From 74587c37d8f8a723770c45e65301e8a708997b67 Mon Sep 17 00:00:00 2001 From: Jennifer Averett Date: Thu, 19 Apr 2012 13:25:28 -0500 Subject: Merged rtems-bsd-uma.c back into uma_core.c The majority of this file was the same as the freebsd file uma_core.c. --- freebsd/vm/uma_core.c | 3439 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3439 insertions(+) create mode 100644 freebsd/vm/uma_core.c (limited to 'freebsd') diff --git a/freebsd/vm/uma_core.c b/freebsd/vm/uma_core.c new file mode 100644 index 00000000..5e2b2cde --- /dev/null +++ b/freebsd/vm/uma_core.c @@ -0,0 +1,3439 @@ +#include + +/*- + * Copyright (c) 2002-2005, 2009 Jeffrey Roberson + * Copyright (c) 2004, 2005 Bosko Milekic + * Copyright (c) 2004-2006 Robert N. M. Watson + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice unmodified, this list of conditions, and the following + * disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +/* + * uma_core.c Implementation of the Universal Memory allocator + * + * This allocator is intended to replace the multitude of similar object caches + * in the standard FreeBSD kernel. The intent is to be flexible as well as + * effecient. A primary design goal is to return unused memory to the rest of + * the system. This will make the system as a whole more flexible due to the + * ability to move memory to subsystems which most need it instead of leaving + * pools of reserved memory unused. + * + * The basic ideas stem from similar slab/zone based allocators whose algorithms + * are well known. + * + */ + +/* + * TODO: + * - Improve memory usage for large allocations + * - Investigate cache size adjustments + */ + +#include +__FBSDID("$FreeBSD$"); + +/* I should really use ktr.. */ +/* +#define UMA_DEBUG 1 +#define UMA_DEBUG_ALLOC 1 +#define UMA_DEBUG_ALLOC_1 1 +*/ + +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#ifndef __rtems__ +#include +#endif /* __rtems__ */ + +#include +#ifndef __rtems__ +#include +#include +#include +#include +#include +#include +#endif /* __rtems__ */ +#include +#include +#include + +#ifndef __rtems__ +#include + +#include +#endif /* __rtems__ */ + +/* + * This is the zone and keg from which all zones are spawned. The idea is that + * even the zone & keg heads are allocated from the allocator, so we use the + * bss section to bootstrap us. + */ +static struct uma_keg masterkeg; +static struct uma_zone masterzone_k; +static struct uma_zone masterzone_z; +static uma_zone_t kegs = &masterzone_k; +static uma_zone_t zones = &masterzone_z; + +/* This is the zone from which all of uma_slab_t's are allocated. */ +static uma_zone_t slabzone; +static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ + +/* + * The initial hash tables come out of this zone so they can be allocated + * prior to malloc coming up. + */ +static uma_zone_t hashzone; + +/* The boot-time adjusted value for cache line alignment. */ +static int uma_align_cache = 64 - 1; + +static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); + +/* + * Are we allowed to allocate buckets? + */ +static int bucketdisable = 1; + +/* Linked list of all kegs in the system */ +static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); + +/* This mutex protects the keg list */ +static struct mtx uma_mtx; + +/* Linked list of boot time pages */ +static LIST_HEAD(,uma_slab) uma_boot_pages = + LIST_HEAD_INITIALIZER(uma_boot_pages); + +/* This mutex protects the boot time pages list */ +static struct mtx uma_boot_pages_mtx; + +/* Is the VM done starting up? */ +static int booted = 0; + +/* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */ +static u_int uma_max_ipers; +static u_int uma_max_ipers_ref; + +/* + * This is the handle used to schedule events that need to happen + * outside of the allocation fast path. + */ +static struct callout uma_callout; +#define UMA_TIMEOUT 20 /* Seconds for callout interval. */ + +/* + * This structure is passed as the zone ctor arg so that I don't have to create + * a special allocation function just for zones. + */ +struct uma_zctor_args { + char *name; + size_t size; + uma_ctor ctor; + uma_dtor dtor; + uma_init uminit; + uma_fini fini; + uma_keg_t keg; + int align; + u_int32_t flags; +}; + +struct uma_kctor_args { + uma_zone_t zone; + size_t size; + uma_init uminit; + uma_fini fini; + int align; + u_int32_t flags; +}; + +struct uma_bucket_zone { + uma_zone_t ubz_zone; + char *ubz_name; + int ubz_entries; +}; + +#define BUCKET_MAX 128 + +struct uma_bucket_zone bucket_zones[] = { + { NULL, "16 Bucket", 16 }, + { NULL, "32 Bucket", 32 }, + { NULL, "64 Bucket", 64 }, + { NULL, "128 Bucket", 128 }, + { NULL, NULL, 0} +}; + +#define BUCKET_SHIFT 4 +#define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1) + +/* + * bucket_size[] maps requested bucket sizes to zones that allocate a bucket + * of approximately the right size. + */ +static uint8_t bucket_size[BUCKET_ZONES]; + +/* + * Flags and enumerations to be passed to internal functions. + */ +enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI }; + +#define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */ +#define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */ + +/* Prototypes.. */ +#ifndef __rtems__ +static void *obj_alloc(uma_zone_t, int, u_int8_t *, int); +#endif /* __rtems__ */ +static void *page_alloc(uma_zone_t, int, u_int8_t *, int); +static void *startup_alloc(uma_zone_t, int, u_int8_t *, int); +static void page_free(void *, int, u_int8_t); +static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); +static void cache_drain(uma_zone_t); +static void bucket_drain(uma_zone_t, uma_bucket_t); +static void bucket_cache_drain(uma_zone_t zone); +static int keg_ctor(void *, int, void *, int); +static void keg_dtor(void *, int, void *); +static int zone_ctor(void *, int, void *, int); +static void zone_dtor(void *, int, void *); +static int zero_init(void *, int, int); +static void keg_small_init(uma_keg_t keg); +static void keg_large_init(uma_keg_t keg); +static void zone_foreach(void (*zfunc)(uma_zone_t)); +static void zone_timeout(uma_zone_t zone); +static int hash_alloc(struct uma_hash *); +static int hash_expand(struct uma_hash *, struct uma_hash *); +static void hash_free(struct uma_hash *hash); +#ifndef __rtems__ +static void uma_timeout(void *); +static void uma_startup3(void); +#endif /* __rtems__ */ +static void *zone_alloc_item(uma_zone_t, void *, int); +static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip, + int); +#ifndef __rtems__ +static void bucket_enable(void); +#endif /* __rtems__ */ +static void bucket_init(void); +static uma_bucket_t bucket_alloc(int, int); +static void bucket_free(uma_bucket_t); +static void bucket_zone_drain(void); +static int zone_alloc_bucket(uma_zone_t zone, int flags); +static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); +static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); +static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab); +static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, + uma_fini fini, int align, u_int32_t flags); +static inline void zone_relock(uma_zone_t zone, uma_keg_t keg); +static inline void keg_relock(uma_keg_t keg, uma_zone_t zone); + +void uma_print_zone(uma_zone_t); +void uma_print_stats(void); +#ifndef __rtems__ +static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); +static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); + +SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); + +SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, + 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); + +SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, + 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); + +/* + * This routine checks to see whether or not it's safe to enable buckets. + */ + +static void +bucket_enable(void) +{ + if (cnt.v_free_count < cnt.v_free_min) + bucketdisable = 1; + else + bucketdisable = 0; +} +#endif /* __rtems__ */ + +/* + * Initialize bucket_zones, the array of zones of buckets of various sizes. + * + * For each zone, calculate the memory required for each bucket, consisting + * of the header and an array of pointers. Initialize bucket_size[] to point + * the range of appropriate bucket sizes at the zone. + */ +static void +bucket_init(void) +{ + struct uma_bucket_zone *ubz; + int i; + int j; + + for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) { + int size; + + ubz = &bucket_zones[j]; + size = roundup(sizeof(struct uma_bucket), sizeof(void *)); + size += sizeof(void *) * ubz->ubz_entries; + ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, + NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, + UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET); + for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT)) + bucket_size[i >> BUCKET_SHIFT] = j; + } +} + +/* + * Given a desired number of entries for a bucket, return the zone from which + * to allocate the bucket. + */ +static struct uma_bucket_zone * +bucket_zone_lookup(int entries) +{ + int idx; + + idx = howmany(entries, 1 << BUCKET_SHIFT); + return (&bucket_zones[bucket_size[idx]]); +} + +static uma_bucket_t +bucket_alloc(int entries, int bflags) +{ + struct uma_bucket_zone *ubz; + uma_bucket_t bucket; + + /* + * This is to stop us from allocating per cpu buckets while we're + * running out of vm.boot_pages. Otherwise, we would exhaust the + * boot pages. This also prevents us from allocating buckets in + * low memory situations. + */ + if (bucketdisable) + return (NULL); + + ubz = bucket_zone_lookup(entries); + bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags); + if (bucket) { +#ifdef INVARIANTS + bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); +#endif + bucket->ub_cnt = 0; + bucket->ub_entries = ubz->ubz_entries; + } + + return (bucket); +} + +static void +bucket_free(uma_bucket_t bucket) +{ + struct uma_bucket_zone *ubz; + + ubz = bucket_zone_lookup(bucket->ub_entries); + zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE, + ZFREE_STATFREE); +} + +static void +bucket_zone_drain(void) +{ + struct uma_bucket_zone *ubz; + + for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) + zone_drain(ubz->ubz_zone); +} + +static inline uma_keg_t +zone_first_keg(uma_zone_t zone) +{ + + return (LIST_FIRST(&zone->uz_kegs)->kl_keg); +} + +static void +zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) +{ + uma_klink_t klink; + + LIST_FOREACH(klink, &zone->uz_kegs, kl_link) + kegfn(klink->kl_keg); +} + +#ifndef __rtems__ +/* + * Routine called by timeout which is used to fire off some time interval + * based calculations. (stats, hash size, etc.) + * + * Arguments: + * arg Unused + * + * Returns: + * Nothing + */ +static void +uma_timeout(void *unused) +{ + bucket_enable(); + zone_foreach(zone_timeout); + + /* Reschedule