summaryrefslogtreecommitdiffstats
path: root/freebsd/sys/kern/vfs_bio.c
diff options
context:
space:
mode:
Diffstat (limited to 'freebsd/sys/kern/vfs_bio.c')
-rw-r--r--freebsd/sys/kern/vfs_bio.c5474
1 files changed, 5474 insertions, 0 deletions
diff --git a/freebsd/sys/kern/vfs_bio.c b/freebsd/sys/kern/vfs_bio.c
new file mode 100644
index 00000000..2277bf67
--- /dev/null
+++ b/freebsd/sys/kern/vfs_bio.c
@@ -0,0 +1,5474 @@
+/*-
+ * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
+ *
+ * Copyright (c) 2004 Poul-Henning Kamp
+ * Copyright (c) 1994,1997 John S. Dyson
+ * Copyright (c) 2013 The FreeBSD Foundation
+ * All rights reserved.
+ *
+ * Portions of this software were developed by Konstantin Belousov
+ * under sponsorship from the FreeBSD Foundation.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+/*
+ * this file contains a new buffer I/O scheme implementing a coherent
+ * VM object and buffer cache scheme. Pains have been taken to make
+ * sure that the performance degradation associated with schemes such
+ * as this is not realized.
+ *
+ * Author: John S. Dyson
+ * Significant help during the development and debugging phases
+ * had been provided by David Greenman, also of the FreeBSD core team.
+ *
+ * see man buf(9) for more info.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/bio.h>
+#include <sys/bitset.h>
+#include <sys/conf.h>
+#include <sys/counter.h>
+#include <sys/buf.h>
+#include <sys/devicestat.h>
+#include <sys/eventhandler.h>
+#include <sys/fail.h>
+#include <sys/limits.h>
+#include <sys/lock.h>
+#include <sys/malloc.h>
+#include <sys/mount.h>
+#include <sys/mutex.h>
+#include <sys/kernel.h>
+#include <sys/kthread.h>
+#include <sys/proc.h>
+#include <sys/racct.h>
+#include <sys/resourcevar.h>
+#include <sys/rwlock.h>
+#include <sys/smp.h>
+#include <sys/sysctl.h>
+#include <sys/sysproto.h>
+#include <sys/vmem.h>
+#include <sys/vmmeter.h>
+#include <sys/vnode.h>
+#include <sys/watchdog.h>
+#include <geom/geom.h>
+#include <vm/vm.h>
+#include <vm/vm_param.h>
+#include <vm/vm_kern.h>
+#include <vm/vm_object.h>
+#include <vm/vm_page.h>
+#include <vm/vm_pageout.h>
+#include <vm/vm_pager.h>
+#include <vm/vm_extern.h>
+#include <vm/vm_map.h>
+#include <vm/swap_pager.h>
+#include "opt_swap.h"
+
+static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
+
+struct bio_ops bioops; /* I/O operation notification */
+
+struct buf_ops buf_ops_bio = {
+ .bop_name = "buf_ops_bio",
+ .bop_write = bufwrite,
+ .bop_strategy = bufstrategy,
+ .bop_sync = bufsync,
+ .bop_bdflush = bufbdflush,
+};
+
+struct bufqueue {
+ struct mtx_padalign bq_lock;
+ TAILQ_HEAD(, buf) bq_queue;
+ uint8_t bq_index;
+ uint16_t bq_subqueue;
+ int bq_len;
+} __aligned(CACHE_LINE_SIZE);
+
+#define BQ_LOCKPTR(bq) (&(bq)->bq_lock)
+#define BQ_LOCK(bq) mtx_lock(BQ_LOCKPTR((bq)))
+#define BQ_UNLOCK(bq) mtx_unlock(BQ_LOCKPTR((bq)))
+#define BQ_ASSERT_LOCKED(bq) mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
+
+struct bufdomain {
+ struct bufqueue bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
+ struct bufqueue bd_dirtyq;
+ struct bufqueue *bd_cleanq;
+ struct mtx_padalign bd_run_lock;
+ /* Constants */
+ long bd_maxbufspace;
+ long bd_hibufspace;
+ long bd_lobufspace;
+ long bd_bufspacethresh;
+ int bd_hifreebuffers;
+ int bd_lofreebuffers;
+ int bd_hidirtybuffers;
+ int bd_lodirtybuffers;
+ int bd_dirtybufthresh;
+ int bd_lim;
+ /* atomics */
+ int bd_wanted;
+ int __aligned(CACHE_LINE_SIZE) bd_numdirtybuffers;
+ int __aligned(CACHE_LINE_SIZE) bd_running;
+ long __aligned(CACHE_LINE_SIZE) bd_bufspace;
+ int __aligned(CACHE_LINE_SIZE) bd_freebuffers;
+} __aligned(CACHE_LINE_SIZE);
+
+#define BD_LOCKPTR(bd) (&(bd)->bd_cleanq->bq_lock)
+#define BD_LOCK(bd) mtx_lock(BD_LOCKPTR((bd)))
+#define BD_UNLOCK(bd) mtx_unlock(BD_LOCKPTR((bd)))
+#define BD_ASSERT_LOCKED(bd) mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
+#define BD_RUN_LOCKPTR(bd) (&(bd)->bd_run_lock)
+#define BD_RUN_LOCK(bd) mtx_lock(BD_RUN_LOCKPTR((bd)))
+#define BD_RUN_UNLOCK(bd) mtx_unlock(BD_RUN_LOCKPTR((bd)))
+#define BD_DOMAIN(bd) (bd - bdomain)
+
+static struct buf *buf; /* buffer header pool */
+extern struct buf *swbuf; /* Swap buffer header pool. */
+caddr_t __read_mostly unmapped_buf;
+
+/* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
+struct proc *bufdaemonproc;
+
+static int inmem(struct vnode *vp, daddr_t blkno);
+static void vm_hold_free_pages(struct buf *bp, int newbsize);
+static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
+ vm_offset_t to);
+static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
+static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
+ vm_page_t m);
+static void vfs_clean_pages_dirty_buf(struct buf *bp);
+static void vfs_setdirty_locked_object(struct buf *bp);
+static void vfs_vmio_invalidate(struct buf *bp);
+static void vfs_vmio_truncate(struct buf *bp, int npages);
+static void vfs_vmio_extend(struct buf *bp, int npages, int size);
+static int vfs_bio_clcheck(struct vnode *vp, int size,
+ daddr_t lblkno, daddr_t blkno);
+static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
+ void (*)(struct buf *));
+static int buf_flush(struct vnode *vp, struct bufdomain *, int);
+static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
+static void buf_daemon(void);
+static __inline void bd_wakeup(void);
+static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
+static void bufkva_reclaim(vmem_t *, int);
+static void bufkva_free(struct buf *);
+static int buf_import(void *, void **, int, int, int);
+static void buf_release(void *, void **, int);
+static void maxbcachebuf_adjust(void);
+static inline struct bufdomain *bufdomain(struct buf *);
+static void bq_remove(struct bufqueue *bq, struct buf *bp);
+static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
+static int buf_recycle(struct bufdomain *, bool kva);
+static void bq_init(struct bufqueue *bq, int qindex, int cpu,
+ const char *lockname);
+static void bd_init(struct bufdomain *bd);
+static int bd_flushall(struct bufdomain *bd);
+static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
+static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
+
+static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
+int vmiodirenable = TRUE;
+SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
+ "Use the VM system for directory writes");
+long runningbufspace;
+SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
+ "Amount of presently outstanding async buffer io");
+SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
+ NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
+static counter_u64_t bufkvaspace;
+SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
+ "Kernel virtual memory used for buffers");
+static long maxbufspace;
+SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
+ CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
+ __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
+ "Maximum allowed value of bufspace (including metadata)");
+static long bufmallocspace;
+SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
+ "Amount of malloced memory for buffers");
+static long maxbufmallocspace;
+SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
+ 0, "Maximum amount of malloced memory for buffers");
+static long lobufspace;
+SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
+ CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
+ __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
+ "Minimum amount of buffers we want to have");
+long hibufspace;
+SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
+ CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
+ __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
+ "Maximum allowed value of bufspace (excluding metadata)");
+long bufspacethresh;
+SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
+ CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
+ __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
+ "Bufspace consumed before waking the daemon to free some");
+static counter_u64_t buffreekvacnt;
+SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
+ "Number of times we have freed the KVA space from some buffer");
+static counter_u64_t bufdefragcnt;
+SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
+ "Number of times we have had to repeat buffer allocation to defragment");
+static long lorunningspace;
+SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
+ CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
+ "Minimum preferred space used for in-progress I/O");
+static long hirunningspace;
+SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
+ CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
+ "Maximum amount of space to use for in-progress I/O");
+int dirtybufferflushes;
+SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
+ 0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
+int bdwriteskip;
+SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
+ 0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
+int altbufferflushes;
+SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
+ 0, "Number of fsync flushes to limit dirty buffers");
+static int recursiveflushes;
+SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
+ 0, "Number of flushes skipped due to being recursive");
+static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
+SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
+ CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
+ "Number of buffers that are dirty (has unwritten changes) at the moment");
+static int lodirtybuffers;
+SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
+ CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
+ __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
+ "How many buffers we want to have free before bufdaemon can sleep");
+static int hidirtybuffers;
+SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
+ CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
+ __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
+ "When the number of dirty buffers is considered severe");
+int dirtybufthresh;
+SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
+ CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
+ __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
+ "Number of bdwrite to bawrite conversions to clear dirty buffers");
+static int numfreebuffers;
+SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
+ "Number of free buffers");
+static int lofreebuffers;
+SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
+ CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
+ __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
+ "Target number of free buffers");
+static int hifreebuffers;
+SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
+ CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
+ __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
+ "Threshold for clean buffer recycling");
+static counter_u64_t getnewbufcalls;
+SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
+ &getnewbufcalls, "Number of calls to getnewbuf");
+static counter_u64_t getnewbufrestarts;
+SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
+ &getnewbufrestarts,
+ "Number of times getnewbuf has had to restart a buffer acquisition");
+static counter_u64_t mappingrestarts;
+SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
+ &mappingrestarts,
+ "Number of times getblk has had to restart a buffer mapping for "
+ "unmapped buffer");
+static counter_u64_t numbufallocfails;
+SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
+ &numbufallocfails, "Number of times buffer allocations failed");
+static int flushbufqtarget = 100;
+SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
+ "Amount of work to do in flushbufqueues when helping bufdaemon");
+static counter_u64_t notbufdflushes;
+SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
+ "Number of dirty buffer flushes done by the bufdaemon helpers");
+static long barrierwrites;
+SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
+ "Number of barrier writes");
+SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
+ &unmapped_buf_allowed, 0,
+ "Permit the use of the unmapped i/o");
+int maxbcachebuf = MAXBCACHEBUF;
+SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
+ "Maximum size of a buffer cache block");
+
+/*
+ * This lock synchronizes access to bd_request.
+ */
+static struct mtx_padalign __exclusive_cache_line bdlock;
+
+/*
+ * This lock protects the runningbufreq and synchronizes runningbufwakeup and
+ * waitrunningbufspace().
+ */
+static struct mtx_padalign __exclusive_cache_line rbreqlock;
+
+/*
+ * Lock that protects bdirtywait.
+ */
+static struct mtx_padalign __exclusive_cache_line bdirtylock;
+
+/*
+ * Wakeup point for bufdaemon, as well as indicator of whether it is already
+ * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it
+ * is idling.
+ */
+static int bd_request;
+
+/*
+ * Request for the buf daemon to write more buffers than is indicated by
+ * lodirtybuf. This may be necessary to push out excess dependencies or
+ * defragment the address space where a simple count of the number of dirty
+ * buffers is insufficient to characterize the demand for flushing them.
+ */
+static int bd_speedupreq;
+
+/*
+ * Synchronization (sleep/wakeup) variable for active buffer space requests.
+ * Set when wait starts, cleared prior to wakeup().
+ * Used in runningbufwakeup() and waitrunningbufspace().
+ */
+static int runningbufreq;
+
+/*
+ * Synchronization for bwillwrite() waiters.
+ */
+static int bdirtywait;
+
+/*
+ * Definitions for the buffer free lists.
+ */
+#define QUEUE_NONE 0 /* on no queue */
+#define QUEUE_EMPTY 1 /* empty buffer headers */
+#define QUEUE_DIRTY 2 /* B_DELWRI buffers */
+#define QUEUE_CLEAN 3 /* non-B_DELWRI buffers */
+#define QUEUE_SENTINEL 4 /* not an queue index, but mark for sentinel */
+
+/* Maximum number of buffer domains. */
+#define BUF_DOMAINS 8
+
+struct bufdomainset bdlodirty; /* Domains > lodirty */
+struct bufdomainset bdhidirty; /* Domains > hidirty */
+
+/* Configured number of clean queues. */
+static int __read_mostly buf_domains;
+
+BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
+struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
+struct bufqueue __exclusive_cache_line bqempty;
+
+/*
+ * per-cpu empty buffer cache.
+ */
+uma_zone_t buf_zone;
+
+/*
+ * Single global constant for BUF_WMESG, to avoid getting multiple references.
+ * buf_wmesg is referred from macros.
+ */
+const char *buf_wmesg = BUF_WMESG;
+
+static int
+sysctl_runningspace(SYSCTL_HANDLER_ARGS)
+{
+ long value;
+ int error;
+
+ value = *(long *)arg1;
+ error = sysctl_handle_long(oidp, &value, 0, req);
+ if (error != 0 || req->newptr == NULL)
+ return (error);
+ mtx_lock(&rbreqlock);
+ if (arg1 == &hirunningspace) {
+ if (value < lorunningspace)
+ error = EINVAL;
+ else
+ hirunningspace = value;
+ } else {
+ KASSERT(arg1 == &lorunningspace,
+ ("%s: unknown arg1", __func__));
+ if (value > hirunningspace)
+ error = EINVAL;
+ else
+ lorunningspace = value;
+ }
+ mtx_unlock(&rbreqlock);
+ return (error);
+}
+
+static int
+sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
+{
+ int error;
+ int value;
+ int i;
+
+ value = *(int *)arg1;
+ error = sysctl_handle_int(oidp, &value, 0, req);
+ if (error != 0 || req->newptr == NULL)
+ return (error);
+ *(int *)arg1 = value;
+ for (i = 0; i < buf_domains; i++)
+ *(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
+ value / buf_domains;
+
+ return (error);
+}
+
+static int
+sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
+{
+ long value;
+ int error;
+ int i;
+
+ value = *(long *)arg1;
+ error = sysctl_handle_long(oidp, &value, 0, req);
+ if (error != 0 || req->newptr == NULL)
+ return (error);
+ *(long *)arg1 = value;
+ for (i = 0; i < buf_domains; i++)
+ *(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
+ value / buf_domains;
+
+ return (error);
+}
+
+#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
+ defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
+static int
+sysctl_bufspace(SYSCTL_HANDLER_ARGS)
+{
+ long lvalue;
+ int ivalue;
+ int i;
+
+ lvalue = 0;
+ for (i = 0; i < buf_domains; i++)
+ lvalue += bdomain[i].bd_bufspace;
+ if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
+ return (sysctl_handle_long(oidp, &lvalue, 0, req));
+ if (lvalue > INT_MAX)
+ /* On overflow, still write out a long to trigger ENOMEM. */
+ return (sysctl_handle_long(oidp, &lvalue, 0, req));
+ ivalue = lvalue;
+ return (sysctl_handle_int(oidp, &ivalue, 0, req));
+}
+#else
+static int
+sysctl_bufspace(SYSCTL_HANDLER_ARGS)
+{
+ long lvalue;
+ int i;
+
+ lvalue = 0;
+ for (i = 0; i < buf_domains; i++)
+ lvalue += bdomain[i].bd_bufspace;
+ return (sysctl_handle_long(oidp, &lvalue, 0, req));
+}
+#endif
+
+static int
+sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
+{
+ int value;
+ int i;
+
+ value = 0;
+ for (i = 0; i < buf_domains; i++)
+ value += bdomain[i].bd_numdirtybuffers;
+ return (sysctl_handle_int(oidp, &value, 0, req));
+}
+
+/*
+ * bdirtywakeup:
+ *
+ * Wakeup any bwillwrite() waiters.
+ */
+static void
+bdirtywakeup(void)
+{
+ mtx_lock(&bdirtylock);
+ if (bdirtywait) {
+ bdirtywait = 0;
+ wakeup(&bdirtywait);
+ }
+ mtx_unlock(&bdirtylock);
+}
+
+/*
+ * bd_clear:
+ *
+ * Clear a domain from the appropriate bitsets when dirtybuffers
+ * is decremented.
+ */
+static void
+bd_clear(struct bufdomain *bd)
+{
+
+ mtx_lock(&bdirtylock);
+ if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
+ BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
+ if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
+ BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
+ mtx_unlock(&bdirtylock);
+}
+
+/*
+ * bd_set:
+ *
+ * Set a domain in the appropriate bitsets when dirtybuffers
+ * is incremented.
+ */
+static void
+bd_set(struct bufdomain *bd)
+{
+
+ mtx_lock(&bdirtylock);
+ if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
+ BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
+ if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
+ BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
+ mtx_unlock(&bdirtylock);
+}
+
+/*
+ * bdirtysub:
+ *
+ * Decrement the numdirtybuffers count by one and wakeup any
+ * threads blocked in bwillwrite().
+ */
+static void
+bdirtysub(struct buf *bp)
+{
+ struct bufdomain *bd;
+ int num;
+
+ bd = bufdomain(bp);
+ num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
+ if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
+ bdirtywakeup();
+ if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
+ bd_clear(bd);
+}
+
+/*
+ * bdirtyadd:
+ *
+ * Increment the numdirtybuffers count by one and wakeup the buf
+ * daemon if needed.
+ */
+static void
+bdirtyadd(struct buf *bp)
+{
+ struct bufdomain *bd;
+ int num;
+
+ /*
+ * Only do the wakeup once as we cross the boundary. The
+ * buf daemon will keep running until the condition clears.
+ */
+ bd = bufdomain(bp);
+ num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
+ if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
+ bd_wakeup();
+ if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
+ bd_set(bd);
+}
+
+/*
+ * bufspace_daemon_wakeup:
+ *
+ * Wakeup the daemons responsible for freeing clean bufs.
+ */
+static void
+bufspace_daemon_wakeup(struct bufdomain *bd)
+{
+
+ /*
+ * avoid the lock if the daemon is running.
+ */
+ if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
+ BD_RUN_LOCK(bd);
+ atomic_store_int(&bd->bd_running, 1);
+ wakeup(&bd->bd_running);
+ BD_RUN_UNLOCK(bd);
+ }
+}
+
+/*
+ * bufspace_daemon_wait:
+ *
+ * Sleep until the domain falls below a limit or one second passes.
+ */
+static void
+bufspace_daemon_wait(struct bufdomain *bd)
+{
+ /*
+ * Re-check our limits and sleep. bd_running must be
+ * cleared prior to checking the limits to avoid missed
+ * wakeups. The waker will adjust one of bufspace or
+ * freebuffers prior to checking bd_running.
+ */
+ BD_RUN_LOCK(bd);
+ atomic_store_int(&bd->bd_running, 0);
+ if (bd->bd_bufspace < bd->bd_bufspacethresh &&
+ bd->bd_freebuffers > bd->bd_lofreebuffers) {
+ msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd), PRIBIO|PDROP,
+ "-", hz);
+ } else {
+ /* Avoid spurious wakeups while running. */
+ atomic_store_int(&bd->bd_running, 1);
+ BD_RUN_UNLOCK(bd);
+ }
+}
+
+/*
+ * bufspace_adjust:
+ *
+ * Adjust the reported bufspace for a KVA managed buffer, possibly
+ * waking any waiters.
+ */
+static void
+bufspace_adjust(struct buf *bp, int bufsize)
+{
+ struct bufdomain *bd;
+ long space;
+ int diff;
+
+ KASSERT((bp->b_flags & B_MALLOC) == 0,
+ ("bufspace_adjust: malloc buf %p", bp));
+ bd = bufdomain(bp);
+ diff = bufsize - bp->b_bufsize;
+ if (diff < 0) {
+ atomic_subtract_long(&bd->bd_bufspace, -diff);
+ } else if (diff > 0) {
+ space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
+ /* Wake up the daemon on the transition. */
+ if (space < bd->bd_bufspacethresh &&
+ space + diff >= bd->bd_bufspacethresh)
+ bufspace_daemon_wakeup(bd);
+ }
+ bp->b_bufsize = bufsize;
+}
+
+/*
+ * bufspace_reserve:
+ *
+ * Reserve bufspace before calling allocbuf(). metadata has a
+ * different space limit than data.
