summaryrefslogtreecommitdiffstats
path: root/freebsd/sys/dev/nvme/nvme_qpair.c
diff options
context:
space:
mode:
Diffstat (limited to 'freebsd/sys/dev/nvme/nvme_qpair.c')
-rw-r--r--freebsd/sys/dev/nvme/nvme_qpair.c1266
1 files changed, 1266 insertions, 0 deletions
diff --git a/freebsd/sys/dev/nvme/nvme_qpair.c b/freebsd/sys/dev/nvme/nvme_qpair.c
new file mode 100644
index 00000000..a9a3217c
--- /dev/null
+++ b/freebsd/sys/dev/nvme/nvme_qpair.c
@@ -0,0 +1,1266 @@
+#include <machine/rtems-bsd-kernel-space.h>
+
+/*-
+ * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
+ *
+ * Copyright (C) 2012-2014 Intel Corporation
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/param.h>
+#include <sys/bus.h>
+#include <sys/conf.h>
+#include <sys/proc.h>
+
+#include <dev/pci/pcivar.h>
+
+#include "nvme_private.h"
+
+typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
+#define DO_NOT_RETRY 1
+
+static void _nvme_qpair_submit_request(struct nvme_qpair *qpair,
+ struct nvme_request *req);
+static void nvme_qpair_destroy(struct nvme_qpair *qpair);
+
+struct nvme_opcode_string {
+
+ uint16_t opc;
+ const char * str;
+};
+
+static struct nvme_opcode_string admin_opcode[] = {
+ { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
+ { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
+ { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
+ { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
+ { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
+ { NVME_OPC_IDENTIFY, "IDENTIFY" },
+ { NVME_OPC_ABORT, "ABORT" },
+ { NVME_OPC_SET_FEATURES, "SET FEATURES" },
+ { NVME_OPC_GET_FEATURES, "GET FEATURES" },
+ { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
+ { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
+ { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
+ { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
+ { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
+ { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
+ { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
+ { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
+ { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
+ { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
+ { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
+ { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
+ { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
+ { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
+ { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
+ { NVME_OPC_SANITIZE, "SANITIZE" },
+ { NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
+ { 0xFFFF, "ADMIN COMMAND" }
+};
+
+static struct nvme_opcode_string io_opcode[] = {
+ { NVME_OPC_FLUSH, "FLUSH" },
+ { NVME_OPC_WRITE, "WRITE" },
+ { NVME_OPC_READ, "READ" },
+ { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
+ { NVME_OPC_COMPARE, "COMPARE" },
+ { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
+ { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
+ { NVME_OPC_VERIFY, "VERIFY" },
+ { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
+ { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
+ { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
+ { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
+ { 0xFFFF, "IO COMMAND" }
+};
+
+static const char *
+get_admin_opcode_string(uint16_t opc)
+{
+ struct nvme_opcode_string *entry;
+
+ entry = admin_opcode;
+
+ while (entry->opc != 0xFFFF) {
+ if (entry->opc == opc)
+ return (entry->str);
+ entry++;
+ }
+ return (entry->str);
+}
+
+static const char *
+get_io_opcode_string(uint16_t opc)
+{
+ struct nvme_opcode_string *entry;
+
+ entry = io_opcode;
+
+ while (entry->opc != 0xFFFF) {
+ if (entry->opc == opc)
+ return (entry->str);
+ entry++;
+ }
+ return (entry->str);
+}
+
+
+static void
+nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
+ struct nvme_command *cmd)
+{
+
+ nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
+ "cdw10:%08x cdw11:%08x\n",
+ get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
+ le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
+}
+
+static void
+nvme_io_qpair_print_command(struct nvme_qpair *qpair,
+ struct nvme_command *cmd)
+{
+
+ switch (cmd->opc) {
+ case NVME_OPC_WRITE:
+ case NVME_OPC_READ:
+ case NVME_OPC_WRITE_UNCORRECTABLE:
+ case NVME_OPC_COMPARE:
+ case NVME_OPC_WRITE_ZEROES:
+ case NVME_OPC_VERIFY:
+ nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
+ "lba:%llu len:%d\n",
+ get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
+ ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
+ (le32toh(cmd->cdw12) & 0xFFFF) + 1);
+ break;
+ case NVME_OPC_FLUSH:
+ case NVME_OPC_DATASET_MANAGEMENT:
+ case NVME_OPC_RESERVATION_REGISTER:
+ case NVME_OPC_RESERVATION_REPORT:
+ case NVME_OPC_RESERVATION_ACQUIRE:
+ case NVME_OPC_RESERVATION_RELEASE:
+ nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
+ get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
+ break;
+ default:
+ nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
+ get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
+ cmd->cid, le32toh(cmd->nsid));
+ break;
+ }
+}
+
+static void
+nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
+{
+ if (qpair->id == 0)
+ nvme_admin_qpair_print_command(qpair, cmd);
+ else
+ nvme_io_qpair_print_command(qpair, cmd);
+ if (nvme_verbose_cmd_dump) {
+ nvme_printf(qpair->ctrlr,
+ "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
+ cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
+ (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
+ nvme_printf(qpair->ctrlr,
+ "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
+ cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
+ cmd->cdw15);
+ }
+}
+
+struct nvme_status_string {
+
+ uint16_t sc;
+ const char * str;
+};
+
+static struct nvme_status_string generic_status[] = {
+ { NVME_SC_SUCCESS, "SUCCESS" },
+ { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
+ { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
+ { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
+ { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
+ { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
+ { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
+ { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
+ { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
+ { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
+ { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
+ { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
+ { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
+ { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
+ { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
+ { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
+ { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
+ { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
+ { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
+ { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
+ { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
+ { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
+ { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
+ { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
+ { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
+ { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
+ { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
+ { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
+ { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
+ { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
+ { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
+ { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
+ { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
+ { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
+
+ { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
+ { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
+ { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
+ { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
+ { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
+ { 0xFFFF, "GENERIC" }
+};
+
+static struct nvme_status_string command_specific_status[] = {
+ { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
+ { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
+ { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
+ { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
+ { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
+ { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
+ { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
+ { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
+ { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
+ { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
+ { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
+ { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
+ { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
+ { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
+ { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
+ { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
+ { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
+ { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
+ { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
+ { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
+ { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
+ { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
+ { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
+ { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
+ { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
+ { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
+ { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
+ { NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
+ { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
+ { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
+ { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
+ { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
+ { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
+ { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
+ { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
+ { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
+
+ { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
+ { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
+ { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
+ { 0xFFFF, "COMMAND SPECIFIC" }
+};
+
+static struct nvme_status_string media_error_status[] = {
+ { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
+ { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
+ { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
+ { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
+ { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
+ { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
+ { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
+ { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
+ { 0xFFFF, "MEDIA ERROR" }
+};
+
+static struct nvme_status_string path_related_status[] = {
+ { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
+ { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
+ { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
+ { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
+ { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
+ { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
+ { NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" },
+ { 0xFFFF, "PATH RELATED" },
+};
+
+static const char *
+get_status_string(uint16_t sct, uint16_t sc)
+{
+ struct nvme_status_string *entry;
+
+ switch (sct) {
+ case NVME_SCT_GENERIC:
+ entry = generic_status;
+ break;
+ case NVME_SCT_COMMAND_SPECIFIC:
+ entry = command_specific_status;
+ break;
+ case NVME_SCT_MEDIA_ERROR:
+ entry = media_error_status;
+ break;
+ case NVME_SCT_PATH_RELATED:
+ entry = path_related_status;
+ break;
+ case NVME_SCT_VENDOR_SPECIFIC:
+ return ("VENDOR SPECIFIC");
+ default:
+ return ("RESERVED");
+ }
+
+ while (entry->sc != 0xFFFF) {
+ if (entry->sc == sc)
+ return (entry->str);
+ entry++;
+ }
+ return (entry->str);
+}
+
+static void
+nvme_qpair_print_completion(struct nvme_qpair *qpair,
+ struct nvme_completion *cpl)
+{
+ uint16_t sct, sc;
+
+ sct = NVME_STATUS_GET_SCT(cpl->status);
+ sc = NVME_STATUS_GET_SC(cpl->status);
+
+ nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
+ get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
+ cpl->cdw0);
+}
+
+static boolean_t
+nvme_completion_is_retry(const struct nvme_completion *cpl)
+{
+ uint8_t sct, sc, dnr;
+
+ sct = NVME_STATUS_GET_SCT(cpl->status);
+ sc = NVME_STATUS_GET_SC(cpl->status);
+ dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */
+
+ /*
+ * TODO: spec is not clear how commands that are aborted due
+ * to TLER will be marked. So for now, it seems
+ * NAMESPACE_NOT_READY is the only case where we should
+ * look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
+ * set the DNR bit correctly since the driver controls that.