this event */ + callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); +} +#endif /* __rtems__ */ + +/* + * Routine to perform timeout driven calculations. This expands the + * hashes and does per cpu statistics aggregation. + * + * Returns nothing. + */ +static void +keg_timeout(uma_keg_t keg) +{ + + KEG_LOCK(keg); + /* + * Expand the keg hash table. + * + * This is done if the number of slabs is larger than the hash size. + * What I'm trying to do here is completely reduce collisions. This + * may be a little aggressive. Should I allow for two collisions max? + */ + if (keg->uk_flags & UMA_ZONE_HASH && + keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { + struct uma_hash newhash; + struct uma_hash oldhash; + int ret; + + /* + * This is so involved because allocating and freeing + * while the keg lock is held will lead to deadlock. + * I have to do everything in stages and check for + * races. + */ + newhash = keg->uk_hash; + KEG_UNLOCK(keg); + ret = hash_alloc(&newhash); + KEG_LOCK(keg); + if (ret) { + if (hash_expand(&keg->uk_hash, &newhash)) { + oldhash = keg->uk_hash; + keg->uk_hash = newhash; + } else + oldhash = newhash; + + KEG_UNLOCK(keg); + hash_free(&oldhash); + KEG_LOCK(keg); + } + } + KEG_UNLOCK(keg); +} + +static void +zone_timeout(uma_zone_t zone) +{ + + zone_foreach_keg(zone, &keg_timeout); +} + +/* + * Allocate and zero fill the next sized hash table from the appropriate + * backing store. + * + * Arguments: + * hash A new hash structure with the old hash size in uh_hashsize + * + * Returns: + * 1 on sucess and 0 on failure. + */ +static int +hash_alloc(struct uma_hash *hash) +{ + int oldsize; + int alloc; + + oldsize = hash->uh_hashsize; + + /* We're just going to go to a power of two greater */ + if (oldsize) { + hash->uh_hashsize = oldsize * 2; + alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; + hash->uh_slab_hash = (struct slabhead *)malloc(alloc, + M_UMAHASH, M_NOWAIT); + } else { + alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; + hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, + M_WAITOK); + hash->uh_hashsize = UMA_HASH_SIZE_INIT; + } + if (hash->uh_slab_hash) { + bzero(hash->uh_slab_hash, alloc); + hash->uh_hashmask = hash->uh_hashsize - 1; + return (1); + } + + return (0); +} + +/* + * Expands the hash table for HASH zones. This is done from zone_timeout + * to reduce collisions. This must not be done in the regular allocation + * path, otherwise, we can recurse on the vm while allocating pages. + * + * Arguments: + * oldhash The hash you want to expand + * newhash The hash structure for the new table + * + * Returns: + * Nothing + * + * Discussion: + */ +static int +hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) +{ + uma_slab_t slab; + int hval; + int i; + + if (!newhash->uh_slab_hash) + return (0); + + if (oldhash->uh_hashsize >= newhash->uh_hashsize) + return (0); + + /* + * I need to investigate hash algorithms for resizing without a + * full rehash. + */ + + for (i = 0; i < oldhash->uh_hashsize; i++) + while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { + slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); + SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); + hval = UMA_HASH(newhash, slab->us_data); + SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], + slab, us_hlink); + } + + return (1); +} + +/* + * Free the hash bucket to the appropriate backing store. + * + * Arguments: + * slab_hash The hash bucket we're freeing + * hashsize The number of entries in that hash bucket + * + * Returns: + * Nothing + */ +static void +hash_free(struct uma_hash *hash) +{ + if (hash->uh_slab_hash == NULL) + return; + if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) + zone_free_item(hashzone, + hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE); + else + free(hash->uh_slab_hash, M_UMAHASH); +} + +/* + * Frees all outstanding items in a bucket + * + * Arguments: + * zone The zone to free to, must be unlocked. + * bucket The free/alloc bucket with items, cpu queue must be locked. + * + * Returns: + * Nothing + */ + +static void +bucket_drain(uma_zone_t zone, uma_bucket_t bucket) +{ + void *item; + + if (bucket == NULL) + return; + + while (bucket->ub_cnt > 0) { + bucket->ub_cnt--; + item = bucket->ub_bucket[bucket->ub_cnt]; +#ifdef INVARIANTS + bucket->ub_bucket[bucket->ub_cnt] = NULL; + KASSERT(item != NULL, + ("bucket_drain: botched ptr, item is NULL")); +#endif + zone_free_item(zone, item, NULL, SKIP_DTOR, 0); + } +} + +/* + * Drains the per cpu caches for a zone. + * + * NOTE: This may only be called while the zone is being turn down, and not + * during normal operation. This is necessary in order that we do not have + * to migrate CPUs to drain the per-CPU caches. + * + * Arguments: + * zone The zone to drain, must be unlocked. + * + * Returns: + * Nothing + */ +static void +cache_drain(uma_zone_t zone) +{ + uma_cache_t cache; + int cpu; + + /* + * XXX: It is safe to not lock the per-CPU caches, because we're + * tearing down the zone anyway. I.e., there will be no further use + * of the caches at this point. + * + * XXX: It would good to be able to assert that the zone is being + * torn down to prevent improper use of cache_drain(). + * + * XXX: We lock the zone before passing into bucket_cache_drain() as + * it is used elsewhere. Should the tear-down path be made special + * there in some form? + */ + for (cpu = 0; cpu <= mp_maxid; cpu++) { + if (CPU_ABSENT(cpu)) + continue; + cache = &zone->uz_cpu[cpu]; + bucket_drain(zone, cache->uc_allocbucket); + bucket_drain(zone, cache->uc_freebucket); + if (cache->uc_allocbucket != NULL) + bucket_free(cache->uc_allocbucket); + if (cache->uc_freebucket != NULL) + bucket_free(cache->uc_freebucket); + cache->uc_allocbucket = cache->uc_freebucket = NULL; + } + ZONE_LOCK(zone); + bucket_cache_drain(zone); + ZONE_UNLOCK(zone); +} + +/* + * Drain the cached buckets from a zone. Expects a locked zone on entry. + */ +static void +bucket_cache_drain(uma_zone_t zone) +{ + uma_bucket_t bucket; + + /* + * Drain the bucket queues and free the buckets, we just keep two per + * cpu (alloc/free). + */ + while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { + LIST_REMOVE(bucket, ub_link); + ZONE_UNLOCK(zone); + bucket_drain(zone, bucket); + bucket_free(bucket); + ZONE_LOCK(zone); + } + + /* Now we do the free queue.. */ + while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { + LIST_REMOVE(bucket, ub_link); + bucket_free(bucket); + } +} + +/* + * Frees pages from a keg back to the system. This is done on demand from + * the pageout daemon. + * + * Returns nothing. + */ +static void +keg_drain(uma_keg_t keg) +{ + struct slabhead freeslabs = { 0 }; + uma_slab_t slab; + uma_slab_t n; + u_int8_t flags; + u_int8_t *mem; + int i; + + /* + * We don't want to take pages from statically allocated kegs at this + * time + */ + if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) + return; + +#ifdef UMA_DEBUG + printf("%s free items: %u\n", keg->uk_name, keg->uk_free); +#endif + KEG_LOCK(keg); + if (keg->uk_free == 0) + goto finished; + + slab = LIST_FIRST(&keg->uk_free_slab); + while (slab) { + n = LIST_NEXT(slab, us_link); + + /* We have no where to free these to */ + if (slab->us_flags & UMA_SLAB_BOOT) { + slab = n; + continue; + } + + LIST_REMOVE(slab, us_link); + keg->uk_pages -= keg->uk_ppera; + keg->uk_free -= keg->uk_ipers; + + if (keg->uk_flags & UMA_ZONE_HASH) + UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); + + SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); + + slab = n; + } +finished: + KEG_UNLOCK(keg); + + while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { + SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); + if (keg->uk_fini) + for (i = 0; i < keg->uk_ipers; i++) + keg->uk_fini( + slab->us_data + (keg->uk_rsize * i), + keg->uk_size); + flags = slab->us_flags; + mem = slab->us_data; + +#ifndef __rtems__ + if (keg->uk_flags & UMA_ZONE_VTOSLAB) { + vm_object_t obj; + + if (flags & UMA_SLAB_KMEM) + obj = kmem_object; + else if (flags & UMA_SLAB_KERNEL) + obj = kernel_object; + else + obj = NULL; + for (i = 0; i < keg->uk_ppera; i++) + vsetobj((vm_offset_t)mem + (i * PAGE_SIZE), + obj); + } +#endif /* __rtems__ */ + if (keg->uk_flags & UMA_ZONE_OFFPAGE) + zone_free_item(keg->uk_slabzone, slab, NULL, + SKIP_NONE, ZFREE_STATFREE); +#ifdef UMA_DEBUG + printf("%s: Returning %d bytes.\n", + keg->uk_name, UMA_SLAB_SIZE * keg->uk_ppera); +#endif + keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags); + } +} + +static void +zone_drain_wait(uma_zone_t zone, int waitok) +{ + + /* + * Set draining to interlock with zone_dtor() so we can release our + * locks as we go. Only dtor() should do a WAITOK call since it + * is the only call that knows the structure will still be available + * when it wakes up. + */ + ZONE_LOCK(zone); + while (zone->uz_flags & UMA_ZFLAG_DRAINING) { + if (waitok == M_NOWAIT) + goto out; + mtx_unlock(&uma_mtx); + msleep(zone, zone->uz_lock, PVM, "zonedrain", 1); + mtx_lock(&uma_mtx); + } + zone->uz_flags |= UMA_ZFLAG_DRAINING; + bucket_cache_drain(zone); + ZONE_UNLOCK(zone); + /* + * The DRAINING flag protects us from being freed while + * we're running. Normally the uma_mtx would protect us but we + * must be able to release and acquire the right lock for each keg. + */ + zone_foreach_keg(zone, &keg_drain); + ZONE_LOCK(zone); + zone->uz_flags &= ~UMA_ZFLAG_DRAINING; + wakeup(zone); +out: + ZONE_UNLOCK(zone); +} + +void +zone_drain(uma_zone_t zone) +{ + + zone_drain_wait(zone, M_NOWAIT); +} + +/* + * Allocate a new slab for a keg. This does not insert the slab onto a list. + * + * Arguments: + * wait Shall we wait? + * + * Returns: + * The slab that was allocated or NULL if there is no memory and the + * caller specified M_NOWAIT. + */ +static uma_slab_t +keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) +{ + uma_slabrefcnt_t slabref; + uma_alloc allocf; + uma_slab_t slab; + u_int8_t *mem; + u_int8_t flags; + int i; + + mtx_assert(&keg->uk_lock, MA_OWNED); + slab = NULL; + +#ifdef UMA_DEBUG + printf("slab_zalloc: Allocating a new slab for %s\n", keg->uk_name); +#endif + allocf = keg->uk_allocf; + KEG_UNLOCK(keg); + + if (keg->uk_flags & UMA_ZONE_OFFPAGE) { + slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); + if (slab == NULL) { + KEG_LOCK(keg); + return NULL; + } + } + + /* + * This reproduces the old vm_zone behavior of zero filling pages the + * first time they are added to a zone. + * + * Malloced items are zeroed in uma_zalloc. + */ + + if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) + wait |= M_ZERO; + else + wait &= ~M_ZERO; + + /* zone is passed for legacy reasons. */ + mem = allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, &flags, wait); + if (mem == NULL) { + if (keg->uk_flags & UMA_ZONE_OFFPAGE) + zone_free_item(keg->uk_slabzone, slab, NULL, + SKIP_NONE, ZFREE_STATFREE); + KEG_LOCK(keg); + return (NULL); + } + + /* Point the slab into the allocated memory */ + if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) + slab = (uma_slab_t )(mem + keg->uk_pgoff); + +#ifndef __rtems__ + if (keg->uk_flags & UMA_ZONE_VTOSLAB) + for (i = 0; i < keg->uk_ppera; i++) + vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); +#endif /* __rtems__ */ + + slab->us_keg = keg; + slab->us_data = mem; + slab->us_freecount = keg->uk_ipers; + slab->us_firstfree = 0; + slab->us_flags = flags; + + if (keg->uk_flags & UMA_ZONE_REFCNT) { + slabref = (uma_slabrefcnt_t)slab; + for (i = 0; i < keg->uk_ipers; i++) { + slabref->us_freelist[i].us_refcnt = 0; + slabref->us_freelist[i].us_item = i+1; + } + } else { + for (i = 0; i < keg->uk_ipers; i++) + slab->us_freelist[i].us_item = i+1; + } + + if (keg->uk_init != NULL) { + for (i = 0; i < keg->uk_ipers; i++) + if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), + keg->uk_size, wait) != 0) + break; + if (i != keg->uk_ipers) { + if (keg->uk_fini != NULL) { + for (i--; i > -1; i--) + keg->uk_fini(slab->us_data + + (keg->uk_rsize * i), + keg->uk_size); + } +#ifndef __rtems__ + if (keg->uk_flags & UMA_ZONE_VTOSLAB) { + vm_object_t obj; + + if (flags & UMA_SLAB_KMEM) + obj = kmem_object; + else if (flags & UMA_SLAB_KERNEL) + obj = kernel_object; + else + obj = NULL; + for (i = 0; i < keg->uk_ppera; i++) + vsetobj((vm_offset_t)mem + + (i * PAGE_SIZE), obj); + } +#endif /* __rtems__ */ + if (keg->uk_flags & UMA_ZONE_OFFPAGE) + zone_free_item(keg->uk_slabzone, slab, + NULL, SKIP_NONE, ZFREE_STATFREE); + keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, + flags); + KEG_LOCK(keg); + return (NULL); + } + } + KEG_LOCK(keg); + + if (keg->uk_flags & UMA_ZONE_HASH) + UMA_HASH_INSERT(&keg->uk_hash, slab, mem); + + keg->uk_pages += keg->uk_ppera; + keg->uk_free += keg->uk_ipers; + + return (slab); +} + +/* + * This function is intended to be used early on in place of page_alloc() so + * that we may use the boot time page cache to satisfy allocations before + * the VM is ready. + */ +static void * +startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) +{ + uma_keg_t keg; + uma_slab_t tmps; + int pages, check_pages; + + keg = zone_first_keg(zone); + pages = howmany(bytes, PAGE_SIZE); + check_pages = pages - 1; + KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); + + /* + * Check our small startup cache to see if it has pages remaining. + */ + mtx_lock(&uma_boot_pages_mtx); + + /* First check if we have enough room. */ + tmps = LIST_FIRST(&uma_boot_pages); + while (tmps != NULL && check_pages-- > 0) + tmps = LIST_NEXT(tmps, us_link); + if (tmps != NULL) { + /* + * It's ok to lose tmps references. The last one will + * have tmps->us_data pointing to the start address of + * "pages" contiguous pages of memory. + */ + while (pages-- > 0) { + tmps = LIST_FIRST(&uma_boot_pages); + LIST_REMOVE(tmps, us_link); + } + mtx_unlock(&uma_boot_pages_mtx); + *pflag = tmps->us_flags; + return (tmps->us_data); + } + mtx_unlock(&uma_boot_pages_mtx); + if (booted == 0) + panic("UMA: Increase vm.boot_pages"); + /* + * Now that we've booted reset these users to their real allocator. + */ +#ifdef UMA_MD_SMALL_ALLOC + keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; +#else + keg->uk_allocf = page_alloc; +#endif + return keg->uk_allocf(zone, bytes, pflag, wait); +} + +/* + * Allocates a number of pages from the system + * + * Arguments: + * bytes The number of bytes requested + * wait Shall we wait? + * + * Returns: + * A pointer to the alloced memory or possibly + * NULL if M_NOWAIT is set. + */ +static void * +page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) +{ + void *p; /* Returned page */ + + *pflag = UMA_SLAB_KMEM; +#ifndef __rtems__ + p = (void *) kmem_malloc(kmem_map, bytes, wait); +#else /* __rtems__ */ + p = (void *) malloc(bytes, M_TEMP, wait); +#endif /* __rtems__ */ + + return (p); +} + +#ifndef __rtems__ +/* + * Allocates a number of pages from within an object + * + * Arguments: + * bytes The number of bytes requested + * wait Shall we wait? + * + * Returns: + * A pointer to the alloced memory or possibly + * NULL if M_NOWAIT is set. + */ +static void * +obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) +{ + vm_object_t object; + vm_offset_t retkva, zkva; + vm_page_t p; + int pages, startpages; + uma_keg_t keg; + + keg = zone_first_keg(zone); + object = keg->uk_obj; + retkva = 0; + + /* + * This looks a little weird since we're getting one page at a time. + */ + VM_OBJECT_LOCK(object); + p = TAILQ_LAST(&object->memq, pglist); + pages = p != NULL ? p->pindex + 1 : 0; + startpages = pages; + zkva = keg->uk_kva + pages * PAGE_SIZE; + for (; bytes > 0; bytes -= PAGE_SIZE) { + p = vm_page_alloc(object, pages, + VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED); + if (p == NULL) { + if (pages != startpages) + pmap_qremove(retkva, pages - startpages); + while (pages != startpages) { + pages--; + p = TAILQ_LAST(&object->memq, pglist); + vm_page_lock_queues(); + vm_page_unwire(p, 0); + vm_page_free(p); + vm_page_unlock_queues(); + } + retkva = 0; + goto done; + } + pmap_qenter(zkva, &p, 1); + if (retkva == 0) + retkva = zkva; + zkva += PAGE_SIZE; + pages += 1; + } +done: + VM_OBJECT_UNLOCK(object); + *flags = UMA_SLAB_PRIV; + + return ((void *)retkva); +} +#endif /* __rtems__ */ + +/* + * Frees a number of pages to the system + * + * Arguments: + * mem A pointer to the memory to be freed + * size The size of the memory being freed + * flags The original p->us_flags field + * + * Returns: + * Nothing + */ +static void +page_free(void *mem, int size, u_int8_t flags) +{ +#ifndef __rtems__ + vm_map_t map; + + if (flags & UMA_SLAB_KMEM) + map = kmem_map; + else if (flags & UMA_SLAB_KERNEL) + map = kernel_map; + else + panic("UMA: page_free used with invalid flags %d", flags); + + kmem_free(map, (vm_offset_t)mem, size); +#else /* __rtems__ */ + free( mem, M_TEMP ); +#endif /* __rtems__ */ +} + +/* + * Zero fill initializer + * + * Arguments/Returns follow uma_init specifications + */ +static int +zero_init(void *mem, int size, int flags) +{ + bzero(mem, size); + return (0); +} + +/* + * Finish creating a small uma keg. This calculates ipers, and the keg size. + * + * Arguments + * keg The zone we should initialize + * + * Returns + * Nothing + */ +static void +keg_small_init(uma_keg_t keg) +{ + u_int rsize; + u_int memused; + u_int wastedspace; + u_int shsize; + + KASSERT(keg != NULL, ("Keg is null in keg_small_init")); + rsize = keg->uk_size; + + if (rsize < UMA_SMALLEST_UNIT) + rsize = UMA_SMALLEST_UNIT; + if (rsize & keg->uk_align) + rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); + + keg->uk_rsize = rsize; + keg->uk_ppera = 1; + + if (keg->uk_flags & UMA_ZONE_REFCNT) { + rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */ + shsize = sizeof(struct uma_slab_refcnt); + } else { + rsize += UMA_FRITM_SZ; /* Account for linkage */ + shsize = sizeof(struct uma_slab); + } + + keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize; + KASSERT(keg->uk_ipers != 0, ("keg_small_init: ipers is 0")); + memused = keg->uk_ipers * rsize + shsize; + wastedspace = UMA_SLAB_SIZE - memused; + + /* + * We can't do OFFPAGE if we're internal or if we've been + * asked to not go to the VM for buckets. If we do this we + * may end up going to the VM (kmem_map) for slabs which we + * do not want to do if we're UMA_ZFLAG_CACHEONLY as a + * result of UMA_ZONE_VM, which clearly forbids it. + */ + if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || + (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) + return; + + if ((wastedspace >= UMA_MAX_WASTE) && + (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) { + keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize; + KASSERT(keg->uk_ipers <= 255, + ("keg_small_init: keg->uk_ipers too high!")); +#ifdef UMA_DEBUG + printf("UMA decided we need offpage slab headers for " + "keg: %s, calculated wastedspace = %d, " + "maximum wasted space allowed = %d, " + "calculated ipers = %d, " + "new wasted space = %d\n", keg->uk_name, wastedspace, + UMA_MAX_WASTE, keg->uk_ipers, + UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize); +#endif + keg->uk_flags |= UMA_ZONE_OFFPAGE; + if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) + keg->uk_flags |= UMA_ZONE_HASH; + } +} + +/* + * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do + * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be + * more complicated. + * + * Arguments + * keg The keg we should initialize + * + * Returns + * Nothing + */ +static void +keg_large_init(uma_keg_t keg) +{ + int pages; + + KASSERT(keg != NULL, ("Keg is null in keg_large_init")); + KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, + ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); + + pages = keg->uk_size / UMA_SLAB_SIZE; + + /* Account for remainder */ + if ((pages * UMA_SLAB_SIZE) < keg->uk_size) + pages++; + + keg->uk_ppera = pages; + keg->uk_ipers = 1; + keg->uk_rsize = keg->uk_size; + + /* We can't do OFFPAGE if we're internal, bail out here. */ + if (keg->uk_flags & UMA_ZFLAG_INTERNAL) + return; + + keg->uk_flags |= UMA_ZONE_OFFPAGE; + if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) + keg->uk_flags |= UMA_ZONE_HASH; +} + +static void +keg_cachespread_init(uma_keg_t keg) +{ + int alignsize; + int trailer; + int pages; + int rsize; + + alignsize = keg->uk_align + 1; + rsize = keg->uk_size; + /* + * We want one item to start on every align boundary in a page. To + * do this we will span pages. We will also extend the item by the + * size of align if it is an even multiple of align. Otherwise, it + * would fall on the same boundary every time. + */ + if (rsize & keg->uk_align) + rsize = (rsize & ~keg->uk_align) + alignsize; + if ((rsize & alignsize) == 0) + rsize += alignsize; + trailer = rsize - keg->uk_size; + pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; + pages = MIN(pages, (128 * 1024) / PAGE_SIZE); + keg->uk_rsize = rsize; + keg->uk_ppera = pages; + keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; +#ifndef __rtems__ + keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; +#endif /* __rtems__ */ + KASSERT(keg->uk_ipers <= uma_max_ipers, + ("keg_small_init: keg->uk_ipers too high(%d) increase max_ipers", + keg->uk_ipers)); +} + +/* + * Keg header ctor. This initializes all fields, locks, etc. And inserts + * the keg onto the global keg list. + * + * Arguments/Returns follow uma_ctor specifications + * udata Actually uma_kctor_args + */ +static int +keg_ctor(void *mem, int size, void *udata, int flags) +{ + struct