#include /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2013 Ian Lepore * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); /* * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among * others. Also works for the ENET Gigibit controller found on imx6 and imx28, * but the driver doesn't currently use any of the ENET advanced features other * than enabling gigabit. * * The interface name 'fec' is already taken by netgraph's Fast Etherchannel * (netgraph/ng_fec.c), so we use 'ffec'. * * Requires an FDT entry with at least these properties: * fec: ethernet@02188000 { * compatible = "fsl,imxNN-fec"; * reg = <0x02188000 0x4000>; * interrupts = <150 151>; * phy-mode = "rgmii"; * phy-disable-preamble; // optional * }; * The second interrupt number is for IEEE-1588, and is not currently used; it * need not be present. phy-mode must be one of: "mii", "rmii", "rgmii". * There is also an optional property, phy-disable-preamble, which if present * will disable the preamble bits, cutting the size of each mdio transaction * (and thus the busy-wait time) in half. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * There are small differences in the hardware on various SoCs. Not every SoC * we support has its own FECTYPE; most work as GENERIC and only the ones that * need different handling get their own entry. In addition to the types in * this list, there are some flags below that can be ORed into the upper bits. */ enum { FECTYPE_NONE, FECTYPE_GENERIC, FECTYPE_IMX53, FECTYPE_IMX6, /* imx6 and imx7 */ FECTYPE_MVF, }; /* * Flags that describe general differences between the FEC hardware in various * SoCs. These are ORed into the FECTYPE enum values in the ofw_compat_data, so * the low 8 bits are reserved for the type enum. In the softc, the type and * flags are put into separate members, so that you don't need to mask the flags * out of the type to compare it. */ #define FECTYPE_MASK 0x000000ff #define FECFLAG_GBE (1 << 8) #define FECFLAG_AVB (1 << 9) #define FECFLAG_RACC (1 << 10) /* * Table of supported FDT compat strings and their associated FECTYPE values. */ static struct ofw_compat_data compat_data[] = { {"fsl,imx51-fec", FECTYPE_GENERIC}, {"fsl,imx53-fec", FECTYPE_IMX53}, {"fsl,imx6q-fec", FECTYPE_IMX6 | FECFLAG_RACC | FECFLAG_GBE }, {"fsl,imx6ul-fec", FECTYPE_IMX6 | FECFLAG_RACC }, {"fsl,imx7d-fec", FECTYPE_IMX6 | FECFLAG_RACC | FECFLAG_GBE | FECFLAG_AVB }, {"fsl,mvf600-fec", FECTYPE_MVF | FECFLAG_RACC }, {"fsl,mvf-fec", FECTYPE_MVF}, {NULL, FECTYPE_NONE}, }; /* * Driver data and defines. The descriptor counts must be a power of two. */ #define RX_DESC_COUNT 512 #define RX_DESC_SIZE (sizeof(struct ffec_hwdesc) * RX_DESC_COUNT) #define TX_DESC_COUNT 512 #define TX_DESC_SIZE (sizeof(struct ffec_hwdesc) * TX_DESC_COUNT) #define TX_MAX_DMA_SEGS 8 #define WATCHDOG_TIMEOUT_SECS 5 #define MAX_IRQ_COUNT 3 /* Interrupt Coalescing types */ #define FEC_IC_RX 0 #define FEC_IC_TX 1 struct ffec_bufmap { struct mbuf *mbuf; bus_dmamap_t map; }; struct ffec_softc { device_t dev; device_t miibus; struct mii_data * mii_softc; struct ifnet *ifp; int if_flags; struct mtx mtx; struct resource *irq_res[MAX_IRQ_COUNT]; struct resource *mem_res; void * intr_cookie[MAX_IRQ_COUNT]; struct callout ffec_callout; mii_contype_t phy_conn_type; uint32_t fecflags; uint8_t fectype; boolean_t link_is_up; boolean_t is_attached; boolean_t is_detaching; int tx_watchdog_count; int rxbuf_align; int txbuf_align; bus_dma_tag_t rxdesc_tag; bus_dmamap_t rxdesc_map; struct ffec_hwdesc *rxdesc_ring; bus_addr_t rxdesc_ring_paddr; bus_dma_tag_t rxbuf_tag; struct ffec_bufmap rxbuf_map[RX_DESC_COUNT]; uint32_t rx_idx; bus_dma_tag_t txdesc_tag; bus_dmamap_t txdesc_map; struct ffec_hwdesc *txdesc_ring; bus_addr_t txdesc_ring_paddr; bus_dma_tag_t txbuf_tag; struct ffec_bufmap txbuf_map[TX_DESC_COUNT]; uint32_t tx_idx_head; uint32_t tx_idx_tail; /* interrupt coalescing */ int rx_ic_time; /* RW, valid values 0..65535 */ int rx_ic_count; /* RW, valid values 0..255 */ int tx_ic_time; int tx_ic_count; }; static struct resource_spec irq_res_spec[MAX_IRQ_COUNT + 1] = { { SYS_RES_IRQ, 0, RF_ACTIVE }, { SYS_RES_IRQ, 1, RF_ACTIVE | RF_OPTIONAL }, { SYS_RES_IRQ, 2, RF_ACTIVE | RF_OPTIONAL }, RESOURCE_SPEC_END }; #define FFEC_LOCK(sc) mtx_lock(&(sc)->mtx) #define FFEC_UNLOCK(sc) mtx_unlock(&(sc)->mtx) #define FFEC_LOCK_INIT(sc) mtx_init(&(sc)->mtx, \ device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF) #define FFEC_LOCK_DESTROY(sc) mtx_destroy(&(sc)->mtx); #define FFEC_ASSERT_LOCKED(sc) mtx_assert(&(sc)->mtx, MA_OWNED); #define FFEC_ASSERT_UNLOCKED(sc) mtx_assert(&(sc)->mtx, MA_NOTOWNED); static void ffec_init_locked(struct ffec_softc *sc); static void ffec_stop_locked(struct ffec_softc *sc); static void ffec_encap(struct ifnet *ifp, struct ffec_softc *sc, struct mbuf *m0, int *start_tx); static void ffec_txstart_locked(struct ffec_softc *sc); static void ffec_txfinish_locked(struct ffec_softc *sc); static void ffec_add_sysctls(struct ffec_softc *sc); static int ffec_sysctl_ic_time(SYSCTL_HANDLER_ARGS); static int ffec_sysctl_ic_count(SYSCTL_HANDLER_ARGS); static void ffec_set_ic(struct ffec_softc *sc, bus_size_t off, int count, int time); static void ffec_set_rxic(struct ffec_softc *sc); static void ffec_set_txic(struct ffec_softc *sc); static inline uint16_t RD2(struct ffec_softc *sc, bus_size_t off) { return (bus_read_2(sc->mem_res, off)); } static inline void WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val) { bus_write_2(sc->mem_res, off, val); } static inline uint32_t RD4(struct ffec_softc *sc, bus_size_t off) { return (bus_read_4(sc->mem_res, off)); } static inline void WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val) { bus_write_4(sc->mem_res, off, val); } static inline uint32_t next_rxidx(uint32_t curidx) { return ((curidx + 1) & (RX_DESC_COUNT - 1)); } static inline uint32_t next_txidx(uint32_t curidx) { return ((curidx + 1) & (TX_DESC_COUNT - 1)); } static inline uint32_t prev_txidx(uint32_t curidx) { return ((curidx - 1) & (TX_DESC_COUNT - 1)); } static inline uint32_t inc_txidx(uint32_t curidx, uint32_t inc) { return ((curidx + inc) & (TX_DESC_COUNT - 1)); } static inline uint32_t free_txdesc(struct ffec_softc *sc) { return (((sc)->tx_idx_tail - (sc)->tx_idx_head - 1) & (TX_DESC_COUNT - 1)); } static void ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { if (error != 0) return; *(bus_addr_t *)arg = segs[0].ds_addr; } static void ffec_miigasket_setup(struct ffec_softc *sc) { uint32_t ifmode; /* * We only need the gasket for MII and RMII connections on certain SoCs. */ switch (sc->fectype) { case FECTYPE_IMX53: break; default: return; } switch (sc->phy_conn_type) { case MII_CONTYPE_MII: ifmode = 0; break; case MII_CONTYPE_RMII: ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII; break; default: return; } /* * Disable the gasket, configure for either MII or RMII, then enable. */ WR2(sc, FEC_MIIGSK_ENR, 0); while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY) continue; WR2(sc, FEC_MIIGSK_CFGR, ifmode); WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN); while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)) continue; } static boolean_t ffec_miibus_iowait(struct ffec_softc *sc) { uint32_t timeout; for (timeout = 10000; timeout != 0; --timeout) if (RD4(sc, FEC_IER_REG) & FEC_IER_MII) return (true); return (false); } static int ffec_miibus_readreg(device_t dev, int phy, int reg) { struct ffec_softc *sc; int val; sc = device_get_softc(dev); WR4(sc, FEC_IER_REG, FEC_IER_MII); WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ | FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE | ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) | ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK)); if (!ffec_miibus_iowait(sc)) { device_printf(dev, "timeout waiting for mii read\n"); return (-1); /* All-ones is a symptom of bad mdio. */ } val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK; return (val); } static int ffec_miibus_writereg(device_t dev, int phy, int reg, int val) { struct ffec_softc *sc; sc = device_get_softc(dev); WR4(sc, FEC_IER_REG, FEC_IER_MII); WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE | FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE | ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) | ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) | (val & FEC_MMFR_DATA_MASK)); if (!ffec_miibus_iowait(sc)) { device_printf(dev, "timeout waiting for mii write\n"); return (-1); } return (0); } static void ffec_miibus_statchg(device_t dev) { struct ffec_softc *sc; struct mii_data *mii; uint32_t ecr, rcr, tcr; /* * Called by the MII bus driver when the PHY establishes link to set the * MAC interface registers. */ sc = device_get_softc(dev); FFEC_ASSERT_LOCKED(sc); mii = sc->mii_softc; if (mii->mii_media_status & IFM_ACTIVE) sc->link_is_up = true; else sc->link_is_up = false; ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED; rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE | FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE); tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN; rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */ switch (sc->phy_conn_type) { case MII_CONTYPE_RMII: rcr |= FEC_RCR_RMII_MODE; break; case MII_CONTYPE_RGMII: case MII_CONTYPE_RGMII_ID: case MII_CONTYPE_RGMII_RXID: case MII_CONTYPE_RGMII_TXID: rcr |= FEC_RCR_RGMII_EN; break; default: break; } switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: case IFM_1000_SX: ecr |= FEC_ECR_SPEED; break; case IFM_100_TX: /* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */ break; case IFM_10_T: rcr |= FEC_RCR_RMII_10T; break; case IFM_NONE: sc->link_is_up = false; return; default: sc->link_is_up = false; device_printf(dev, "Unsupported media %u\n", IFM_SUBTYPE(mii->mii_media_active)); return; } if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) tcr |= FEC_TCR_FDEN; else rcr |= FEC_RCR_DRT; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0) rcr |= FEC_RCR_FCE; WR4(sc, FEC_RCR_REG, rcr); WR4(sc, FEC_TCR_REG, tcr); WR4(sc, FEC_ECR_REG, ecr); } static void ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr) { struct ffec_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = sc->mii_softc; FFEC_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; FFEC_UNLOCK(sc); } static int ffec_media_change_locked(struct ffec_softc *sc) { return (mii_mediachg(sc->mii_softc)); } static int ffec_media_change(struct ifnet * ifp) { struct ffec_softc *sc; int error; sc = ifp->if_softc; FFEC_LOCK(sc); error = ffec_media_change_locked(sc); FFEC_UNLOCK(sc); return (error); } static void ffec_clear_stats(struct ffec_softc *sc) { uint32_t mibc; mibc = RD4(sc, FEC_MIBC_REG); /* * On newer hardware the statistic regs are cleared by toggling a bit in * the mib control register. On older hardware the clear procedure is * to disable statistics collection, zero the regs, then re-enable. */ if (sc->fectype == FECTYPE_IMX6 || sc->fectype == FECTYPE_MVF) { WR4(sc, FEC_MIBC_REG, mibc | FEC_MIBC_CLEAR); WR4(sc, FEC_MIBC_REG, mibc & ~FEC_MIBC_CLEAR); } else { WR4(sc, FEC_MIBC_REG, mibc | FEC_MIBC_DIS); WR4(sc, FEC_IEEE_R_DROP, 0); WR4(sc, FEC_IEEE_R_MACERR, 0); WR4(sc, FEC_RMON_R_CRC_ALIGN, 0); WR4(sc, FEC_RMON_R_FRAG, 0); WR4(sc, FEC_RMON_R_JAB, 0); WR4(sc, FEC_RMON_R_MC_PKT, 0); WR4(sc, FEC_RMON_R_OVERSIZE, 0); WR4(sc, FEC_RMON_R_PACKETS, 0); WR4(sc, FEC_RMON_R_UNDERSIZE, 0); WR4(sc, FEC_RMON_T_COL, 0); WR4(sc, FEC_RMON_T_CRC_ALIGN, 0); WR4(sc, FEC_RMON_T_FRAG, 0); WR4(sc, FEC_RMON_T_JAB, 0); WR4(sc, FEC_RMON_T_MC_PKT, 0); WR4(sc, FEC_RMON_T_OVERSIZE , 0); WR4(sc, FEC_RMON_T_PACKETS, 0); WR4(sc, FEC_RMON_T_UNDERSIZE, 0); WR4(sc, FEC_MIBC_REG, mibc); } } static void ffec_harvest_stats(struct ffec_softc *sc) { struct ifnet *ifp; ifp = sc->ifp; /* * - FEC_IEEE_R_DROP is "dropped due to invalid start frame delimiter" * so it's really just another type of input error. * - FEC_IEEE_R_MACERR is "no receive fifo space"; count as input drops. */ if_inc_counter(ifp, IFCOUNTER_IPACKETS, RD4(sc, FEC_RMON_R_PACKETS)); if_inc_counter(ifp, IFCOUNTER_IMCASTS, RD4(sc, FEC_RMON_R_MC_PKT)); if_inc_counter(ifp, IFCOUNTER_IERRORS, RD4(sc, FEC_RMON_R_CRC_ALIGN) + RD4(sc, FEC_RMON_R_UNDERSIZE) + RD4(sc, FEC_RMON_R_OVERSIZE) + RD4(sc, FEC_RMON_R_FRAG) + RD4(sc, FEC_RMON_R_JAB) + RD4(sc, FEC_IEEE_R_DROP)); if_inc_counter(ifp, IFCOUNTER_IQDROPS, RD4(sc, FEC_IEEE_R_MACERR)); if_inc_counter(ifp, IFCOUNTER_OPACKETS, RD4(sc, FEC_RMON_T_PACKETS)); if_inc_counter(ifp, IFCOUNTER_OMCASTS, RD4(sc, FEC_RMON_T_MC_PKT)); if_inc_counter(ifp, IFCOUNTER_OERRORS, RD4(sc, FEC_RMON_T_CRC_ALIGN) + RD4(sc, FEC_RMON_T_UNDERSIZE) + RD4(sc, FEC_RMON_T_OVERSIZE) + RD4(sc, FEC_RMON_T_FRAG) + RD4(sc, FEC_RMON_T_JAB)); if_inc_counter(ifp, IFCOUNTER_COLLISIONS, RD4(sc, FEC_RMON_T_COL)); ffec_clear_stats(sc); } static