+ */
+ switch (sct) {
+ case NVME_SCT_GENERIC:
+ switch (sc) {
+ case NVME_SC_ABORTED_BY_REQUEST:
+ case NVME_SC_NAMESPACE_NOT_READY:
+ if (dnr)
+ return (0);
+ else
+ return (1);
+ case NVME_SC_INVALID_OPCODE:
+ case NVME_SC_INVALID_FIELD:
+ case NVME_SC_COMMAND_ID_CONFLICT:
+ case NVME_SC_DATA_TRANSFER_ERROR:
+ case NVME_SC_ABORTED_POWER_LOSS:
+ case NVME_SC_INTERNAL_DEVICE_ERROR:
+ case NVME_SC_ABORTED_SQ_DELETION:
+ case NVME_SC_ABORTED_FAILED_FUSED:
+ case NVME_SC_ABORTED_MISSING_FUSED:
+ case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
+ case NVME_SC_COMMAND_SEQUENCE_ERROR:
+ case NVME_SC_LBA_OUT_OF_RANGE:
+ case NVME_SC_CAPACITY_EXCEEDED:
+ default:
+ return (0);
+ }
+ case NVME_SCT_COMMAND_SPECIFIC:
+ case NVME_SCT_MEDIA_ERROR:
+ return (0);
+ case NVME_SCT_PATH_RELATED:
+ switch (sc) {
+ case NVME_SC_INTERNAL_PATH_ERROR:
+ if (dnr)
+ return (0);
+ else
+ return (1);
+ default:
+ return (0);
+ }
+ case NVME_SCT_VENDOR_SPECIFIC:
+ default:
+ return (0);
+ }
+}
+
+static void
+nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
+ struct nvme_completion *cpl, error_print_t print_on_error)
+{
+ struct nvme_request *req;
+ boolean_t retry, error, retriable;
+
+ req = tr->req;
+ error = nvme_completion_is_error(cpl);
+ retriable = nvme_completion_is_retry(cpl);
+ retry = error && retriable && req->retries < nvme_retry_count;
+ if (retry)
+ qpair->num_retries++;
+ if (error && req->retries >= nvme_retry_count && retriable)
+ qpair->num_failures++;
+
+ if (error && (print_on_error == ERROR_PRINT_ALL ||
+ (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
+ nvme_qpair_print_command(qpair, &req->cmd);
+ nvme_qpair_print_completion(qpair, cpl);
+ }
+
+ qpair->act_tr[cpl->cid] = NULL;
+
+ KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
+
+ if (req->cb_fn && !retry)
+ req->cb_fn(req->cb_arg, cpl);
+
+ mtx_lock(&qpair->lock);
+ callout_stop(&tr->timer);
+
+ if (retry) {
+ req->retries++;
+ nvme_qpair_submit_tracker(qpair, tr);
+ } else {
+ if (req->type != NVME_REQUEST_NULL) {
+ bus_dmamap_sync(qpair->dma_tag_payload,
+ tr->payload_dma_map,
+ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(qpair->dma_tag_payload,
+ tr->payload_dma_map);
+ }
+
+ nvme_free_request(req);
+ tr->req = NULL;
+
+ TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
+ TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
+
+ /*
+ * If the controller is in the middle of resetting, don't
+ * try to submit queued requests here - let the reset logic
+ * handle that instead.
+ */
+ if (!STAILQ_EMPTY(&qpair->queued_req) &&
+ !qpair->ctrlr->is_resetting) {
+ req = STAILQ_FIRST(&qpair->queued_req);
+ STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
+ _nvme_qpair_submit_request(qpair, req);
+ }
+ }
+
+ mtx_unlock(&qpair->lock);
+}
+
+static void
+nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
+ struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
+ error_print_t print_on_error)
+{
+ struct nvme_completion cpl;
+
+ memset(&cpl, 0, sizeof(cpl));
+ cpl.sqid = qpair->id;
+ cpl.cid = tr->cid;
+ cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
+ cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
+ cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
+ nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
+}
+
+void
+nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
+ struct nvme_request *req, uint32_t sct, uint32_t sc)
+{
+ struct nvme_completion cpl;
+ boolean_t error;
+
+ memset(&cpl, 0, sizeof(cpl));
+ cpl.sqid = qpair->id;
+ cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
+ cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
+
+ error = nvme_completion_is_error(&cpl);
+
+ if (error) {
+ nvme_qpair_print_command(qpair, &req->cmd);
+ nvme_qpair_print_completion(qpair, &cpl);
+ }
+
+ if (req->cb_fn)
+ req->cb_fn(req->cb_arg, &cpl);
+
+ nvme_free_request(req);
+}
+
+bool
+nvme_qpair_process_completions(struct nvme_qpair *qpair)
+{
+ struct nvme_tracker *tr;
+ struct nvme_completion cpl;
+ int done = 0;
+ bool in_panic = dumping || SCHEDULER_STOPPED();
+
+ qpair->num_intr_handler_calls++;
+
+ /*
+ * qpair is not enabled, likely because a controller reset is is in
+ * progress. Ignore the interrupt - any I/O that was associated with
+ * this interrupt will get retried when the reset is complete.