uma_kctor_args *arg = udata; + uma_keg_t keg = mem; + uma_zone_t zone; + + bzero(keg, size); + keg->uk_size = arg->size; + keg->uk_init = arg->uminit; + keg->uk_fini = arg->fini; + keg->uk_align = arg->align; + keg->uk_free = 0; + keg->uk_pages = 0; + keg->uk_flags = arg->flags; + keg->uk_allocf = page_alloc; + keg->uk_freef = page_free; + keg->uk_recurse = 0; + keg->uk_slabzone = NULL; + + /* + * The master zone is passed to us at keg-creation time. + */ + zone = arg->zone; + keg->uk_name = zone->uz_name; + + if (arg->flags & UMA_ZONE_VM) + keg->uk_flags |= UMA_ZFLAG_CACHEONLY; + + if (arg->flags & UMA_ZONE_ZINIT) + keg->uk_init = zero_init; + +#ifndef __rtems__ + if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC) + keg->uk_flags |= UMA_ZONE_VTOSLAB; +#endif /* __rtems__ */ + + /* + * The +UMA_FRITM_SZ added to uk_size is to account for the + * linkage that is added to the size in keg_small_init(). If + * we don't account for this here then we may end up in + * keg_small_init() with a calculated 'ipers' of 0. + */ + if (keg->uk_flags & UMA_ZONE_REFCNT) { + if (keg->uk_flags & UMA_ZONE_CACHESPREAD) + keg_cachespread_init(keg); + else if ((keg->uk_size+UMA_FRITMREF_SZ) > + (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt))) + keg_large_init(keg); + else + keg_small_init(keg); + } else { + if (keg->uk_flags & UMA_ZONE_CACHESPREAD) + keg_cachespread_init(keg); + else if ((keg->uk_size+UMA_FRITM_SZ) > + (UMA_SLAB_SIZE - sizeof(struct uma_slab))) + keg_large_init(keg); + else + keg_small_init(keg); + } + + if (keg->uk_flags & UMA_ZONE_OFFPAGE) { + if (keg->uk_flags & UMA_ZONE_REFCNT) + keg->uk_slabzone = slabrefzone; + else + keg->uk_slabzone = slabzone; + } + + /* + * If we haven't booted yet we need allocations to go through the + * startup cache until the vm is ready. + */ + if (keg->uk_ppera == 1) { +#ifdef UMA_MD_SMALL_ALLOC + keg->uk_allocf = uma_small_alloc; + keg->uk_freef = uma_small_free; +#endif + if (booted == 0) + keg->uk_allocf = startup_alloc; + } else if (booted == 0 && (keg->uk_flags & UMA_ZFLAG_INTERNAL)) + keg->uk_allocf = startup_alloc; + + /* + * Initialize keg's lock (shared among zones). + */ + if (arg->flags & UMA_ZONE_MTXCLASS) + KEG_LOCK_INIT(keg, 1); + else + KEG_LOCK_INIT(keg, 0); + + /* + * If we're putting the slab header in the actual page we need to + * figure out where in each page it goes. This calculates a right + * justified offset into the memory on an ALIGN_PTR boundary. + */ + if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { + u_int totsize; + + /* Size of the slab struct and free list */ + if (keg->uk_flags & UMA_ZONE_REFCNT) + totsize = sizeof(struct uma_slab_refcnt) + + keg->uk_ipers * UMA_FRITMREF_SZ; + else + totsize = sizeof(struct uma_slab) + + keg->uk_ipers * UMA_FRITM_SZ; + + if (totsize & UMA_ALIGN_PTR) + totsize = (totsize & ~UMA_ALIGN_PTR) + + (UMA_ALIGN_PTR + 1); + keg->uk_pgoff = (UMA_SLAB_SIZE * keg->uk_ppera) - totsize; + + if (keg->uk_flags & UMA_ZONE_REFCNT) + totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt) + + keg->uk_ipers * UMA_FRITMREF_SZ; + else + totsize = keg->uk_pgoff + sizeof(struct uma_slab) + + keg->uk_ipers * UMA_FRITM_SZ; + + /* + * The only way the following is possible is if with our + * UMA_ALIGN_PTR adjustments we are now bigger than + * UMA_SLAB_SIZE. I haven't checked whether this is + * mathematically possible for all cases, so we make + * sure here anyway. + */ + if (totsize > UMA_SLAB_SIZE * keg->uk_ppera) { + printf("zone %s ipers %d rsize %d size %d\n", + zone->uz_name, keg->uk_ipers, keg->uk_rsize, + keg->uk_size); + panic("UMA slab won't fit."); + } + } + + if (keg->uk_flags & UMA_ZONE_HASH) + hash_alloc(&keg->uk_hash); + +#ifdef UMA_DEBUG + printf("UMA: %s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n", + zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, + keg->uk_ipers, keg->uk_ppera, + (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); +#endif + + LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); + + mtx_lock(&uma_mtx); + LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); + mtx_unlock(&uma_mtx); + return (0); +} + +/* + * Zone header ctor. This initializes all fields, locks, etc. + * + * Arguments/Returns follow uma_ctor specifications + * udata Actually uma_zctor_args + */ +static int +zone_ctor(void *mem, int size, void *udata, int flags) +{ + struct uma_zctor_args *arg = udata; + uma_zone_t zone = mem; + uma_zone_t z; + uma_keg_t keg; + + bzero(zone, size); + zone->uz_name = arg->name; + zone->uz_ctor = arg->ctor; + zone->uz_dtor = arg->dtor; + zone->uz_slab = zone_fetch_slab; + zone->uz_init = NULL; + zone->uz_fini = NULL; + zone->uz_allocs = 0; + zone->uz_frees = 0; + zone->uz_fails = 0; + zone->uz_fills = zone->uz_count = 0; + zone->uz_flags = 0; + keg = arg->keg; + + if (arg->flags & UMA_ZONE_SECONDARY) { + KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); + zone->uz_init = arg->uminit; + zone->uz_fini = arg->fini; + zone->uz_lock = &keg->uk_lock; + zone->uz_flags |= UMA_ZONE_SECONDARY; + mtx_lock(&uma_mtx); + ZONE_LOCK(zone); + LIST_FOREACH(z, &keg->uk_zones, uz_link) { + if (LIST_NEXT(z, uz_link) == NULL) { + LIST_INSERT_AFTER(z, zone, uz_link); + break; + } + } + ZONE_UNLOCK(zone); + mtx_unlock(&uma_mtx); + } else if (keg == NULL) { + if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, + arg->align, arg->flags)) == NULL) + return (ENOMEM); + } else { + struct uma_kctor_args karg; + int error; + + /* We should only be here from uma_startup() */ + karg.size = arg->size; + karg.uminit = arg->uminit; + karg.fini = arg->fini; + karg.align = arg->align; + karg.flags = arg->flags; + karg.zone = zone; + error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, + flags); + if (error) + return (error); + } + /* + * Link in the first keg. + */ + zone->uz_klink.kl_keg = keg; + LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); + zone->uz_lock = &keg->uk_lock; + zone->uz_size = keg->uk_size; + zone->uz_flags |= (keg->uk_flags & + (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); + + /* + * Some internal zones don't have room allocated for the per cpu + * caches. If we're internal, bail out here. + */ + if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { + KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, + ("Secondary zone requested UMA_ZFLAG_INTERNAL")); + return (0); + } + + if (keg->uk_flags & UMA_ZONE_MAXBUCKET) + zone->uz_count = BUCKET_MAX; + else if (keg->uk_ipers <= BUCKET_MAX) + zone->uz_count = keg->uk_ipers; + else + zone->uz_count = BUCKET_MAX; + return (0); +} + +/* + * Keg header dtor. This frees all data, destroys locks, frees the hash + * table and removes the keg from the global list. + * + * Arguments/Returns follow uma_dtor specifications + * udata unused + */ +static void +keg_dtor(void *arg, int size, void *udata) +{ + uma_keg_t keg; + + keg = (uma_keg_t)arg; + KEG_LOCK(keg); + if (keg->uk_free != 0) { + printf("Freed UMA keg was not empty (%d items). " + " Lost %d pages of memory.\n", + keg->uk_free, keg->uk_pages); + } + KEG_UNLOCK(keg); + + hash_free(&keg->uk_hash); + + KEG_LOCK_FINI(keg); +} + +/* + * Zone header dtor. + * + * Arguments/Returns follow uma_dtor specifications + * udata unused + */ +static void +zone_dtor(void *arg, int size, void *udata) +{ + uma_klink_t klink; + uma_zone_t zone; + uma_keg_t keg; + + zone = (uma_zone_t)arg; + keg = zone_first_keg(zone); + + if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) + cache_drain(zone); + + mtx_lock(&uma_mtx); + LIST_REMOVE(zone, uz_link); + mtx_unlock(&uma_mtx); + /* + * XXX there are some races here where + * the zone can be drained but zone lock + * released and then refilled before we + * remove it... we dont care for now + */ + zone_drain_wait(zone, M_WAITOK); + /* + * Unlink all of our kegs. + */ + while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { + klink->kl_keg = NULL; + LIST_REMOVE(klink, kl_link); + if (klink == &zone->uz_klink) + continue; + free(klink, M_TEMP); + } + /* + * We only destroy kegs from non secondary zones. + */ + if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { + mtx_lock(&uma_mtx); + LIST_REMOVE(keg, uk_link); + mtx_unlock(&uma_mtx); + zone_free_item(kegs, keg, NULL, SKIP_NONE, + ZFREE_STATFREE); + } +} + +/* + * Traverses every zone in the system and calls a callback + * + * Arguments: + * zfunc A pointer to a function which accepts a zone + * as an argument. + * + * Returns: + * Nothing + */ +static void +zone_foreach(void (*zfunc)(uma_zone_t)) +{ + uma_keg_t keg; + uma_zone_t zone; + + mtx_lock(&uma_mtx); + LIST_FOREACH(keg, &uma_kegs, uk_link) { + LIST_FOREACH(zone, &keg->uk_zones, uz_link) + zfunc(zone); + } + mtx_unlock(&uma_mtx); +} + +/* Public functions */ +/* See uma.h */ +void +uma_startup(void *bootmem, int boot_pages) +{ + struct uma_zctor_args args; + uma_slab_t slab; + u_int slabsize; + u_int objsize, totsize, wsize; + int i; + +#ifdef UMA_DEBUG + printf("Creating uma keg headers zone and keg.\n"); +#endif + mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); + + /* + * Figure out the maximum number of items-per-slab we'll have if + * we're using the OFFPAGE slab header to track free items, given + * all possible object sizes and the maximum desired wastage + * (UMA_MAX_WASTE). + * + * We iterate until we find an object size for + * which the calculated wastage in keg_small_init() will be + * enough to warrant OFFPAGE. Since wastedspace versus objsize + * is an overall increasing see-saw function, we find the smallest + * objsize such that the wastage is always acceptable for objects + * with that objsize or smaller. Since a smaller objsize always + * generates a larger possible uma_max_ipers, we use this computed + * objsize to calculate the largest ipers possible. Since the + * ipers calculated for OFFPAGE slab headers is always larger than + * the ipers initially calculated in keg_small_init(), we use + * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to + * obtain the maximum ipers possible for offpage slab headers. + * + * It should be noted that ipers versus objsize is an inversly + * proportional function which drops off rather quickly so as + * long as our UMA_MAX_WASTE is such that the objsize we calculate + * falls into the portion of the inverse relation AFTER the steep + * falloff, then uma_max_ipers shouldn't be too high (~10 on i386). + * + * Note that we have 8-bits (1 byte) to use as a freelist index + * inside the actual slab header itself and this is enough to + * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized + * object with offpage slab header would have ipers = + * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is + * 1 greater than what our byte-integer freelist index can + * accomodate, but we know