+ */
+static int
+bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
+{
+ long limit, new;
+ long space;
+
+ if (metadata)
+ limit = bd->bd_maxbufspace;
+ else
+ limit = bd->bd_hibufspace;
+ space = atomic_fetchadd_long(&bd->bd_bufspace, size);
+ new = space + size;
+ if (new > limit) {
+ atomic_subtract_long(&bd->bd_bufspace, size);
+ return (ENOSPC);
+ }
+
+ /* Wake up the daemon on the transition. */
+ if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
+ bufspace_daemon_wakeup(bd);
+
+ return (0);
+}
+
+/*
+ * bufspace_release:
+ *
+ * Release reserved bufspace after bufspace_adjust() has consumed it.
+ */
+static void
+bufspace_release(struct bufdomain *bd, int size)
+{
+
+ atomic_subtract_long(&bd->bd_bufspace, size);
+}
+
+/*
+ * bufspace_wait:
+ *
+ * Wait for bufspace, acting as the buf daemon if a locked vnode is
+ * supplied. bd_wanted must be set prior to polling for space. The
+ * operation must be re-tried on return.
+ */
+static void
+bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
+ int slpflag, int slptimeo)
+{
+ struct thread *td;
+ int error, fl, norunbuf;
+
+ if ((gbflags & GB_NOWAIT_BD) != 0)
+ return;
+
+ td = curthread;
+ BD_LOCK(bd);
+ while (bd->bd_wanted) {
+ if (vp != NULL && vp->v_type != VCHR &&
+ (td->td_pflags & TDP_BUFNEED) == 0) {
+ BD_UNLOCK(bd);
+ /*
+ * getblk() is called with a vnode locked, and
+ * some majority of the dirty buffers may as
+ * well belong to the vnode. Flushing the
+ * buffers there would make a progress that
+ * cannot be achieved by the buf_daemon, that
+ * cannot lock the vnode.
+ */
+ norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
+ (td->td_pflags & TDP_NORUNNINGBUF);
+
+ /*
+ * Play bufdaemon. The getnewbuf() function
+ * may be called while the thread owns lock
+ * for another dirty buffer for the same
+ * vnode, which makes it impossible to use
+ * VOP_FSYNC() there, due to the buffer lock
+ * recursion.
+ */
+ td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
+ fl = buf_flush(vp, bd, flushbufqtarget);
+ td->td_pflags &= norunbuf;
+ BD_LOCK(bd);
+ if (fl != 0)
+ continue;
+ if (bd->bd_wanted == 0)
+ break;
+ }
+ error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
+ (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
+ if (error != 0)
+ break;
+ }
+ BD_UNLOCK(bd);
+}
+
+
+/*
+ * bufspace_daemon:
+ *
+ * buffer space management daemon. Tries to maintain some marginal
+ * amount of free buffer space so that requesting processes neither
+ * block nor work to reclaim buffers.
+ */
+static void
+bufspace_daemon(void *arg)
+{
+ struct bufdomain *bd;
+
+ EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
+ SHUTDOWN_PRI_LAST + 100);
+
+ bd = arg;
+ for (;;) {
+ kthread_suspend_check();
+
+ /*
+ * Free buffers from the clean queue until we meet our
+ * targets.
+ *
+ * Theory of operation: The buffer cache is most efficient
+ * when some free buffer headers and space are always
+ * available to getnewbuf(). This daemon attempts to prevent
+ * the excessive blocking and synchronization associated
+ * with shortfall. It goes through three phases according
+ * demand:
+ *
+ * 1) The daemon wakes up voluntarily once per-second
+ * during idle periods when the counters are below
+ * the wakeup thresholds (bufspacethresh, lofreebuffers).
+ *
+ * 2) The daemon wakes up as we cross the thresholds
+ * ahead of any potential blocking. This may bounce
+ * slightly according to the rate of consumption and
+ * release.
+ *
+ * 3) The daemon and consumers are starved for working
+ * clean buffers. This is the 'bufspace' sleep below
+ * which will inefficiently trade bufs with bqrelse
+ * until we return to condition 2.
+ */
+ while (bd->bd_bufspace > bd->bd_lobufspace ||
+ bd->bd_freebuffers < bd->bd_hifreebuffers) {
+ if (buf_recycle(bd, false) != 0) {
+ if (bd_flushall(bd))
+ continue;
+ /*
+ * Speedup dirty if we've run out of clean
+ * buffers. This is possible in particular
+ * because softdep may held many bufs locked
+ * pending writes to other bufs which are
+ * marked for delayed write, exhausting
+ * clean space until they are written.
+ */
+ bd_speedup();
+ BD_LOCK(bd);
+ if (bd->bd_wanted) {
+ msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
+ PRIBIO|PDROP, "bufspace", hz/10);
+ } else
+ BD_UNLOCK(bd);
+ }
+ maybe_yield();
+ }
+ bufspace_daemon_wait(bd);
+ }
+}
+
+/*
+ * bufmallocadjust:
+ *
+ * Adjust the reported bufspace for a malloc managed buffer, possibly
+ * waking any waiters.
+ */
+static void
+bufmallocadjust(struct buf *bp, int bufsize)
+{
+ int diff;
+
+ KASSERT((bp->b_flags & B_MALLOC) != 0,
+ ("bufmallocadjust: non-malloc buf %p", bp));
+ diff = bufsize - bp->b_bufsize;
+ if (diff < 0)
+ atomic_subtract_long(&bufmallocspace, -diff);
+ else
+ atomic_add_long(&bufmallocspace, diff);
+ bp->b_bufsize = bufsize;
+}
+
+/*
+ * runningwakeup:
+ *
+ * Wake up processes that are waiting on asynchronous writes to fall
+ * below lorunningspace.
+ */
+static void
+runningwakeup(void)
+{
+
+ mtx_lock(&rbreqlock);
+ if (runningbufreq) {
+ runningbufreq = 0;
+ wakeup(&runningbufreq);
+ }
+ mtx_unlock(&rbreqlock);
+}
+
+/*
+ * runningbufwakeup:
+ *
+ * Decrement the outstanding write count according.
+ */
+void
+runningbufwakeup(struct buf *bp)
+{
+ long space, bspace;
+
+ bspace = bp->b_runningbufspace;
+ if (bspace == 0)
+ return;
+ space = atomic_fetchadd_long(&runningbufspace, -bspace);
+ KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
+ space, bspace));
+ bp->b_runningbufspace = 0;
+ /*
+ * Only acquire the lock and wakeup on the transition from exceeding
+ * the threshold to falling below it.
+ */
+ if (space < lorunningspace)
+ return;
+ if (space - bspace > lorunningspace)
+ return;
+ runningwakeup();
+}
+
+/*
+ * waitrunningbufspace()
+ *
+ * runningbufspace is a measure of the amount of I/O currently
+ * running. This routine is used in async-write situations to
+ * prevent creating huge backups of pending writes to a device.
+ * Only asynchronous writes are governed by this function.
+ *
+ * This does NOT turn an async write into a sync write. It waits
+ * for earlier writes to complete and generally returns before the
+ * caller's write has reached the device.
+ */
+void
+waitrunningbufspace(void)
+{
+
+ mtx_lock(&rbreqlock);
+ while (runningbufspace > hirunningspace) {
+ runningbufreq = 1;
+ msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
+ }
+ mtx_unlock(&rbreqlock);
+}
+
+
+/*
+ * vfs_buf_test_cache:
+ *
+ * Called when a buffer is extended. This function clears the B_CACHE
+ * bit if the newly extended portion of the buffer does not contain
+ * valid data.
+ */
+static __inline void
+vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
+ vm_offset_t size, vm_page_t m)
+{
+
+ VM_OBJECT_ASSERT_LOCKED(m->object);
+ if (bp->b_flags & B_CACHE) {
+ int base = (foff + off) & PAGE_MASK;
+ if (vm_page_is_valid(m, base, size) == 0)
+ bp->b_flags &= ~B_CACHE;
+ }
+}
+
+/* Wake up the buffer daemon if necessary */
+static void
+bd_wakeup(void)
+{
+
+ mtx_lock(&bdlock);
+ if (bd_request == 0) {
+ bd_request = 1;
+ wakeup(&bd_request);
+ }
+ mtx_unlock(&bdlock);
+}
+
+/*
+ * Adjust the maxbcachbuf tunable.
+ */
+static void
+maxbcachebuf_adjust(void)
+{
+ int i;
+
+ /*
+ * maxbcachebuf must be a power of 2 >= MAXBSIZE.
+ */
+ i = 2;
+ while (i * 2 <= maxbcachebuf)
+ i *= 2;
+ maxbcachebuf = i;
+ if (maxbcachebuf < MAXBSIZE)
+ maxbcachebuf = MAXBSIZE;
+ if (maxbcachebuf > MAXPHYS)
+ maxbcachebuf = MAXPHYS;
+ if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
+ printf("maxbcachebuf=%d\n", maxbcachebuf);
+}
+
+/*
+ * bd_speedup - speedup the buffer cache flushing code
+ */
+void
+bd_speedup(void)
+{
+ int needwake;
+
+ mtx_lock(&bdlock);
+ needwake = 0;
+ if (bd_speedupreq == 0 || bd_request == 0)
+ needwake = 1;
+ bd_speedupreq = 1;
+ bd_request = 1;
+ if (needwake)
+ wakeup(&bd_request);
+ mtx_unlock(&bdlock);
+}
+
+#ifndef NSWBUF_MIN
+#define NSWBUF_MIN 16
+#endif
+
+#ifdef __i386__
+#define TRANSIENT_DENOM 5
+#else
+#define TRANSIENT_DENOM 10
+#endif
+
+/*
+ * Calculating buffer cache scaling values and reserve space for buffer
+ * headers. This is called during low level kernel initialization and
+ * may be called more then once. We CANNOT write to the memory area
+ * being reserved at this time.
+ */
+caddr_t
+kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
+{
+ int tuned_nbuf;
+ long maxbuf, maxbuf_sz, buf_sz, biotmap_sz;
+
+ /*
+ * physmem_est is in pages. Convert it to kilobytes (assumes
+ * PAGE_SIZE is >= 1K)
+ */
+ physmem_est = physmem_est * (PAGE_SIZE / 1024);
+
+ maxbcachebuf_adjust();
+ /*
+ * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
+ * For the first 64MB of ram nominally allocate sufficient buffers to
+ * cover 1/4 of our ram. Beyond the first 64MB allocate additional
+ * buffers to cover 1/10 of our ram over 64MB. When auto-sizing
+ * the buffer cache we limit the eventual kva reservation to
+ * maxbcache bytes.
+ *
+ * factor represents the 1/4 x ram conversion.
+ */
+ if (nbuf == 0) {
+ int factor = 4 * BKVASIZE / 1024;
+
+ nbuf = 50;
+ if (physmem_est > 4096)
+ nbuf += min((physmem_est - 4096) / factor,
+ 65536 / factor);
+ if (physmem_est > 65536)
+ nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
+ 32 * 1024 * 1024 / (factor * 5));
+
+ if (maxbcache && nbuf > maxbcache / BKVASIZE)
+ nbuf = maxbcache / BKVASIZE;
+ tuned_nbuf = 1;
+ } else
+ tuned_nbuf = 0;
+
+ /* XXX Avoid unsigned long overflows later on with maxbufspace. */
+ maxbuf = (LONG_MAX / 3) / BKVASIZE;
+ if (nbuf > maxbuf) {
+ if (!tuned_nbuf)
+ printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
+ maxbuf);
+ nbuf = maxbuf;
+ }
+
+ /*
+ * Ideal allocation size for the transient bio submap is 10%
+ * of the maximal space buffer map. This roughly corresponds
+ * to the amount of the buffer mapped for typical UFS load.
+ *
+ * Clip the buffer map to reserve space for the transient
+ * BIOs, if its extent is bigger than 90% (80% on i386) of the
+ * maximum buffer map extent on the platform.
+ *
+ * The fall-back to the maxbuf in case of maxbcache unset,
+ * allows to not trim the buffer KVA for the architectures
+ * with ample KVA space.
+ */
+ if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
+ maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
+ buf_sz = (long)nbuf * BKVASIZE;
+ if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
+ (TRANSIENT_DENOM - 1)) {
+ /*
+ * There is more KVA than memory. Do not
+ * adjust buffer map size, and assign the rest
+ * of maxbuf to transient map.
+ */
+ biotmap_sz = maxbuf_sz - buf_sz;
+ } else {
+ /*
+ * Buffer map spans all KVA we could afford on
+ * this platform. Give 10% (20% on i386) of
+ * the buffer map to the transient bio map.
+ */
+ biotmap_sz = buf_sz / TRANSIENT_DENOM;
+ buf_sz -= biotmap_sz;
+ }
+ if (biotmap_sz / INT_MAX > MAXPHYS)
+ bio_transient_maxcnt = INT_MAX;
+ else
+ bio_transient_maxcnt = biotmap_sz / MAXPHYS;
+ /*
+ * Artificially limit to 1024 simultaneous in-flight I/Os
+ * using the transient mapping.
+ */
+ if (bio_transient_maxcnt > 1024)
+ bio_transient_maxcnt = 1024;
+ if (tuned_nbuf)
+ nbuf = buf_sz / BKVASIZE;
+ }
+
+ /*
+ * swbufs are used as temporary holders for I/O, such as paging I/O.
+ * We have no less then 16 and no more then 256.
+ */
+ nswbuf = min(nbuf / 4, 256);
+ TUNABLE_INT_FETCH("kern.nswbuf", &nswbuf);
+ if (nswbuf < NSWBUF_MIN)
+ nswbuf = NSWBUF_MIN;
+
+ /*
+ * Reserve space for the buffer cache buffers
+ */
+ swbuf = (void *)v;
+ v = (caddr_t)(swbuf + nswbuf);
+ buf = (void *)v;
+ v = (caddr_t)(buf + nbuf);
+
+ return(v);
+}
+
+/* Initialize the buffer subsystem. Called before use of any buffers. */
+void
+bufinit(void)
+{
+ struct buf *bp;
+ int i;
+
+ KASSERT(maxbcachebuf >= MAXBSIZE,
+ ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
+ MAXBSIZE));
+ bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
+ mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
+ mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
+ mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
+
+ unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
+
+ /* finally, initialize each buffer header and stick on empty q */
+ for (i = 0; i < nbuf; i++) {
+ bp = &buf[i];
+ bzero(bp, sizeof *bp);
+ bp->b_flags = B_INVAL;
+ bp->b_rcred = NOCRED;
+ bp->b_wcred = NOCRED;
+ bp->b_qindex = QUEUE_NONE;
+ bp->b_domain = -1;
+ bp->b_subqueue = mp_maxid + 1;
+ bp->b_xflags = 0;
+ bp->b_data = bp->b_kvabase = unmapped_buf;
+ LIST_INIT(&bp->b_dep);
+ BUF_LOCKINIT(bp);
+ bq_insert(&bqempty, bp, false);
+ }
+
+ /*
+ * maxbufspace is the absolute maximum amount of buffer space we are
+ * allowed to reserve in KVM and in real terms. The absolute maximum
+ * is nominally used by metadata. hibufspace is the nominal maximum
+ * used by most other requests. The differential is required to
+ * ensure that metadata deadlocks don't occur.
+ *
+ * maxbufspace is based on BKVASIZE. Allocating buffers larger then
+ * this may result in KVM fragmentation which is not handled optimally
+ * by the system. XXX This is less true with vmem. We could use
+ * PAGE_SIZE.
+ */
+ maxbufspace = (long)nbuf * BKVASIZE;
+ hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
+ lobufspace = (hibufspace / 20) * 19; /* 95% */
+ bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
+
+ /*
+ * Note: The 16 MiB upper limit for hirunningspace was chosen
+ * arbitrarily and may need further tuning. It corresponds to
+ * 128 outstanding write IO requests (if IO size is 128 KiB),
+ * which fits with many RAID controllers' tagged queuing limits.
+ * The lower 1 MiB limit is the historical upper limit for
+ * hirunningspace.
+ */
+ hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
+ 16 * 1024 * 1024), 1024 * 1024);
+ lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
+
+ /*
+ * Limit the amount of malloc memory since it is wired permanently into
+ * the kernel space. Even though this is accounted for in the buffer
+ * allocation, we don't want the malloced region to grow uncontrolled.
+ * The malloc scheme improves memory utilization significantly on
+ * average (small) directories.
+ */
+ maxbufmallocspace = hibufspace / 20;
+
+ /*
+ * Reduce the chance of a deadlock occurring by limiting the number
+ * of delayed-write dirty buffers we allow to stack up.
+ */
+ hidirtybuffers = nbuf / 4 + 20;
+ dirtybufthresh = hidirtybuffers * 9 / 10;
+ /*
+ * To support extreme low-memory systems, make sure hidirtybuffers
+ * cannot eat up all available buffer space. This occurs when our
+ * minimum cannot be met. We try to size hidirtybuffers to 3/4 our
+ * buffer space assuming BKVASIZE'd buffers.
+ */
+ while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
+ hidirtybuffers >>= 1;
+ }
+ lodirtybuffers = hidirtybuffers / 2;
+
+ /*
+ * lofreebuffers should be sufficient to avoid stalling waiting on
+ * buf headers under heavy utilization. The bufs in per-cpu caches
+ * are counted as free but will be unavailable to threads executing
+ * on other cpus.
+ *
+ * hifreebuffers is the free target for the bufspace daemon. This
+ * should be set appropriately to limit work per-iteration.
+ */
+ lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
+ hifreebuffers = (3 * lofreebuffers) / 2;
+ numfreebuffers = nbuf;
+
+ /* Setup the kva and free list allocators. */
+ vmem_set_reclaim(buffer_arena, bufkva_reclaim);
+ buf_zone = uma_zcache_create("buf free cache", sizeof(struct buf),
+ NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
+
+ /*
+ * Size the clean queue according to the amount of buffer space.
+ * One queue per-256mb up to the max. More queues gives better
+ * concurrency but less accurate LRU.
+ */
+ buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
+ for (i = 0 ; i < buf_domains; i++) {
+ struct bufdomain *bd;
+
+ bd = &bdomain[i];
+ bd_init(bd);
+ bd->bd_freebuffers = nbuf / buf_domains;
+ bd->bd_hifreebuffers = hifreebuffers / buf_domains;
+ bd->bd_lofreebuffers = lofreebuffers / buf_domains;
+ bd->bd_bufspace = 0;
+ bd->bd_maxbufspace = maxbufspace / buf_domains;
+ bd->bd_hibufspace = hibufspace / buf_domains;
+ bd->bd_lobufspace = lobufspace / buf_domains;
+ bd->bd_bufspacethresh = bufspacethresh / buf_domains;
+ bd->bd_numdirtybuffers = 0;
+ bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
+ bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
+ bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
+ /* Don't allow more than 2% of bufs in the per-cpu caches. */
+ bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
+ }
+ getnewbufcalls = counter_u64_alloc(M_WAITOK);
+ getnewbufrestarts = counter_u64_alloc(M_WAITOK);
+ mappingrestarts = counter_u64_alloc(M_WAITOK);
+ numbufallocfails = counter_u64_alloc(M_WAITOK);
+ notbufdflushes = counter_u64_alloc(M_WAITOK);
+ buffreekvacnt = counter_u64_alloc(M_WAITOK);
+ bufdefragcnt = counter_u64_alloc(M_WAITOK);
+ bufkvaspace = counter_u64_alloc(M_WAITOK);
+}
+
+#ifdef INVARIANTS
+static inline void
+vfs_buf_check_mapped(struct buf *bp)
+{
+
+ KASSERT(bp->b_kvabase != unmapped_buf,
+ ("mapped buf: b_kvabase was not updated %p", bp));
+ KASSERT(bp->b_data != unmapped_buf,
+ ("mapped buf: b_data was not updated %p", bp));
+ KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
+ MAXPHYS, ("b_data + b_offset unmapped %p", bp));
+}
+
+static inline void
+vfs_buf_check_unmapped(struct buf *bp)
+{
+
+ KASSERT(bp->b_data == unmapped_buf,
+ ("unmapped buf: corrupted b_data %p", bp));
+}
+
+#define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
+#define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
+#else
+#define BUF_CHECK_MAPPED(bp) do {} while (0)
+#define BUF_CHECK_UNMAPPED(bp) do {} while (0)
+#endif
+
+static int
+isbufbusy(struct buf *bp)
+{
+ if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
+ ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
+ return (1);
+ return (0);
+}
+
+/*
+ * Shutdown the system cleanly to prepare for reboot, halt, or power off.