void ffec_tick(void *arg) { struct ffec_softc *sc; struct ifnet *ifp; int link_was_up; sc = arg; FFEC_ASSERT_LOCKED(sc); ifp = sc->ifp; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) return; /* * Typical tx watchdog. If this fires it indicates that we enqueued * packets for output and never got a txdone interrupt for them. Maybe * it's a missed interrupt somehow, just pretend we got one. */ if (sc->tx_watchdog_count > 0) { if (--sc->tx_watchdog_count == 0) { ffec_txfinish_locked(sc); } } /* Gather stats from hardware counters. */ ffec_harvest_stats(sc); /* Check the media status. */ link_was_up = sc->link_is_up; mii_tick(sc->mii_softc); if (sc->link_is_up && !link_was_up) ffec_txstart_locked(sc); /* Schedule another check one second from now. */ callout_reset(&sc->ffec_callout, hz, ffec_tick, sc); } static void ffec_encap(struct ifnet *ifp, struct ffec_softc *sc, struct mbuf *m0, int *start_tx) { bus_dma_segment_t segs[TX_MAX_DMA_SEGS]; int error, i, nsegs; struct ffec_bufmap *bmap; uint32_t tx_idx; int csum_flags; uint32_t flags; uint32_t flags2; FFEC_ASSERT_LOCKED(sc); tx_idx = sc->tx_idx_head; bmap = &sc->txbuf_map[tx_idx]; /* Create mapping in DMA memory */ error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, bmap->map, m0, segs, &nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { /* Too many segments! Defrag and try again. */ struct mbuf *m = m_defrag(m0, M_NOWAIT); if (m == NULL) { m_freem(m0); return; } m0 = m; error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, bmap->map, m0, segs, &nsegs, BUS_DMA_NOWAIT); } if (error != 0) { /* Give up. */ m_freem(m0); return; } #ifndef __rtems__ bus_dmamap_sync(sc->txbuf_tag, bmap->map, BUS_DMASYNC_PREWRITE); #endif /* __rtems__ */ bmap->mbuf = m0; flags2 = FEC_TXDESC_INT; csum_flags = m0->m_pkthdr.csum_flags; if ((csum_flags & CSUM_IP) != 0) { struct mbuf *n; int off; int off2; struct ip *ip; flags2 |= FEC_TXDESC_IINS; n = m_getptr(m0, sizeof(struct ether_header), &off); ip = (struct ip *)mtodo(n, off); ip->ip_sum = 0; off2 = m0->m_pkthdr.csum_data; if ((csum_flags & (CSUM_TCP | CSUM_UDP)) != 0 && off2 != 0) { flags2 |= FEC_TXDESC_PINS; *(uint16_t *)((caddr_t)(ip + 1) + off2) = 0; } } /* * Fill in the TX descriptors back to front so that READY bit in first * descriptor is set last. */ tx_idx = inc_txidx(tx_idx, (uint32_t)nsegs); sc->tx_idx_head = tx_idx; flags = FEC_TXDESC_L | FEC_TXDESC_READY | FEC_TXDESC_TC; for (i = nsegs - 1; i >= 0; i--) { struct ffec_hwdesc *tx_desc; tx_idx = prev_txidx(tx_idx);; tx_desc = &sc->txdesc_ring[tx_idx]; tx_desc->buf_paddr = segs[i].ds_addr; tx_desc->flags2 = flags2; #ifdef __rtems__ rtems_cache_flush_multiple_data_lines((void *)segs[i].ds_addr, segs[i].ds_len); #endif /* __rtems__ */ if (i == 0) { wmb(); } tx_desc->flags_len = (tx_idx == (TX_DESC_COUNT - 1) ? FEC_TXDESC_WRAP : 0) | flags | segs[i].ds_len; flags &= ~FEC_TXDESC_L; } BPF_MTAP(ifp, m0); *start_tx = 1; } static void ffec_txstart_locked(struct ffec_softc *sc) { struct ifnet *ifp; struct mbuf *m0; int start_tx; FFEC_ASSERT_LOCKED(sc); ifp = sc->ifp; start_tx = 0; if (!sc->link_is_up) return; for (;;) { if (free_txdesc(sc) < TX_MAX_DMA_SEGS) { /* No free descriptors */ ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } /* Get packet from the queue */ IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; ffec_encap(ifp, sc, m0, &start_tx); } if (start_tx ) { bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREWRITE); WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR); bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTWRITE); sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS; } } static void ffec_txstart(struct ifnet *ifp) { struct ffec_softc *sc = ifp->if_softc; FFEC_LOCK(sc); ffec_txstart_locked(sc); FFEC_UNLOCK(sc); } static void ffec_txfinish_locked(struct ffec_softc *sc) { struct ifnet *ifp; uint32_t tx_idx; FFEC_ASSERT_LOCKED(sc); ifp = sc->ifp; /* XXX Can't set PRE|POST right now, but we need both. */ bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREREAD); bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTREAD); tx_idx = sc->tx_idx_tail; while (tx_idx != sc->tx_idx_head) { struct ffec_hwdesc *desc; struct ffec_bufmap *bmap; desc = &sc->txdesc_ring[tx_idx]; if (desc->flags_len & FEC_TXDESC_READY) break; bmap = &sc->txbuf_map[tx_idx]; tx_idx = next_txidx(tx_idx); if (bmap->mbuf == NULL) continue; /* * This is the last buf in this packet, so unmap and free it. */ bus_dmamap_sync(sc->txbuf_tag, bmap->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txbuf_tag, bmap->map); m_freem(bmap->mbuf); bmap->mbuf = NULL; } sc->tx_idx_tail = tx_idx; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ffec_txstart_locked(sc); /* If there are no buffers outstanding, muzzle the watchdog. */ if (sc->tx_idx_tail == sc->tx_idx_head) { sc->tx_watchdog_count = 0; } } inline static uint32_t ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr) { uint32_t nidx; /* * The hardware requires 32-bit physical addresses. We set up the dma * tag to indicate that, so the cast to uint32_t should never lose * significant bits. */ nidx = next_rxidx(idx); sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr; sc->rxdesc_ring[idx].flags2 = FEC_RXDESC_INT; wmb(); sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY | ((nidx == 0) ? FEC_RXDESC_WRAP : 0); return (nidx); } static int ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m) { int error, nsegs; struct bus_dma_segment seg; if (!