/* * Copyright 2009-2015 Samy Al Bahra. * Copyright 2012 João Fernandes. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef CK_PR_PPC_H #define CK_PR_PPC_H #ifndef CK_PR_H #error Do not include this file directly, use ck_pr.h #endif #include #include /* * The following represent supported atomic operations. * These operations may be emulated. */ #include "ck_f_pr.h" /* * Minimum interface requirement met. */ #define CK_F_PR /* * This bounces the hardware thread from low to medium * priority. I am unsure of the benefits of this approach * but it is used by the Linux kernel. */ CK_CC_INLINE static void ck_pr_stall(void) { __asm__ __volatile__("or 1, 1, 1;" "or 2, 2, 2;" ::: "memory"); return; } #define CK_PR_FENCE(T, I) \ CK_CC_INLINE static void \ ck_pr_fence_strict_##T(void) \ { \ __asm__ __volatile__(I ::: "memory"); \ } CK_PR_FENCE(atomic, "lwsync") CK_PR_FENCE(atomic_store, "lwsync") CK_PR_FENCE(atomic_load, "sync") CK_PR_FENCE(store_atomic, "lwsync") CK_PR_FENCE(load_atomic, "lwsync") CK_PR_FENCE(store, "lwsync") CK_PR_FENCE(store_load, "sync") CK_PR_FENCE(load, "lwsync") CK_PR_FENCE(load_store, "lwsync") CK_PR_FENCE(memory, "sync") CK_PR_FENCE(acquire, "lwsync") CK_PR_FENCE(release, "lwsync") CK_PR_FENCE(acqrel, "lwsync") CK_PR_FENCE(lock, "lwsync") CK_PR_FENCE(unlock, "lwsync") #undef CK_PR_FENCE #define CK_PR_LOAD(S, M, T, C, I) \ CK_CC_INLINE static T \ ck_pr_md_load_##S(const M *target) \ { \ T r; \ __asm__ __volatile__(I "%U1%X1 %0, %1" \ : "=r" (r) \ : "m" (*(const C *)target) \ : "memory"); \ return (r); \ } CK_PR_LOAD(ptr, void, void *, uint32_t, "lwz") #define CK_PR_LOAD_S(S, T, I) CK_PR_LOAD(S, T, T, T, I) CK_PR_LOAD_S(32, uint32_t, "lwz") CK_PR_LOAD_S(16, uint16_t, "lhz") CK_PR_LOAD_S(8, uint8_t, "lbz") CK_PR_LOAD_S(uint, unsigned int, "lwz") CK_PR_LOAD_S(int, int, "lwz") CK_PR_LOAD_S(short, short, "lhz") CK_PR_LOAD_S(char, char, "lbz") #undef CK_PR_LOAD_S #undef CK_PR_LOAD #define CK_PR_STORE(S, M, T, C, I) \ CK_CC_INLINE static void \ ck_pr_md_store_##S(M *target, T v) \ { \ __asm__ __volatile__(I "%U0%X0 %1, %0" \ : "=m" (*(C *)target) \ : "r" (v) \ : "memory"); \ return; \ } CK_PR_STORE(ptr, void, const void *, uint32_t, "stw") #define CK_PR_STORE_S(S, T, I) CK_PR_STORE(S, T, T, T, I) CK_PR_STORE_S(32, uint32_t, "stw") CK_PR_STORE_S(16, uint16_t, "sth") CK_PR_STORE_S(8, uint8_t, "stb") CK_PR_STORE_S(uint, unsigned int, "stw") CK_PR_STORE_S(int, int, "stw") CK_PR_STORE_S(short, short, "sth") CK_PR_STORE_S(char, char, "stb") #undef CK_PR_STORE_S #undef CK_PR_STORE #define CK_PR_CAS(N, T, M) \ CK_CC_INLINE static bool \ ck_pr_cas_##N##_value(M *target, T compare, T set, M *value) \ { \ T previous; \ __asm__ __volatile__("1:" \ "lwarx %0, 0, %1;" \ "cmpw 0, %0, %3;" \ "bne- 2f;" \ "stwcx. %2, 0, %1;" \ "bne- 1b;" \ "2:" \ : "=&r" (previous) \ : "r" (target), \ "r" (set), \ "r" (compare) \ : "memory", "cc"); \ *(T *)value = previous; \ return (previous == compare); \ } \ CK_CC_INLINE static bool \ ck_pr_cas_##N(M *target, T compare, T set) \ { \ T previous; \ __asm__ __volatile__("1:" \ "lwarx %0, 0, %1;" \ "cmpw 0, %0, %3;" \ "bne- 2f;" \ "stwcx. %2, 0, %1;" \ "bne- 1b;" \ "2:" \ : "=&r" (previous) \ : "r" (target), \ "r" (set), \ "r" (compare) \ : "memory", "cc"); \ return (previous == compare); \ } CK_PR_CAS(ptr, void *, void) #define CK_PR_CAS_S(a, b) CK_PR_CAS(a, b, b) CK_PR_CAS_S(32, uint32_t) CK_PR_CAS_S(uint, unsigned int) CK_PR_CAS_S(int, int) #undef CK_PR_CAS_S #undef CK_PR_CAS #define CK_PR_FAS(N, M, T, W) \ CK_CC_INLINE static T \ ck_pr_fas_##N(M *target, T v) \ { \ T previous; \ __asm__ __volatile__("1:" \ "l" W "arx %0, 0, %1;" \ "st" W "cx. %2, 0, %1;" \ "bne- 1b;" \ : "=&r" (previous) \ : "r" (target), \ "r" (v) \ : "memory", "cc"); \ return (previous); \ } CK_PR_FAS(32, uint32_t, uint32_t, "w") CK_PR_FAS(ptr, void, void *, "w") CK_PR_FAS(int, int, int, "w") CK_PR_FAS(uint, unsigned int, unsigned int, "w") #undef CK_PR_FAS #define CK_PR_UNARY(O, N, M, T, I, W) \ CK_CC_INLINE static void \ ck_pr_##O##_##N(M *target) \ { \ T previous; \ __asm__ __volatile__("1:" \ "l" W "arx %0, 0, %1;" \ I ";" \ "st" W "cx. %0, 0, %1;" \ "bne- 1b;" \ : "=&r" (previous) \ : "r" (target) \ : "memory", "cc"); \ return; \ } CK_PR_UNARY(inc, ptr, void, void *, "addic %0, %0, 1", "w") CK_PR_UNARY(dec, ptr, void, void *, "addic %0, %0, -1", "w") CK_PR_UNARY(not, ptr, void, void *, "not %0, %0", "w") CK_PR_UNARY(neg, ptr, void, void *, "neg %0, %0", "w") #define CK_PR_UNARY_S(S, T, W) \ CK_PR_UNARY(inc, S, T, T, "addic %0, %0, 1", W) \ CK_PR_UNARY(dec, S, T, T, "addic %0, %0, -1", W) \ CK_PR_UNARY(not, S, T, T, "not %0, %0", W) \ CK_PR_UNARY(neg, S, T, T, "neg %0, %0", W) CK_PR_UNARY_S(32, uint32_t, "w") CK_PR_UNARY_S(uint, unsigned int, "w") CK_PR_UNARY_S(int, int, "w") #undef CK_PR_UNARY_S #undef CK_PR_UNARY #define CK_PR_BINARY(O, N, M, T, I, W) \ CK_CC_INLINE static void \ ck_pr_##O##_##N(M *target, T delta) \ { \ T previous; \ __asm__ __volatile__("1:" \ "l" W "arx %0, 0, %1;" \ I " %0, %2, %0;" \ "st" W "cx. %0, 0, %1;" \ "bne- 1b;" \ : "=&r" (previous) \ : "r" (target), \ "r" (delta) \ : "memory", "cc"); \ return; \ } CK_PR_BINARY(and, ptr, void, uintptr_t, "and", "w") CK_PR_BINARY(add, ptr, void, uintptr_t, "add", "w") CK_PR_BINARY(or, ptr, void, uintptr_t, "or", "w") CK_PR_BINARY(sub, ptr, void, uintptr_t, "sub", "w") CK_PR_BINARY(xor, ptr, void, uintptr_t, "xor", "w") #define CK_PR_BINARY_S(S, T, W) \ CK_PR_BINARY(and, S, T, T, "and", W) \ CK_PR_BINARY(add, S, T, T, "add", W) \ CK_PR_BINARY(or, S, T, T, "or", W) \ CK_PR_BINARY(sub, S, T, T, "subf", W) \ CK_PR_BINARY(xor, S, T, T, "xor", W) CK_PR_BINARY_S(32, uint32_t, "w") CK_PR_BINARY_S(uint, unsigned int, "w") CK_PR_BINARY_S(int, int, "w") #undef CK_PR_BINARY_S #undef CK_PR_BINARY CK_CC_INLINE static void * ck_pr_faa_ptr(void *target, uintptr_t delta) { uintptr_t previous, r; __asm__ __volatile__("1:" "lwarx %0, 0, %2;" "add %1, %3, %0;" "stwcx. %1, 0, %2;" "bne- 1b;" : "=&r" (previous), "=&r" (r) : "r" (target), "r" (delta) : "memory", "cc"); return (void *)(previous); } #define CK_PR_FAA(S, T, W) \ CK_CC_INLINE static T \ ck_pr_faa_##S(T *target, T delta) \ { \ T previous, r; \ __asm__ __volatile__("1:" \ "l" W "arx %0, 0, %2;" \ "add %1, %3, %0;" \ "st" W "cx. %1, 0, %2;" \ "bne- 1b;" \ : "=&r" (previous), \ "=&r" (r) \ : "r" (target), \ "r" (delta) \ : "memory", "cc"); \ return (previous); \ } CK_PR_FAA(32, uint32_t, "w") CK_PR_FAA(uint, unsigned int, "w") CK_PR_FAA(int, int, "w") #undef CK_PR_FAA #endif /* CK_PR_PPC_H */