+ */
+void
+bufshutdown(int show_busybufs)
+{
+ static int first_buf_printf = 1;
+ struct buf *bp;
+ int iter, nbusy, pbusy;
+#ifndef PREEMPTION
+ int subiter;
+#endif
+
+ /*
+ * Sync filesystems for shutdown
+ */
+ wdog_kern_pat(WD_LASTVAL);
+ sys_sync(curthread, NULL);
+
+ /*
+ * With soft updates, some buffers that are
+ * written will be remarked as dirty until other
+ * buffers are written.
+ */
+ for (iter = pbusy = 0; iter < 20; iter++) {
+ nbusy = 0;
+ for (bp = &buf[nbuf]; --bp >= buf; )
+ if (isbufbusy(bp))
+ nbusy++;
+ if (nbusy == 0) {
+ if (first_buf_printf)
+ printf("All buffers synced.");
+ break;
+ }
+ if (first_buf_printf) {
+ printf("Syncing disks, buffers remaining... ");
+ first_buf_printf = 0;
+ }
+ printf("%d ", nbusy);
+ if (nbusy < pbusy)
+ iter = 0;
+ pbusy = nbusy;
+
+ wdog_kern_pat(WD_LASTVAL);
+ sys_sync(curthread, NULL);
+
+#ifdef PREEMPTION
+ /*
+ * Spin for a while to allow interrupt threads to run.
+ */
+ DELAY(50000 * iter);
+#else
+ /*
+ * Context switch several times to allow interrupt
+ * threads to run.
+ */
+ for (subiter = 0; subiter < 50 * iter; subiter++) {
+ thread_lock(curthread);
+ mi_switch(SW_VOL, NULL);
+ thread_unlock(curthread);
+ DELAY(1000);
+ }
+#endif
+ }
+ printf("\n");
+ /*
+ * Count only busy local buffers to prevent forcing
+ * a fsck if we're just a client of a wedged NFS server
+ */
+ nbusy = 0;
+ for (bp = &buf[nbuf]; --bp >= buf; ) {
+ if (isbufbusy(bp)) {
+#if 0
+/* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */
+ if (bp->b_dev == NULL) {
+ TAILQ_REMOVE(&mountlist,
+ bp->b_vp->v_mount, mnt_list);
+ continue;
+ }
+#endif
+ nbusy++;
+ if (show_busybufs > 0) {
+ printf(
+ "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
+ nbusy, bp, bp->b_vp, bp->b_flags,
+ (intmax_t)bp->b_blkno,
+ (intmax_t)bp->b_lblkno);
+ BUF_LOCKPRINTINFO(bp);
+ if (show_busybufs > 1)
+ vn_printf(bp->b_vp,
+ "vnode content: ");
+ }
+ }
+ }
+ if (nbusy) {
+ /*
+ * Failed to sync all blocks. Indicate this and don't
+ * unmount filesystems (thus forcing an fsck on reboot).
+ */
+ printf("Giving up on %d buffers\n", nbusy);
+ DELAY(5000000); /* 5 seconds */
+ } else {
+ if (!first_buf_printf)
+ printf("Final sync complete\n");
+ /*
+ * Unmount filesystems
+ */
+ if (panicstr == NULL)
+ vfs_unmountall();
+ }
+ swapoff_all();
+ DELAY(100000); /* wait for console output to finish */
+}
+
+static void
+bpmap_qenter(struct buf *bp)
+{
+
+ BUF_CHECK_MAPPED(bp);
+
+ /*
+ * bp->b_data is relative to bp->b_offset, but
+ * bp->b_offset may be offset into the first page.
+ */
+ bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
+ pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
+ bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
+ (vm_offset_t)(bp->b_offset & PAGE_MASK));
+}
+
+static inline struct bufdomain *
+bufdomain(struct buf *bp)
+{
+
+ return (&bdomain[bp->b_domain]);
+}
+
+static struct bufqueue *
+bufqueue(struct buf *bp)
+{
+
+ switch (bp->b_qindex) {
+ case QUEUE_NONE:
+ /* FALLTHROUGH */
+ case QUEUE_SENTINEL:
+ return (NULL);
+ case QUEUE_EMPTY:
+ return (&bqempty);
+ case QUEUE_DIRTY:
+ return (&bufdomain(bp)->bd_dirtyq);
+ case QUEUE_CLEAN:
+ return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
+ default:
+ break;
+ }
+ panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
+}
+
+/*
+ * Return the locked bufqueue that bp is a member of.
+ */
+static struct bufqueue *
+bufqueue_acquire(struct buf *bp)
+{
+ struct bufqueue *bq, *nbq;
+
+ /*
+ * bp can be pushed from a per-cpu queue to the
+ * cleanq while we're waiting on the lock. Retry
+ * if the queues don't match.
+ */
+ bq = bufqueue(bp);
+ BQ_LOCK(bq);
+ for (;;) {
+ nbq = bufqueue(bp);
+ if (bq == nbq)
+ break;
+ BQ_UNLOCK(bq);
+ BQ_LOCK(nbq);
+ bq = nbq;
+ }
+ return (bq);
+}
+
+/*
+ * binsfree:
+ *
+ * Insert the buffer into the appropriate free list. Requires a
+ * locked buffer on entry and buffer is unlocked before return.
+ */
+static void
+binsfree(struct buf *bp, int qindex)
+{
+ struct bufdomain *bd;
+ struct bufqueue *bq;
+
+ KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
+ ("binsfree: Invalid qindex %d", qindex));
+ BUF_ASSERT_XLOCKED(bp);
+
+ /*
+ * Handle delayed bremfree() processing.
+ */
+ if (bp->b_flags & B_REMFREE) {
+ if (bp->b_qindex == qindex) {
+ bp->b_flags |= B_REUSE;
+ bp->b_flags &= ~B_REMFREE;
+ BUF_UNLOCK(bp);
+ return;
+ }
+ bq = bufqueue_acquire(bp);
+ bq_remove(bq, bp);
+ BQ_UNLOCK(bq);
+ }
+ bd = bufdomain(bp);
+ if (qindex == QUEUE_CLEAN) {
+ if (bd->bd_lim != 0)
+ bq = &bd->bd_subq[PCPU_GET(cpuid)];
+ else
+ bq = bd->bd_cleanq;
+ } else
+ bq = &bd->bd_dirtyq;
+ bq_insert(bq, bp, true);
+}
+
+/*
+ * buf_free:
+ *
+ * Free a buffer to the buf zone once it no longer has valid contents.
+ */
+static void
+buf_free(struct buf *bp)
+{
+
+ if (bp->b_flags & B_REMFREE)
+ bremfreef(bp);
+ if (bp->b_vflags & BV_BKGRDINPROG)
+ panic("losing buffer 1");
+ if (bp->b_rcred != NOCRED) {
+ crfree(bp->b_rcred);
+ bp->b_rcred = NOCRED;
+ }
+ if (bp->b_wcred != NOCRED) {
+ crfree(bp->b_wcred);
+ bp->b_wcred = NOCRED;
+ }
+ if (!LIST_EMPTY(&bp->b_dep))
+ buf_deallocate(bp);
+ bufkva_free(bp);
+ atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
+ BUF_UNLOCK(bp);
+ uma_zfree(buf_zone, bp);
+}
+
+/*
+ * buf_import:
+ *
+ * Import bufs into the uma cache from the buf list. The system still
+ * expects a static array of bufs and much of the synchronization
+ * around bufs assumes type stable storage. As a result, UMA is used
+ * only as a per-cpu cache of bufs still maintained on a global list.
+ */
+static int
+buf_import(void *arg, void **store, int cnt, int domain, int flags)
+{
+ struct buf *bp;
+ int i;
+
+ BQ_LOCK(&bqempty);
+ for (i = 0; i < cnt; i++) {
+ bp = TAILQ_FIRST(&bqempty.bq_queue);
+ if (bp == NULL)
+ break;
+ bq_remove(&bqempty, bp);
+ store[i] = bp;
+ }
+ BQ_UNLOCK(&bqempty);
+
+ return (i);
+}
+
+/*
+ * buf_release:
+ *
+ * Release bufs from the uma cache back to the buffer queues.
+ */
+static void
+buf_release(void *arg, void **store, int cnt)
+{
+ struct bufqueue *bq;
+ struct buf *bp;
+ int i;
+
+ bq = &bqempty;
+ BQ_LOCK(bq);
+ for (i = 0; i < cnt; i++) {
+ bp = store[i];
+ /* Inline bq_insert() to batch locking. */
+ TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
+ bp->b_flags &= ~(B_AGE | B_REUSE);
+ bq->bq_len++;
+ bp->b_qindex = bq->bq_index;
+ }
+ BQ_UNLOCK(bq);
+}
+
+/*
+ * buf_alloc:
+ *
+ * Allocate an empty buffer header.
+ */
+static struct buf *
+buf_alloc(struct bufdomain *bd)
+{
+ struct buf *bp;
+ int freebufs;
+
+ /*
+ * We can only run out of bufs in the buf zone if the average buf
+ * is less than BKVASIZE. In this case the actual wait/block will
+ * come from buf_reycle() failing to flush one of these small bufs.
+ */
+ bp = NULL;
+ freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
+ if (freebufs > 0)
+ bp = uma_zalloc(buf_zone, M_NOWAIT);
+ if (bp == NULL) {
+ atomic_add_int(&bd->bd_freebuffers, 1);
+ bufspace_daemon_wakeup(bd);
+ counter_u64_add(numbufallocfails, 1);
+ return (NULL);
+ }
+ /*
+ * Wake-up the bufspace daemon on transition below threshold.
+ */
+ if (freebufs == bd->bd_lofreebuffers)
+ bufspace_daemon_wakeup(bd);
+
+ if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
+ panic("getnewbuf_empty: Locked buf %p on free queue.", bp);
+
+ KASSERT(bp->b_vp == NULL,
+ ("bp: %p still has vnode %p.", bp, bp->b_vp));
+ KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
+ ("invalid buffer %p flags %#x", bp, bp->b_flags));
+ KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
+ ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
+ KASSERT(bp->b_npages == 0,
+ ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
+ KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
+ KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
+
+ bp->b_domain = BD_DOMAIN(bd);
+ bp->b_flags = 0;
+ bp->b_ioflags = 0;
+ bp->b_xflags = 0;
+ bp->b_vflags = 0;
+ bp->b_vp = NULL;
+ bp->b_blkno = bp->b_lblkno = 0;
+ bp->b_offset = NOOFFSET;
+ bp->b_iodone = 0;
+ bp->b_error = 0;
+ bp->b_resid = 0;
+ bp->b_bcount = 0;
+ bp->b_npages = 0;
+ bp->b_dirtyoff = bp->b_dirtyend = 0;
+ bp->b_bufobj = NULL;
+ bp->b_data = bp->b_kvabase = unmapped_buf;
+ bp->b_fsprivate1 = NULL;
+ bp->b_fsprivate2 = NULL;
+ bp->b_fsprivate3 = NULL;
+ LIST_INIT(&bp->b_dep);
+
+ return (bp);
+}
+
+/*
+ * buf_recycle:
+ *
+ * Free a buffer from the given bufqueue. kva controls whether the
+ * freed buf must own some kva resources. This is used for
+ * defragmenting.
+ */
+static int
+buf_recycle(struct bufdomain *bd, bool kva)
+{
+ struct bufqueue *bq;
+ struct buf *bp, *nbp;
+
+ if (kva)
+ counter_u64_add(bufdefragcnt, 1);
+ nbp = NULL;
+ bq = bd->bd_cleanq;
+ BQ_LOCK(bq);
+ KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
+ ("buf_recycle: Locks don't match"));
+ nbp = TAILQ_FIRST(&bq->bq_queue);
+
+ /*
+ * Run scan, possibly freeing data and/or kva mappings on the fly
+ * depending.
+ */
+ while ((bp = nbp) != NULL) {
+ /*
+ * Calculate next bp (we can only use it if we do not
+ * release the bqlock).
+ */
+ nbp = TAILQ_NEXT(bp, b_freelist);
+
+ /*
+ * If we are defragging then we need a buffer with
+ * some kva to reclaim.
+ */
+ if (kva && bp->b_kvasize == 0)
+ continue;
+
+ if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
+ continue;
+
+ /*
+ * Implement a second chance algorithm for frequently
+ * accessed buffers.
+ */
+ if ((bp->b_flags & B_REUSE) != 0) {
+ TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
+ TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
+ bp->b_flags &= ~B_REUSE;
+ BUF_UNLOCK(bp);
+ continue;
+ }
+
+ /*
+ * Skip buffers with background writes in progress.
+ */
+ if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
+ BUF_UNLOCK(bp);
+ continue;
+ }
+
+ KASSERT(bp->b_qindex == QUEUE_CLEAN,
+ ("buf_recycle: inconsistent queue %d bp %p",
+ bp->b_qindex, bp));
+ KASSERT(bp->b_domain == BD_DOMAIN(bd),
+ ("getnewbuf: queue domain %d doesn't match request %d",
+ bp->b_domain, (int)BD_DOMAIN(bd)));
+ /*
+ * NOTE: nbp is now entirely invalid. We can only restart
+ * the scan from this point on.
+ */
+ bq_remove(bq, bp);
+ BQ_UNLOCK(bq);
+
+ /*
+ * Requeue the background write buffer with error and
+ * restart the scan.
+ */
+ if ((bp->b_vflags & BV_BKGRDERR) != 0) {
+ bqrelse(bp);
+ BQ_LOCK(bq);
+ nbp = TAILQ_FIRST(&bq->bq_queue);
+ continue;
+ }
+ bp->b_flags |= B_INVAL;
+ brelse(bp);
+ return (0);
+ }
+ bd->bd_wanted = 1;
+ BQ_UNLOCK(bq);
+
+ return (ENOBUFS);
+}
+
+/*
+ * bremfree:
+ *
+ * Mark the buffer for removal from the appropriate free list.
+ *
+ */
+void
+bremfree(struct buf *bp)
+{
+
+ CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
+ KASSERT((bp->b_flags & B_REMFREE) == 0,
+ ("bremfree: buffer %p already marked for delayed removal.", bp));
+ KASSERT(bp->b_qindex != QUEUE_NONE,
+ ("bremfree: buffer %p not on a queue.", bp));
+ BUF_ASSERT_XLOCKED(bp);
+
+ bp->b_flags |= B_REMFREE;
+}
+
+/*
+ * bremfreef:
+ *
+ * Force an immediate removal from a free list. Used only in nfs when
+ * it abuses the b_freelist pointer.
+ */
+void
+bremfreef(struct buf *bp)
+{
+ struct bufqueue *bq;
+
+ bq = bufqueue_acquire(bp);
+ bq_remove(bq, bp);
+ BQ_UNLOCK(bq);
+}
+
+static void
+bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
+{
+
+ mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
+ TAILQ_INIT(&bq->bq_queue);
+ bq->bq_len = 0;
+ bq->bq_index = qindex;
+ bq->bq_subqueue = subqueue;
+}
+
+static void
+bd_init(struct bufdomain *bd)
+{
+ int i;
+
+ bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
+ bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
+ bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
+ for (i = 0; i <= mp_maxid; i++)
+ bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
+ "bufq clean subqueue lock");
+ mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
+}
+
+/*
+ * bq_remove:
+ *
+ * Removes a buffer from the free list, must be called with the
+ * correct qlock held.
+ */
+static void
+bq_remove(struct bufqueue *bq, struct buf *bp)
+{
+
+ CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
+ bp, bp->b_vp, bp->b_flags);
+ KASSERT(bp->b_qindex != QUEUE_NONE,
+ ("bq_remove: buffer %p not on a queue.", bp));
+ KASSERT(bufqueue(bp) == bq,
+ ("bq_remove: Remove buffer %p from wrong queue.", bp));
+
+ BQ_ASSERT_LOCKED(bq);
+ if (bp->b_qindex != QUEUE_EMPTY) {
+ BUF_ASSERT_XLOCKED(bp);
+ }
+ KASSERT(bq->bq_len >= 1,
+ ("queue %d underflow", bp->b_qindex));
+ TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
+ bq->bq_len--;
+ bp->b_qindex = QUEUE_NONE;
+ bp->b_flags &= ~(B_REMFREE | B_REUSE);
+}
+
+static void
+bd_flush(struct bufdomain *bd, struct bufqueue *bq)
+{
+ struct buf *bp;
+
+ BQ_ASSERT_LOCKED(bq);
+ if (bq != bd->bd_cleanq) {
+ BD_LOCK(bd);
+ while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
+ TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
+ TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
+ b_freelist);
+ bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
+ }
+ bd->bd_cleanq->bq_len += bq->bq_len;
+ bq->bq_len = 0;
+ }
+ if (bd->bd_wanted) {
+ bd->bd_wanted = 0;
+ wakeup(&bd->bd_wanted);
+ }
+ if (bq != bd->bd_cleanq)
+ BD_UNLOCK(bd);
+}
+
+static int
+bd_flushall(struct bufdomain *bd)
+{
+ struct bufqueue *bq;
+ int flushed;
+ int i;
+
+ if (bd->bd_lim == 0)
+ return (0);
+ flushed = 0;
+ for (i = 0; i <= mp_maxid; i++) {
+ bq = &bd->bd_subq[i];
+ if (bq->bq_len == 0)
+ continue;
+ BQ_LOCK(bq);
+ bd_flush(bd, bq);
+ BQ_UNLOCK(bq);
+ flushed++;
+ }
+
+ return (flushed);
+}
+
+static void
+bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
+{
+ struct bufdomain *bd;
+
+ if (bp->b_qindex != QUEUE_NONE)
+ panic("bq_insert: free buffer %p onto another queue?", bp);
+
+ bd = bufdomain(bp);
+ if (bp->b_flags & B_AGE) {
+ /* Place this buf directly on the real queue. */
+ if (bq->bq_index == QUEUE_CLEAN)
+ bq = bd->bd_cleanq;
+ BQ_LOCK(bq);
+ TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
+ } else {
+ BQ_LOCK(bq);
+ TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
+ }
+ bp->b_flags &= ~(B_AGE | B_REUSE);
+ bq->bq_len++;
+ bp->b_qindex = bq->bq_index;
+ bp->b_subqueue = bq->bq_subqueue;
+
+ /*
+ * Unlock before we notify so that we don't wakeup a waiter that
+ * fails a trylock on the buf and sleeps again.
+ */
+ if (unlock)
+ BUF_UNLOCK(bp);
+
+ if (bp->b_qindex == QUEUE_CLEAN) {
+ /*
+ * Flush the per-cpu queue and notify any waiters.
+ */
+ if (bd->bd_wanted || (bq != bd->bd_cleanq &&
+ bq->bq_len >= bd->bd_lim))
+ bd_flush(bd, bq);
+ }
+ BQ_UNLOCK(bq);
+}
+
+/*
+ * bufkva_free:
+ *
+ * Free the kva allocation for a buffer.
+ *
+ */
+static void
+bufkva_free(struct buf *bp)
+{
+
+#ifdef INVARIANTS
+ if (bp->b_kvasize == 0) {
+ KASSERT(bp->b_kvabase == unmapped_buf &&
+ bp->b_data == unmapped_buf,
+ ("Leaked KVA space on %p", bp));
+ } else if (buf_mapped(bp))
+ BUF_CHECK_MAPPED(bp);
+ else
+ BUF_CHECK_UNMAPPED(bp);
+#endif
+ if (bp->b_kvasize == 0)
+ return;
+
+ vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
+ counter_u64_add(bufkvaspace, -bp->b_kvasize);
+ counter_u64_add(buffreekvacnt, 1);
+ bp->b_data = bp->b_kvabase = unmapped_buf;
+ bp->b_kvasize = 0;
+}
+
+/*
+ * bufkva_alloc:
+ *
+ * Allocate the buffer KVA and set b_kvasize and b_kvabase.
+ */
+static int
+bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
+{
+ vm_offset_t addr;
+ int error;
+
+ KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
+ ("Invalid gbflags 0x%x in %s", gbflags, __func__));
+
+ bufkva_free(bp);
+
+ addr = 0;
+ error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
+ if (error != 0) {
+ /*
+ * Buffer map is too fragmented. Request the caller
+ * to defragment the map.