+ */
+ if (!qpair->is_enabled)
+ return (false);
+
+ /*
+ * A panic can stop the CPU this routine is running on at any point. If
+ * we're called during a panic, complete the sq_head wrap protocol for
+ * the case where we are interrupted just after the increment at 1
+ * below, but before we can reset cq_head to zero at 2. Also cope with
+ * the case where we do the zero at 2, but may or may not have done the
+ * phase adjustment at step 3. The panic machinery flushes all pending
+ * memory writes, so we can make these strong ordering assumptions
+ * that would otherwise be unwise if we were racing in real time.
+ */
+ if (__predict_false(in_panic)) {
+ if (qpair->cq_head == qpair->num_entries) {
+ /*
+ * Here we know that we need to zero cq_head and then negate
+ * the phase, which hasn't been assigned if cq_head isn't
+ * zero due to the atomic_store_rel.
+ */
+ qpair->cq_head = 0;
+ qpair->phase = !qpair->phase;
+ } else if (qpair->cq_head == 0) {
+ /*
+ * In this case, we know that the assignment at 2
+ * happened below, but we don't know if it 3 happened or
+ * not. To do this, we look at the last completion
+ * entry and set the phase to the opposite phase
+ * that it has. This gets us back in sync
+ */
+ cpl = qpair->cpl[qpair->num_entries - 1];
+ nvme_completion_swapbytes(&cpl);
+ qpair->phase = !NVME_STATUS_GET_P(cpl.status);
+ }
+ }
+
+ bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
+ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+ while (1) {
+ cpl = qpair->cpl[qpair->cq_head];
+
+ /* Convert to host endian */
+ nvme_completion_swapbytes(&cpl);
+
+ if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
+ break;
+
+ tr = qpair->act_tr[cpl.cid];
+
+ if (tr != NULL) {
+ nvme_qpair_complete_tracker(qpair, tr, &cpl, ERROR_PRINT_ALL);
+ qpair->sq_head = cpl.sqhd;
+ done++;
+ } else if (!in_panic) {
+ /*
+ * A missing tracker is normally an error. However, a
+ * panic can stop the CPU this routine is running on
+ * after completing an I/O but before updating
+ * qpair->cq_head at 1 below. Later, we re-enter this
+ * routine to poll I/O associated with the kernel
+ * dump. We find that the tr has been set to null before
+ * calling the completion routine. If it hasn't
+ * completed (or it triggers a panic), then '1' below
+ * won't have updated cq_head. Rather than panic again,
+ * ignore this condition because it's not unexpected.
+ */
+ nvme_printf(qpair->ctrlr,
+ "cpl does not map to outstanding cmd\n");
+ /* nvme_dump_completion expects device endianess */
+ nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
+ KASSERT(0, ("received completion for unknown cmd"));
+ }
+
+ /*
+ * There's a number of races with the following (see above) when
+ * the system panics. We compensate for each one of them by
+ * using the atomic store to force strong ordering (at least when
+ * viewed in the aftermath of a panic).
+ */
+ if (++qpair->cq_head == qpair->num_entries) { /* 1 */
+ atomic_store_rel_int(&qpair->cq_head, 0); /* 2 */
+ qpair->phase = !qpair->phase; /* 3 */
+ }
+
+ nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
+ qpair->cq_head);
+ }
+ return (done != 0);
+}
+
+static void
+nvme_qpair_msix_handler(void *arg)
+{
+ struct nvme_qpair *qpair = arg;
+
+ nvme_qpair_process_completions(qpair);
+}
+
+int
+nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
+ uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
+ struct nvme_controller *ctrlr)
+{
+ struct nvme_tracker *tr;
+ size_t cmdsz, cplsz, prpsz, allocsz, prpmemsz;
+ uint64_t queuemem_phys, prpmem_phys, list_phys;
+ uint8_t *queuemem, *prpmem, *prp_list;
+ int i, err;
+
+ qpair->id = id;
+ qpair->vector = vector;
+ qpair->num_entries = num_entries;
+ qpair->num_trackers = num_trackers;
+ qpair->ctrlr = ctrlr;
+
+ if (ctrlr->msix_enabled) {
+
+ /*
+ * MSI-X vector resource IDs start at 1, so we add one to
+ * the queue's vector to get the corresponding rid to use.