that this situation never occurs as + * for UMA_SMALLEST_UNIT-sized objects, we will never calculate + * that we need to go to offpage slab headers. Or, if we do, + * then we trap that condition below and panic in the INVARIANTS case. + */ + wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE; + totsize = wsize; + objsize = UMA_SMALLEST_UNIT; + while (totsize >= wsize) { + totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) / + (objsize + UMA_FRITM_SZ); + totsize *= (UMA_FRITM_SZ + objsize); + objsize++; + } + if (objsize > UMA_SMALLEST_UNIT) + objsize--; + uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64); + + wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE; + totsize = wsize; + objsize = UMA_SMALLEST_UNIT; + while (totsize >= wsize) { + totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) / + (objsize + UMA_FRITMREF_SZ); + totsize *= (UMA_FRITMREF_SZ + objsize); + objsize++; + } + if (objsize > UMA_SMALLEST_UNIT) + objsize--; + uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64); + + KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255), + ("uma_startup: calculated uma_max_ipers values too large!")); + +#ifdef UMA_DEBUG + printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers); + printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n", + uma_max_ipers_ref); +#endif + + /* "manually" create the initial zone */ + args.name = "UMA Kegs"; + args.size = sizeof(struct uma_keg); + args.ctor = keg_ctor; + args.dtor = keg_dtor; + args.uminit = zero_init; + args.fini = NULL; + args.keg = &masterkeg; + args.align = 32 - 1; + args.flags = UMA_ZFLAG_INTERNAL; + /* The initial zone has no Per cpu queues so it's smaller */ + zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); + +#ifdef UMA_DEBUG + printf("Filling boot free list.\n"); +#endif + for (i = 0; i < boot_pages; i++) { + slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE)); + slab->us_data = (u_int8_t *)slab; + slab->us_flags = UMA_SLAB_BOOT; + LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); + } + mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); + +#ifdef UMA_DEBUG + printf("Creating uma zone headers zone and keg.\n"); +#endif + args.name = "UMA Zones"; + args.size = sizeof(struct uma_zone) + + (sizeof(struct uma_cache) * (mp_maxid + 1)); + args.ctor = zone_ctor; + args.dtor = zone_dtor; + args.uminit = zero_init; + args.fini = NULL; + args.keg = NULL; + args.align = 32 - 1; + args.flags = UMA_ZFLAG_INTERNAL; + /* The initial zone has no Per cpu queues so it's smaller */ + zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); + +#ifdef UMA_DEBUG + printf("Initializing pcpu cache locks.\n"); +#endif +#ifdef UMA_DEBUG + printf("Creating slab and hash zones.\n"); +#endif + + /* + * This is the max number of free list items we'll have with + * offpage slabs. + */ + slabsize = uma_max_ipers * UMA_FRITM_SZ; + slabsize += sizeof(struct uma_slab); + + /* Now make a zone for slab headers */ + slabzone = uma_zcreate("UMA Slabs", + slabsize, + NULL, NULL, NULL, NULL, + UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); + + /* + * We also create a zone for the bigger slabs with reference + * counts in them, to accomodate UMA_ZONE_REFCNT zones. + */ + slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ; + slabsize += sizeof(struct uma_slab_refcnt); + slabrefzone = uma_zcreate("UMA RCntSlabs", + slabsize, + NULL, NULL, NULL, NULL, + UMA_ALIGN_PTR, + UMA_ZFLAG_INTERNAL); + + hashzone = uma_zcreate("UMA Hash", + sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, + NULL, NULL, NULL, NULL, + UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); + + bucket_init(); + +#if defined(UMA_MD_SMALL_ALLOC) && !defined(UMA_MD_SMALL_ALLOC_NEEDS_VM) + booted = 1; +#endif + +#ifdef UMA_DEBUG + printf("UMA startup complete.\n"); +#endif +} + +#ifndef __rtems__ +/* see uma.h */ +void +uma_startup2(void) +{ + booted = 1; + bucket_enable(); +#ifdef UMA_DEBUG + printf("UMA startup2 complete.\n"); +#endif +} + +/* + * Initialize our callout handle + * + */ + +static void +uma_startup3(void) +{ +#ifdef UMA_DEBUG + printf("Starting callout.\n"); +#endif + callout_init(&uma_callout, CALLOUT_MPSAFE); + callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); +#ifdef UMA_DEBUG + printf("UMA startup3 complete.\n"); +#endif +} +#endif /* __rtems__ */ + +static uma_keg_t +uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, + int align, u_int32_t flags) +{ + struct uma_kctor_args args; + + args.size = size; + args.uminit = uminit; + args.fini = fini; + args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; + args.flags = flags; + args.zone = zone; + return (zone_alloc_item(kegs, &args, M_WAITOK)); +} + +/* See uma.h */ +void +uma_set_align(int align) +{ + + if (align != UMA_ALIGN_CACHE) + uma_align_cache = align; +} + +/* See uma.h */ +uma_zone_t +uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor, + uma_init uminit, uma_fini fini, int align, u_int32_t flags) + +{ + struct uma_zctor_args args; + + /* This stuff is essential for the zone ctor */ + args.name = name; + args.size = size; + args.ctor = ctor; + args.dtor = dtor; + args.uminit = uminit; + args.fini = fini; + args.align = align; + args.flags = flags; + args.keg = NULL; + + return (zone_alloc_item(zones, &args, M_WAITOK)); +} + +/* See uma.h */ +uma_zone_t +uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, + uma_init zinit, uma_fini zfini, uma_zone_t master) +{ + struct uma_zctor_args args; + uma_keg_t keg; + + keg = zone_first_keg(master); + args.name = name; + args.size = keg->uk_size; + args.ctor = ctor; + args.dtor = dtor; + args.uminit = zinit; + args.fini = zfini; + args.align = keg->uk_align; + args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; + args.keg = keg; + + /* XXX Attaches only one keg of potentially many. */ + return (zone_alloc_item(zones, &args, M_WAITOK)); +} + +static void +zone_lock_pair(uma_zone_t a, uma_zone_t b) +{ + if (a < b) { + ZONE_LOCK(a); + mtx_lock_flags(b->uz_lock, MTX_DUPOK); + } else { + ZONE_LOCK(b); + mtx_lock_flags(a->uz_lock, MTX_DUPOK); + } +} + +static void +zone_unlock_pair(uma_zone_t a, uma_zone_t b) +{ + + ZONE_UNLOCK(a); + ZONE_UNLOCK(b); +} + +#ifndef __rtems__ +int +uma_zsecond_add(uma_zone_t zone, uma_zone_t master) +{ + uma_klink_t klink; + uma_klink_t kl; + int error; + + error = 0; + klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); + + zone_lock_pair(zone, master); + /* + * zone must use vtoslab() to resolve objects and must already be + * a secondary. + */ + if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) + != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { + error = EINVAL; + goto out; + } + /* + * The new master must also use vtoslab(). + */ + if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { + error = EINVAL; + goto out; + } + /* + * Both must either be refcnt, or not be refcnt. + */ + if ((zone->uz_flags & UMA_ZONE_REFCNT) != + (master->uz_flags & UMA_ZONE_REFCNT)) { + error = EINVAL; + goto out; + } + /* + * The underlying object must be the same size. rsize + * may be different. + */ + if (master->uz_size != zone->uz_size) { + error = E2BIG; + goto out; + } + /* + * Put it at the end of the list. + */ + klink->kl_keg = zone_first_keg(master); + LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { + if (LIST_NEXT(kl, kl_link) == NULL) { + LIST_INSERT_AFTER(kl, klink, kl_link); + break; + } + } + klink = NULL; + zone->uz_flags |= UMA_ZFLAG_MULTI; + zone->uz_slab = zone_fetch_slab_multi; + +out: + zone_unlock_pair(zone, master); + if (klink != NULL) + free(klink, M_TEMP); + + return (error); +} +#endif /* __rtems__ */ + + +/* See uma.h */ +void +uma_zdestroy(uma_zone_t zone) +{ + + zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE); +} + +/* See uma.h */ +void * +uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) +{ + void *item; + uma_cache_t cache; + uma_bucket_t bucket; + int cpu; + + /* This is the fast path allocation */ +#ifdef UMA_DEBUG_ALLOC_1 + printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); +#endif + CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, + zone->uz_name, flags); + + if (flags & M_WAITOK) { + WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, + "uma_zalloc_arg: zone \"%s\"", zone->uz_name); + } + + /* + * If possible, allocate from the per-CPU cache. There are two + * requirements for safe access to the per-CPU cache: (1) the thread + * accessing the cache must not be preempted or yield during access, + * and (2) the thread must not migrate CPUs without switching which + * cache it accesses. We rely on a critical section to prevent + * preemption and migration. We release the critical section in + * order to acquire the zone mutex if we are unable to allocate from + * the current cache; when we re-acquire the critical section, we + * must detect and handle migration if it has occurred. + */ +zalloc_restart: + critical_enter(); + cpu = curcpu; + cache = &zone->uz_cpu[cpu]; + +zalloc_start: + bucket = cache->uc_allocbucket; + + if (bucket) { + if (bucket->ub_cnt > 0) { + bucket->ub_cnt--; + item = bucket->ub_bucket[bucket->ub_cnt]; +#ifdef INVARIANTS + bucket->ub_bucket[bucket->ub_cnt] = NULL; +#endif + KASSERT(item != NULL, + ("uma_zalloc: Bucket pointer mangled.")); + cache->uc_allocs++; + critical_exit(); +#ifdef INVARIANTS + ZONE_LOCK(zone); + uma_dbg_alloc(zone, NULL, item); + ZONE_UNLOCK(zone); +#endif + if (zone->uz_ctor != NULL) { + if (zone->uz_ctor(item, zone->uz_size, + udata, flags) != 0) { + zone_free_item(zone, item, udata, + SKIP_DTOR, ZFREE_STATFAIL | + ZFREE_STATFREE); + return (NULL); + } + } + if (flags & M_ZERO) + bzero(item, zone->uz_size); + return (item); + } else if (cache->uc_freebucket) { + /* + * We have run out of items in our allocbucket. + * See if we can switch with our free bucket. + */ + if (cache->uc_freebucket->ub_cnt > 0) { +#ifdef UMA_DEBUG_ALLOC + printf("uma_zalloc: Swapping empty with" + " alloc.