(sc->fecflags & FECFLAG_RACC)) { /* * The RACC[SHIFT16] feature is not available. So, we need to * leave at least ETHER_ALIGN bytes free at the beginning of the * buffer to allow the data to be re-aligned after receiving it * (by copying it backwards ETHER_ALIGN bytes in the same * buffer). We also have to ensure that the beginning of the * buffer is aligned to the hardware's requirements. */ m_adj(m, roundup(ETHER_ALIGN, sc->rxbuf_align)); } error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map, m, &seg, &nsegs, 0); if (error != 0) { return (error); } bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map, BUS_DMASYNC_PREREAD); sc->rxbuf_map[idx].mbuf = m; ffec_setup_rxdesc(sc, idx, seg.ds_addr); return (0); } static struct mbuf * ffec_alloc_mbufcl(struct ffec_softc *sc) { struct mbuf *m; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m != NULL) #ifdef __rtems__ { #endif /* __rtems__ */ m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; #ifdef __rtems__ rtems_cache_invalidate_multiple_data_lines(m->m_data, m->m_len); } #endif /* __rtems__ */ return (m); } static void ffec_rxfinish_onebuf(struct ffec_softc *sc, int len, uint32_t flags2) { struct mbuf *m, *newmbuf; struct ffec_bufmap *bmap; int error; /* * First try to get a new mbuf to plug into this slot in the rx ring. * If that fails, drop the current packet and recycle the current * mbuf, which is still mapped and loaded. */ if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) { if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1); ffec_setup_rxdesc(sc, sc->rx_idx, sc->rxdesc_ring[sc->rx_idx].buf_paddr); return; } FFEC_UNLOCK(sc); bmap = &sc->rxbuf_map[sc->rx_idx]; len -= ETHER_CRC_LEN; bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rxbuf_tag, bmap->map); m = bmap->mbuf; bmap->mbuf = NULL; m->m_len = len; m->m_pkthdr.len = len; m->m_pkthdr.rcvif = sc->ifp; if ((flags2 & (FEC_RXDESC_ICE | FEC_RXDESC_PCR)) == 0) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } /* * Align the protocol headers in the receive buffer on a 32-bit * boundary. Newer hardware does the alignment for us. On hardware * that doesn't support this feature, we have to copy-align the data. * * XXX for older hardware, could we speed this up by copying just the * protocol headers into their own small mbuf then chaining the cluster * to it? That way we'd only need to copy like 64 bytes or whatever the * biggest header is, instead of the whole 1530ish-byte frame. */ if (sc->fecflags & FECFLAG_RACC) { m->m_data = mtod(m, uint8_t *) + 2; } else { uint8_t *dst, *src; src = mtod(m, uint8_t*); dst = src - ETHER_ALIGN; bcopy(src, dst, len); m->m_data = dst; } sc->ifp->if_input(sc->ifp, m); FFEC_LOCK(sc); if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) { device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error); /* XXX Now what? We've got a hole in the rx ring. */ } } static void ffec_rxfinish_locked(struct ffec_softc *sc) { struct ffec_hwdesc *desc; int len; boolean_t produced_empty_buffer; FFEC_ASSERT_LOCKED(sc); /* XXX Can't set PRE|POST right now, but we need both. */ bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREREAD); bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTREAD); produced_empty_buffer = false; for (;;) { desc = &sc->rxdesc_ring[sc->rx_idx]; if (desc->flags_len & FEC_RXDESC_EMPTY) break; produced_empty_buffer = true; len = (desc->flags_len & FEC_RXDESC_LEN_MASK); if (len < 64) { /* * Just recycle the descriptor and continue. . */ ffec_setup_rxdesc(sc, sc->rx_idx, sc->rxdesc_ring[sc->rx_idx].buf_paddr); } else if ((desc->flags_len & FEC_RXDESC_L) == 0) { /* * The entire frame is not in this buffer. Impossible. * Recycle the descriptor and continue. * * XXX what's the right way to handle this? Probably we * should stop/init the hardware because this should * just really never happen when we have buffers bigger * than the maximum frame size. */ device_printf(sc->dev, "fec_rxfinish: received frame without LAST bit set"); ffec_setup_rxdesc(sc, sc->rx_idx, sc->rxdesc_ring[sc->rx_idx].buf_paddr); } else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) { /* * Something went wrong with receiving the frame, we * don't care what (the hardware has counted the error * in the stats registers already), we just reuse the * same mbuf, which is still dma-mapped, by resetting * the rx descriptor. */ ffec_setup_rxdesc(sc, sc->rx_idx, sc->rxdesc_ring[sc->rx_idx].buf_paddr); } else { /* * Normal case: a good frame all in one buffer. */ ffec_rxfinish_onebuf(sc, len, desc->flags2); } sc->rx_idx = next_rxidx(sc->rx_idx); } if (produced_empty_buffer) { bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREWRITE); WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR); bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTWRITE); } } static void ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr) { uint32_t palr, paur, rnd; /* * Try to recover a MAC address from the running hardware. If there's * something non-zero there, assume the bootloader did the right thing * and just use it. * * Otherwise, set the address to a convenient locally assigned address, * 'bsd' + random 24 low-order bits. 'b' is 0x62, which has the locally * assigned bit set, and the broadcast/multicast bit clear. */ palr = RD4(sc, FEC_PALR_REG); paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK; if ((palr | paur) != 0) { hwaddr[0] = palr >> 24; hwaddr[1] = palr >> 16; hwaddr[2] = palr >> 8; hwaddr[3] = palr >> 0; hwaddr[4] = paur >> 24; hwaddr[5] = paur >> 16; } else { rnd = arc4random() & 0x00ffffff; hwaddr[0] = 'b'; hwaddr[1] = 's'; hwaddr[2] = 'd'; hwaddr[3] = rnd >> 16; hwaddr[4] = rnd >> 8; hwaddr[5] = rnd >> 0; } if (bootverbose) { device_printf(sc->dev, "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n", hwaddr[0], hwaddr[1], hwaddr[2], hwaddr[3], hwaddr[4], hwaddr[5]); } } static void ffec_setup_rxfilter(struct ffec_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint8_t *eaddr; uint32_t crc; uint64_t ghash, ihash; FFEC_ASSERT_LOCKED(sc); ifp = sc->ifp; /* * Set the multicast (group) filter hash. */ if ((ifp->if_flags & IFF_ALLMULTI)) ghash = 0xffffffffffffffffLLU; else { ghash = 0; if_maddr_rlock(ifp); CK_STAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; /* 6 bits from MSB in LE CRC32 are used for hash. */ crc = ether_crc32_le(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN); ghash |= 1LLU << (((uint8_t *)&crc)[3] >> 2); } if_maddr_runlock(ifp); } WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32)); WR4(sc, FEC_GALR_REG, (uint32_t)ghash); /* * Set the individual address filter hash. * * XXX Is 0 the right value when promiscuous is off? This hw feature * seems to support the concept of MAC address