+ */
+ qpair->rid = vector + 1;
+
+ qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
+ &qpair->rid, RF_ACTIVE);
+ bus_setup_intr(ctrlr->dev, qpair->res,
+ INTR_TYPE_MISC | INTR_MPSAFE, NULL,
+ nvme_qpair_msix_handler, qpair, &qpair->tag);
+ if (id == 0) {
+ bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
+ "admin");
+ } else {
+ bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
+ "io%d", id - 1);
+ }
+ }
+
+ mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
+
+ /* Note: NVMe PRP format is restricted to 4-byte alignment. */
+ err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
+ 4, PAGE_SIZE, BUS_SPACE_MAXADDR,
+ BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
+ (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
+ NULL, NULL, &qpair->dma_tag_payload);
+ if (err != 0) {
+ nvme_printf(ctrlr, "payload tag create failed %d\n", err);
+ goto out;
+ }
+
+ /*
+ * Each component must be page aligned, and individual PRP lists
+ * cannot cross a page boundary.
+ */
+ cmdsz = qpair->num_entries * sizeof(struct nvme_command);
+ cmdsz = roundup2(cmdsz, PAGE_SIZE);
+ cplsz = qpair->num_entries * sizeof(struct nvme_completion);
+ cplsz = roundup2(cplsz, PAGE_SIZE);
+ prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
+ prpmemsz = qpair->num_trackers * prpsz;
+ allocsz = cmdsz + cplsz + prpmemsz;
+
+ err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
+ PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
+ allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
+ if (err != 0) {
+ nvme_printf(ctrlr, "tag create failed %d\n", err);
+ goto out;
+ }
+
+ if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
+ BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
+ nvme_printf(ctrlr, "failed to alloc qpair memory\n");
+ goto out;
+ }
+
+ if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
+ queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
+ nvme_printf(ctrlr, "failed to load qpair memory\n");
+ goto out;
+ }
+
+ qpair->num_cmds = 0;
+ qpair->num_intr_handler_calls = 0;
+ qpair->num_retries = 0;
+ qpair->num_failures = 0;
+ qpair->cmd = (struct nvme_command *)queuemem;
+ qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
+ prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
+ qpair->cmd_bus_addr = queuemem_phys;
+ qpair->cpl_bus_addr = queuemem_phys + cmdsz;
+ prpmem_phys = queuemem_phys + cmdsz + cplsz;
+
+ qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
+ qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
+
+ TAILQ_INIT(&qpair->free_tr);
+ TAILQ_INIT(&qpair->outstanding_tr);
+ STAILQ_INIT(&qpair->queued_req);
+
+ list_phys = prpmem_phys;
+ prp_list = prpmem;
+ for (i = 0; i < qpair->num_trackers; i++) {
+
+ if (list_phys + prpsz > prpmem_phys + prpmemsz) {
+ qpair->num_trackers = i;
+ break;
+ }
+
+ /*
+ * Make sure that the PRP list for this tracker doesn't
+ * overflow to another page.