+ */
+ return (error);
+ }
+ bp->b_kvabase = (caddr_t)addr;
+ bp->b_kvasize = maxsize;
+ counter_u64_add(bufkvaspace, bp->b_kvasize);
+ if ((gbflags & GB_UNMAPPED) != 0) {
+ bp->b_data = unmapped_buf;
+ BUF_CHECK_UNMAPPED(bp);
+ } else {
+ bp->b_data = bp->b_kvabase;
+ BUF_CHECK_MAPPED(bp);
+ }
+ return (0);
+}
+
+/*
+ * bufkva_reclaim:
+ *
+ * Reclaim buffer kva by freeing buffers holding kva. This is a vmem
+ * callback that fires to avoid returning failure.
+ */
+static void
+bufkva_reclaim(vmem_t *vmem, int flags)
+{
+ bool done;
+ int q;
+ int i;
+
+ done = false;
+ for (i = 0; i < 5; i++) {
+ for (q = 0; q < buf_domains; q++)
+ if (buf_recycle(&bdomain[q], true) != 0)
+ done = true;
+ if (done)
+ break;
+ }
+ return;
+}
+
+/*
+ * Attempt to initiate asynchronous I/O on read-ahead blocks. We must
+ * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
+ * the buffer is valid and we do not have to do anything.
+ */
+static void
+breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
+ struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
+{
+ struct buf *rabp;
+ struct thread *td;
+ int i;
+
+ td = curthread;
+
+ for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
+ if (inmem(vp, *rablkno))
+ continue;
+ rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
+ if ((rabp->b_flags & B_CACHE) != 0) {
+ brelse(rabp);
+ continue;
+ }
+#ifdef RACCT
+ if (racct_enable) {
+ PROC_LOCK(curproc);
+ racct_add_buf(curproc, rabp, 0);
+ PROC_UNLOCK(curproc);
+ }
+#endif /* RACCT */
+ td->td_ru.ru_inblock++;
+ rabp->b_flags |= B_ASYNC;
+ rabp->b_flags &= ~B_INVAL;
+ if ((flags & GB_CKHASH) != 0) {
+ rabp->b_flags |= B_CKHASH;
+ rabp->b_ckhashcalc = ckhashfunc;
+ }
+ rabp->b_ioflags &= ~BIO_ERROR;
+ rabp->b_iocmd = BIO_READ;
+ if (rabp->b_rcred == NOCRED && cred != NOCRED)
+ rabp->b_rcred = crhold(cred);
+ vfs_busy_pages(rabp, 0);
+ BUF_KERNPROC(rabp);
+ rabp->b_iooffset = dbtob(rabp->b_blkno);
+ bstrategy(rabp);
+ }
+}
+
+/*
+ * Entry point for bread() and breadn() via #defines in sys/buf.h.
+ *
+ * Get a buffer with the specified data. Look in the cache first. We
+ * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
+ * is set, the buffer is valid and we do not have to do anything, see
+ * getblk(). Also starts asynchronous I/O on read-ahead blocks.
+ *
+ * Always return a NULL buffer pointer (in bpp) when returning an error.
+ */
+int
+breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
+ int *rabsize, int cnt, struct ucred *cred, int flags,
+ void (*ckhashfunc)(struct buf *), struct buf **bpp)
+{
+ struct buf *bp;
+ struct thread *td;
+ int error, readwait, rv;
+
+ CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
+ td = curthread;
+ /*
+ * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
+ * are specified.
+ */
+ error = getblkx(vp, blkno, size, 0, 0, flags, &bp);
+ if (error != 0) {
+ *bpp = NULL;
+ return (error);
+ }
+ flags &= ~GB_NOSPARSE;
+ *bpp = bp;
+
+ /*
+ * If not found in cache, do some I/O
+ */
+ readwait = 0;
+ if ((bp->b_flags & B_CACHE) == 0) {
+#ifdef RACCT
+ if (racct_enable) {
+ PROC_LOCK(td->td_proc);
+ racct_add_buf(td->td_proc, bp, 0);
+ PROC_UNLOCK(td->td_proc);
+ }
+#endif /* RACCT */
+ td->td_ru.ru_inblock++;
+ bp->b_iocmd = BIO_READ;
+ bp->b_flags &= ~B_INVAL;
+ if ((flags & GB_CKHASH) != 0) {
+ bp->b_flags |= B_CKHASH;
+ bp->b_ckhashcalc = ckhashfunc;
+ }
+ bp->b_ioflags &= ~BIO_ERROR;
+ if (bp->b_rcred == NOCRED && cred != NOCRED)
+ bp->b_rcred = crhold(cred);
+ vfs_busy_pages(bp, 0);
+ bp->b_iooffset = dbtob(bp->b_blkno);
+ bstrategy(bp);
+ ++readwait;
+ }
+
+ /*
+ * Attempt to initiate asynchronous I/O on read-ahead blocks.
+ */
+ breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
+
+ rv = 0;
+ if (readwait) {
+ rv = bufwait(bp);
+ if (rv != 0) {
+ brelse(bp);
+ *bpp = NULL;
+ }
+ }
+ return (rv);
+}
+
+/*
+ * Write, release buffer on completion. (Done by iodone
+ * if async). Do not bother writing anything if the buffer
+ * is invalid.
+ *
+ * Note that we set B_CACHE here, indicating that buffer is
+ * fully valid and thus cacheable. This is true even of NFS
+ * now so we set it generally. This could be set either here
+ * or in biodone() since the I/O is synchronous. We put it
+ * here.
+ */
+int
+bufwrite(struct buf *bp)
+{
+ int oldflags;
+ struct vnode *vp;
+ long space;
+ int vp_md;
+
+ CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
+ if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
+ bp->b_flags |= B_INVAL | B_RELBUF;
+ bp->b_flags &= ~B_CACHE;
+ brelse(bp);
+ return (ENXIO);
+ }
+ if (bp->b_flags & B_INVAL) {
+ brelse(bp);
+ return (0);
+ }
+
+ if (bp->b_flags & B_BARRIER)
+ atomic_add_long(&barrierwrites, 1);
+
+ oldflags = bp->b_flags;
+
+ BUF_ASSERT_HELD(bp);
+
+ KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
+ ("FFS background buffer should not get here %p", bp));
+
+ vp = bp->b_vp;
+ if (vp)
+ vp_md = vp->v_vflag & VV_MD;
+ else
+ vp_md = 0;
+
+ /*
+ * Mark the buffer clean. Increment the bufobj write count
+ * before bundirty() call, to prevent other thread from seeing
+ * empty dirty list and zero counter for writes in progress,
+ * falsely indicating that the bufobj is clean.
+ */
+ bufobj_wref(bp->b_bufobj);
+ bundirty(bp);
+
+ bp->b_flags &= ~B_DONE;
+ bp->b_ioflags &= ~BIO_ERROR;
+ bp->b_flags |= B_CACHE;
+ bp->b_iocmd = BIO_WRITE;
+
+ vfs_busy_pages(bp, 1);
+
+ /*
+ * Normal bwrites pipeline writes
+ */
+ bp->b_runningbufspace = bp->b_bufsize;
+ space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
+
+#ifdef RACCT
+ if (racct_enable) {
+ PROC_LOCK(curproc);
+ racct_add_buf(curproc, bp, 1);
+ PROC_UNLOCK(curproc);
+ }
+#endif /* RACCT */
+ curthread->td_ru.ru_oublock++;
+ if (oldflags & B_ASYNC)
+ BUF_KERNPROC(bp);
+ bp->b_iooffset = dbtob(bp->b_blkno);
+ buf_track(bp, __func__);
+ bstrategy(bp);
+
+ if ((oldflags & B_ASYNC) == 0) {
+ int rtval = bufwait(bp);
+ brelse(bp);
+ return (rtval);
+ } else if (space > hirunningspace) {
+ /*
+ * don't allow the async write to saturate the I/O
+ * system. We will not deadlock here because
+ * we are blocking waiting for I/O that is already in-progress
+ * to complete. We do not block here if it is the update
+ * or syncer daemon trying to clean up as that can lead
+ * to deadlock.
+ */
+ if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
+ waitrunningbufspace();
+ }
+
+ return (0);
+}
+
+void
+bufbdflush(struct bufobj *bo, struct buf *bp)
+{
+ struct buf *nbp;
+
+ if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
+ (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
+ altbufferflushes++;
+ } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
+ BO_LOCK(bo);
+ /*
+ * Try to find a buffer to flush.
+ */
+ TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
+ if ((nbp->b_vflags & BV_BKGRDINPROG) ||
+ BUF_LOCK(nbp,
+ LK_EXCLUSIVE | LK_NOWAIT, NULL))
+ continue;
+ if (bp == nbp)
+ panic("bdwrite: found ourselves");
+ BO_UNLOCK(bo);
+ /* Don't countdeps with the bo lock held. */
+ if (buf_countdeps(nbp, 0)) {
+ BO_LOCK(bo);
+ BUF_UNLOCK(nbp);
+ continue;
+ }
+ if (nbp->b_flags & B_CLUSTEROK) {
+ vfs_bio_awrite(nbp);
+ } else {
+ bremfree(nbp);
+ bawrite(nbp);
+ }
+ dirtybufferflushes++;
+ break;
+ }
+ if (nbp == NULL)
+ BO_UNLOCK(bo);
+ }
+}
+
+/*
+ * Delayed write. (Buffer is marked dirty). Do not bother writing
+ * anything if the buffer is marked invalid.
+ *
+ * Note that since the buffer must be completely valid, we can safely
+ * set B_CACHE. In fact, we have to set B_CACHE here rather then in
+ * biodone() in order to prevent getblk from writing the buffer
+ * out synchronously.
+ */
+void
+bdwrite(struct buf *bp)
+{
+ struct thread *td = curthread;
+ struct vnode *vp;
+ struct bufobj *bo;
+
+ CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
+ KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
+ KASSERT((bp->b_flags & B_BARRIER) == 0,
+ ("Barrier request in delayed write %p", bp));
+ BUF_ASSERT_HELD(bp);
+
+ if (bp->b_flags & B_INVAL) {
+ brelse(bp);
+ return;
+ }
+
+ /*
+ * If we have too many dirty buffers, don't create any more.
+ * If we are wildly over our limit, then force a complete
+ * cleanup. Otherwise, just keep the situation from getting
+ * out of control. Note that we have to avoid a recursive
+ * disaster and not try to clean up after our own cleanup!
+ */
+ vp = bp->b_vp;
+ bo = bp->b_bufobj;
+ if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
+ td->td_pflags |= TDP_INBDFLUSH;
+ BO_BDFLUSH(bo, bp);
+ td->td_pflags &= ~TDP_INBDFLUSH;
+ } else
+ recursiveflushes++;
+
+ bdirty(bp);
+ /*
+ * Set B_CACHE, indicating that the buffer is fully valid. This is
+ * true even of NFS now.
+ */
+ bp->b_flags |= B_CACHE;
+
+ /*
+ * This bmap keeps the system from needing to do the bmap later,
+ * perhaps when the system is attempting to do a sync. Since it
+ * is likely that the indirect block -- or whatever other datastructure
+ * that the filesystem needs is still in memory now, it is a good
+ * thing to do this. Note also, that if the pageout daemon is
+ * requesting a sync -- there might not be enough memory to do
+ * the bmap then... So, this is important to do.
+ */
+ if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
+ VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
+ }
+
+ buf_track(bp, __func__);
+
+ /*
+ * Set the *dirty* buffer range based upon the VM system dirty
+ * pages.
+ *
+ * Mark the buffer pages as clean. We need to do this here to
+ * satisfy the vnode_pager and the pageout daemon, so that it
+ * thinks that the pages have been "cleaned". Note that since
+ * the pages are in a delayed write buffer -- the VFS layer
+ * "will" see that the pages get written out on the next sync,
+ * or perhaps the cluster will be completed.
+ */
+ vfs_clean_pages_dirty_buf(bp);
+ bqrelse(bp);
+
+ /*
+ * note: we cannot initiate I/O from a bdwrite even if we wanted to,
+ * due to the softdep code.
+ */
+}
+
+/*
+ * bdirty:
+ *
+ * Turn buffer into delayed write request. We must clear BIO_READ and
+ * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to
+ * itself to properly update it in the dirty/clean lists. We mark it
+ * B_DONE to ensure that any asynchronization of the buffer properly
+ * clears B_DONE ( else a panic will occur later ).
+ *
+ * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
+ * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty()
+ * should only be called if the buffer is known-good.
+ *
+ * Since the buffer is not on a queue, we do not update the numfreebuffers
+ * count.
+ *
+ * The buffer must be on QUEUE_NONE.
+ */
+void
+bdirty(struct buf *bp)
+{
+
+ CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
+ bp, bp->b_vp, bp->b_flags);
+ KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
+ KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
+ ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
+ BUF_ASSERT_HELD(bp);
+ bp->b_flags &= ~(B_RELBUF);
+ bp->b_iocmd = BIO_WRITE;
+
+ if ((bp->b_flags & B_DELWRI) == 0) {
+ bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
+ reassignbuf(bp);
+ bdirtyadd(bp);
+ }
+}
+
+/*
+ * bundirty:
+ *
+ * Clear B_DELWRI for buffer.
+ *
+ * Since the buffer is not on a queue, we do not update the numfreebuffers
+ * count.
+ *
+ * The buffer must be on QUEUE_NONE.
+ */
+
+void
+bundirty(struct buf *bp)
+{
+
+ CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
+ KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
+ KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
+ ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
+ BUF_ASSERT_HELD(bp);
+
+ if (bp->b_flags & B_DELWRI) {
+ bp->b_flags &= ~B_DELWRI;
+ reassignbuf(bp);
+ bdirtysub(bp);
+ }
+ /*
+ * Since it is now being written, we can clear its deferred write flag.
+ */
+ bp->b_flags &= ~B_DEFERRED;
+}
+
+/*
+ * bawrite:
+ *
+ * Asynchronous write. Start output on a buffer, but do not wait for
+ * it to complete. The buffer is released when the output completes.
+ *
+ * bwrite() ( or the VOP routine anyway ) is responsible for handling
+ * B_INVAL buffers. Not us.
+ */
+void
+bawrite(struct buf *bp)
+{
+
+ bp->b_flags |= B_ASYNC;
+ (void) bwrite(bp);
+}
+
+/*
+ * babarrierwrite:
+ *
+ * Asynchronous barrier write. Start output on a buffer, but do not
+ * wait for it to complete. Place a write barrier after this write so
+ * that this buffer and all buffers written before it are committed to
+ * the disk before any buffers written after this write are committed
+ * to the disk. The buffer is released when the output completes.
+ */
+void
+babarrierwrite(struct buf *bp)
+{
+
+ bp->b_flags |= B_ASYNC | B_BARRIER;
+ (void) bwrite(bp);
+}
+
+/*
+ * bbarrierwrite:
+ *
+ * Synchronous barrier write. Start output on a buffer and wait for
+ * it to complete. Place a write barrier after this write so that
+ * this buffer and all buffers written before it are committed to
+ * the disk before any buffers written after this write are committed
+ * to the disk. The buffer is released when the output completes.
+ */
+int
+bbarrierwrite(struct buf *bp)
+{
+
+ bp->b_flags |= B_BARRIER;
+ return (bwrite(bp));
+}
+
+/*
+ * bwillwrite:
+ *
+ * Called prior to the locking of any vnodes when we are expecting to
+ * write. We do not want to starve the buffer cache with too many
+ * dirty buffers so we block here. By blocking prior to the locking
+ * of any vnodes we attempt to avoid the situation where a locked vnode
+ * prevents the various system daemons from flushing related buffers.
+ */
+void
+bwillwrite(void)
+{
+
+ if (buf_dirty_count_severe()) {
+ mtx_lock(&bdirtylock);
+ while (buf_dirty_count_severe()) {
+ bdirtywait = 1;
+ msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
+ "flswai", 0);
+ }
+ mtx_unlock(&bdirtylock);
+ }
+}
+
+/*
+ * Return true if we have too many dirty buffers.
+ */
+int
+buf_dirty_count_severe(void)
+{
+
+ return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
+}
+
+/*
+ * brelse:
+ *
+ * Release a busy buffer and, if requested, free its resources. The
+ * buffer will be stashed in the appropriate bufqueue[] allowing it
+ * to be accessed later as a cache entity or reused for other purposes.
+ */
+void
+brelse(struct buf *bp)
+{
+ struct mount *v_mnt;
+ int qindex;
+
+ /*
+ * Many functions erroneously call brelse with a NULL bp under rare
+ * error conditions. Simply return when called with a NULL bp.
+ */
+ if (bp == NULL)
+ return;
+ CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
+ bp, bp->b_vp, bp->b_flags);
+ KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
+ ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
+ KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
+ ("brelse: non-VMIO buffer marked NOREUSE"));
+
+ if (BUF_LOCKRECURSED(bp)) {
+ /*
+ * Do not process, in particular, do not handle the
+ * B_INVAL/B_RELBUF and do not release to free list.
+ */
+ BUF_UNLOCK(bp);
+ return;
+ }
+
+ if (bp->b_flags & B_MANAGED) {
+ bqrelse(bp);
+ return;
+ }
+
+ if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
+ BO_LOCK(bp->b_bufobj);
+ bp->b_vflags &= ~BV_BKGRDERR;
+ BO_UNLOCK(bp->b_bufobj);
+ bdirty(bp);
+ }
+ if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
+ (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
+ !(bp->b_flags & B_INVAL)) {
+ /*
+ * Failed write, redirty. All errors except ENXIO (which
+ * means the device is gone) are treated as being
+ * transient.
+ *
+ * XXX Treating EIO as transient is not correct; the
+ * contract with the local storage device drivers is that
+ * they will only return EIO once the I/O is no longer
+ * retriable. Network I/O also respects this through the
+ * guarantees of TCP and/or the internal retries of NFS.
+ * ENOMEM might be transient, but we also have no way of
+ * knowing when its ok to retry/reschedule. In general,
+ * this entire case should be made obsolete through better
+ * error handling/recovery and resource scheduling.
+ *
+ * Do this also for buffers that failed with ENXIO, but have
+ * non-empty dependencies - the soft updates code might need
+ * to access the buffer to untangle them.
+ *
+ * Must clear BIO_ERROR to prevent pages from being scrapped.
+ */
+ bp->b_ioflags &= ~BIO_ERROR;
+ bdirty(bp);
+ } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
+ (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
+ /*
+ * Either a failed read I/O, or we were asked to free or not
+ * cache the buffer, or we failed to write to a device that's
+ * no longer present.
+ */
+ bp->b_flags |= B_INVAL;
+ if (!LIST_EMPTY(&bp->b_dep))
+ buf_deallocate(bp);
+ if (bp->b_flags & B_DELWRI)
+ bdirtysub(bp);
+ bp->b_flags &= ~(B_DELWRI | B_CACHE);
+ if ((bp->b_flags & B_VMIO) == 0) {
+ allocbuf(bp, 0);
+ if (bp->b_vp)
+ brelvp(bp);
+ }
+ }
+
+ /*
+ * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_truncate()
+ * is called with B_DELWRI set, the underlying pages may wind up
+ * getting freed causing a previous write (bdwrite()) to get 'lost'
+ * because pages associated with a B_DELWRI bp are marked clean.
+ *
+ * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
+ * if B_DELWRI is set.
+ */
+ if (bp->b_flags & B_DELWRI)
+ bp->b_flags &= ~B_RELBUF;
+
+ /*
+ * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
+ * constituted, not even NFS buffers now. Two flags effect this. If
+ * B_INVAL, the struct buf is invalidated but the VM object is kept
+ * around ( i.e. so it is trivial to reconstitute the buffer later ).
+ *
+ * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
+ * invalidated. BIO_ERROR cannot be set for a failed write unless the
+ * buffer is also B_INVAL because it hits the re-dirtying code above.
+ *
+ * Normally we can do this whether a buffer is B_DELWRI or not. If
+ * the buffer is an NFS buffer, it is tracking piecemeal writes or
+ * the commit state and we cannot afford to lose the buffer. If the
+ * buffer has a background write in progress, we need to keep it
+ * around to prevent it from being reconstituted and starting a second
+ * background write.
+ */
+
+ v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
+
+ if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
+ (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
+ (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
+ vn_isdisk(bp->b_vp, NULL) || (bp->b_flags & B_DELWRI) == 0)) {
+ vfs_vmio_invalidate(bp);
+ allocbuf(bp, 0);
+ }
+
+ if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
+ (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
+ allocbuf(bp, 0);
+ bp->b_flags &= ~B_NOREUSE;
+ if (bp->b_vp != NULL)
+ brelvp(bp);
+ }
+
+ /*
+ * If the buffer has junk contents signal it and eventually
+ * clean up B_DELWRI and diassociate the vnode so that gbincore()
+ * doesn't find it.