aliases, does such a * thing even exist? */ if ((ifp->if_flags & IFF_PROMISC)) ihash = 0xffffffffffffffffLLU; else { ihash = 0; } WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32)); WR4(sc, FEC_IALR_REG, (uint32_t)ihash); /* * Set the primary address. */ eaddr = IF_LLADDR(ifp); WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) | (eaddr[2] << 8) | eaddr[3]); WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16)); } static void ffec_stop_locked(struct ffec_softc *sc) { struct ifnet *ifp; struct ffec_hwdesc *desc; struct ffec_bufmap *bmap; int idx; FFEC_ASSERT_LOCKED(sc); ifp = sc->ifp; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->tx_watchdog_count = 0; /* * Stop the hardware, mask all interrupts, and clear all current * interrupt status bits. */ WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN); WR4(sc, FEC_IEM_REG, 0x00000000); WR4(sc, FEC_IER_REG, 0xffffffff); /* * Stop the media-check callout. Do not use callout_drain() because * we're holding a mutex the callout acquires, and if it's currently * waiting to acquire it, we'd deadlock. If it is waiting now, the * ffec_tick() routine will return without doing anything when it sees * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe. */ callout_stop(&sc->ffec_callout); /* * Discard all untransmitted buffers. Each buffer is simply freed; * it's as if the bits were transmitted and then lost on the wire. * * XXX Is this right? Or should we use IFQ_DRV_PREPEND() to put them * back on the queue for when we get restarted later? */ idx = sc->tx_idx_tail; while (idx != sc->tx_idx_head) { desc = &sc->txdesc_ring[idx]; bmap = &sc->txbuf_map[idx]; idx = next_txidx(idx); if (bmap->mbuf == NULL) continue; bus_dmamap_sync(sc->txbuf_tag, bmap->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txbuf_tag, bmap->map); m_freem(bmap->mbuf); bmap->mbuf = NULL; } /* * Discard all unprocessed receive buffers. This amounts to just * pretending that nothing ever got received into them. We reuse the * mbuf already mapped for each desc, simply turning the EMPTY flags * back on so they'll get reused when we start up again. */ for (idx = 0; idx < RX_DESC_COUNT; ++idx) { desc = &sc->rxdesc_ring[idx]; ffec_setup_rxdesc(sc, idx, desc->buf_paddr); } } static void ffec_init_locked(struct ffec_softc *sc) { struct ifnet *ifp = sc->ifp; uint32_t maxbuf, maxfl, regval; FFEC_ASSERT_LOCKED(sc); /* * The hardware has a limit of 0x7ff as the max frame length (see * comments for MRBR below), and we use mbuf clusters as receive * buffers, and we currently are designed to receive an entire frame * into a single buffer. * * We start with a MCLBYTES-sized cluster, but we have to offset into * the buffer by ETHER_ALIGN to make room for post-receive re-alignment, * and then that value has to be rounded up to the hardware's DMA * alignment requirements, so all in all our buffer is that much smaller * than MCLBYTES. * * The resulting value is used as the frame truncation length and the * max buffer receive buffer size for now. It'll become more complex * when we support jumbo frames and receiving fragments of them into * separate buffers. */ maxbuf = MCLBYTES - roundup(ETHER_ALIGN, sc->rxbuf_align); maxfl = min(maxbuf, 0x7ff); if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; /* Mask all interrupts and clear all current interrupt status bits. */ WR4(sc, FEC_IEM_REG, 0x00000000); WR4(sc, FEC_IER_REG, 0xffffffff); /* * Go set up palr/puar, galr/gaur, ialr/iaur. */ ffec_setup_rxfilter(sc); /* * TFWR - Transmit FIFO watermark register. * * Set the transmit fifo watermark register to "store and forward" mode * and also set a threshold of 128 bytes in the fifo before transmission * of a frame begins (to avoid dma underruns). Recent FEC hardware * supports STRFWD and when that bit is set, the watermark level in the * low bits is ignored. Older hardware doesn't have STRFWD, but writing * to that bit is innocuous, and the TWFR bits get used instead. */ WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE); /* RCR - Receive control register. * * Set max frame length + clean out anything left from u-boot. */ WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT)); /* * TCR - Transmit control register. * * Clean out anything left from u-boot. Any necessary values are set in * ffec_miibus_statchg() based on the media type. */ WR4(sc, FEC_TCR_REG, 0); /* * OPD - Opcode/pause duration. * * XXX These magic numbers come from u-boot. */ WR4(sc, FEC_OPD_REG, 0x00010020); /* * FRSR - Fifo receive start register. * * This register does not exist on imx6, it is present on earlier * hardware. The u-boot code sets this to a non-default value that's 32 * bytes larger than the default, with no clue as to why. The default * value should work fine, so there's no code to init it here. */ /* * MRBR - Max RX buffer size. * * Note: For hardware prior to imx6 this value cannot exceed 0x07ff, * but the datasheet says no such thing for imx6. On the imx6, setting * this to 2K without setting EN1588 resulted in a crazy runaway * receive loop in the hardware, where every rx descriptor in the ring * had its EMPTY flag cleared, no completion or error flags set, and a * length of zero. I think maybe you can only exceed it when EN1588 is * set, like maybe that's what enables jumbo frames, because in general * the EN1588 flag seems to be the "enable new stuff" vs. "be legacy- * compatible" flag. */ WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT); /* * FTRL - Frame truncation length. * * Must be greater than or equal to the value set in FEC_RCR_MAXFL. */ WR4(sc, FEC_FTRL_REG, maxfl); /* * RDSR / TDSR descriptor ring pointers. * * When we turn on ECR_ETHEREN at the end, the hardware zeroes its * internal current descriptor index values for both rings, so we zero * our index values as well. */ sc->rx_idx = 0; sc->tx_idx_head = sc->tx_idx_tail = 0; WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr); WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr); /* * EIM - interrupt mask register. * * We always enable the same set of interrupts while running; unlike * some drivers there's no need to change the mask on the fly depending * on what operations are in progress. */ WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR); /* * MIBC - MIB control (hardware stats); clear all statistics regs, then * enable collection of statistics. */ regval = RD4(sc, FEC_MIBC_REG); WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS); ffec_clear_stats(sc); WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS); if (sc->fecflags & FECFLAG_RACC) { /* * RACC - Receive Accelerator Function Configuration. */ regval = RD4(sc, FEC_RACC_REG); WR4(sc, FEC_RACC_REG, regval | FEC_RACC_SHIFT16); } /* * ECR - Ethernet control register. * * This must happen after all the other config registers are set. If * we're running on little-endian hardware, also set the flag for byte- * swapping descriptor ring entries. This flag doesn't exist on older * hardware, but it can be safely set -- the bit position it occupies * was unused. */ regval = RD4(sc, FEC_ECR_REG); #if _BYTE_ORDER == _LITTLE_ENDIAN regval |= FEC_ECR_DBSWP; #endif regval |= FEC_ECR_ETHEREN; regval |= FEC_ECR_EN1588; WR4(sc, FEC_ECR_REG, regval); ifp->if_drv_flags |= IFF_DRV_RUNNING; /* * Call mii_mediachg() which will call back into ffec_miibus_statchg() to * set up the remaining config registers based on the current media. */ mii_mediachg(sc->mii_softc); callout_reset(&sc->ffec_callout, hz, ffec_tick, sc); /* * Tell the hardware that receive buffers are available. They were made * available in ffec_attach() or ffec_stop(). */ WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR); ffec_set_rxic(sc); ffec_set_txic(sc); } static void ffec_init(void *if_softc) { struct ffec_softc *sc = if_softc; FFEC_LOCK(sc); ffec_init_locked(sc); FFEC_UNLOCK(sc); } static void ffec_intr(void *arg) { struct ffec_softc *sc; uint32_t ier; sc = arg; FFEC_LOCK(sc); ier = RD4(sc, FEC_IER_REG); if (ier & FEC_IER_TXF) { WR4(sc, FEC_IER_REG, FEC_IER_TXF); ffec_txfinish_locked(sc); } if (ier & FEC_IER_RXF) { WR4(sc, FEC_IER_REG, FEC_IER_RXF); ffec_rxfinish_locked(sc); } /* * We actually don't care about most errors, because the hardware copes * with them just fine, discarding the incoming bad frame, or forcing a * bad CRC onto an outgoing bad frame, and counting the errors in the * stats registers. The one that really matters is EBERR (DMA bus * error) because the hardware automatically clears ECR[ETHEREN] and we * have to restart it here. It should never happen. */ if (ier & FEC_IER_EBERR) { WR4(sc, FEC_IER_REG, FEC_IER_EBERR); device_printf(sc->dev, "Ethernet DMA error, restarting controller.\n"); ffec_stop_locked(sc); ffec_init_locked(sc); } FFEC_UNLOCK(sc); } static int ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ffec_softc *sc; struct mii_data *mii; struct ifreq *ifr; int mask, error; sc = ifp->if_softc; ifr = (struct ifreq *)data; error = 0; switch (cmd) { case SIOCSIFFLAGS: FFEC_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if ((ifp->if_flags ^ sc->if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) ffec_setup_rxfilter(sc); } else { if (!sc->is_detaching) ffec_init_locked(sc); } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) ffec_stop_locked(sc); } sc->if_flags = ifp->if_flags; FFEC_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_drv_flags & IFF_DRV_RUNNING) { FFEC_LOCK(sc); ffec_setup_rxfilter(sc); FFEC_UNLOCK(sc); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: mii = sc->mii_softc; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; case SIOCSIFCAP: mask = ifp->if_capenable ^ ifr->ifr_reqcap; if (mask & IFCAP_VLAN_MTU) { /* No work to do except acknowledge the change took. */ ifp->if_capenable ^= IFCAP_VLAN_MTU; } break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static int ffec_detach(device_t dev) { struct ffec_softc *sc; bus_dmamap_t map; int idx, irq; /* * NB: This function can be called internally to unwind a failure to * attach. Make sure a resource got allocated/created before destroying. */ sc = device_get_softc(dev); if (sc->is_attached) { FFEC_LOCK(sc); sc->is_detaching = true; ffec_stop_locked(sc); FFEC_UNLOCK(sc); callout_drain(&sc->ffec_callout); ether_ifdetach(sc->ifp); } /* XXX no miibus detach? */ /* Clean up RX DMA resources and free mbufs. */ for (idx = 0; idx < RX_DESC_COUNT; ++idx) { if ((map = sc->rxbuf_map[idx].map) != NULL) { bus_dmamap_unload(sc->rxbuf_tag, map); bus_dmamap_destroy(sc->rxbuf_tag, map); m_freem(sc->rxbuf_map[idx].mbuf); } } if (sc->rxbuf_tag != NULL) bus_dma_tag_destroy(sc->rxbuf_tag); if (sc->rxdesc_map != NULL) { bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map); bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map); } if (sc->rxdesc_tag != NULL) bus_dma_tag_destroy(sc->rxdesc_tag); /* Clean up TX DMA resources. */ for (idx = 0; idx < TX_DESC_COUNT; ++idx) { if ((map = sc->txbuf_map[idx].map) != NULL) { /* TX maps are already unloaded. */ bus_dmamap_destroy(sc->txbuf_tag, map); } } if (sc->txbuf_tag != NULL) bus_dma_tag_destroy(sc->txbuf_tag); if (sc->txdesc_map != NULL) { bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map); bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map); } if (sc->txdesc_tag != NULL) bus_dma_tag_destroy(sc->txdesc_tag); /* Release bus resources. */ for (irq = 0; irq < MAX_IRQ_COUNT; ++irq) { if (sc->intr_cookie[irq] != NULL) { bus_teardown_intr(dev, sc->irq_res[irq], sc->intr_cookie[irq]); } } bus_release_resources(dev, irq_res_spec, sc->irq_res); if (sc->mem_res != NULL) bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res); FFEC_LOCK_DESTROY(sc); return (0); } static void ffec_add_sysctls(struct ffec_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *children; struct sysctl_oid *tree; ctx = device_get_sysctl_ctx(sc->dev); children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal", CTLFLAG_RD, 0, "FEC Interrupts coalescing"); children = SYSCTL_CHILDREN(tree); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time", CTLTYPE_UINT | CTLFLAG_RW, sc, FEC_IC_RX, ffec_sysctl_ic_time, "I", "IC RX time threshold (0-65535)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count", CTLTYPE_UINT | CTLFLAG_RW, sc, FEC_IC_RX, ffec_sysctl_ic_count, "I", "IC RX frame count threshold (0-255)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time", CTLTYPE_UINT | CTLFLAG_RW, sc, FEC_IC_TX, ffec_sysctl_ic_time, "I", "IC TX time threshold (0-65535)"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count", CTLTYPE_UINT | CTLFLAG_RW, sc, FEC_IC_TX, ffec_sysctl_ic_count, "I", "IC TX frame count threshold (0-255)"); } /* * With Interrupt Coalescing (IC) active, a transmit/receive frame * interrupt is raised either upon: * * - threshold-defined period of time elapsed, or * - threshold-defined number of frames is received/transmitted, * whichever occurs first. * * The following sysctls regulate IC behaviour (for TX/RX separately): * * dev.ffec..int_coal.rx_time * dev.ffec..int_coal.rx_count * dev.ffec..int_coal.tx_time * dev.ffec..int_coal.tx_count * * Values: * * - 0 for either time or count disables IC on the given TX/RX path * * - count: 1-255 (expresses frame count number; note that value of 1 is * effectively IC off) * * - time: 1-65535 (value corresponds to a real time period and is * expressed in units equivalent to 64 FEC interface clocks, i.e. one timer * threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps, * 100 Mbps, or 1Gbps, respectively. For detailed discussion consult the * FEC reference manual. */ static int ffec_sysctl_ic_time(SYSCTL_HANDLER_ARGS) { int error; uint32_t time; struct ffec_softc *sc = (struct ffec_softc *)arg1; time = (arg2 == FEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time; error = sysctl_handle_int(oidp, &time, 0, req); if (error != 0) return (error); if (time > 65535) return (EINVAL); FFEC_LOCK(sc); if (arg2 == FEC_IC_RX) { sc->rx_ic_time = time; ffec_set_rxic(sc); } else { sc->tx_ic_time = time; ffec_set_txic(sc); } FFEC_UNLOCK(sc); return (0); } static int ffec_sysctl_ic_count(SYSCTL_HANDLER_ARGS) { int error; uint32_t count; struct ffec_softc *sc = (struct ffec_softc *)arg1; count = (arg2 == FEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count; error = sysctl_handle_int(oidp, &count, 0, req); if (error != 0) return (error); if (count > 255) return (EINVAL); FFEC_LOCK(sc); if (arg2 == FEC_IC_RX) { sc->rx_ic_count = count; ffec_set_rxic(sc); } else { sc->tx_ic_count = count; ffec_set_txic(sc); } FFEC_UNLOCK(sc); return (0); } static void ffec_set_ic(struct ffec_softc *sc, bus_size_t off, int count, int time) { uint32_t ic; if (count == 0 || time == 0) /* Disable RX IC */ ic = 0; else { ic = FEC_IC_ICEN; ic |= FEC_IC_ICFT(count); ic |= FEC_IC_ICTT(time); } WR4(sc, off, ic); } static void ffec_set_rxic(struct ffec_softc *sc) { ffec_set_ic(sc, FEC_RXIC0_REG, sc->rx_ic_count, sc->rx_ic_time); } static void ffec_set_txic(struct ffec_softc *sc) { ffec_set_ic(sc, FEC_TXIC0_REG, sc->tx_ic_count, sc->tx_ic_time); } static int ffec_attach(device_t dev) { struct ffec_softc *sc; struct ifnet *ifp = NULL; struct mbuf *m; void *dummy; uintptr_t typeflags; phandle_t ofw_node; uint32_t idx, mscr; int error, phynum, rid, irq; uint8_t eaddr[ETHER_ADDR_LEN]; sc = device_get_softc(dev); sc->dev = dev; FFEC_LOCK_INIT(sc); /* * There are differences in the implementation and features of the FEC * hardware on different SoCs, so figure out what type we are. */ typeflags = ofw_bus_search_compatible(dev, compat_data)->ocd_data; sc->fectype = (uint8_t)(typeflags & FECTYPE_MASK); sc->fecflags = (uint32_t)(typeflags & ~FECTYPE_MASK); if (sc->fecflags & FECFLAG_AVB) { sc->rxbuf_align = 64; sc->txbuf_align = 1; } else { sc->rxbuf_align = 16; sc->txbuf_align = 16; } if (sc->fectype & FECFLAG_AVB) { sc->rxbuf_align = 64; sc->txbuf_align = 1; } else { sc->rxbuf_align = 16; sc->txbuf_align = 16; } /* * We have to be told what kind of electrical connection exists between * the MAC and PHY or we can't operate correctly. */ if ((ofw_node = ofw_bus_get_node(dev)) == -1) { device_printf(dev, "Impossible: Can't find ofw bus node\n"); error = ENXIO; goto out; } sc->phy_conn_type = mii_fdt_get_contype(ofw_node); if (sc->phy_conn_type == MII_CONTYPE_UNKNOWN) { device_printf(sc->dev, "No valid 'phy-mode' " "property found in FDT data for device.\n"); #ifndef __rtems__ error = ENOATTR; #else /* __rtems__ */ error = ENXIO; #endif /* __rtems__ */ goto out; } callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0); /* Allocate bus resources for accessing the hardware. */ rid = 0; sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->mem_res == NULL) { device_printf(dev, "could not allocate memory resources.\n"); error = ENOMEM; goto out; } error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res); if (error != 0) { device_printf(dev, "could not allocate interrupt resources\n"); goto out; } /* * Set up TX descriptor ring, descriptors, and dma maps. */ error = bus_dma_tag_create( bus_get_dma_tag(dev), /* Parent tag. */ FEC_DESC_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ TX_DESC_SIZE, 1, /* maxsize, nsegments */ TX_DESC_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->txdesc_tag); if (error != 0) { device_printf(sc->dev, "could not create TX ring DMA tag.\n"); goto out; } error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring, BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map); if (error != 0) { device_printf(sc->dev, "could not allocate TX descriptor ring.\n"); goto out; } error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring, TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0); if (error != 0) { device_printf(sc->dev, "could not load TX descriptor ring map.\n"); goto out; } error = bus_dma_tag_create( bus_get_dma_tag(dev), /* Parent tag. */ sc->txbuf_align, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, TX_MAX_DMA_SEGS, /* maxsize, nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->txbuf_tag); if (error != 0) { device_printf(sc->dev, "could not create TX ring DMA tag.\n"); goto out; } for (idx = 0; idx < TX_DESC_COUNT; ++idx) { error = bus_dmamap_create(sc->txbuf_tag, 0, &sc->txbuf_map[idx].map); if (error != 0) { device_printf(sc->dev, "could not create TX buffer DMA map.\n"); goto out; } sc->txdesc_ring[idx].buf_paddr = 0; sc->txdesc_ring[idx].flags_len = ((idx == TX_DESC_COUNT - 1) ? FEC_TXDESC_WRAP : 0); } /* * Set up RX descriptor ring, descriptors, dma maps, and mbufs. */ error = bus_dma_tag_create( bus_get_dma_tag(dev), /* Parent tag. */ FEC_DESC_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ RX_DESC_SIZE, 1, /* maxsize, nsegments */ RX_DESC_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rxdesc_tag); if (error != 0) { device_printf(sc->dev, "could not create RX ring DMA tag.