+ */
+ if (trunc_page(list_phys) !=
+ trunc_page(list_phys + prpsz - 1)) {
+ list_phys = roundup2(list_phys, PAGE_SIZE);
+ prp_list =
+ (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
+ }
+
+ tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
+ bus_dmamap_create(qpair->dma_tag_payload, 0,
+ &tr->payload_dma_map);
+ callout_init(&tr->timer, 1);
+ tr->cid = i;
+ tr->qpair = qpair;
+ tr->prp = (uint64_t *)prp_list;
+ tr->prp_bus_addr = list_phys;
+ TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
+ list_phys += prpsz;
+ prp_list += prpsz;
+ }
+
+ if (qpair->num_trackers == 0) {
+ nvme_printf(ctrlr, "failed to allocate enough trackers\n");
+ goto out;
+ }
+
+ qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
+ qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
+ return (0);
+
+out:
+ nvme_qpair_destroy(qpair);
+ return (ENOMEM);
+}
+
+static void
+nvme_qpair_destroy(struct nvme_qpair *qpair)
+{
+ struct nvme_tracker *tr;
+
+ if (qpair->tag)
+ bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
+
+ if (mtx_initialized(&qpair->lock))
+ mtx_destroy(&qpair->lock);
+
+ if (qpair->res)
+ bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
+ rman_get_rid(qpair->res), qpair->res);
+
+ if (qpair->cmd != NULL) {
+ bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
+ bus_dmamem_free(qpair->dma_tag, qpair->cmd,
+ qpair->queuemem_map);
+ }
+
+ if (qpair->act_tr)
+ free(qpair->act_tr, M_NVME);
+
+ while (!TAILQ_EMPTY(&qpair->free_tr)) {
+ tr = TAILQ_FIRST(&qpair->free_tr);
+ TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
+ bus_dmamap_destroy(qpair->dma_tag_payload,
+ tr->payload_dma_map);
+ free(tr, M_NVME);
+ }
+
+ if (qpair->dma_tag)
+ bus_dma_tag_destroy(qpair->dma_tag);
+
+ if (qpair->dma_tag_payload)
+ bus_dma_tag_destroy(qpair->dma_tag_payload);
+}
+
+static void
+nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
+{
+ struct nvme_tracker *tr;
+
+ tr = TAILQ_FIRST(&qpair->outstanding_tr);
+ while (tr != NULL) {
+ if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
+ nvme_qpair_manual_complete_tracker(qpair, tr,
+ NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
+ ERROR_PRINT_NONE);
+ tr = TAILQ_FIRST(&qpair->outstanding_tr);
+ } else {
+ tr = TAILQ_NEXT(tr, tailq);
+ }
+ }
+}
+
+void
+nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
+{
+
+ nvme_admin_qpair_abort_aers(qpair);
+ nvme_qpair_destroy(qpair);
+}
+
+void
+nvme_io_qpair_destroy(struct nvme_qpair *qpair)
+{
+
+ nvme_qpair_destroy(qpair);
+}
+
+static void
+nvme_abort_complete(void *arg, const struct nvme_completion *status)
+{
+ struct nvme_tracker *tr = arg;
+
+ /*
+ * If cdw0 == 1, the controller was not able to abort the command
+ * we requested. We still need to check the active tracker array,
+ * to cover race where I/O timed out at same time controller was
+ * completing the I/O.
+ */
+ if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
+ /*
+ * An I/O has timed out, and the controller was unable to
+ * abort it for some reason. Construct a fake completion
+ * status, and then complete the I/O's tracker manually.
+ */
+ nvme_printf(tr->qpair->ctrlr,
+ "abort command failed, aborting command manually\n");
+ nvme_qpair_manual_complete_tracker(tr->qpair, tr,
+ NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
+ }
+}
+
+static void
+nvme_timeout(void *arg)
+{
+ struct nvme_tracker *tr = arg;
+ struct nvme_qpair *qpair = tr->qpair;
+ struct nvme_controller *ctrlr = qpair->ctrlr;
+ uint32_t csts;
+ uint8_t cfs;
+
+ /*
+ * Read csts to get value of cfs - controller fatal status.
+ * If no fatal status, try to call the completion routine, and
+ * if completes transactions, report a missed interrupt and
+ * return (this may need to be rate limited). Otherwise, if
+ * aborts are enabled and the controller is not reporting
+ * fatal status, abort the command. Otherwise, just reset the
+ * controller and hope for the best.
+ */
+ csts = nvme_mmio_read_4(ctrlr, csts);
+ cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
+ if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
+ nvme_printf(ctrlr, "Missing interrupt\n");
+ return;
+ }
+ if (ctrlr->enable_aborts && cfs == 0) {
+ nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
+ nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
+ nvme_abort_complete, tr);
+ } else {
+ nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
+ (csts == 0xffffffff) ? " and possible hot unplug" :
+ (cfs ? " and fatal error status" : ""));
+ nvme_ctrlr_reset(ctrlr);
+ }
+}
+
+void
+nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
+{
+ struct nvme_request *req;
+ struct nvme_controller *ctrlr;
+
+ mtx_assert(&qpair->lock, MA_OWNED);
+
+ req = tr->req;
+ req->cmd.cid = tr->cid;
+ qpair->act_tr[tr->cid] = tr;
+ ctrlr = qpair->ctrlr;
+
+ if (req->timeout)
+ callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
+ nvme_timeout, tr);
+
+ /* Copy the command from the tracker to the submission queue. */
+ memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
+
+ if (++qpair->sq_tail == qpair->num_entries)
+ qpair->sq_tail = 0;
+
+ bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+#ifndef __powerpc__
+ /*
+ * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but
+ * no other archs do.