+ */
+ if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
+ (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
+ bp->b_flags |= B_INVAL;
+ if (bp->b_flags & B_INVAL) {
+ if (bp->b_flags & B_DELWRI)
+ bundirty(bp);
+ if (bp->b_vp)
+ brelvp(bp);
+ }
+
+ buf_track(bp, __func__);
+
+ /* buffers with no memory */
+ if (bp->b_bufsize == 0) {
+ buf_free(bp);
+ return;
+ }
+ /* buffers with junk contents */
+ if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
+ (bp->b_ioflags & BIO_ERROR)) {
+ bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
+ if (bp->b_vflags & BV_BKGRDINPROG)
+ panic("losing buffer 2");
+ qindex = QUEUE_CLEAN;
+ bp->b_flags |= B_AGE;
+ /* remaining buffers */
+ } else if (bp->b_flags & B_DELWRI)
+ qindex = QUEUE_DIRTY;
+ else
+ qindex = QUEUE_CLEAN;
+
+ if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
+ panic("brelse: not dirty");
+
+ bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
+ /* binsfree unlocks bp. */
+ binsfree(bp, qindex);
+}
+
+/*
+ * Release a buffer back to the appropriate queue but do not try to free
+ * it. The buffer is expected to be used again soon.
+ *
+ * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
+ * biodone() to requeue an async I/O on completion. It is also used when
+ * known good buffers need to be requeued but we think we may need the data
+ * again soon.
+ *
+ * XXX we should be able to leave the B_RELBUF hint set on completion.
+ */
+void
+bqrelse(struct buf *bp)
+{
+ int qindex;
+
+ CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
+ KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
+ ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
+
+ qindex = QUEUE_NONE;
+ if (BUF_LOCKRECURSED(bp)) {
+ /* do not release to free list */
+ BUF_UNLOCK(bp);
+ return;
+ }
+ bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
+
+ if (bp->b_flags & B_MANAGED) {
+ if (bp->b_flags & B_REMFREE)
+ bremfreef(bp);
+ goto out;
+ }
+
+ /* buffers with stale but valid contents */
+ if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
+ BV_BKGRDERR)) == BV_BKGRDERR) {
+ BO_LOCK(bp->b_bufobj);
+ bp->b_vflags &= ~BV_BKGRDERR;
+ BO_UNLOCK(bp->b_bufobj);
+ qindex = QUEUE_DIRTY;
+ } else {
+ if ((bp->b_flags & B_DELWRI) == 0 &&
+ (bp->b_xflags & BX_VNDIRTY))
+ panic("bqrelse: not dirty");
+ if ((bp->b_flags & B_NOREUSE) != 0) {
+ brelse(bp);
+ return;
+ }
+ qindex = QUEUE_CLEAN;
+ }
+ buf_track(bp, __func__);
+ /* binsfree unlocks bp. */
+ binsfree(bp, qindex);
+ return;
+
+out:
+ buf_track(bp, __func__);
+ /* unlock */
+ BUF_UNLOCK(bp);
+}
+
+/*
+ * Complete I/O to a VMIO backed page. Validate the pages as appropriate,
+ * restore bogus pages.
+ */
+static void
+vfs_vmio_iodone(struct buf *bp)
+{
+ vm_ooffset_t foff;
+ vm_page_t m;
+ vm_object_t obj;
+ struct vnode *vp __unused;
+ int i, iosize, resid;
+ bool bogus;
+
+ obj = bp->b_bufobj->bo_object;
+ KASSERT(obj->paging_in_progress >= bp->b_npages,
+ ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
+ obj->paging_in_progress, bp->b_npages));
+
+ vp = bp->b_vp;
+ KASSERT(vp->v_holdcnt > 0,
+ ("vfs_vmio_iodone: vnode %p has zero hold count", vp));
+ KASSERT(vp->v_object != NULL,
+ ("vfs_vmio_iodone: vnode %p has no vm_object", vp));
+
+ foff = bp->b_offset;
+ KASSERT(bp->b_offset != NOOFFSET,
+ ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
+
+ bogus = false;
+ iosize = bp->b_bcount - bp->b_resid;
+ VM_OBJECT_WLOCK(obj);
+ for (i = 0; i < bp->b_npages; i++) {
+ resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
+ if (resid > iosize)
+ resid = iosize;
+
+ /*
+ * cleanup bogus pages, restoring the originals
+ */
+ m = bp->b_pages[i];
+ if (m == bogus_page) {
+ bogus = true;
+ m = vm_page_lookup(obj, OFF_TO_IDX(foff));
+ if (m == NULL)
+ panic("biodone: page disappeared!");
+ bp->b_pages[i] = m;
+ } else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
+ /*
+ * In the write case, the valid and clean bits are
+ * already changed correctly ( see bdwrite() ), so we
+ * only need to do this here in the read case.
+ */
+ KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
+ resid)) == 0, ("vfs_vmio_iodone: page %p "
+ "has unexpected dirty bits", m));
+ vfs_page_set_valid(bp, foff, m);
+ }
+ KASSERT(OFF_TO_IDX(foff) == m->pindex,
+ ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
+ (intmax_t)foff, (uintmax_t)m->pindex));
+
+ vm_page_sunbusy(m);
+ foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
+ iosize -= resid;
+ }
+ vm_object_pip_wakeupn(obj, bp->b_npages);
+ VM_OBJECT_WUNLOCK(obj);
+ if (bogus && buf_mapped(bp)) {
+ BUF_CHECK_MAPPED(bp);
+ pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
+ bp->b_pages, bp->b_npages);
+ }
+}
+
+/*
+ * Perform page invalidation when a buffer is released. The fully invalid
+ * pages will be reclaimed later in vfs_vmio_truncate().
+ */
+static void
+vfs_vmio_invalidate(struct buf *bp)
+{
+ vm_object_t obj;
+ vm_page_t m;
+ int flags, i, resid, poffset, presid;
+
+ if (buf_mapped(bp)) {
+ BUF_CHECK_MAPPED(bp);
+ pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
+ } else
+ BUF_CHECK_UNMAPPED(bp);
+ /*
+ * Get the base offset and length of the buffer. Note that
+ * in the VMIO case if the buffer block size is not
+ * page-aligned then b_data pointer may not be page-aligned.
+ * But our b_pages[] array *IS* page aligned.
+ *
+ * block sizes less then DEV_BSIZE (usually 512) are not
+ * supported due to the page granularity bits (m->valid,
+ * m->dirty, etc...).
+ *
+ * See man buf(9) for more information
+ */
+ flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
+ obj = bp->b_bufobj->bo_object;
+ resid = bp->b_bufsize;
+ poffset = bp->b_offset & PAGE_MASK;
+ VM_OBJECT_WLOCK(obj);
+ for (i = 0; i < bp->b_npages; i++) {
+ m = bp->b_pages[i];
+ if (m == bogus_page)
+ panic("vfs_vmio_invalidate: Unexpected bogus page.");
+ bp->b_pages[i] = NULL;
+
+ presid = resid > (PAGE_SIZE - poffset) ?
+ (PAGE_SIZE - poffset) : resid;
+ KASSERT(presid >= 0, ("brelse: extra page"));
+ while (vm_page_xbusied(m)) {
+ vm_page_lock(m);
+ VM_OBJECT_WUNLOCK(obj);
+ vm_page_busy_sleep(m, "mbncsh", true);
+ VM_OBJECT_WLOCK(obj);
+ }
+ if (pmap_page_wired_mappings(m) == 0)
+ vm_page_set_invalid(m, poffset, presid);
+ vm_page_release_locked(m, flags);
+ resid -= presid;
+ poffset = 0;
+ }
+ VM_OBJECT_WUNLOCK(obj);
+ bp->b_npages = 0;
+}
+
+/*
+ * Page-granular truncation of an existing VMIO buffer.
+ */
+static void
+vfs_vmio_truncate(struct buf *bp, int desiredpages)
+{
+ vm_object_t obj;
+ vm_page_t m;
+ int flags, i;
+
+ if (bp->b_npages == desiredpages)
+ return;
+
+ if (buf_mapped(bp)) {
+ BUF_CHECK_MAPPED(bp);
+ pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
+ (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
+ } else
+ BUF_CHECK_UNMAPPED(bp);
+
+ /*
+ * The object lock is needed only if we will attempt to free pages.
+ */
+ flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
+ if ((bp->b_flags & B_DIRECT) != 0) {
+ flags |= VPR_TRYFREE;
+ obj = bp->b_bufobj->bo_object;
+ VM_OBJECT_WLOCK(obj);
+ } else {
+ obj = NULL;
+ }
+ for (i = desiredpages; i < bp->b_npages; i++) {
+ m = bp->b_pages[i];
+ KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
+ bp->b_pages[i] = NULL;
+ if (obj != NULL)
+ vm_page_release_locked(m, flags);
+ else
+ vm_page_release(m, flags);
+ }
+ if (obj != NULL)
+ VM_OBJECT_WUNLOCK(obj);
+ bp->b_npages = desiredpages;
+}
+
+/*
+ * Byte granular extension of VMIO buffers.
+ */
+static void
+vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
+{
+ /*
+ * We are growing the buffer, possibly in a
+ * byte-granular fashion.
+ */
+ vm_object_t obj;
+ vm_offset_t toff;
+ vm_offset_t tinc;
+ vm_page_t m;
+
+ /*
+ * Step 1, bring in the VM pages from the object, allocating
+ * them if necessary. We must clear B_CACHE if these pages
+ * are not valid for the range covered by the buffer.
+ */
+ obj = bp->b_bufobj->bo_object;
+ VM_OBJECT_WLOCK(obj);
+ if (bp->b_npages < desiredpages) {
+ /*
+ * We must allocate system pages since blocking
+ * here could interfere with paging I/O, no
+ * matter which process we are.
+ *
+ * Only exclusive busy can be tested here.
+ * Blocking on shared busy might lead to
+ * deadlocks once allocbuf() is called after
+ * pages are vfs_busy_pages().
+ */
+ (void)vm_page_grab_pages(obj,
+ OFF_TO_IDX(bp->b_offset) + bp->b_npages,
+ VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
+ VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
+ &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
+ bp->b_npages = desiredpages;
+ }
+
+ /*
+ * Step 2. We've loaded the pages into the buffer,
+ * we have to figure out if we can still have B_CACHE
+ * set. Note that B_CACHE is set according to the
+ * byte-granular range ( bcount and size ), not the
+ * aligned range ( newbsize ).
+ *
+ * The VM test is against m->valid, which is DEV_BSIZE
+ * aligned. Needless to say, the validity of the data
+ * needs to also be DEV_BSIZE aligned. Note that this
+ * fails with NFS if the server or some other client
+ * extends the file's EOF. If our buffer is resized,
+ * B_CACHE may remain set! XXX
+ */
+ toff = bp->b_bcount;
+ tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
+ while ((bp->b_flags & B_CACHE) && toff < size) {
+ vm_pindex_t pi;
+
+ if (tinc > (size - toff))
+ tinc = size - toff;
+ pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
+ m = bp->b_pages[pi];
+ vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
+ toff += tinc;
+ tinc = PAGE_SIZE;
+ }
+ VM_OBJECT_WUNLOCK(obj);
+
+ /*
+ * Step 3, fixup the KVA pmap.
+ */
+ if (buf_mapped(bp))
+ bpmap_qenter(bp);
+ else
+ BUF_CHECK_UNMAPPED(bp);
+}
+
+/*
+ * Check to see if a block at a particular lbn is available for a clustered
+ * write.
+ */
+static int
+vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
+{
+ struct buf *bpa;
+ int match;
+
+ match = 0;
+
+ /* If the buf isn't in core skip it */
+ if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
+ return (0);
+
+ /* If the buf is busy we don't want to wait for it */
+ if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
+ return (0);
+
+ /* Only cluster with valid clusterable delayed write buffers */
+ if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
+ (B_DELWRI | B_CLUSTEROK))
+ goto done;
+
+ if (bpa->b_bufsize != size)
+ goto done;
+
+ /*
+ * Check to see if it is in the expected place on disk and that the
+ * block has been mapped.
+ */
+ if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
+ match = 1;
+done:
+ BUF_UNLOCK(bpa);
+ return (match);
+}
+
+/*
+ * vfs_bio_awrite:
+ *
+ * Implement clustered async writes for clearing out B_DELWRI buffers.
+ * This is much better then the old way of writing only one buffer at
+ * a time. Note that we may not be presented with the buffers in the
+ * correct order, so we search for the cluster in both directions.
+ */
+int
+vfs_bio_awrite(struct buf *bp)
+{
+ struct bufobj *bo;
+ int i;
+ int j;
+ daddr_t lblkno = bp->b_lblkno;
+ struct vnode *vp = bp->b_vp;
+ int ncl;
+ int nwritten;
+ int size;
+ int maxcl;
+ int gbflags;
+
+ bo = &vp->v_bufobj;
+ gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
+ /*
+ * right now we support clustered writing only to regular files. If
+ * we find a clusterable block we could be in the middle of a cluster
+ * rather then at the beginning.
+ */
+ if ((vp->v_type == VREG) &&
+ (vp->v_mount != 0) && /* Only on nodes that have the size info */
+ (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
+
+ size = vp->v_mount->mnt_stat.f_iosize;
+ maxcl = MAXPHYS / size;
+
+ BO_RLOCK(bo);
+ for (i = 1; i < maxcl; i++)
+ if (vfs_bio_clcheck(vp, size, lblkno + i,
+ bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
+ break;
+
+ for (j = 1; i + j <= maxcl && j <= lblkno; j++)
+ if (vfs_bio_clcheck(vp, size, lblkno - j,
+ bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
+ break;
+ BO_RUNLOCK(bo);
+ --j;
+ ncl = i + j;
+ /*
+ * this is a possible cluster write
+ */
+ if (ncl != 1) {
+ BUF_UNLOCK(bp);
+ nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
+ gbflags);
+ return (nwritten);
+ }
+ }
+ bremfree(bp);
+ bp->b_flags |= B_ASYNC;
+ /*
+ * default (old) behavior, writing out only one block
+ *
+ * XXX returns b_bufsize instead of b_bcount for nwritten?
+ */
+ nwritten = bp->b_bufsize;
+ (void) bwrite(bp);
+
+ return (nwritten);
+}
+
+/*
+ * getnewbuf_kva:
+ *
+ * Allocate KVA for an empty buf header according to gbflags.
+ */
+static int
+getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
+{
+
+ if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
+ /*
+ * In order to keep fragmentation sane we only allocate kva
+ * in BKVASIZE chunks. XXX with vmem we can do page size.
+ */
+ maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
+
+ if (maxsize != bp->b_kvasize &&
+ bufkva_alloc(bp, maxsize, gbflags))
+ return (ENOSPC);
+ }
+ return (0);
+}
+
+/*
+ * getnewbuf:
+ *
+ * Find and initialize a new buffer header, freeing up existing buffers
+ * in the bufqueues as necessary. The new buffer is returned locked.
+ *
+ * We block if:
+ * We have insufficient buffer headers
+ * We have insufficient buffer space
+ * buffer_arena is too fragmented ( space reservation fails )
+ * If we have to flush dirty buffers ( but we try to avoid this )
+ *
+ * The caller is responsible for releasing the reserved bufspace after
+ * allocbuf() is called.
+ */
+static struct buf *
+getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
+{
+ struct bufdomain *bd;
+ struct buf *bp;
+ bool metadata, reserved;
+
+ bp = NULL;
+ KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
+ ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
+ if (!unmapped_buf_allowed)
+ gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
+
+ if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
+ vp->v_type == VCHR)
+ metadata = true;
+ else
+ metadata = false;
+ if (vp == NULL)
+ bd = &bdomain[0];
+ else
+ bd = &bdomain[vp->v_bufobj.bo_domain];
+
+ counter_u64_add(getnewbufcalls, 1);
+ reserved = false;
+ do {
+ if (reserved == false &&
+ bufspace_reserve(bd, maxsize, metadata) != 0) {
+ counter_u64_add(getnewbufrestarts, 1);
+ continue;
+ }
+ reserved = true;
+ if ((bp = buf_alloc(bd)) == NULL) {
+ counter_u64_add(getnewbufrestarts, 1);
+ continue;
+ }
+ if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
+ return (bp);
+ break;
+ } while (buf_recycle(bd, false) == 0);
+
+ if (reserved)
+ bufspace_release(bd, maxsize);
+ if (bp != NULL) {
+ bp->b_flags |= B_INVAL;
+ brelse(bp);
+ }
+ bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
+
+ return (NULL);
+}
+
+/*
+ * buf_daemon:
+ *
+ * buffer flushing daemon. Buffers are normally flushed by the
+ * update daemon but if it cannot keep up this process starts to
+ * take the load in an attempt to prevent getnewbuf() from blocking.
+ */
+static struct kproc_desc buf_kp = {
+ "bufdaemon",
+ buf_daemon,
+ &bufdaemonproc
+};
+SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
+
+static int
+buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
+{
+ int flushed;
+
+ flushed = flushbufqueues(vp, bd, target, 0);
+ if (flushed == 0) {
+ /*
+ * Could not find any buffers without rollback
+ * dependencies, so just write the first one
+ * in the hopes of eventually making progress.
+ */
+ if (vp != NULL && target > 2)
+ target /= 2;
+ flushbufqueues(vp, bd, target, 1);
+ }
+ return (flushed);
+}
+
+static void
+buf_daemon()
+{
+ struct bufdomain *bd;
+ int speedupreq;
+ int lodirty;
+ int i;
+
+ /*
+ * This process needs to be suspended prior to shutdown sync.
+ */
+ EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
+ SHUTDOWN_PRI_LAST + 100);
+
+ /*
+ * Start the buf clean daemons as children threads.
+ */
+ for (i = 0 ; i < buf_domains; i++) {
+ int error;
+
+ error = kthread_add((void (*)(void *))bufspace_daemon,
+ &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
+ if (error)
+ panic("error %d spawning bufspace daemon", error);
+ }
+
+ /*
+ * This process is allowed to take the buffer cache to the limit
+ */
+ curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
+ mtx_lock(&bdlock);
+ for (;;) {
+ bd_request = 0;
+ mtx_unlock(&bdlock);
+
+ kthread_suspend_check();
+
+ /*
+ * Save speedupreq for this pass and reset to capture new
+ * requests.
+ */
+ speedupreq = bd_speedupreq;
+ bd_speedupreq = 0;
+
+ /*
+ * Flush each domain sequentially according to its level and
+ * the speedup request.
+ */
+ for (i = 0; i < buf_domains; i++) {
+ bd = &bdomain[i];
+ if (speedupreq)
+ lodirty = bd->bd_numdirtybuffers / 2;
+ else
+ lodirty = bd->bd_lodirtybuffers;
+ while (bd->bd_numdirtybuffers > lodirty) {
+ if (buf_flush(NULL, bd,
+ bd->bd_numdirtybuffers - lodirty) == 0)
+ break;
+ kern_yield(PRI_USER);
+ }
+ }
+
+ /*
+ * Only clear bd_request if we have reached our low water
+ * mark. The buf_daemon normally waits 1 second and
+ * then incrementally flushes any dirty buffers that have
+ * built up, within reason.
+ *
+ * If we were unable to hit our low water mark and couldn't
+ * find any flushable buffers, we sleep for a short period
+ * to avoid endless loops on unlockable buffers.
+ */
+ mtx_lock(&bdlock);
+ if (!BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
+ /*
+ * We reached our low water mark, reset the
+ * request and sleep until we are needed again.
+ * The sleep is just so the suspend code works.
+ */
+ bd_request = 0;
+ /*
+ * Do an extra wakeup in case dirty threshold
+ * changed via sysctl and the explicit transition
+ * out of shortfall was missed.
+ */
+ bdirtywakeup();
+ if (runningbufspace <= lorunningspace)
+ runningwakeup();
+ msleep(&bd_request, &bdlock, PVM, "psleep", hz);
+ } else {
+ /*
+ * We couldn't find any flushable dirty buffers but
+ * still have too many dirty buffers, we
+ * have to sleep and try again. (rare)
+ */
+ msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
+ }
+ }
+}
+
+/*
+ * flushbufqueues:
+ *
+ * Try to flush a buffer in the dirty queue. We must be careful to
+ * free up B_INVAL buffers instead of write them, which NFS is
+ * particularly sensitive to.
