summaryrefslogtreecommitdiffstats
path: root/networking/networking_driver.rst
blob: ae362e071819e47ecc1e80273dbaaf08f369140e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
.. comment SPDX-License-Identifier: CC-BY-SA-4.0

.. COMMENT: Written by Eric Norum
.. Copyright (C) 1988, 2002 On-Line Applications Research Corporation (OAR)

Networking Driver
#################

Introduction
============

This chapter is intended to provide an introduction to the procedure for
writing RTEMS network device drivers.  The example code is taken from the
'Generic 68360' network device driver.  The source code for this driver is
located in the :file:`bsps/m68k/gen68360/net` directory in the
RTEMS source code distribution.  Having a copy of this driver at hand when
reading the following notes will help significantly.

Learn about the network device
==============================

Before starting to write the network driver become completely familiar with the
programmer's view of the device.  The following points list some of the details
of the device that must be understood before a driver can be written.

- Does the device use DMA to transfer packets to and from memory or does the
  processor have to copy packets to and from memory on the device?

- If the device uses DMA, is it capable of forming a single outgoing packet
  from multiple fragments scattered in separate memory buffers?

- If the device uses DMA, is it capable of chaining multiple outgoing packets,
  or does each outgoing packet require intervention by the driver?

- Does the device automatically pad short frames to the minimum 64 bytes or
  does the driver have to supply the padding?

- Does the device automatically retry a transmission on detection of a
  collision?

- If the device uses DMA, is it capable of buffering multiple packets to
  memory, or does the receiver have to be restarted after the arrival of each
  packet?

- How are packets that are too short, too long, or received with CRC errors
  handled?  Does the device automatically continue reception or does the driver
  have to intervene?

- How is the device Ethernet address set?  How is the device programmed to
  accept or reject broadcast and multicast packets?

- What interrupts does the device generate?  Does it generate an interrupt for
  each incoming packet, or only for packets received without error?  Does it
  generate an interrupt for each packet transmitted, or only when the transmit
  queue is empty?  What happens when a transmit error is detected?

In addition, some controllers have specific questions regarding board specific
configuration.  For example, the SONIC Ethernet controller has a very
configurable data bus interface.  It can even be configured for sixteen and
thirty-two bit data buses.  This type of information should be obtained from
the board vendor.

Understand the network scheduling conventions
=============================================

When writing code for the driver transmit and receive tasks, take care to
follow the network scheduling conventions.  All tasks which are associated with
networking share various data structures and resources.  To ensure the
consistency of these structures the tasks execute only when they hold the
network semaphore (``rtems_bsdnet_semaphore``).  The transmit and receive tasks
must abide by this protocol.  Be very careful to avoid 'deadly embraces' with
the other network tasks.  A number of routines are provided to make it easier
for the network driver code to conform to the network task scheduling
conventions.

- ``void rtems_bsdnet_semaphore_release(void)``
  This function releases the network semaphore.  The network driver tasks must
  call this function immediately before making any blocking RTEMS request.

- ``void rtems_bsdnet_semaphore_obtain(void)``
  This function obtains the network semaphore.  If a network driver task has
  released the network semaphore to allow other network-related tasks to run
  while the task blocks, then this function must be called to reobtain the
  semaphore immediately after the return from the blocking RTEMS request.

- ``rtems_bsdnet_event_receive(rtems_event_set, rtems_option, rtems_interval, rtems_event_set *)``
  The network driver task should call this function when it wishes to wait for
  an event.  This function releases the network semaphore, calls
  ``rtems_event_receive`` to wait for the specified event or events and
  reobtains the semaphore.  The value returned is the value returned by the
  ``rtems_event_receive``.

Network Driver Makefile
=======================

Network drivers are considered part of the BSD network package and as such are
to be compiled with the appropriate flags.  This can be accomplished by adding
``-D__INSIDE_RTEMS_BSD_TCPIP_STACK__`` to the ``command line``.  If the driver
is inside the RTEMS source tree or is built using the RTEMS application
Makefiles, then adding the following line accomplishes this:

.. code-block:: c

    DEFINES += -D__INSIDE_RTEMS_BSD_TCPIP_STACK__

This is equivalent to the following list of definitions.  Early versions of the
RTEMS BSD network stack required that all of these be defined.

.. code-block:: c

    -D_COMPILING_BSD_KERNEL_ -DKERNEL -DINET -DNFS \
      -DDIAGNOSTIC -DBOOTP_COMPAT

Defining these macros tells the network header files that the driver is to be
compiled with extended visibility into the network stack.  This is in sharp
contrast to applications that simply use the network stack.  Applications do
not require this level of visibility and should stick to the portable
application level API.

As a direct result of being logically internal to the network stack, network
drivers use the BSD memory allocation routines This means, for example, that
malloc takes three arguments.  See the SONIC device driver
(:file:`c/src/lib/libchip/network/sonic.c`) for an example of this.  Because of
this, network drivers should not include ``<stdlib.h>``.  Doing so will result
in conflicting definitions of ``malloc()``.

*Application level* code including network servers such as the FTP daemon are
*not* part of the BSD kernel network code and should not be compiled with the
BSD network flags.  They should include ``<stdlib.h>`` and not define the
network stack visibility macros.

Write the Driver Attach Function
================================

The driver attach function is responsible for configuring the driver and making
the connection between the network stack and the driver.