+ */
+ wmb();
+#endif
+
+ nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
+ qpair->sq_tail);
+
+ qpair->num_cmds++;
+}
+
+static void
+nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
+{
+ struct nvme_tracker *tr = arg;
+ uint32_t cur_nseg;
+
+ /*
+ * If the mapping operation failed, return immediately. The caller
+ * is responsible for detecting the error status and failing the
+ * tracker manually.
+ */
+ if (error != 0) {
+ nvme_printf(tr->qpair->ctrlr,
+ "nvme_payload_map err %d\n", error);
+ return;
+ }
+
+ /*
+ * Note that we specified PAGE_SIZE for alignment and max
+ * segment size when creating the bus dma tags. So here
+ * we can safely just transfer each segment to its
+ * associated PRP entry.
+ */
+ tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
+
+ if (nseg == 2) {
+ tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
+ } else if (nseg > 2) {
+ cur_nseg = 1;
+ tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
+ while (cur_nseg < nseg) {
+ tr->prp[cur_nseg-1] =
+ htole64((uint64_t)seg[cur_nseg].ds_addr);
+ cur_nseg++;
+ }
+ } else {
+ /*
+ * prp2 should not be used by the controller
+ * since there is only one segment, but set
+ * to 0 just to be safe.
+ */
+ tr->req->cmd.prp2 = 0;
+ }
+
+ bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+ nvme_qpair_submit_tracker(tr->qpair, tr);
+}
+
+static void
+_nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
+{
+ struct nvme_tracker *tr;
+ int err = 0;
+
+ mtx_assert(&qpair->lock, MA_OWNED);
+
+ tr = TAILQ_FIRST(&qpair->free_tr);
+ req->qpair = qpair;
+
+ if (tr == NULL || !qpair->is_enabled) {
+ /*
+ * No tracker is available, or the qpair is disabled due to
+ * an in-progress controller-level reset or controller
+ * failure.
+ */
+
+ if (qpair->ctrlr->is_failed) {
+ /*
+ * The controller has failed. Post the request to a
+ * task where it will be aborted, so that we do not
+ * invoke the request's callback in the context
+ * of the submission.
+ */
+ nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
+ } else {
+ /*
+ * Put the request on the qpair's request queue to be
+ * processed when a tracker frees up via a command
+ * completion or when the controller reset is
+ * completed.
+ */
+ STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
+ }
+ return;
+ }
+
+ TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
+ TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
+ tr->req = req;
+
+ switch (req->type) {
+ case NVME_REQUEST_VADDR:
+ KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
+ ("payload_size (%d) exceeds max_xfer_size (%d)\n",
+ req->payload_size, qpair->ctrlr->max_xfer_size));
+ err = bus_dmamap_load(tr->qpair->dma_tag_payload,
+ tr->payload_dma_map, req->u.payload, req->payload_size,
+ nvme_payload_map, tr, 0);
+ if (err != 0)
+ nvme_printf(qpair->ctrlr,
+ "bus_dmamap_load returned 0x%x!\n", err);
+ break;
+ case NVME_REQUEST_NULL:
+ nvme_qpair_submit_tracker(tr->qpair, tr);
+ break;
+ case NVME_REQUEST_BIO:
+ KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
+ ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
+ (intmax_t)req->u.bio->bio_bcount,
+ qpair->ctrlr->max_xfer_size));
+ err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
+ tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
+ if (err != 0)
+ nvme_printf(qpair->ctrlr,
+ "bus_dmamap_load_bio returned 0x%x!\n", err);
+ break;
+ case NVME_REQUEST_CCB:
+ err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
+ tr->payload_dma_map, req->u.payload,
+ nvme_payload_map, tr, 0);
+ if (err != 0)
+ nvme_printf(qpair->ctrlr,
+ "bus_dmamap_load_ccb returned 0x%x!\n", err);
+ break;
+ default:
+ panic("unknown nvme request type 0x%x\n", req->type);
+ break;
+ }
+
+ if (err != 0) {
+ /*
+ * The dmamap operation failed, so we manually fail the
+ * tracker here with DATA_TRANSFER_ERROR status.
+ *
+ * nvme_qpair_manual_complete_tracker must not be called
+ * with the qpair lock held.