+ */
+static int flushwithdeps = 0;
+SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
+ 0, "Number of buffers flushed with dependecies that require rollbacks");
+
+static int
+flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
+ int flushdeps)
+{
+ struct bufqueue *bq;
+ struct buf *sentinel;
+ struct vnode *vp;
+ struct mount *mp;
+ struct buf *bp;
+ int hasdeps;
+ int flushed;
+ int error;
+ bool unlock;
+
+ flushed = 0;
+ bq = &bd->bd_dirtyq;
+ bp = NULL;
+ sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
+ sentinel->b_qindex = QUEUE_SENTINEL;
+ BQ_LOCK(bq);
+ TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
+ BQ_UNLOCK(bq);
+ while (flushed != target) {
+ maybe_yield();
+ BQ_LOCK(bq);
+ bp = TAILQ_NEXT(sentinel, b_freelist);
+ if (bp != NULL) {
+ TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
+ TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
+ b_freelist);
+ } else {
+ BQ_UNLOCK(bq);
+ break;
+ }
+ /*
+ * Skip sentinels inserted by other invocations of the
+ * flushbufqueues(), taking care to not reorder them.
+ *
+ * Only flush the buffers that belong to the
+ * vnode locked by the curthread.
+ */
+ if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
+ bp->b_vp != lvp)) {
+ BQ_UNLOCK(bq);
+ continue;
+ }
+ error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
+ BQ_UNLOCK(bq);
+ if (error != 0)
+ continue;
+
+ /*
+ * BKGRDINPROG can only be set with the buf and bufobj
+ * locks both held. We tolerate a race to clear it here.
+ */
+ if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
+ (bp->b_flags & B_DELWRI) == 0) {
+ BUF_UNLOCK(bp);
+ continue;
+ }
+ if (bp->b_flags & B_INVAL) {
+ bremfreef(bp);
+ brelse(bp);
+ flushed++;
+ continue;
+ }
+
+ if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
+ if (flushdeps == 0) {
+ BUF_UNLOCK(bp);
+ continue;
+ }
+ hasdeps = 1;
+ } else
+ hasdeps = 0;
+ /*
+ * We must hold the lock on a vnode before writing
+ * one of its buffers. Otherwise we may confuse, or
+ * in the case of a snapshot vnode, deadlock the
+ * system.
+ *
+ * The lock order here is the reverse of the normal
+ * of vnode followed by buf lock. This is ok because
+ * the NOWAIT will prevent deadlock.
+ */
+ vp = bp->b_vp;
+ if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
+ BUF_UNLOCK(bp);
+ continue;
+ }
+ if (lvp == NULL) {
+ unlock = true;
+ error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
+ } else {
+ ASSERT_VOP_LOCKED(vp, "getbuf");
+ unlock = false;
+ error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
+ vn_lock(vp, LK_TRYUPGRADE);
+ }
+ if (error == 0) {
+ CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
+ bp, bp->b_vp, bp->b_flags);
+ if (curproc == bufdaemonproc) {
+ vfs_bio_awrite(bp);
+ } else {
+ bremfree(bp);
+ bwrite(bp);
+ counter_u64_add(notbufdflushes, 1);
+ }
+ vn_finished_write(mp);
+ if (unlock)
+ VOP_UNLOCK(vp, 0);
+ flushwithdeps += hasdeps;
+ flushed++;
+
+ /*
+ * Sleeping on runningbufspace while holding
+ * vnode lock leads to deadlock.
+ */
+ if (curproc == bufdaemonproc &&
+ runningbufspace > hirunningspace)
+ waitrunningbufspace();
+ continue;
+ }
+ vn_finished_write(mp);
+ BUF_UNLOCK(bp);
+ }
+ BQ_LOCK(bq);
+ TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
+ BQ_UNLOCK(bq);
+ free(sentinel, M_TEMP);
+ return (flushed);
+}
+
+/*
+ * Check to see if a block is currently memory resident.
+ */
+struct buf *
+incore(struct bufobj *bo, daddr_t blkno)
+{
+ struct buf *bp;
+
+ BO_RLOCK(bo);
+ bp = gbincore(bo, blkno);
+ BO_RUNLOCK(bo);
+ return (bp);
+}
+
+/*
+ * Returns true if no I/O is needed to access the
+ * associated VM object. This is like incore except
+ * it also hunts around in the VM system for the data.
+ */
+
+static int
+inmem(struct vnode * vp, daddr_t blkno)
+{
+ vm_object_t obj;
+ vm_offset_t toff, tinc, size;
+ vm_page_t m;
+ vm_ooffset_t off;
+
+ ASSERT_VOP_LOCKED(vp, "inmem");
+
+ if (incore(&vp->v_bufobj, blkno))
+ return 1;
+ if (vp->v_mount == NULL)
+ return 0;
+ obj = vp->v_object;
+ if (obj == NULL)
+ return (0);
+
+ size = PAGE_SIZE;
+ if (size > vp->v_mount->mnt_stat.f_iosize)
+ size = vp->v_mount->mnt_stat.f_iosize;
+ off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
+
+ VM_OBJECT_RLOCK(obj);
+ for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
+ m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
+ if (!m)
+ goto notinmem;
+ tinc = size;
+ if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
+ tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
+ if (vm_page_is_valid(m,
+ (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
+ goto notinmem;
+ }
+ VM_OBJECT_RUNLOCK(obj);
+ return 1;
+
+notinmem:
+ VM_OBJECT_RUNLOCK(obj);
+ return (0);
+}
+
+/*
+ * Set the dirty range for a buffer based on the status of the dirty
+ * bits in the pages comprising the buffer. The range is limited
+ * to the size of the buffer.
+ *
+ * Tell the VM system that the pages associated with this buffer
+ * are clean. This is used for delayed writes where the data is
+ * going to go to disk eventually without additional VM intevention.
+ *
+ * Note that while we only really need to clean through to b_bcount, we
+ * just go ahead and clean through to b_bufsize.
+ */
+static void
+vfs_clean_pages_dirty_buf(struct buf *bp)
+{
+ vm_ooffset_t foff, noff, eoff;
+ vm_page_t m;
+ int i;
+
+ if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
+ return;
+
+ foff = bp->b_offset;
+ KASSERT(bp->b_offset != NOOFFSET,
+ ("vfs_clean_pages_dirty_buf: no buffer offset"));
+
+ VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
+ vfs_drain_busy_pages(bp);
+ vfs_setdirty_locked_object(bp);
+ for (i = 0; i < bp->b_npages; i++) {
+ noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
+ eoff = noff;
+ if (eoff > bp->b_offset + bp->b_bufsize)
+ eoff = bp->b_offset + bp->b_bufsize;
+ m = bp->b_pages[i];
+ vfs_page_set_validclean(bp, foff, m);
+ /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
+ foff = noff;
+ }
+ VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
+}
+
+static void
+vfs_setdirty_locked_object(struct buf *bp)
+{
+ vm_object_t object;
+ int i;
+
+ object = bp->b_bufobj->bo_object;
+ VM_OBJECT_ASSERT_WLOCKED(object);
+
+ /*
+ * We qualify the scan for modified pages on whether the
+ * object has been flushed yet.
+ */
+ if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
+ vm_offset_t boffset;
+ vm_offset_t eoffset;
+
+ /*
+ * test the pages to see if they have been modified directly
+ * by users through the VM system.
+ */
+ for (i = 0; i < bp->b_npages; i++)
+ vm_page_test_dirty(bp->b_pages[i]);
+
+ /*
+ * Calculate the encompassing dirty range, boffset and eoffset,
+ * (eoffset - boffset) bytes.
+ */
+
+ for (i = 0; i < bp->b_npages; i++) {
+ if (bp->b_pages[i]->dirty)
+ break;
+ }
+ boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
+
+ for (i = bp->b_npages - 1; i >= 0; --i) {
+ if (bp->b_pages[i]->dirty) {
+ break;
+ }
+ }
+ eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
+
+ /*
+ * Fit it to the buffer.
+ */
+
+ if (eoffset > bp->b_bcount)
+ eoffset = bp->b_bcount;
+
+ /*
+ * If we have a good dirty range, merge with the existing
+ * dirty range.
+ */
+
+ if (boffset < eoffset) {
+ if (bp->b_dirtyoff > boffset)
+ bp->b_dirtyoff = boffset;
+ if (bp->b_dirtyend < eoffset)
+ bp->b_dirtyend = eoffset;
+ }
+ }
+}
+
+/*
+ * Allocate the KVA mapping for an existing buffer.
+ * If an unmapped buffer is provided but a mapped buffer is requested, take
+ * also care to properly setup mappings between pages and KVA.
+ */
+static void
+bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
+{
+ int bsize, maxsize, need_mapping, need_kva;
+ off_t offset;
+
+ need_mapping = bp->b_data == unmapped_buf &&
+ (gbflags & GB_UNMAPPED) == 0;
+ need_kva = bp->b_kvabase == unmapped_buf &&
+ bp->b_data == unmapped_buf &&
+ (gbflags & GB_KVAALLOC) != 0;
+ if (!need_mapping && !need_kva)
+ return;
+
+ BUF_CHECK_UNMAPPED(bp);
+
+ if (need_mapping && bp->b_kvabase != unmapped_buf) {
+ /*
+ * Buffer is not mapped, but the KVA was already
+ * reserved at the time of the instantiation. Use the
+ * allocated space.
+ */
+ goto has_addr;
+ }
+
+ /*
+ * Calculate the amount of the address space we would reserve
+ * if the buffer was mapped.
+ */
+ bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
+ KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
+ offset = blkno * bsize;
+ maxsize = size + (offset & PAGE_MASK);
+ maxsize = imax(maxsize, bsize);
+
+ while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
+ if ((gbflags & GB_NOWAIT_BD) != 0) {
+ /*
+ * XXXKIB: defragmentation cannot
+ * succeed, not sure what else to do.
+ */
+ panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
+ }
+ counter_u64_add(mappingrestarts, 1);
+ bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
+ }
+has_addr:
+ if (need_mapping) {
+ /* b_offset is handled by bpmap_qenter. */
+ bp->b_data = bp->b_kvabase;
+ BUF_CHECK_MAPPED(bp);
+ bpmap_qenter(bp);
+ }
+}
+
+struct buf *
+getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
+ int flags)
+{
+ struct buf *bp;
+ int error;
+
+ error = getblkx(vp, blkno, size, slpflag, slptimeo, flags, &bp);
+ if (error != 0)
+ return (NULL);
+ return (bp);
+}
+
+/*
+ * getblkx:
+ *
+ * Get a block given a specified block and offset into a file/device.
+ * The buffers B_DONE bit will be cleared on return, making it almost
+ * ready for an I/O initiation. B_INVAL may or may not be set on
+ * return. The caller should clear B_INVAL prior to initiating a
+ * READ.
+ *
+ * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
+ * an existing buffer.
+ *
+ * For a VMIO buffer, B_CACHE is modified according to the backing VM.
+ * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
+ * and then cleared based on the backing VM. If the previous buffer is
+ * non-0-sized but invalid, B_CACHE will be cleared.
+ *
+ * If getblk() must create a new buffer, the new buffer is returned with
+ * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
+ * case it is returned with B_INVAL clear and B_CACHE set based on the
+ * backing VM.
+ *
+ * getblk() also forces a bwrite() for any B_DELWRI buffer whos
+ * B_CACHE bit is clear.
+ *
+ * What this means, basically, is that the caller should use B_CACHE to
+ * determine whether the buffer is fully valid or not and should clear
+ * B_INVAL prior to issuing a read. If the caller intends to validate
+ * the buffer by loading its data area with something, the caller needs
+ * to clear B_INVAL. If the caller does this without issuing an I/O,
+ * the caller should set B_CACHE ( as an optimization ), else the caller
+ * should issue the I/O and biodone() will set B_CACHE if the I/O was
+ * a write attempt or if it was a successful read. If the caller
+ * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
+ * prior to issuing the READ. biodone() will *not* clear B_INVAL.
+ */
+int
+getblkx(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
+ int flags, struct buf **bpp)
+{
+ struct buf *bp;
+ struct bufobj *bo;
+ daddr_t d_blkno;
+ int bsize, error, maxsize, vmio;
+ off_t offset;
+
+ CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
+ KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
+ ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
+ ASSERT_VOP_LOCKED(vp, "getblk");
+ if (size > maxbcachebuf)
+ panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
+ maxbcachebuf);
+ if (!unmapped_buf_allowed)
+ flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
+
+ bo = &vp->v_bufobj;
+ d_blkno = blkno;
+loop:
+ BO_RLOCK(bo);
+ bp = gbincore(bo, blkno);
+ if (bp != NULL) {
+ int lockflags;
+ /*
+ * Buffer is in-core. If the buffer is not busy nor managed,
+ * it must be on a queue.
+ */
+ lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
+
+ if ((flags & GB_LOCK_NOWAIT) != 0)
+ lockflags |= LK_NOWAIT;
+
+ error = BUF_TIMELOCK(bp, lockflags,
+ BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
+
+ /*
+ * If we slept and got the lock we have to restart in case
+ * the buffer changed identities.
+ */
+ if (error == ENOLCK)
+ goto loop;
+ /* We timed out or were interrupted. */
+ else if (error != 0)
+ return (error);
+ /* If recursed, assume caller knows the rules. */
+ else if (BUF_LOCKRECURSED(bp))
+ goto end;
+
+ /*
+ * The buffer is locked. B_CACHE is cleared if the buffer is
+ * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set
+ * and for a VMIO buffer B_CACHE is adjusted according to the
+ * backing VM cache.
+ */
+ if (bp->b_flags & B_INVAL)
+ bp->b_flags &= ~B_CACHE;
+ else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
+ bp->b_flags |= B_CACHE;
+ if (bp->b_flags & B_MANAGED)
+ MPASS(bp->b_qindex == QUEUE_NONE);
+ else
+ bremfree(bp);
+
+ /*
+ * check for size inconsistencies for non-VMIO case.
+ */
+ if (bp->b_bcount != size) {
+ if ((bp->b_flags & B_VMIO) == 0 ||
+ (size > bp->b_kvasize)) {
+ if (bp->b_flags & B_DELWRI) {
+ bp->b_flags |= B_NOCACHE;
+ bwrite(bp);
+ } else {
+ if (LIST_EMPTY(&bp->b_dep)) {
+ bp->b_flags |= B_RELBUF;
+ brelse(bp);
+ } else {
+ bp->b_flags |= B_NOCACHE;
+ bwrite(bp);
+ }
+ }
+ goto loop;
+ }
+ }
+
+ /*
+ * Handle the case of unmapped buffer which should
+ * become mapped, or the buffer for which KVA
+ * reservation is requested.
+ */
+ bp_unmapped_get_kva(bp, blkno, size, flags);
+
+ /*
+ * If the size is inconsistent in the VMIO case, we can resize
+ * the buffer. This might lead to B_CACHE getting set or
+ * cleared. If the size has not changed, B_CACHE remains
+ * unchanged from its previous state.
+ */
+ allocbuf(bp, size);
+
+ KASSERT(bp->b_offset != NOOFFSET,
+ ("getblk: no buffer offset"));
+
+ /*
+ * A buffer with B_DELWRI set and B_CACHE clear must
+ * be committed before we can return the buffer in
+ * order to prevent the caller from issuing a read
+ * ( due to B_CACHE not being set ) and overwriting
+ * it.
+ *
+ * Most callers, including NFS and FFS, need this to
+ * operate properly either because they assume they
+ * can issue a read if B_CACHE is not set, or because
+ * ( for example ) an uncached B_DELWRI might loop due
+ * to softupdates re-dirtying the buffer. In the latter
+ * case, B_CACHE is set after the first write completes,
+ * preventing further loops.
+ * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
+ * above while extending the buffer, we cannot allow the
+ * buffer to remain with B_CACHE set after the write
+ * completes or it will represent a corrupt state. To
+ * deal with this we set B_NOCACHE to scrap the buffer
+ * after the write.
+ *
+ * We might be able to do something fancy, like setting
+ * B_CACHE in bwrite() except if B_DELWRI is already set,
+ * so the below call doesn't set B_CACHE, but that gets real
+ * confusing. This is much easier.
+ */
+
+ if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
+ bp->b_flags |= B_NOCACHE;
+ bwrite(bp);
+ goto loop;
+ }
+ bp->b_flags &= ~B_DONE;
+ } else {
+ /*
+ * Buffer is not in-core, create new buffer. The buffer
+ * returned by getnewbuf() is locked. Note that the returned
+ * buffer is also considered valid (not marked B_INVAL).
+ */
+ BO_RUNLOCK(bo);
+ /*
+ * If the user does not want us to create the buffer, bail out
+ * here.
+ */
+ if (flags & GB_NOCREAT)
+ return (EEXIST);
+
+ bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
+ KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
+ offset = blkno * bsize;
+ vmio = vp->v_object != NULL;
+ if (vmio) {
+ maxsize = size + (offset & PAGE_MASK);
+ } else {
+ maxsize = size;
+ /* Do not allow non-VMIO notmapped buffers. */
+ flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
+ }
+ maxsize = imax(maxsize, bsize);
+ if ((flags & GB_NOSPARSE) != 0 && vmio &&
+ !vn_isdisk(vp, NULL)) {
+ error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
+ KASSERT(error != EOPNOTSUPP,
+ ("GB_NOSPARSE from fs not supporting bmap, vp %p",
+ vp));
+ if (error != 0)
+ return (error);
+ if (d_blkno == -1)
+ return (EJUSTRETURN);
+ }
+
+ bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
+ if (bp == NULL) {
+ if (slpflag || slptimeo)
+ return (ETIMEDOUT);
+ /*
+ * XXX This is here until the sleep path is diagnosed
+ * enough to work under very low memory conditions.
+ *
+ * There's an issue on low memory, 4BSD+non-preempt
+ * systems (eg MIPS routers with 32MB RAM) where buffer
+ * exhaustion occurs without sleeping for buffer
+ * reclaimation. This just sticks in a loop and
+ * constantly attempts to allocate a buffer, which
+ * hits exhaustion and tries to wakeup bufdaemon.
+ * This never happens because we never yield.
+ *
+ * The real solution is to identify and fix these cases
+ * so we aren't effectively busy-waiting in a loop
+ * until the reclaimation path has cycles to run.
+ */
+ kern_yield(PRI_USER);
+ goto loop;
+ }
+
+ /*
+ * This code is used to make sure that a buffer is not
+ * created while the getnewbuf routine is blocked.
+ * This can be a problem whether the vnode is locked or not.
+ * If the buffer is created out from under us, we have to
+ * throw away the one we just created.
+ *
+ * Note: this must occur before we associate the buffer
+ * with the vp especially considering limitations in
+ * the splay tree implementation when dealing with duplicate
+ * lblkno's.
+ */
+ BO_LOCK(bo);
+ if (gbincore(bo, blkno)) {
+ BO_UNLOCK(bo);
+ bp->b_flags |= B_INVAL;
+ bufspace_release(bufdomain(bp), maxsize);
+ brelse(bp);
+ goto loop;
+ }
+
+ /*
+ * Insert the buffer into the hash, so that it can
+ * be found by incore.
+ */
+ bp->b_lblkno = blkno;
+ bp->b_blkno = d_blkno;
+ bp->b_offset = offset;
+ bgetvp(vp, bp);
+ BO_UNLOCK(bo);
+
+ /*
+ * set B_VMIO bit. allocbuf() the buffer bigger. Since the
+ * buffer size starts out as 0, B_CACHE will be set by
+ * allocbuf() for the VMIO case prior to it testing the
+ * backing store for validity.
+ */
+
+ if (vmio) {
+ bp->b_flags |= B_VMIO;
+ KASSERT(vp->v_object == bp->b_bufobj->bo_object,
+ ("ARGH! different b_bufobj->bo_object %p %p %p\n",
+ bp, vp->v_object, bp->b_bufobj->bo_object));
+ } else {
+ bp->b_flags &= ~B_VMIO;
+ KASSERT(bp->b_bufobj->bo_object == NULL,
+ ("ARGH! has b_bufobj->bo_object %p %p\n",
+ bp, bp->b_bufobj->bo_object));
+ BUF_CHECK_MAPPED(bp);
+ }
+
+ allocbuf(bp, size);
+ bufspace_release(bufdomain(bp), maxsize);
+ bp->b_flags &= ~B_DONE;
+ }
+ CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
+ BUF_ASSERT_HELD(bp);
+end:
+ buf_track(bp, __func__);
+ KASSERT(bp->b_bufobj == bo,
+ ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
+ *bpp = bp;
+ return (0);
+}
+
+/*
+ * Get an empty, disassociated buffer of given size. The buffer is initially
+ * set to B_INVAL.