Driver attach functions take a pointer to an ``rtems_bsdnet_ifconfig``
structure as their only argument.  and set the driver parameters based on the
values in this structure.  If an entry in the configuration structure is zero
the attach function chooses an appropriate default value for that parameter.

The driver should then set up several fields in the ifnet structure in the
device-dependent data structure supplied and maintained by the driver:

``ifp->if_softc``
    Pointer to the device-dependent data.  The first entry in the
    device-dependent data structure must be an ``arpcom`` structure.

``ifp->if_name``
    The name of the device.  The network stack uses this string and the device
    number for device name lookups.  The device name should be obtained from
    the ``name`` entry in the configuration structure.

``ifp->if_unit``
    The device number.  The network stack uses this number and the device name
    for device name lookups.  For example, if ``ifp->if_name`` is ``scc`` and
    ``ifp->if_unit`` is ``1``, the full device name would be ``scc1``.  The
    unit number should be obtained from the 'name' entry in the configuration
    structure.

``ifp->if_mtu``
    The maximum transmission unit for the device.  For Ethernet devices this
    value should almost always be 1500.

``ifp->if_flags``
    The device flags.  Ethernet devices should set the flags to
    ``IFF_BROADCAST|IFF_SIMPLEX``, indicating that the device can broadcast
    packets to multiple destinations and does not receive and transmit at the
    same time.

``ifp->if_snd.ifq_maxlen``
    The maximum length of the queue of packets waiting to be sent to the
    driver.  This is normally set to ``ifqmaxlen``.

``ifp->if_init``
    The address of the driver initialization function.

``ifp->if_start``
    The address of the driver start function.

``ifp->if_ioctl``
    The address of the driver ioctl function.

``ifp->if_output``
    The address of the output function.  Ethernet devices should set this to
    ``ether_output``.

RTEMS provides a function to parse the driver name in the configuration
structure into a device name and unit number.

.. code-block:: c

    int rtems_bsdnet_parse_driver_name (
        const struct rtems_bsdnet_ifconfig *config,
        char **namep
    );

The function takes two arguments; a pointer to the configuration structure and
a pointer to a pointer to a character.  The function parses the configuration
name entry, allocates memory for the driver name, places the driver name in
this memory, sets the second argument to point to the name and returns the unit
number.  On error, a message is printed and ``-1`` is returned.

Once the attach function has set up the above entries it must link the driver
data structure onto the list of devices by calling ``if_attach``.  Ethernet
devices should then call ``ether_ifattach``.  Both functions take a pointer to
the device's ``ifnet`` structure as their only argument.

The attach function should return a non-zero value to indicate that the driver
has been successfully configured and attached.

Write the Driver Start Function.
================================

This function is called each time the network stack wants to start the
transmitter.  This occures whenever the network stack adds a packet to a
device's send queue and the ``IFF_OACTIVE`` bit in the device's ``if_flags`` is
not set.

For many devices this function need only set the ``IFF_OACTIVE`` bit in the
``if_flags`` and send an event to the transmit task indicating that a packet is
in the driver transmit queue.

Write the Driver Initialization Function.
=========================================

This function should initialize the device, attach to interrupt handler, and
start the driver transmit and receive tasks.  The function

.. code-block:: c

    rtems_id
    rtems_bsdnet_newproc (char *name,
        int stacksize,
        void(*entry)(void *),
        void *arg);

should be used to start the driver tasks.

Note that the network stack may call the driver initialization function more
than once.  Make sure multiple versions of the receive and transmit tasks are
not accidentally started.

Write the Driver Transmit Task
==============================

This task is reponsible for removing packets from the driver send queue and
sending them to the device.  The task should block waiting for an event from
the driver start function indicating that packets are waiting to be
transmitted.  When the transmit task has drained the driver send queue the task
should clear the ``IFF_OACTIVE`` bit in ``if_flags`` and block until another
outgoing packet is queued.

Write the Driver Receive Task
=============================

This task should block until a packet arrives from the device.  If the device
is an Ethernet interface the function ``ether_input`` should be called to
forward the packet to the network stack.  The arguments to ``ether_input`` are
a pointer to the interface data structure, a pointer to the ethernet header and
a pointer to an mbuf containing the packet itself.

Write the Driver Interrupt Handler
==================================

A typical interrupt handler will do nothing more than the hardware manipulation
required to acknowledge the interrupt and send an RTEMS event to wake up the
driver receive or transmit task waiting for the event.  Network interface
interrupt handlers must not make any calls to other network routines.

Write the Driver IOCTL Function
===============================

This function handles ioctl requests directed at the device.  The ioctl
commands which must be handled are:

``SIOCGIFADDR``

``SIOCSIFADDR``
    If the device is an Ethernet interface these commands should be passed on
    to ``ether_ioctl``.

``SIOCSIFFLAGS``
    This command should be used to start or stop the device, depending on the
    state of the interface ``IFF_UP`` and ``IFF_RUNNING`` bits in ``if_flags``:

    ``IFF_RUNNING``
        Stop the device.

    ``IFF_UP``
        Start the device.

    ``IFF_UP|IFF_RUNNING``
        Stop then start the device.

    ``0``
        Do nothing.

Write the Driver Statistic-Printing Function
============================================

This function should print the values of any statistic/diagnostic counters the
network driver may use.  The driver ioctl function should call the
statistic-printing function when the ioctl command is ``SIO_RTEMS_SHOW_STATS``.