\n"); +#endif + bucket = cache->uc_freebucket; + cache->uc_freebucket = cache->uc_allocbucket; + cache->uc_allocbucket = bucket; + + goto zalloc_start; + } + } + } + /* + * Attempt to retrieve the item from the per-CPU cache has failed, so + * we must go back to the zone. This requires the zone lock, so we + * must drop the critical section, then re-acquire it when we go back + * to the cache. Since the critical section is released, we may be + * preempted or migrate. As such, make sure not to maintain any + * thread-local state specific to the cache from prior to releasing + * the critical section. + */ + critical_exit(); + ZONE_LOCK(zone); + critical_enter(); + cpu = curcpu; + cache = &zone->uz_cpu[cpu]; + bucket = cache->uc_allocbucket; + if (bucket != NULL) { + if (bucket->ub_cnt > 0) { + ZONE_UNLOCK(zone); + goto zalloc_start; + } + bucket = cache->uc_freebucket; + if (bucket != NULL && bucket->ub_cnt > 0) { + ZONE_UNLOCK(zone); + goto zalloc_start; + } + } + + /* Since we have locked the zone we may as well send back our stats */ + zone->uz_allocs += cache->uc_allocs; + cache->uc_allocs = 0; + zone->uz_frees += cache->uc_frees; + cache->uc_frees = 0; + + /* Our old one is now a free bucket */ + if (cache->uc_allocbucket) { + KASSERT(cache->uc_allocbucket->ub_cnt == 0, + ("uma_zalloc_arg: Freeing a non free bucket.")); + LIST_INSERT_HEAD(&zone->uz_free_bucket, + cache->uc_allocbucket, ub_link); + cache->uc_allocbucket = NULL; + } + + /* Check the free list for a new alloc bucket */ + if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { + KASSERT(bucket->ub_cnt != 0, + ("uma_zalloc_arg: Returning an empty bucket.")); + + LIST_REMOVE(bucket, ub_link); + cache->uc_allocbucket = bucket; + ZONE_UNLOCK(zone); + goto zalloc_start; + } + /* We are no longer associated with this CPU. */ + critical_exit(); + + /* Bump up our uz_count so we get here less */ + if (zone->uz_count < BUCKET_MAX) + zone->uz_count++; + + /* + * Now lets just fill a bucket and put it on the free list. If that + * works we'll restart the allocation from the begining. + */ + if (zone_alloc_bucket(zone, flags)) { + ZONE_UNLOCK(zone); + goto zalloc_restart; + } + ZONE_UNLOCK(zone); + /* + * We may not be able to get a bucket so return an actual item. + */ +#ifdef UMA_DEBUG + printf("uma_zalloc_arg: Bucketzone returned NULL\n"); +#endif + + item = zone_alloc_item(zone, udata, flags); + return (item); +} + +static uma_slab_t +keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) +{ + uma_slab_t slab; + + mtx_assert(&keg->uk_lock, MA_OWNED); + slab = NULL; + + for (;;) { + /* + * Find a slab with some space. Prefer slabs that are partially + * used over those that are totally full. This helps to reduce + * fragmentation. + */ + if (keg->uk_free != 0) { + if (!LIST_EMPTY(&keg->uk_part_slab)) { + slab = LIST_FIRST(&keg->uk_part_slab); + } else { + slab = LIST_FIRST(&keg->uk_free_slab); + LIST_REMOVE(slab, us_link); + LIST_INSERT_HEAD(&keg->uk_part_slab, slab, + us_link); + } + MPASS(slab->us_keg == keg); + return (slab); + } + + /* + * M_NOVM means don't ask at all! + */ + if (flags & M_NOVM) + break; + + if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { + keg->uk_flags |= UMA_ZFLAG_FULL; + /* + * If this is not a multi-zone, set the FULL bit. + * Otherwise slab_multi() takes care of it. + */ + if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) + zone->uz_flags |= UMA_ZFLAG_FULL; + if (flags & M_NOWAIT) + break; + msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); + continue; + } + keg->uk_recurse++; + slab = keg_alloc_slab(keg, zone, flags); + keg->uk_recurse--; + /* + * If we got a slab here it's safe to mark it partially used + * and return. We assume that the caller is going to remove + * at least one item. + */ + if (slab) { + MPASS(slab->us_keg == keg); + LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); + return (slab); + } + /* + * We might not have been able to get a slab but another cpu + * could have while we were unlocked. Check again before we + * fail. + */ + flags |= M_NOVM; + } + return (slab); +} + +static inline void +zone_relock(uma_zone_t zone, uma_keg_t keg) +{ + if (zone->uz_lock != &keg->uk_lock) { + KEG_UNLOCK(keg); + ZONE_LOCK(zone); + } +} + +static inline void +keg_relock(uma_keg_t keg, uma_zone_t zone) +{ + if (zone->uz_lock != &keg->uk_lock) { + ZONE_UNLOCK(zone); + KEG_LOCK(keg); + } +} + +static uma_slab_t +zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) +{ + uma_slab_t slab; + + if (keg == NULL) + keg = zone_first_keg(zone); + /* + * This is to prevent us from recursively trying to allocate + * buckets. The problem is that if an allocation forces us to + * grab a new bucket we will call page_alloc, which will go off + * and cause the vm to allocate vm_map_entries. If we need new + * buckets there too we will recurse in kmem_alloc and bad + * things happen. So instead we return a NULL bucket, and make + * the code that allocates buckets smart enough to deal with it + */ + if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0) + return (NULL); + + for (;;) { + slab = keg_fetch_slab(keg, zone, flags); + if (slab) + return (slab); + if (flags & (M_NOWAIT | M_NOVM)) + break; + } + return (NULL); +} + +/* + * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns + * with the keg locked. Caller must call zone_relock() afterwards if the + * zone lock is required. On NULL the zone lock is held. + * + * The last pointer is used to seed the search. It is not required. + */ +static uma_slab_t +zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) +{ + uma_klink_t klink; + uma_slab_t slab; + uma_keg_t keg; + int flags; + int empty; + int full; + + /* + * Don't wait on the first pass. This will skip limit tests + * as well. We don't want to block if we can find a provider + * without blocking. + */ + flags = (rflags & ~M_WAITOK) | M_NOWAIT; + /* + * Use the last slab allocated as a hint for where to start + * the search. + */ + if (last) { + slab = keg_fetch_slab(last, zone, flags); + if (slab) + return (slab); + zone_relock(zone, last); + last = NULL; + } + /* + * Loop until we have a slab incase of transient failures + * while M_WAITOK is specified. I'm not sure this is 100% + * required but we've done it for so long now. + */ + for (;;) { + empty = 0; + full = 0; + /* + * Search the available kegs for slabs. Be careful to hold the + * correct lock while calling into the keg layer. + */ + LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { + keg = klink->kl_keg; + keg_relock(keg, zone); + if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { + slab = keg_fetch_slab(keg, zone, flags); + if (slab) + return (slab); + } + if (keg->uk_flags & UMA_ZFLAG_FULL) + full++; + else + empty++; + zone_relock(zone, keg); + } + if (rflags & (M_NOWAIT | M_NOVM)) + break; + flags = rflags; + /* + * All kegs are full. XXX We can't atomically check all kegs + * and sleep so just sleep for a short period and retry. + */ + if (full && !empty) { + zone->uz_flags |= UMA_ZFLAG_FULL; + msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100); + zone->uz_flags &= ~UMA_ZFLAG_FULL; + continue; + } + } + return (NULL); +} + +static void * +slab_alloc_item(uma_zone_t zone, uma_slab_t slab) +{ + uma_keg_t keg; + uma_slabrefcnt_t slabref; + void *item; + u_int8_t freei; + + keg = slab->us_keg; + mtx_assert(&keg->uk_lock, MA_OWNED); + + freei = slab->us_firstfree; + if (keg->uk_flags & UMA_ZONE_REFCNT) { + slabref = (uma_slabrefcnt_t)slab; + slab->us_firstfree = slabref->us_freelist[freei].us_item; + } else { + slab->us_firstfree = slab->us_freelist[freei].us_item; + } + item = slab->us_data + (keg->uk_rsize * freei); + + slab->us_freecount--; + keg->uk_free--; +#ifdef INVARIANTS + uma_dbg_alloc(zone, slab, item); +#endif + /* Move this slab to the full list */ + if (slab->us_freecount == 0) { + LIST_REMOVE(slab, us_link); + LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); + } + + return (item); +} + +static int +zone_alloc_bucket(uma_zone_t zone, int flags) +{ + uma_bucket_t bucket; + uma_slab_t slab; + uma_keg_t keg; + int16_t saved; + int max, origflags = flags; + + /* + * Try this zone's free list first so we don't allocate extra buckets. + */ + if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { + KASSERT(bucket->ub_cnt == 0, + ("zone_alloc_bucket: Bucket on free list is not empty.")); + LIST_REMOVE(bucket, ub_link); + } else { + int bflags; + + bflags = (flags & ~M_ZERO); + if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) + bflags |= M_NOVM; + + ZONE_UNLOCK(zone); + bucket = bucket_alloc(zone->uz_count, bflags); + ZONE_LOCK(zone); + } + + if (bucket == NULL) { + return (0); + } + +#ifdef SMP + /* + * This code is here to limit the number of simultaneous bucket fills + * for any given zone to the number of per cpu caches in this zone. This + * is done so that we don't allocate more memory than we really need. + */ + if (zone->uz_fills >= mp_ncpus) + goto done; + +#endif + zone->uz_fills++; + + max = MIN(bucket->ub_entries, zone->uz_count); + /* Try to keep the buckets totally full */ + saved = bucket->ub_cnt; + slab = NULL; + keg = NULL; + while (bucket->ub_cnt < max && + (slab = zone->uz_slab(zone, keg, flags)) != NULL) { + keg = slab->us_keg; + while (slab->us_freecount && bucket->ub_cnt < max) { + bucket->ub_bucket[bucket->ub_cnt++] = + slab_alloc_item(zone, slab); + } + + /* Don't block on the next fill */ + flags |= M_NOWAIT; + } + if (slab) + zone_relock(zone, keg); + + /* + * We unlock here because we need to call the zone's init. + * It should be safe to unlock because the slab dealt with + * above is already on the appropriate list within the keg + * and the bucket we filled is not yet on any list, so we + * own it. + */ + if (zone->uz_init != NULL) { + int i; + + ZONE_UNLOCK(zone); + for (i = saved; i < bucket->ub_cnt; i++) + if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, + origflags) != 0) + break; + /* + * If we couldn't initialize the whole bucket, put the + * rest back onto the freelist. + */ + if (i != bucket->ub_cnt) { + int j; + + for (j = i; j < bucket->ub_cnt; j++) { + zone_free_item(zone, bucket->ub_bucket[j], + NULL, SKIP_FINI, 0); +#ifdef INVARIANTS + bucket->ub_bucket[j] = NULL; +#endif + } + bucket->ub_cnt = i; + } + ZONE_LOCK(zone); + } + + zone->uz_fills--; + if (bucket->ub_cnt != 0) { + LIST_INSERT_HEAD(&zone->uz_full_bucket, + bucket, ub_link); + return (1); + } +#ifdef SMP +done: +#endif + bucket_free(bucket); + + return (0); +} +/* + * Allocates an item for an internal zone + * + * Arguments + * zone The zone to alloc for. + * udata The data to be passed to the constructor. + * flags M_WAITOK, M_NOWAIT, M_ZERO. + * + * Returns + * NULL if there is no memory and M_NOWAIT is set + * An item if successful + */ + +static void * +zone_alloc_item(uma_zone_t zone, void *udata, int flags) +{ + uma_slab_t slab; + void *item; + + item = NULL; + +#ifdef UMA_DEBUG_ALLOC + printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); +#endif + ZONE_LOCK(zone); + + slab = zone->uz_slab(zone, NULL, flags); + if (slab == NULL) { + zone->uz_fails++; + ZONE_UNLOCK(zone); + return (NULL); + } + + item = slab_alloc_item(zone, slab); + + zone_relock(zone, slab->us_keg); + zone->uz_allocs++; + ZONE_UNLOCK(zone); + + /* + * We have to call both the zone's init (not the keg's init) + * and the zone's ctor. This is because the item is going from + * a keg slab directly to the user, and the user is expecting it + * to be both zone-init'd as well as zone-ctor'd. + */ + if (zone->uz_init != NULL) { + if (zone->uz_init(item, zone->uz_size, flags) != 