+ */
+struct buf *
+geteblk(int size, int flags)
+{
+ struct buf *bp;
+ int maxsize;
+
+ maxsize = (size + BKVAMASK) & ~BKVAMASK;
+ while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
+ if ((flags & GB_NOWAIT_BD) &&
+ (curthread->td_pflags & TDP_BUFNEED) != 0)
+ return (NULL);
+ }
+ allocbuf(bp, size);
+ bufspace_release(bufdomain(bp), maxsize);
+ bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
+ BUF_ASSERT_HELD(bp);
+ return (bp);
+}
+
+/*
+ * Truncate the backing store for a non-vmio buffer.
+ */
+static void
+vfs_nonvmio_truncate(struct buf *bp, int newbsize)
+{
+
+ if (bp->b_flags & B_MALLOC) {
+ /*
+ * malloced buffers are not shrunk
+ */
+ if (newbsize == 0) {
+ bufmallocadjust(bp, 0);
+ free(bp->b_data, M_BIOBUF);
+ bp->b_data = bp->b_kvabase;
+ bp->b_flags &= ~B_MALLOC;
+ }
+ return;
+ }
+ vm_hold_free_pages(bp, newbsize);
+ bufspace_adjust(bp, newbsize);
+}
+
+/*
+ * Extend the backing for a non-VMIO buffer.
+ */
+static void
+vfs_nonvmio_extend(struct buf *bp, int newbsize)
+{
+ caddr_t origbuf;
+ int origbufsize;
+
+ /*
+ * We only use malloced memory on the first allocation.
+ * and revert to page-allocated memory when the buffer
+ * grows.
+ *
+ * There is a potential smp race here that could lead
+ * to bufmallocspace slightly passing the max. It
+ * is probably extremely rare and not worth worrying
+ * over.
+ */
+ if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
+ bufmallocspace < maxbufmallocspace) {
+ bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
+ bp->b_flags |= B_MALLOC;
+ bufmallocadjust(bp, newbsize);
+ return;
+ }
+
+ /*
+ * If the buffer is growing on its other-than-first
+ * allocation then we revert to the page-allocation
+ * scheme.
+ */
+ origbuf = NULL;
+ origbufsize = 0;
+ if (bp->b_flags & B_MALLOC) {
+ origbuf = bp->b_data;
+ origbufsize = bp->b_bufsize;
+ bp->b_data = bp->b_kvabase;
+ bufmallocadjust(bp, 0);
+ bp->b_flags &= ~B_MALLOC;
+ newbsize = round_page(newbsize);
+ }
+ vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
+ (vm_offset_t) bp->b_data + newbsize);
+ if (origbuf != NULL) {
+ bcopy(origbuf, bp->b_data, origbufsize);
+ free(origbuf, M_BIOBUF);
+ }
+ bufspace_adjust(bp, newbsize);
+}
+
+/*
+ * This code constitutes the buffer memory from either anonymous system
+ * memory (in the case of non-VMIO operations) or from an associated
+ * VM object (in the case of VMIO operations). This code is able to
+ * resize a buffer up or down.
+ *
+ * Note that this code is tricky, and has many complications to resolve
+ * deadlock or inconsistent data situations. Tread lightly!!!
+ * There are B_CACHE and B_DELWRI interactions that must be dealt with by
+ * the caller. Calling this code willy nilly can result in the loss of data.
+ *
+ * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
+ * B_CACHE for the non-VMIO case.
+ */
+int
+allocbuf(struct buf *bp, int size)
+{
+ int newbsize;
+
+ BUF_ASSERT_HELD(bp);
+
+ if (bp->b_bcount == size)
+ return (1);
+
+ if (bp->b_kvasize != 0 && bp->b_kvasize < size)
+ panic("allocbuf: buffer too small");
+
+ newbsize = roundup2(size, DEV_BSIZE);
+ if ((bp->b_flags & B_VMIO) == 0) {
+ if ((bp->b_flags & B_MALLOC) == 0)
+ newbsize = round_page(newbsize);
+ /*
+ * Just get anonymous memory from the kernel. Don't
+ * mess with B_CACHE.
+ */
+ if (newbsize < bp->b_bufsize)
+ vfs_nonvmio_truncate(bp, newbsize);
+ else if (newbsize > bp->b_bufsize)
+ vfs_nonvmio_extend(bp, newbsize);
+ } else {
+ int desiredpages;
+
+ desiredpages = (size == 0) ? 0 :
+ num_pages((bp->b_offset & PAGE_MASK) + newbsize);
+
+ if (bp->b_flags & B_MALLOC)
+ panic("allocbuf: VMIO buffer can't be malloced");
+ /*
+ * Set B_CACHE initially if buffer is 0 length or will become
+ * 0-length.
+ */
+ if (size == 0 || bp->b_bufsize == 0)
+ bp->b_flags |= B_CACHE;
+
+ if (newbsize < bp->b_bufsize)
+ vfs_vmio_truncate(bp, desiredpages);
+ /* XXX This looks as if it should be newbsize > b_bufsize */
+ else if (size > bp->b_bcount)
+ vfs_vmio_extend(bp, desiredpages, size);
+ bufspace_adjust(bp, newbsize);
+ }
+ bp->b_bcount = size; /* requested buffer size. */
+ return (1);
+}
+
+extern int inflight_transient_maps;
+
+static struct bio_queue nondump_bios;
+
+void
+biodone(struct bio *bp)
+{
+ struct mtx *mtxp;
+ void (*done)(struct bio *);
+ vm_offset_t start, end;
+
+ biotrack(bp, __func__);
+
+ /*
+ * Avoid completing I/O when dumping after a panic since that may
+ * result in a deadlock in the filesystem or pager code. Note that
+ * this doesn't affect dumps that were started manually since we aim
+ * to keep the system usable after it has been resumed.
+ */
+ if (__predict_false(dumping && SCHEDULER_STOPPED())) {
+ TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
+ return;
+ }
+ if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
+ bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
+ bp->bio_flags |= BIO_UNMAPPED;
+ start = trunc_page((vm_offset_t)bp->bio_data);
+ end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
+ bp->bio_data = unmapped_buf;
+ pmap_qremove(start, atop(end - start));
+ vmem_free(transient_arena, start, end - start);
+ atomic_add_int(&inflight_transient_maps, -1);
+ }
+ done = bp->bio_done;
+ if (done == NULL) {
+ mtxp = mtx_pool_find(mtxpool_sleep, bp);
+ mtx_lock(mtxp);
+ bp->bio_flags |= BIO_DONE;
+ wakeup(bp);
+ mtx_unlock(mtxp);
+ } else
+ done(bp);
+}
+
+/*
+ * Wait for a BIO to finish.
+ */
+int
+biowait(struct bio *bp, const char *wchan)
+{
+ struct mtx *mtxp;
+
+ mtxp = mtx_pool_find(mtxpool_sleep, bp);
+ mtx_lock(mtxp);
+ while ((bp->bio_flags & BIO_DONE) == 0)
+ msleep(bp, mtxp, PRIBIO, wchan, 0);
+ mtx_unlock(mtxp);
+ if (bp->bio_error != 0)
+ return (bp->bio_error);
+ if (!(bp->bio_flags & BIO_ERROR))
+ return (0);
+ return (EIO);
+}
+
+void
+biofinish(struct bio *bp, struct devstat *stat, int error)
+{
+
+ if (error) {
+ bp->bio_error = error;
+ bp->bio_flags |= BIO_ERROR;
+ }
+ if (stat != NULL)
+ devstat_end_transaction_bio(stat, bp);
+ biodone(bp);
+}
+
+#if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
+void
+biotrack_buf(struct bio *bp, const char *location)
+{
+
+ buf_track(bp->bio_track_bp, location);
+}
+#endif
+
+/*
+ * bufwait:
+ *
+ * Wait for buffer I/O completion, returning error status. The buffer
+ * is left locked and B_DONE on return. B_EINTR is converted into an EINTR
+ * error and cleared.
+ */
+int
+bufwait(struct buf *bp)
+{
+ if (bp->b_iocmd == BIO_READ)
+ bwait(bp, PRIBIO, "biord");
+ else
+ bwait(bp, PRIBIO, "biowr");
+ if (bp->b_flags & B_EINTR) {
+ bp->b_flags &= ~B_EINTR;
+ return (EINTR);
+ }
+ if (bp->b_ioflags & BIO_ERROR) {
+ return (bp->b_error ? bp->b_error : EIO);
+ } else {
+ return (0);
+ }
+}
+
+/*
+ * bufdone:
+ *
+ * Finish I/O on a buffer, optionally calling a completion function.
+ * This is usually called from an interrupt so process blocking is
+ * not allowed.
+ *
+ * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
+ * In a non-VMIO bp, B_CACHE will be set on the next getblk()
+ * assuming B_INVAL is clear.
+ *
+ * For the VMIO case, we set B_CACHE if the op was a read and no
+ * read error occurred, or if the op was a write. B_CACHE is never
+ * set if the buffer is invalid or otherwise uncacheable.
+ *
+ * bufdone does not mess with B_INVAL, allowing the I/O routine or the
+ * initiator to leave B_INVAL set to brelse the buffer out of existence
+ * in the biodone routine.
+ */
+void
+bufdone(struct buf *bp)
+{
+ struct bufobj *dropobj;
+ void (*biodone)(struct buf *);
+
+ buf_track(bp, __func__);
+ CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
+ dropobj = NULL;
+
+ KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
+ BUF_ASSERT_HELD(bp);
+
+ runningbufwakeup(bp);
+ if (bp->b_iocmd == BIO_WRITE)
+ dropobj = bp->b_bufobj;
+ /* call optional completion function if requested */
+ if (bp->b_iodone != NULL) {
+ biodone = bp->b_iodone;
+ bp->b_iodone = NULL;
+ (*biodone) (bp);
+ if (dropobj)
+ bufobj_wdrop(dropobj);
+ return;
+ }
+ if (bp->b_flags & B_VMIO) {
+ /*
+ * Set B_CACHE if the op was a normal read and no error
+ * occurred. B_CACHE is set for writes in the b*write()
+ * routines.
+ */
+ if (bp->b_iocmd == BIO_READ &&
+ !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
+ !(bp->b_ioflags & BIO_ERROR))
+ bp->b_flags |= B_CACHE;
+ vfs_vmio_iodone(bp);
+ }
+ if (!LIST_EMPTY(&bp->b_dep))
+ buf_complete(bp);
+ if ((bp->b_flags & B_CKHASH) != 0) {
+ KASSERT(bp->b_iocmd == BIO_READ,
+ ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
+ KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
+ (*bp->b_ckhashcalc)(bp);
+ }
+ /*
+ * For asynchronous completions, release the buffer now. The brelse
+ * will do a wakeup there if necessary - so no need to do a wakeup
+ * here in the async case. The sync case always needs to do a wakeup.
+ */
+ if (bp->b_flags & B_ASYNC) {
+ if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
+ (bp->b_ioflags & BIO_ERROR))
+ brelse(bp);
+ else
+ bqrelse(bp);
+ } else
+ bdone(bp);
+ if (dropobj)
+ bufobj_wdrop(dropobj);
+}
+
+/*
+ * This routine is called in lieu of iodone in the case of
+ * incomplete I/O. This keeps the busy status for pages
+ * consistent.
+ */
+void
+vfs_unbusy_pages(struct buf *bp)
+{
+ int i;
+ vm_object_t obj;
+ vm_page_t m;
+
+ runningbufwakeup(bp);
+ if (!(bp->b_flags & B_VMIO))
+ return;
+
+ obj = bp->b_bufobj->bo_object;
+ VM_OBJECT_WLOCK(obj);
+ for (i = 0; i < bp->b_npages; i++) {
+ m = bp->b_pages[i];
+ if (m == bogus_page) {
+ m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
+ if (!m)
+ panic("vfs_unbusy_pages: page missing\n");
+ bp->b_pages[i] = m;
+ if (buf_mapped(bp)) {
+ BUF_CHECK_MAPPED(bp);
+ pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
+ bp->b_pages, bp->b_npages);
+ } else
+ BUF_CHECK_UNMAPPED(bp);
+ }
+ vm_page_sunbusy(m);
+ }
+ vm_object_pip_wakeupn(obj, bp->b_npages);
+ VM_OBJECT_WUNLOCK(obj);
+}
+
+/*
+ * vfs_page_set_valid:
+ *
+ * Set the valid bits in a page based on the supplied offset. The
+ * range is restricted to the buffer's size.
+ *
+ * This routine is typically called after a read completes.
+ */
+static void
+vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
+{
+ vm_ooffset_t eoff;
+
+ /*
+ * Compute the end offset, eoff, such that [off, eoff) does not span a
+ * page boundary and eoff is not greater than the end of the buffer.
+ * The end of the buffer, in this case, is our file EOF, not the
+ * allocation size of the buffer.
+ */
+ eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
+ if (eoff > bp->b_offset + bp->b_bcount)
+ eoff = bp->b_offset + bp->b_bcount;
+
+ /*
+ * Set valid range. This is typically the entire buffer and thus the
+ * entire page.
+ */
+ if (eoff > off)
+ vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
+}
+
+/*
+ * vfs_page_set_validclean:
+ *
+ * Set the valid bits and clear the dirty bits in a page based on the
+ * supplied offset. The range is restricted to the buffer's size.
+ */
+static void
+vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
+{
+ vm_ooffset_t soff, eoff;
+
+ /*
+ * Start and end offsets in buffer. eoff - soff may not cross a
+ * page boundary or cross the end of the buffer. The end of the
+ * buffer, in this case, is our file EOF, not the allocation size
+ * of the buffer.
+ */
+ soff = off;
+ eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
+ if (eoff > bp->b_offset + bp->b_bcount)
+ eoff = bp->b_offset + bp->b_bcount;
+
+ /*
+ * Set valid range. This is typically the entire buffer and thus the
+ * entire page.
+ */
+ if (eoff > soff) {
+ vm_page_set_validclean(
+ m,
+ (vm_offset_t) (soff & PAGE_MASK),
+ (vm_offset_t) (eoff - soff)
+ );
+ }
+}
+
+/*
+ * Ensure that all buffer pages are not exclusive busied. If any page is
+ * exclusive busy, drain it.
+ */
+void
+vfs_drain_busy_pages(struct buf *bp)
+{
+ vm_page_t m;
+ int i, last_busied;
+
+ VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
+ last_busied = 0;
+ for (i = 0; i < bp->b_npages; i++) {
+ m = bp->b_pages[i];
+ if (vm_page_xbusied(m)) {
+ for (; last_busied < i; last_busied++)
+ vm_page_sbusy(bp->b_pages[last_busied]);
+ while (vm_page_xbusied(m)) {
+ vm_page_lock(m);
+ VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
+ vm_page_busy_sleep(m, "vbpage", true);
+ VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
+ }
+ }
+ }
+ for (i = 0; i < last_busied; i++)
+ vm_page_sunbusy(bp->b_pages[i]);
+}
+
+/*
+ * This routine is called before a device strategy routine.
+ * It is used to tell the VM system that paging I/O is in
+ * progress, and treat the pages associated with the buffer
+ * almost as being exclusive busy. Also the object paging_in_progress
+ * flag is handled to make sure that the object doesn't become
+ * inconsistent.
+ *
+ * Since I/O has not been initiated yet, certain buffer flags
+ * such as BIO_ERROR or B_INVAL may be in an inconsistent state
+ * and should be ignored.
+ */
+void
+vfs_busy_pages(struct buf *bp, int clear_modify)
+{
+ vm_object_t obj;
+ vm_ooffset_t foff;
+ vm_page_t m;
+ int i;
+ bool bogus;
+
+ if (!(bp->b_flags & B_VMIO))
+ return;
+
+ obj = bp->b_bufobj->bo_object;
+ foff = bp->b_offset;
+ KASSERT(bp->b_offset != NOOFFSET,
+ ("vfs_busy_pages: no buffer offset"));
+ VM_OBJECT_WLOCK(obj);
+ vfs_drain_busy_pages(bp);
+ if (bp->b_bufsize != 0)
+ vfs_setdirty_locked_object(bp);
+ bogus = false;
+ for (i = 0; i < bp->b_npages; i++) {
+ m = bp->b_pages[i];
+
+ if ((bp->b_flags & B_CLUSTER) == 0) {
+ vm_object_pip_add(obj, 1);
+ vm_page_sbusy(m);
+ }
+ /*
+ * When readying a buffer for a read ( i.e
+ * clear_modify == 0 ), it is important to do
+ * bogus_page replacement for valid pages in
+ * partially instantiated buffers. Partially
+ * instantiated buffers can, in turn, occur when
+ * reconstituting a buffer from its VM backing store
+ * base. We only have to do this if B_CACHE is
+ * clear ( which causes the I/O to occur in the
+ * first place ). The replacement prevents the read
+ * I/O from overwriting potentially dirty VM-backed
+ * pages. XXX bogus page replacement is, uh, bogus.
+ * It may not work properly with small-block devices.
+ * We need to find a better way.
+ */
+ if (clear_modify) {
+ pmap_remove_write(m);
+ vfs_page_set_validclean(bp, foff, m);
+ } else if (m->valid == VM_PAGE_BITS_ALL &&
+ (bp->b_flags & B_CACHE) == 0) {
+ bp->b_pages[i] = bogus_page;
+ bogus = true;
+ }
+ foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
+ }
+ VM_OBJECT_WUNLOCK(obj);
+ if (bogus && buf_mapped(bp)) {
+ BUF_CHECK_MAPPED(bp);
+ pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
+ bp->b_pages, bp->b_npages);
+ }
+}
+
+/*
+ * vfs_bio_set_valid:
+ *
+ * Set the range within the buffer to valid. The range is
+ * relative to the beginning of the buffer, b_offset. Note that
+ * b_offset itself may be offset from the beginning of the first
+ * page.
+ */
+void
+vfs_bio_set_valid(struct buf *bp, int base, int size)
+{
+ int i, n;
+ vm_page_t m;
+
+ if (!(bp->b_flags & B_VMIO))
+ return;
+
+ /*
+ * Fixup base to be relative to beginning of first page.
+ * Set initial n to be the maximum number of bytes in the
+ * first page that can be validated.
+ */
+ base += (bp->b_offset & PAGE_MASK);
+ n = PAGE_SIZE - (base & PAGE_MASK);
+
+ VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
+ for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
+ m = bp->b_pages[i];
+ if (n > size)
+ n = size;
+ vm_page_set_valid_range(m, base & PAGE_MASK, n);
+ base += n;
+ size -= n;
+ n = PAGE_SIZE;
+ }
+ VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
+}
+
+/*
+ * vfs_bio_clrbuf:
+ *
+ * If the specified buffer is a non-VMIO buffer, clear the entire
+ * buffer. If the specified buffer is a VMIO buffer, clear and
+ * validate only the previously invalid portions of the buffer.
+ * This routine essentially fakes an I/O, so we need to clear
+ * BIO_ERROR and B_INVAL.
+ *
+ * Note that while we only theoretically need to clear through b_bcount,
+ * we go ahead and clear through b_bufsize.
+ */
+void
+vfs_bio_clrbuf(struct buf *bp)
+{
+ int i, j, mask, sa, ea, slide;
+
+ if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
+ clrbuf(bp);
+ return;
+ }
+ bp->b_flags &= ~B_INVAL;
+ bp->b_ioflags &= ~BIO_ERROR;
+ VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
+ if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
+ (bp->b_offset & PAGE_MASK) == 0) {
+ if (bp->b_pages[0] == bogus_page)
+ goto unlock;
+ mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
+ VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
+ if ((bp->b_pages[0]->valid & mask) == mask)
+ goto unlock;
+ if ((bp->b_pages[0]->valid & mask) == 0) {
+ pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
+ bp->b_pages[0]->valid |= mask;
+ goto unlock;
+ }
+ }
+ sa = bp->b_offset & PAGE_MASK;
+ slide = 0;
+ for (i = 0; i < bp->b_npages; i++, sa = 0) {
+ slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
+ ea = slide & PAGE_MASK;
+ if (ea == 0)
+ ea = PAGE_SIZE;
+ if (bp->b_pages[i] == bogus_page)
+ continue;
+ j = sa / DEV_BSIZE;
+ mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
+ VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
+ if ((bp->b_pages[i]->valid & mask) == mask)
+ continue;
+ if ((bp->b_pages[i]->valid & mask) == 0)
+ pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
+ else {
+ for (; sa < ea; sa += DEV_BSIZE, j++) {
+ if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
+ pmap_zero_page_area(bp->b_pages[i],
+ sa, DEV_BSIZE);
+ }
+ }
+ }
+ bp->b_pages[i]->valid |= mask;
+ }
+unlock:
+ VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
+ bp->b_resid = 0;
+}
+
+void
+vfs_bio_bzero_buf(struct buf *bp, int base, int size)
+{
+ vm_page_t m;
+ int i, n;
+
+ if (buf_mapped(bp)) {
+ BUF_CHECK_MAPPED(bp);
+ bzero(bp->b_data + base, size);
+ } else {
+ BUF_CHECK_UNMAPPED(bp);
+ n = PAGE_SIZE - (base & PAGE_MASK);
+ for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
+ m = bp->b_pages[i];
+ if (n > size)
+ n = size;
+ pmap_zero_page_area(m, base & PAGE_MASK, n);
+ base += n;
+ size -= n;
+ n = PAGE_SIZE;
+ }
+ }
+}
+
+/*
+ * Update buffer flags based on I/O request parameters, optionally releasing the
+ * buffer. If it's VMIO or direct I/O, the buffer pages are released to the VM,
+ * where they may be placed on a page queue (VMIO) or freed immediately (direct
+ * I/O). Otherwise the buffer is released to the cache.
