags = csum_flags; if (flags & TSEC_RX_FCB_VLAN) { m->m_pkthdr.ether_vtag = rx_fcb.vlan; m->m_flags |= M_VLANTAG; } m_adj(m, sizeof(struct tsec_rx_fcb)); } static void tsec_setup_multicast(struct tsec_softc *sc) { uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; struct ifnet *ifp = sc->tsec_ifp; struct ifmultiaddr *ifma; uint32_t h; int i; TSEC_GLOBAL_LOCK_ASSERT(sc); if (ifp->if_flags & IFF_ALLMULTI) { for (i = 0; i < 8; i++) TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF); return; } if_maddr_rlock(ifp); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = (ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF; hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F)); } if_maddr_runlock(ifp); for (i = 0; i < 8; i++) TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]); } static int tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu) { mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; TSEC_GLOBAL_LOCK_ASSERT(sc); if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) { TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu); return (mtu); } return (0); }