\n"); goto out; } error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring, BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map); if (error != 0) { device_printf(sc->dev, "could not allocate RX descriptor ring.\n"); goto out; } error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring, RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0); if (error != 0) { device_printf(sc->dev, "could not load RX descriptor ring map.\n"); goto out; } error = bus_dma_tag_create( bus_get_dma_tag(dev), /* Parent tag. */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, 1, /* maxsize, nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rxbuf_tag); if (error != 0) { device_printf(sc->dev, "could not create RX buf DMA tag.\n"); goto out; } for (idx = 0; idx < RX_DESC_COUNT; ++idx) { error = bus_dmamap_create(sc->rxbuf_tag, 0, &sc->rxbuf_map[idx].map); if (error != 0) { device_printf(sc->dev, "could not create RX buffer DMA map.\n"); goto out; } if ((m = ffec_alloc_mbufcl(sc)) == NULL) { device_printf(dev, "Could not alloc mbuf\n"); error = ENOMEM; goto out; } if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) { device_printf(sc->dev, "could not create new RX buffer.\n"); goto out; } } /* Try to get the MAC address from the hardware before resetting it. */ ffec_get_hwaddr(sc, eaddr); /* * Reset the hardware. Disables all interrupts. * * When the FEC is connected to the AXI bus (indicated by AVB flag), a * MAC reset while a bus transaction is pending can hang the bus. * Instead of resetting, turn off the ENABLE bit, which allows the * hardware to complete any in-progress transfers (appending a bad CRC * to any partial packet) and release the AXI bus. This could probably * be done unconditionally for all hardware variants, but that hasn't * been tested. */ if (sc->fecflags & FECFLAG_AVB) WR4(sc, FEC_ECR_REG, 0); else WR4(sc, FEC_ECR_REG, FEC_ECR_RESET); /* Setup interrupt handler. */ for (irq = 0; irq < MAX_IRQ_COUNT; ++irq) { if (sc->irq_res[irq] != NULL) { error = bus_setup_intr(dev, sc->irq_res[irq], INTR_TYPE_NET | INTR_MPSAFE, NULL, ffec_intr, sc, &sc->intr_cookie[irq]); if (error != 0) { device_printf(dev, "could not setup interrupt handler.\n"); goto out; } } } /* * Set up the PHY control register. * * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2). * Speed formula for FEC is md_clock = mac_clock / (N * 2) * * XXX - Revisit this... * * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot * code uses 10. Both values seem to work, but I suspect many modern * PHY parts can do mdio at speeds far above the standard 2.5 MHz. * * Different imx manuals use confusingly different terminology (things * like "system clock" and "internal module clock") with examples that * use frequencies that have nothing to do with ethernet, giving the * vague impression that maybe the clock in question is the periphclock * or something. In fact, on an imx53 development board (FEC), * measuring the mdio clock at the pin on the PHY and playing with * various divisors showed that the root speed was 66 MHz (clk_ipg_root * aka periphclock) and 13 was the right divisor. * * All in all, it seems likely that 13 is a safe divisor for now, * because if we really do need to base it on the peripheral clock * speed, then we need a platform-independant get-clock-freq API. */ mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT; if (OF_hasprop(ofw_node, "phy-disable-preamble")) { mscr |= FEC_MSCR_DIS_PRE; if (bootverbose) device_printf(dev, "PHY preamble disabled\n"); } WR4(sc, FEC_MSCR_REG, mscr); /* Configure defaults for interrupts coalescing */ sc->rx_ic_time = 768; sc->rx_ic_count = RX_DESC_COUNT / 4; sc->tx_ic_time = 768; sc->tx_ic_count = TX_DESC_COUNT / 4; ffec_add_sysctls(sc); /* Set up the ethernet interface. */ sc->ifp = ifp = if_alloc(IFT_ETHER); ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_MTU; ifp->if_capenable = ifp->if_capabilities; ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP; ifp->if_start = ffec_txstart; ifp->if_ioctl = ffec_ioctl; ifp->if_init = ffec_init; IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1); ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1; IFQ_SET_READY(&ifp->if_snd); ifp->if_hdrlen = sizeof(struct ether_vlan_header); #if 0 /* XXX The hardware keeps stats we could use for these. */ ifp->if_linkmib = &sc->mibdata; ifp->if_linkmiblen = sizeof(sc->mibdata); #endif /* Set up the miigasket hardware (if any). */ ffec_miigasket_setup(sc); /* Attach the mii driver. */ if (fdt_get_phyaddr(ofw_node, dev, &phynum, &dummy) != 0) { phynum = MII_PHY_ANY; } error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change, ffec_media_status, BMSR_DEFCAPMASK, phynum, MII_OFFSET_ANY, (sc->fecflags & FECTYPE_MVF) ? MIIF_FORCEANEG : 0); if (error != 0) { device_printf(dev, "PHY attach failed\n"); goto out; } sc->mii_softc = device_get_softc(sc->miibus); /* All ready to run, attach the ethernet interface. */ ether_ifattach(ifp, eaddr); sc->is_attached = true; error = 0; out: if (error != 0) ffec_detach(dev); return (error); } static int ffec_probe(device_t dev) { uintptr_t fectype; if (!ofw_bus_status_okay(dev)) return (ENXIO); fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data; if (fectype == FECTYPE_NONE) return (ENXIO); device_set_desc(dev, (fectype & FECFLAG_GBE) ? "Freescale Gigabit Ethernet Controller" : "Freescale Fast Ethernet Controller"); return (BUS_PROBE_DEFAULT); } static device_method_t ffec_methods[] = { /* Device interface. */ DEVMETHOD(device_probe, ffec_probe), DEVMETHOD(device_attach, ffec_attach), DEVMETHOD(device_detach, ffec_detach), /* DEVMETHOD(device_shutdown, ffec_shutdown), DEVMETHOD(device_suspend, ffec_suspend), DEVMETHOD(device_resume, ffec_resume), */ /* MII interface. */ DEVMETHOD(miibus_readreg, ffec_miibus_readreg), DEVMETHOD(miibus_writereg, ffec_miibus_writereg), DEVMETHOD(miibus_statchg, ffec_miibus_statchg), DEVMETHOD_END }; static driver_t ffec_driver = { "ffec", ffec_methods, sizeof(struct ffec_softc) }; static devclass_t ffec_devclass; DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0); DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0); MODULE_DEPEND(ffec, ether, 1, 1, 1); MODULE_DEPEND(ffec, miibus, 1, 1, 1);