+ */
+static void
+b_io_dismiss(struct buf *bp, int ioflag, bool release)
+{
+
+ KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
+ ("buf %p non-VMIO noreuse", bp));
+
+ if ((ioflag & IO_DIRECT) != 0)
+ bp->b_flags |= B_DIRECT;
+ if ((ioflag & IO_EXT) != 0)
+ bp->b_xflags |= BX_ALTDATA;
+ if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
+ bp->b_flags |= B_RELBUF;
+ if ((ioflag & IO_NOREUSE) != 0)
+ bp->b_flags |= B_NOREUSE;
+ if (release)
+ brelse(bp);
+ } else if (release)
+ bqrelse(bp);
+}
+
+void
+vfs_bio_brelse(struct buf *bp, int ioflag)
+{
+
+ b_io_dismiss(bp, ioflag, true);
+}
+
+void
+vfs_bio_set_flags(struct buf *bp, int ioflag)
+{
+
+ b_io_dismiss(bp, ioflag, false);
+}
+
+/*
+ * vm_hold_load_pages and vm_hold_free_pages get pages into
+ * a buffers address space. The pages are anonymous and are
+ * not associated with a file object.
+ */
+static void
+vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
+{
+ vm_offset_t pg;
+ vm_page_t p;
+ int index;
+
+ BUF_CHECK_MAPPED(bp);
+
+ to = round_page(to);
+ from = round_page(from);
+ index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
+
+ for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
+ /*
+ * note: must allocate system pages since blocking here
+ * could interfere with paging I/O, no matter which
+ * process we are.
+ */
+ p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
+ VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) |
+ VM_ALLOC_WAITOK);
+ pmap_qenter(pg, &p, 1);
+ bp->b_pages[index] = p;
+ }
+ bp->b_npages = index;
+}
+
+/* Return pages associated with this buf to the vm system */
+static void
+vm_hold_free_pages(struct buf *bp, int newbsize)
+{
+ vm_offset_t from;
+ vm_page_t p;
+ int index, newnpages;
+
+ BUF_CHECK_MAPPED(bp);
+
+ from = round_page((vm_offset_t)bp->b_data + newbsize);
+ newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
+ if (bp->b_npages > newnpages)
+ pmap_qremove(from, bp->b_npages - newnpages);
+ for (index = newnpages; index < bp->b_npages; index++) {
+ p = bp->b_pages[index];
+ bp->b_pages[index] = NULL;
+ p->wire_count--;
+ vm_page_free(p);
+ }
+ vm_wire_sub(bp->b_npages - newnpages);
+ bp->b_npages = newnpages;
+}
+
+/*
+ * Map an IO request into kernel virtual address space.
+ *
+ * All requests are (re)mapped into kernel VA space.
+ * Notice that we use b_bufsize for the size of the buffer
+ * to be mapped. b_bcount might be modified by the driver.
+ *
+ * Note that even if the caller determines that the address space should
+ * be valid, a race or a smaller-file mapped into a larger space may
+ * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
+ * check the return value.
+ *
+ * This function only works with pager buffers.
+ */
+int
+vmapbuf(struct buf *bp, int mapbuf)
+{
+ vm_prot_t prot;
+ int pidx;
+
+ if (bp->b_bufsize < 0)
+ return (-1);
+ prot = VM_PROT_READ;
+ if (bp->b_iocmd == BIO_READ)
+ prot |= VM_PROT_WRITE; /* Less backwards than it looks */
+ if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
+ (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
+ btoc(MAXPHYS))) < 0)
+ return (-1);
+ bp->b_npages = pidx;
+ bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
+ if (mapbuf || !unmapped_buf_allowed) {
+ pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
+ bp->b_data = bp->b_kvabase + bp->b_offset;
+ } else
+ bp->b_data = unmapped_buf;
+ return(0);
+}
+
+/*
+ * Free the io map PTEs associated with this IO operation.
+ * We also invalidate the TLB entries and restore the original b_addr.
+ *
+ * This function only works with pager buffers.
+ */
+void
+vunmapbuf(struct buf *bp)
+{
+ int npages;
+
+ npages = bp->b_npages;
+ if (buf_mapped(bp))
+ pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
+ vm_page_unhold_pages(bp->b_pages, npages);
+
+ bp->b_data = unmapped_buf;
+}
+
+void
+bdone(struct buf *bp)
+{
+ struct mtx *mtxp;
+
+ mtxp = mtx_pool_find(mtxpool_sleep, bp);
+ mtx_lock(mtxp);
+ bp->b_flags |= B_DONE;
+ wakeup(bp);
+ mtx_unlock(mtxp);
+}
+
+void
+bwait(struct buf *bp, u_char pri, const char *wchan)
+{
+ struct mtx *mtxp;
+
+ mtxp = mtx_pool_find(mtxpool_sleep, bp);
+ mtx_lock(mtxp);
+ while ((bp->b_flags & B_DONE) == 0)
+ msleep(bp, mtxp, pri, wchan, 0);
+ mtx_unlock(mtxp);
+}
+
+int
+bufsync(struct bufobj *bo, int waitfor)
+{
+
+ return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
+}
+
+void
+bufstrategy(struct bufobj *bo, struct buf *bp)
+{
+ int i __unused;
+ struct vnode *vp;
+
+ vp = bp->b_vp;
+ KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
+ KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
+ ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
+ i = VOP_STRATEGY(vp, bp);
+ KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
+}
+
+/*
+ * Initialize a struct bufobj before use. Memory is assumed zero filled.
+ */
+void
+bufobj_init(struct bufobj *bo, void *private)
+{
+ static volatile int bufobj_cleanq;
+
+ bo->bo_domain =
+ atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
+ rw_init(BO_LOCKPTR(bo), "bufobj interlock");
+ bo->bo_private = private;
+ TAILQ_INIT(&bo->bo_clean.bv_hd);
+ TAILQ_INIT(&bo->bo_dirty.bv_hd);
+}
+
+void
+bufobj_wrefl(struct bufobj *bo)
+{
+
+ KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
+ ASSERT_BO_WLOCKED(bo);
+ bo->bo_numoutput++;
+}
+
+void
+bufobj_wref(struct bufobj *bo)
+{
+
+ KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
+ BO_LOCK(bo);
+ bo->bo_numoutput++;
+ BO_UNLOCK(bo);
+}
+
+void
+bufobj_wdrop(struct bufobj *bo)
+{
+
+ KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
+ BO_LOCK(bo);
+ KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
+ if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
+ bo->bo_flag &= ~BO_WWAIT;
+ wakeup(&bo->bo_numoutput);
+ }
+ BO_UNLOCK(bo);
+}
+
+int
+bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
+{
+ int error;
+
+ KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
+ ASSERT_BO_WLOCKED(bo);
+ error = 0;
+ while (bo->bo_numoutput) {
+ bo->bo_flag |= BO_WWAIT;
+ error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
+ slpflag | (PRIBIO + 1), "bo_wwait", timeo);
+ if (error)
+ break;
+ }
+ return (error);
+}
+
+/*
+ * Set bio_data or bio_ma for struct bio from the struct buf.
+ */
+void
+bdata2bio(struct buf *bp, struct bio *bip)
+{
+
+ if (!buf_mapped(bp)) {
+ KASSERT(unmapped_buf_allowed, ("unmapped"));
+ bip->bio_ma = bp->b_pages;
+ bip->bio_ma_n = bp->b_npages;
+ bip->bio_data = unmapped_buf;
+ bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
+ bip->bio_flags |= BIO_UNMAPPED;
+ KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
+ PAGE_SIZE == bp->b_npages,
+ ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
+ (long long)bip->bio_length, bip->bio_ma_n));
+ } else {
+ bip->bio_data = bp->b_data;
+ bip->bio_ma = NULL;
+ }
+}
+
+/*
+ * The MIPS pmap code currently doesn't handle aliased pages.
+ * The VIPT caches may not handle page aliasing themselves, leading
+ * to data corruption.
+ *
+ * As such, this code makes a system extremely unhappy if said
+ * system doesn't support unaliasing the above situation in hardware.
+ * Some "recent" systems (eg some mips24k/mips74k cores) don't enable
+ * this feature at build time, so it has to be handled in software.
+ *
+ * Once the MIPS pmap/cache code grows to support this function on
+ * earlier chips, it should be flipped back off.
+ */
+#ifdef __mips__
+static int buf_pager_relbuf = 1;
+#else
+static int buf_pager_relbuf = 0;
+#endif
+SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
+ &buf_pager_relbuf, 0,
+ "Make buffer pager release buffers after reading");
+
+/*
+ * The buffer pager. It uses buffer reads to validate pages.
+ *
+ * In contrast to the generic local pager from vm/vnode_pager.c, this
+ * pager correctly and easily handles volumes where the underlying
+ * device block size is greater than the machine page size. The
+ * buffer cache transparently extends the requested page run to be
+ * aligned at the block boundary, and does the necessary bogus page
+ * replacements in the addends to avoid obliterating already valid
+ * pages.
+ *
+ * The only non-trivial issue is that the exclusive busy state for
+ * pages, which is assumed by the vm_pager_getpages() interface, is
+ * incompatible with the VMIO buffer cache's desire to share-busy the
+ * pages. This function performs a trivial downgrade of the pages'
+ * state before reading buffers, and a less trivial upgrade from the
+ * shared-busy to excl-busy state after the read.
+ */
+int
+vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
+ int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
+ vbg_get_blksize_t get_blksize)
+{
+ vm_page_t m;
+ vm_object_t object;
+ struct buf *bp;
+ struct mount *mp;
+ daddr_t lbn, lbnp;
+ vm_ooffset_t la, lb, poff, poffe;
+ long bsize;
+ int bo_bs, br_flags, error, i, pgsin, pgsin_a, pgsin_b;
+ bool redo, lpart;
+
+ object = vp->v_object;
+ mp = vp->v_mount;
+ error = 0;
+ la = IDX_TO_OFF(ma[count - 1]->pindex);
+ if (la >= object->un_pager.vnp.vnp_size)
+ return (VM_PAGER_BAD);
+
+ /*
+ * Change the meaning of la from where the last requested page starts
+ * to where it ends, because that's the end of the requested region
+ * and the start of the potential read-ahead region.
+ */
+ la += PAGE_SIZE;
+ lpart = la > object->un_pager.vnp.vnp_size;
+ bo_bs = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)));
+
+ /*
+ * Calculate read-ahead, behind and total pages.
+ */
+ pgsin = count;
+ lb = IDX_TO_OFF(ma[0]->pindex);
+ pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
+ pgsin += pgsin_b;
+ if (rbehind != NULL)
+ *rbehind = pgsin_b;
+ pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
+ if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
+ pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
+ PAGE_SIZE) - la);
+ pgsin += pgsin_a;
+ if (rahead != NULL)
+ *rahead = pgsin_a;
+ VM_CNT_INC(v_vnodein);
+ VM_CNT_ADD(v_vnodepgsin, pgsin);
+
+ br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
+ != 0) ? GB_UNMAPPED : 0;
+ VM_OBJECT_WLOCK(object);
+again:
+ for (i = 0; i < count; i++)
+ vm_page_busy_downgrade(ma[i]);
+ VM_OBJECT_WUNLOCK(object);
+
+ lbnp = -1;
+ for (i = 0; i < count; i++) {
+ m = ma[i];
+
+ /*
+ * Pages are shared busy and the object lock is not
+ * owned, which together allow for the pages'
+ * invalidation. The racy test for validity avoids
+ * useless creation of the buffer for the most typical
+ * case when invalidation is not used in redo or for
+ * parallel read. The shared->excl upgrade loop at
+ * the end of the function catches the race in a
+ * reliable way (protected by the object lock).
+ */
+ if (m->valid == VM_PAGE_BITS_ALL)
+ continue;
+
+ poff = IDX_TO_OFF(m->pindex);
+ poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
+ for (; poff < poffe; poff += bsize) {
+ lbn = get_lblkno(vp, poff);
+ if (lbn == lbnp)
+ goto next_page;
+ lbnp = lbn;
+
+ bsize = get_blksize(vp, lbn);
+ error = bread_gb(vp, lbn, bsize, curthread->td_ucred,
+ br_flags, &bp);
+ if (error != 0)
+ goto end_pages;
+ if (LIST_EMPTY(&bp->b_dep)) {
+ /*
+ * Invalidation clears m->valid, but
+ * may leave B_CACHE flag if the
+ * buffer existed at the invalidation
+ * time. In this case, recycle the
+ * buffer to do real read on next
+ * bread() after redo.
+ *
+ * Otherwise B_RELBUF is not strictly
+ * necessary, enable to reduce buf
+ * cache pressure.
+ */
+ if (buf_pager_relbuf ||
+ m->valid != VM_PAGE_BITS_ALL)
+ bp->b_flags |= B_RELBUF;
+
+ bp->b_flags &= ~B_NOCACHE;
+ brelse(bp);
+ } else {
+ bqrelse(bp);
+ }
+ }
+ KASSERT(1 /* racy, enable for debugging */ ||
+ m->valid == VM_PAGE_BITS_ALL || i == count - 1,
+ ("buf %d %p invalid", i, m));
+ if (i == count - 1 && lpart) {
+ VM_OBJECT_WLOCK(object);
+ if (m->valid != 0 &&
+ m->valid != VM_PAGE_BITS_ALL)
+ vm_page_zero_invalid(m, TRUE);
+ VM_OBJECT_WUNLOCK(object);
+ }
+next_page:;
+ }
+end_pages:
+
+ VM_OBJECT_WLOCK(object);
+ redo = false;
+ for (i = 0; i < count; i++) {
+ vm_page_sunbusy(ma[i]);
+ ma[i] = vm_page_grab(object, ma[i]->pindex, VM_ALLOC_NORMAL);
+
+ /*
+ * Since the pages were only sbusy while neither the
+ * buffer nor the object lock was held by us, or
+ * reallocated while vm_page_grab() slept for busy
+ * relinguish, they could have been invalidated.
+ * Recheck the valid bits and re-read as needed.
+ *
+ * Note that the last page is made fully valid in the
+ * read loop, and partial validity for the page at
+ * index count - 1 could mean that the page was
+ * invalidated or removed, so we must restart for
+ * safety as well.
+ */
+ if (ma[i]->valid != VM_PAGE_BITS_ALL)
+ redo = true;
+ }
+ if (redo && error == 0)
+ goto again;
+ VM_OBJECT_WUNLOCK(object);
+ return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
+}
+
+#include "opt_ddb.h"
+#ifdef DDB
+#include <ddb/ddb.h>
+
+/* DDB command to show buffer data */
+DB_SHOW_COMMAND(buffer, db_show_buffer)
+{
+ /* get args */
+ struct buf *bp = (struct buf *)addr;
+#ifdef FULL_BUF_TRACKING
+ uint32_t i, j;
+#endif
+
+ if (!have_addr) {
+ db_printf("usage: show buffer <addr>\n");
+ return;
+ }
+
+ db_printf("buf at %p\n", bp);
+ db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
+ (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
+ PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
+ db_printf(
+ "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
+ "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
+ "b_dep = %p\n",
+ bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
+ bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
+ (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
+ db_printf("b_kvabase = %p, b_kvasize = %d\n",
+ bp->b_kvabase, bp->b_kvasize);
+ if (bp->b_npages) {
+ int i;
+ db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
+ for (i = 0; i < bp->b_npages; i++) {
+ vm_page_t m;
+ m = bp->b_pages[i];
+ if (m != NULL)
+ db_printf("(%p, 0x%lx, 0x%lx)", m->object,
+ (u_long)m->pindex,
+ (u_long)VM_PAGE_TO_PHYS(m));
+ else
+ db_printf("( ??? )");
+ if ((i + 1) < bp->b_npages)
+ db_printf(",");
+ }
+ db_printf("\n");
+ }
+ BUF_LOCKPRINTINFO(bp);
+#if defined(FULL_BUF_TRACKING)
+ db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
+
+ i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
+ for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
+ if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
+ continue;
+ db_printf(" %2u: %s\n", j,
+ bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
+ }
+#elif defined(BUF_TRACKING)
+ db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
+#endif
+ db_printf(" ");
+}
+
+DB_SHOW_COMMAND(bufqueues, bufqueues)
+{
+ struct bufdomain *bd;
+ struct buf *bp;
+ long total;
+ int i, j, cnt;
+
+ db_printf("bqempty: %d\n", bqempty.bq_len);
+
+ for (i = 0; i < buf_domains; i++) {
+ bd = &bdomain[i];
+ db_printf("Buf domain %d\n", i);
+ db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
+ db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
+ db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
+ db_printf("\n");
+ db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
+ db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
+ db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
+ db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
+ db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
+ db_printf("\n");
+ db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
+ db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
+ db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
+ db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
+ db_printf("\n");
+ total = 0;
+ TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
+ total += bp->b_bufsize;
+ db_printf("\tcleanq count\t%d (%ld)\n",
+ bd->bd_cleanq->bq_len, total);
+ total = 0;
+ TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
+ total += bp->b_bufsize;
+ db_printf("\tdirtyq count\t%d (%ld)\n",
+ bd->bd_dirtyq.bq_len, total);
+ db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
+ db_printf("\tlim\t\t%d\n", bd->bd_lim);
+ db_printf("\tCPU ");
+ for (j = 0; j <= mp_maxid; j++)
+ db_printf("%d, ", bd->bd_subq[j].bq_len);
+ db_printf("\n");
+ cnt = 0;
+ total = 0;
+ for (j = 0; j < nbuf; j++)
+ if (buf[j].b_domain == i && BUF_ISLOCKED(&buf[j])) {
+ cnt++;
+ total += buf[j].b_bufsize;
+ }
+ db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
+ cnt = 0;
+ total = 0;
+ for (j = 0; j < nbuf; j++)
+ if (buf[j].b_domain == i) {
+ cnt++;
+ total += buf[j].b_bufsize;
+ }
+ db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
+ }
+}
+
+DB_SHOW_COMMAND(lockedbufs, lockedbufs)
+{
+ struct buf *bp;
+ int i;
+
+ for (i = 0; i < nbuf; i++) {
+ bp = &buf[i];
+ if (BUF_ISLOCKED(bp)) {
+ db_show_buffer((uintptr_t)bp, 1, 0, NULL);
+ db_printf("\n");
+ if (db_pager_quit)
+ break;
+ }
+ }
+}
+
+DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
+{
+ struct vnode *vp;
+ struct buf *bp;
+
+ if (!have_addr) {
+ db_printf("usage: show vnodebufs <addr>\n");
+ return;
+ }
+ vp = (struct vnode *)addr;
+ db_printf("Clean buffers:\n");
+ TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
+ db_show_buffer((uintptr_t)bp, 1, 0, NULL);
+ db_printf("\n");
+ }
+ db_printf("Dirty buffers:\n");
+ TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
+ db_show_buffer((uintptr_t)bp, 1, 0, NULL);
+ db_printf("\n");
+ }
+}
+
+DB_COMMAND(countfreebufs, db_coundfreebufs)
+{
+ struct buf *bp;
+ int i, used = 0, nfree = 0;
+
+ if (have_addr) {
+ db_printf("usage: countfreebufs\n");
+ return;
+ }
+
+ for (i = 0; i < nbuf; i++) {
+ bp = &buf[i];
+ if (bp->b_qindex == QUEUE_EMPTY)
+ nfree++;
+ else
+ used++;
+ }
+
+ db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
+ nfree + used);
+ db_printf("numfreebuffers is %d\n", numfreebuffers);
+}
+#endif /* DDB */