0) { + zone_free_item(zone, item, udata, SKIP_FINI, + ZFREE_STATFAIL | ZFREE_STATFREE); + return (NULL); + } + } + if (zone->uz_ctor != NULL) { + if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { + zone_free_item(zone, item, udata, SKIP_DTOR, + ZFREE_STATFAIL | ZFREE_STATFREE); + return (NULL); + } + } + if (flags & M_ZERO) + bzero(item, zone->uz_size); + + return (item); +} + +/* See uma.h */ +void +uma_zfree_arg(uma_zone_t zone, void *item, void *udata) +{ + uma_cache_t cache; + uma_bucket_t bucket; + int bflags; + int cpu; + +#ifdef UMA_DEBUG_ALLOC_1 + printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); +#endif + CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, + zone->uz_name); + + /* uma_zfree(..., NULL) does nothing, to match free(9). */ + if (item == NULL) + return; + + if (zone->uz_dtor) + zone->uz_dtor(item, zone->uz_size, udata); + +#ifdef INVARIANTS + ZONE_LOCK(zone); + if (zone->uz_flags & UMA_ZONE_MALLOC) + uma_dbg_free(zone, udata, item); + else + uma_dbg_free(zone, NULL, item); + ZONE_UNLOCK(zone); +#endif + /* + * The race here is acceptable. If we miss it we'll just have to wait + * a little longer for the limits to be reset. + */ + if (zone->uz_flags & UMA_ZFLAG_FULL) + goto zfree_internal; + + /* + * If possible, free to the per-CPU cache. There are two + * requirements for safe access to the per-CPU cache: (1) the thread + * accessing the cache must not be preempted or yield during access, + * and (2) the thread must not migrate CPUs without switching which + * cache it accesses. We rely on a critical section to prevent + * preemption and migration. We release the critical section in + * order to acquire the zone mutex if we are unable to free to the + * current cache; when we re-acquire the critical section, we must + * detect and handle migration if it has occurred. + */ +zfree_restart: + critical_enter(); + cpu = curcpu; + cache = &zone->uz_cpu[cpu]; + +zfree_start: + bucket = cache->uc_freebucket; + + if (bucket) { + /* + * Do we have room in our bucket? It is OK for this uz count + * check to be slightly out of sync. + */ + + if (bucket->ub_cnt < bucket->ub_entries) { + KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, + ("uma_zfree: Freeing to non free bucket index.")); + bucket->ub_bucket[bucket->ub_cnt] = item; + bucket->ub_cnt++; + cache->uc_frees++; + critical_exit(); + return; + } else if (cache->uc_allocbucket) { +#ifdef UMA_DEBUG_ALLOC + printf("uma_zfree: Swapping buckets.\n"); +#endif + /* + * We have run out of space in our freebucket. + * See if we can switch with our alloc bucket. + */ + if (cache->uc_allocbucket->ub_cnt < + cache->uc_freebucket->ub_cnt) { + bucket = cache->uc_freebucket; + cache->uc_freebucket = cache->uc_allocbucket; + cache->uc_allocbucket = bucket; + goto zfree_start; + } + } + } + /* + * We can get here for two reasons: + * + * 1) The buckets are NULL + * 2) The alloc and free buckets are both somewhat full. + * + * We must go back the zone, which requires acquiring the zone lock, + * which in turn means we must release and re-acquire the critical + * section. Since the critical section is released, we may be + * preempted or migrate. As such, make sure not to maintain any + * thread-local state specific to the cache from prior to releasing + * the critical section. + */ + critical_exit(); + ZONE_LOCK(zone); + critical_enter(); + cpu = curcpu; + cache = &zone->uz_cpu[cpu]; + if (cache->uc_freebucket != NULL) { + if (cache->uc_freebucket->ub_cnt < + cache->uc_freebucket->ub_entries) { + ZONE_UNLOCK(zone); + goto zfree_start; + } + if (cache->uc_allocbucket != NULL && + (cache->uc_allocbucket->ub_cnt < + cache->uc_freebucket->ub_cnt)) { + ZONE_UNLOCK(zone); + goto zfree_start; + } + } + + /* Since we have locked the zone we may as well send back our stats */ + zone->uz_allocs += cache->uc_allocs; + cache->uc_allocs = 0; + zone->uz_frees += cache->uc_frees; + cache->uc_frees = 0; + + bucket = cache->uc_freebucket; + cache->uc_freebucket = NULL; + + /* Can we throw this on the zone full list? */ + if (bucket != NULL) { +#ifdef UMA_DEBUG_ALLOC + printf("uma_zfree: Putting old bucket on the free list.\n"); +#endif + /* ub_cnt is pointing to the last free item */ + KASSERT(bucket->ub_cnt != 0, + ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); + LIST_INSERT_HEAD(&zone->uz_full_bucket, + bucket, ub_link); + } + if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { + LIST_REMOVE(bucket, ub_link); + ZONE_UNLOCK(zone); + cache->uc_freebucket = bucket; + goto zfree_start; + } + /* We are no longer associated with this CPU. */ + critical_exit(); + + /* And the zone.. */ + ZONE_UNLOCK(zone); + +#ifdef UMA_DEBUG_ALLOC + printf("uma_zfree: Allocating new free bucket.\n"); +#endif + bflags = M_NOWAIT; + + if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) + bflags |= M_NOVM; + bucket = bucket_alloc(zone->uz_count, bflags); + if (bucket) { + ZONE_LOCK(zone); + LIST_INSERT_HEAD(&zone->uz_free_bucket, + bucket, ub_link); + ZONE_UNLOCK(zone); + goto zfree_restart; + } + + /* + * If nothing else caught this, we'll just do an internal free. + */ +zfree_internal: + zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE); + + return; +} + +/* + * Frees an item to an INTERNAL zone or allocates a free bucket + * + * Arguments: + * zone The zone to free to + * item The item we're freeing + * udata User supplied data for the dtor + * skip Skip dtors and finis + */ +static void +zone_free_item(uma_zone_t zone, void *item, void *udata, + enum zfreeskip skip, int flags) +{ + uma_slab_t slab; + uma_slabrefcnt_t slabref; + uma_keg_t keg; + u_int8_t *mem; + u_int8_t freei; + int clearfull; + + if (skip < SKIP_DTOR && zone->uz_dtor) + zone->uz_dtor(item, zone->uz_size, udata); + + if (skip < SKIP_FINI && zone->uz_fini) + zone->uz_fini(item, zone->uz_size); + + ZONE_LOCK(zone); + + if (flags & ZFREE_STATFAIL) + zone->uz_fails++; + if (flags & ZFREE_STATFREE) + zone->uz_frees++; + + if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { + mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK)); + keg = zone_first_keg(zone); /* Must only be one. */ + if (zone->uz_flags & UMA_ZONE_HASH) { + slab = hash_sfind(&keg->uk_hash, mem); + } else { + mem += keg->uk_pgoff; + slab = (uma_slab_t)mem; + } + } else { +#ifndef __rtems__ + /* This prevents redundant lookups via free(). */ + if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL) + slab = (uma_slab_t)udata; + else + slab = vtoslab((vm_offset_t)item); + keg = slab->us_keg; + keg_relock(keg, zone); +#else /* __rtems__ */ + panic("uma virtual memory not supported!" ); +#endif /* __rtems__ */ + } + MPASS(keg == slab->us_keg); + + /* Do we need to remove from any lists? */ + if (slab->us_freecount+1 == keg->uk_ipers) { + LIST_REMOVE(slab, us_link); + LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); + } else if (slab->us_freecount == 0) { + LIST_REMOVE(slab, us_link); + LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); + } + + /* Slab management stuff */ + freei = ((unsigned long)item - (unsigned long)slab->us_data) + / keg->uk_rsize; + +#ifdef INVARIANTS + if (!skip) + uma_dbg_free(zone, slab, item); +#endif + + if (keg->uk_flags & UMA_ZONE_REFCNT) { + slabref = (uma_slabrefcnt_t)slab; + slabref->us_freelist[freei].us_item = slab->us_firstfree; + } else { + slab->us_freelist[freei].us_item = slab->us_firstfree; + } + slab->us_firstfree = freei; + slab->us_freecount++; + + /* Zone statistics */ + keg->uk_free++; + + clearfull = 0; + if (keg->uk_flags & UMA_ZFLAG_FULL) { + if (keg->uk_pages < keg->uk_maxpages) { + keg->uk_flags &= ~UMA_ZFLAG_FULL; + clearfull = 1; + } + + /* + * We can handle one more allocation. Since we're clearing ZFLAG_FULL, + * wake up all procs blocked on pages. This should be uncommon, so + * keeping this simple for now (rather than adding count of blocked + * threads etc). + */ + wakeup(keg); + } + if (clearfull) { + zone_relock(zone, keg); + zone->uz_flags &= ~UMA_ZFLAG_FULL; + wakeup(zone); + ZONE_UNLOCK(zone); + } else + KEG_UNLOCK(keg); +} + +/* See uma.h */ +void +uma_zone_set_max(uma_zone_t zone, int nitems) +{ + uma_keg_t keg; + + ZONE_LOCK(zone); + keg = zone_first_keg(zone); + keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; + if (keg->uk_maxpages * keg->uk_ipers < nitems) + keg->uk_maxpages += keg->uk_ppera; + + ZONE_UNLOCK(zone); +} + +/* See uma.h */ +int +uma_zone_get_max(uma_zone_t zone) +{ + int nitems; + uma_keg_t keg; + + ZONE_LOCK(zone); + keg = zone_first_keg(zone); + nitems = keg->uk_maxpages * keg->uk_ipers; + ZONE_UNLOCK(zone); + + return (nitems); +} + +/* See uma.h */ +int +uma_zone_get_cur(uma_zone_t zone) +{ + int64_t nitems; + u_int i; + + ZONE_LOCK(zone); + nitems = zone->uz_allocs - zone->uz_frees; + CPU_FOREACH(i) { + /* + * See the comment in sysctl_vm_zone_stats() regarding the + * safety of accessing the per-cpu caches. With the zone lock + * held, it is safe, but can potentially result in stale data. + */ + nitems += zone->uz_cpu[i].uc_allocs - + zone->uz_cpu[i].uc_frees; + } + ZONE_UNLOCK(zone); + + return (nitems < 0 ? 0 : nitems); +} + +/* See uma.h */ +void +uma_zone_set_init(uma_zone_t zone, uma_init uminit) +{ + uma_keg_t keg; + + ZONE_LOCK(zone); + keg = zone_first_keg(zone); + KASSERT(keg->uk_pages == 0, + ("uma_zone_set_init on non-empty keg")); + keg->uk_init = uminit; + ZONE_UNLOCK(zone); +} + +/* See uma.h */ +void +uma_zone_set_fini(uma_zone_t zone, uma_fini fini) +{ + uma_keg_t keg; + + ZONE_LOCK(zone); + keg = zone_first_keg(zone); + KASSERT(keg->uk_pages == 0, + ("uma_zone_set_fini on non-empty keg")); + keg->uk_fini = fini; + ZONE_UNLOCK(zone); +} + +/* See uma.h */ +void +uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) +{ + ZONE_LOCK(zone); + KASSERT(zone_first_keg(zone)->uk_pages == 0, + ("uma_zone_set_zinit on non-empty keg")); + zone->uz_init = zinit; + ZONE_UNLOCK(zone); +} + +/* See uma.h */ +void +uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) +{ + ZONE_LOCK(zone); + KASSERT(zone_first_keg(zone)->uk_pages == 0, + ("uma_zone_set_zfini on non-empty keg")); + zone->uz_fini = zfini; + ZONE_UNLOCK(zone); +} + +/* See uma.h */ +/* XXX uk_freef is not actually used with the zone locked */ +void +uma_zone_set_freef(uma_zone_t zone, uma_free freef) +{ + + ZONE_LOCK(zone); + zone_first_keg(zone)->uk_freef = freef; + ZONE_UNLOCK(zone); +} + +/* See uma.h */ +/* XXX uk_allocf is not actually used with the zone locked */ +void +uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) +{ + uma_keg_t keg; + + ZONE_LOCK(zone); + keg = zone_first_keg(zone); + keg->uk_flags |= UMA_ZFLAG_PRIVALLOC; + keg->uk_allocf = allocf; + ZONE_UNLOCK(zone); +} + +#ifndef __rtems__ +/* See uma.h */ +int +uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count) +{ + uma_keg_t keg; + vm_offset_t kva; + int pages; + + keg = zone_first_keg(zone); + pages = count / keg->uk_ipers; + + if (pages * keg->uk_ipers < count) + pages++; + + kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE); + + if (kva == 0) + return (0); + if (obj == NULL) { + obj = vm_object_allocate(OBJT_DEFAULT, + pages); + } else { + VM_OBJECT_LOCK_INIT(obj, "uma object"); + _vm_object_allocate(OBJT_DEFAULT, + pages, obj); + } + ZONE_LOCK(zone); + keg->uk_kva = kva; + keg->uk_obj = obj; + keg->uk_maxpages = pages; + keg->uk_allocf = obj_alloc; + keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC; + ZONE_UNLOCK(zone); + return (1); +} +#endif /* __rtems__ */ + +/* See uma.h */ +void +uma_prealloc(uma_zone_t zone, int items) +{ + int slabs; + uma_slab_t slab; + uma_keg_t keg; + + keg = zone_first_keg(zone); + ZONE_LOCK(zone); + slabs = items / keg->uk_ipers; + if (slabs * keg->uk_ipers < items) + slabs++; + while (slabs > 0) { + slab = keg_alloc_slab(keg, zone, M_WAITOK); + if (slab == NULL) + break; + MPASS(slab->us_keg == keg); + LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); + slabs--; + } + ZONE_UNLOCK(zone); +} + +#ifndef __rtems__ +/* See uma.h */ +u_int32_t * +uma_find_refcnt(uma_zone_t zone, void *item) +{ + uma_slabrefcnt_t slabref; + uma_keg_t keg; + u_int32_t *refcnt; + int idx; + + slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item & + (~UMA_SLAB_MASK)); + keg = slabref->us_keg; + KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT, + ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); + idx = ((unsigned long)item - (unsigned long)slabref->us_data) + / keg->uk_rsize; + refcnt = &slabref->us_freelist[idx].us_refcnt; + return refcnt; +} +#endif /* __rtems__ */ + +/* See uma.h */ +void +uma_reclaim(void) +{ +#ifdef UMA_DEBUG + printf("UMA: vm asked us to release pages!\n"); +#endif +#ifndef __rtems__ + bucket_enable(); +#endif /* __rtems__ */ + zone_foreach(zone_drain); + /* + * Some slabs may have been freed but this zone will be visited early + * we visit again so that we can free pages that are empty once other + * zones are drained. We have to do the same for buckets. + */ + zone_drain(slabzone); + zone_drain(slabrefzone); + bucket_zone_drain(); +} + +/* See uma.h */ +int +uma_zone_exhausted(uma_zone_t zone) +{ + int full; + + ZONE_LOCK(zone); + full = (zone->uz_flags & UMA_ZFLAG_FULL); + ZONE_UNLOCK(zone); + return (full); +} + +int +uma_zone_exhausted_nolock(uma_zone_t zone) +{ + return (zone->uz_flags & UMA_ZFLAG_FULL); +} + +void * +uma_large_malloc(int size, int wait) +{ + void *mem; + uma_slab_t slab; + u_int8_t flags; + + slab = zone_alloc_item(slabzone, NULL, wait); + if (slab == NULL) + return (NULL); + mem = page_alloc(NULL, size, &flags, wait); + if (mem) { +#ifndef __rtems__ + vsetslab((vm_offset_t)mem, slab); +#endif /* __rtems__ */ + slab->us_data = mem; + slab->us_flags = flags | UMA_SLAB_MALLOC; + slab->us_size = size; + } else { + zone_free_item(slabzone, slab, NULL, SKIP_NONE, + ZFREE_STATFAIL | ZFREE_STATFREE); + } + + return (mem); +} + +void +uma_large_free(uma_slab_t slab) +{ +#ifndef __rtems__ + vsetobj((vm_offset_t)slab->us_data, kmem_object); +#endif /* __rtems__ */ + page_free(slab->us_data, slab->us_size, slab->us_flags); + zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE); +} + +void +uma_print_stats(void) +{ + zone_foreach(uma_print_zone); +} + +static void +slab_print(uma_slab_t slab) +{ + printf("slab: keg %p, data %p, freecount %d, firstfree %d\n", + slab->us_keg, slab->us_data, slab->us_freecount, + slab->us_firstfree); +} + +static void +cache_print(uma_cache_t cache) +{ + printf("alloc: %p(%d), free: %p(%d)\n", + cache->uc_allocbucket, + cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, + cache->uc_freebucket, + cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); +} + +static void +uma_print_keg(uma_keg_t keg) +{ + uma_slab_t slab; + + printf("keg: %s(%p) size %d(%d) flags %d ipers %d ppera %d " + "out %d free %d limit %d\n", + keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, + keg->uk_ipers, keg->uk_ppera, + (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, + (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); + printf("Part slabs:\n"); + LIST_FOREACH(slab, &keg->uk_part_slab, us_link) + slab_print(slab); + printf("Free slabs:\n"); + LIST_FOREACH(slab, &keg->uk_free_slab, us_link) + slab_print(slab); + printf("Full slabs:\n"); + LIST_FOREACH(slab, &keg->uk_full_slab, us_link) + slab_print(slab); +} + +void +uma_print_zone(uma_zone_t zone) +{ + uma_cache_t cache; + uma_klink_t kl; + int i; + + printf("zone: %s(%p) size %d flags %d\n", + zone->uz_name, zone, zone->uz_size, zone->uz_flags); + LIST_FOREACH(kl, &zone->uz_kegs, kl_link) + uma_print_keg(kl->kl_keg); + for (i = 0; i <= mp_maxid; i++) { + if (CPU_ABSENT(i)) + continue; + cache = &zone->uz_cpu[i]; + printf("CPU %d Cache:\n", i); + cache_print(cache); + } +} + +#ifndef __rtems__ +#ifdef DDB +/* + * Generate statistics across both the zone and its per-cpu cache's. Return + * desired statistics if the pointer is non-NULL for that statistic. + * + * Note: does not update the zone statistics, as it can't safely clear the + * per-CPU cache statistic. + * + * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't + * safe from off-CPU; we should modify the caches to track this information + * directly so that we don't have to. + */ +static void +uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp, + u_int64_t *freesp) +{ + uma_cache_t cache; + u_int64_t allocs, frees; + int cachefree, cpu; + + allocs = frees = 0; + cachefree = 0; + for (cpu = 0; cpu <= mp_maxid; cpu++) { + if (CPU_ABSENT(cpu)) + continue; + cache = &z->uz_cpu[cpu]; + if (cache->uc_allocbucket != NULL) + cachefree += cache->uc_allocbucket->ub_cnt; + if (cache->uc_freebucket != NULL) + cachefree += cache->uc_freebucket->ub_cnt; + allocs += cache->uc_allocs; + frees += cache->uc_frees; + } + allocs += z->uz_allocs; + frees += z->uz_frees; + if (cachefreep != NULL) + *cachefreep = cachefree; + if (allocsp != NULL) + *allocsp = allocs; + if (freesp != NULL) + *freesp = frees; +} +#endif /* DDB */ + +static int +sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) +{ + uma_keg_t kz; + uma_zone_t z; + int count; + + count = 0; + mtx_lock(&uma_mtx); + LIST_FOREACH(kz, &uma_kegs, uk_link) { + LIST_FOREACH(z, &kz->uk_zones, uz_link) + count++; + } + mtx_unlock(&uma_mtx); + return (sysctl_handle_int(oidp, &count, 0, req)); +} + +static int +sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) +{ + struct uma_stream_header ush; + struct uma_type_header uth; + struct uma_percpu_stat ups; + uma_bucket_t bucket; + struct sbuf sbuf; + uma_cache_t cache; + uma_klink_t kl; + uma_keg_t kz; + uma_zone_t z; + uma_keg_t k; + char *buffer; + int buflen, count, error, i; + + mtx_lock(&uma_mtx); +restart: + mtx_assert(&uma_mtx, MA_OWNED); + count = 0; + LIST_FOREACH(kz, &uma_kegs, uk_link) { + LIST_FOREACH(z, &kz->uk_zones, uz_link) + count++; + } + mtx_unlock(&uma_mtx); + + buflen = sizeof(ush) + count * (sizeof(uth) + sizeof(ups) * + (mp_maxid + 1)) + 1; + buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); + + mtx_lock(&uma_mtx); + i = 0; + LIST_FOREACH(kz, &uma_kegs, uk_link) { + LIST_FOREACH(z, &kz->uk_zones, uz_link) + i++; + } + if (i > count) { + free(buffer, M_TEMP); + goto restart; + } + count = i; + + sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN); + + /* + * Insert stream header. + */ + bzero(&ush, sizeof(ush)); + ush.ush_version = UMA_STREAM_VERSION; + ush.ush_maxcpus = (mp_maxid + 1); + ush.ush_count = count; + if (sbuf_bcat(&sbuf, &ush, sizeof(ush)) < 0) { + mtx_unlock(&uma_mtx); + error = ENOMEM; + goto out; + } + + LIST_FOREACH(kz, &uma_kegs, uk_link) { + LIST_FOREACH(z, &kz->uk_zones, uz_link) { + bzero(&uth, sizeof(uth)); + ZONE_LOCK(z); + strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); + uth.uth_align = kz->uk_align; + uth.uth_size = kz->uk_size; + uth.uth_rsize = kz->uk_rsize; + LIST_FOREACH(kl, &z->uz_kegs, kl_link) { + k = kl->kl_keg; + uth.uth_maxpages += k->uk_maxpages; + uth.uth_pages += k->uk_pages; + uth.uth_keg_free += k->uk_free; + uth.uth_limit = (k->uk_maxpages / k->uk_ppera) + * k->uk_ipers; + } + + /* + * A zone is secondary is it is not the first entry + * on the keg's zone list. + */ + if ((z->uz_flags & UMA_ZONE_SECONDARY) && + (LIST_FIRST(&kz->uk_zones) != z)) + uth.uth_zone_flags = UTH_ZONE_SECONDARY; + + LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) + uth.uth_zone_free += bucket->ub_cnt; + uth.uth_allocs = z->uz_allocs; + uth.uth_frees = z->uz_frees; + uth.uth_fails = z->uz_fails; + if (sbuf_bcat(&sbuf, &uth, sizeof(uth)) < 0) { + ZONE_UNLOCK(z); + mtx_unlock(&uma_mtx); + error = ENOMEM; + goto out; + } + /* + * While it is not normally safe to access the cache + * bucket pointers while not on the CPU that owns the + * cache, we only allow the pointers to be exchanged + * without the zone lock held, not invalidated, so + * accept the possible race associated with bucket + * exchange during monitoring. + */ + for (i = 0; i < (mp_maxid + 1); i++) { + bzero(&ups, sizeof(ups)); + if (kz->uk_flags & UMA_ZFLAG_INTERNAL) + goto skip; + if (CPU_ABSENT(i)) + goto skip; + cache = &z->uz_cpu[i]; + if (cache->uc_allocbucket != NULL) + ups.ups_cache_free += + cache->uc_allocbucket->ub_cnt; + if (cache->uc_freebucket != NULL) + ups.ups_cache_free += + cache->uc_freebucket->ub_cnt; + ups.ups_allocs = cache->uc_allocs; + ups.ups_frees = cache->uc_frees; +skip: + if (sbuf_bcat(&sbuf, &ups, sizeof(ups)) < 0) { + ZONE_UNLOCK(z); + mtx_unlock(&uma_mtx); + error = ENOMEM; + goto out; + } + } + ZONE_UNLOCK(z); + } + } + mtx_unlock(&uma_mtx); + sbuf_finish(&sbuf); + error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); +out: + free(buffer, M_TEMP); + return (error); +} + +#ifdef DDB +DB_SHOW_COMMAND(uma, db_show_uma) +{ + u_int64_t allocs, frees; + uma_bucket_t bucket; + uma_keg_t kz; + uma_zone_t z; + int cachefree; + + db_printf("%18s %8s %8s %8s %12s\n", "Zone", "Size", "Used", "Free", + "Requests"); + LIST_FOREACH(kz, &uma_kegs, uk_link) { + LIST_FOREACH(z, &kz->uk_zones, uz_link) { + if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { + allocs = z->uz_allocs; + frees = z->uz_frees; + cachefree = 0; + } else + uma_zone_sumstat(z, &cachefree, &allocs, + &frees); + if (!((z->uz_flags & UMA_ZONE_SECONDARY) && + (LIST_FIRST(&kz->uk_zones) != z))) + cachefree += kz->uk_free; + LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) + cachefree += bucket->ub_cnt; + db_printf("%18s %8ju %8jd %8d %12ju\n", z->uz_name, + (uintmax_t)kz->uk_size, + (intmax_t)(allocs - frees), cachefree, + (uintmax_t)allocs); + } + } +} +#endif +#endif /* __rtems__ */ -- cgit v1.2.3