+ */
+ mtx_unlock(&qpair->lock);
+ nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
+ NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
+ mtx_lock(&qpair->lock);
+ }
+}
+
+void
+nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
+{
+
+ mtx_lock(&qpair->lock);
+ _nvme_qpair_submit_request(qpair, req);
+ mtx_unlock(&qpair->lock);
+}
+
+static void
+nvme_qpair_enable(struct nvme_qpair *qpair)
+{
+
+ qpair->is_enabled = TRUE;
+}
+
+void
+nvme_qpair_reset(struct nvme_qpair *qpair)
+{
+
+ qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
+
+ /*
+ * First time through the completion queue, HW will set phase
+ * bit on completions to 1. So set this to 1 here, indicating
+ * we're looking for a 1 to know which entries have completed.
+ * we'll toggle the bit each time when the completion queue
+ * rolls over.
+ */
+ qpair->phase = 1;
+
+ memset(qpair->cmd, 0,
+ qpair->num_entries * sizeof(struct nvme_command));
+ memset(qpair->cpl, 0,
+ qpair->num_entries * sizeof(struct nvme_completion));
+}
+
+void
+nvme_admin_qpair_enable(struct nvme_qpair *qpair)
+{
+ struct nvme_tracker *tr;
+ struct nvme_tracker *tr_temp;
+
+ /*
+ * Manually abort each outstanding admin command. Do not retry
+ * admin commands found here, since they will be left over from
+ * a controller reset and its likely the context in which the
+ * command was issued no longer applies.
+ */
+ TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
+ nvme_printf(qpair->ctrlr,
+ "aborting outstanding admin command\n");
+ nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
+ NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
+ }
+
+ nvme_qpair_enable(qpair);
+}
+
+void
+nvme_io_qpair_enable(struct nvme_qpair *qpair)
+{
+ STAILQ_HEAD(, nvme_request) temp;
+ struct nvme_tracker *tr;
+ struct nvme_tracker *tr_temp;
+ struct nvme_request *req;
+
+ /*
+ * Manually abort each outstanding I/O. This normally results in a
+ * retry, unless the retry count on the associated request has
+ * reached its limit.
+ */
+ TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
+ nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
+ nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
+ NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
+ }
+
+ mtx_lock(&qpair->lock);
+
+ nvme_qpair_enable(qpair);
+
+ STAILQ_INIT(&temp);
+ STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
+
+ while (!STAILQ_EMPTY(&temp)) {
+ req = STAILQ_FIRST(&temp);
+ STAILQ_REMOVE_HEAD(&temp, stailq);
+ nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
+ nvme_qpair_print_command(qpair, &req->cmd);
+ _nvme_qpair_submit_request(qpair, req);
+ }
+
+ mtx_unlock(&qpair->lock);
+}
+
+static void
+nvme_qpair_disable(struct nvme_qpair *qpair)
+{
+ struct nvme_tracker *tr;
+
+ qpair->is_enabled = FALSE;
+ mtx_lock(&qpair->lock);
+ TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
+ callout_stop(&tr->timer);
+ mtx_unlock(&qpair->lock);
+}
+
+void
+nvme_admin_qpair_disable(struct nvme_qpair *qpair)
+{
+
+ nvme_qpair_disable(qpair);
+ nvme_admin_qpair_abort_aers(qpair);
+}
+
+void
+nvme_io_qpair_disable(struct nvme_qpair *qpair)
+{
+
+ nvme_qpair_disable(qpair);
+}
+
+void
+nvme_qpair_fail(struct nvme_qpair *qpair)
+{
+ struct nvme_tracker *tr;
+ struct nvme_request *req;
+
+ if (!mtx_initialized(&qpair->lock))
+ return;
+
+ mtx_lock(&qpair->lock);
+
+ while (!STAILQ_EMPTY(&qpair->queued_req)) {
+ req = STAILQ_FIRST(&qpair->queued_req);
+ STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
+ nvme_printf(qpair->ctrlr, "failing queued i/o\n");
+ mtx_unlock(&qpair->lock);
+ nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
+ NVME_SC_ABORTED_BY_REQUEST);
+ mtx_lock(&qpair->lock);
+ }
+
+ /* Manually abort each outstanding I/O. */
+ while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
+ tr = TAILQ_FIRST(&qpair->outstanding_tr);
+ /*
+ * Do not remove the tracker. The abort_tracker path will
+ * do that for us.
+ */
+ nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
+ mtx_unlock(&qpair->lock);
+ nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
+ NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
+ mtx_lock(&qpair->lock);
+ }
+
+ mtx_unlock(&qpair->lock);
+}
+