From 22d213c4846d2d783a8e84cc0b8e067dfe9b1a1e Mon Sep 17 00:00:00 2001 From: Vijay Kumar Banerjee Date: Mon, 1 Mar 2021 09:44:55 -0700 Subject: networking: Rename to legacy networking --- networking/using_networking_rtems_app.rst | 851 ------------------------------ 1 file changed, 851 deletions(-) delete mode 100644 networking/using_networking_rtems_app.rst (limited to 'networking/using_networking_rtems_app.rst') diff --git a/networking/using_networking_rtems_app.rst b/networking/using_networking_rtems_app.rst deleted file mode 100644 index 0d3e245..0000000 --- a/networking/using_networking_rtems_app.rst +++ /dev/null @@ -1,851 +0,0 @@ -.. SPDX-License-Identifier: CC-BY-SA-4.0 - -.. COMMENT: Written by Eric Norum -.. Copyright (C) 1988, 2002 On-Line Applications Research Corporation (OAR) - -Using Networking in an RTEMS Application -######################################## - -Makefile changes -================ - -Including the required managers -------------------------------- - -The FreeBSD networking code requires several RTEMS managers in the application: - -.. code-block:: makefile - - MANAGERS = io event semaphore - -Increasing the size of the heap -------------------------------- - -The networking tasks allocate a lot of memory. For most applications the heap -should be at least 256 kbytes. The amount of memory set aside for the heap can -be adjusted by setting the ``CFLAGS_LD`` definition as shown below: - -.. code-block:: makefile - - CFLAGS_LD += -Wl,--defsym -Wl,HeapSize=0x80000 - -This sets aside 512 kbytes of memory for the heap. - -System Configuration -==================== - -The networking tasks allocate some RTEMS objects. These must be accounted for -in the application configuration table. The following lists the requirements. - -*TASKS* - One network task plus a receive and transmit task for each device. - -*SEMAPHORES* - One network semaphore plus one syslog mutex semaphore if the application - uses openlog/syslog. - -*EVENTS* - The network stack uses ``RTEMS_EVENT_24`` and ``RTEMS_EVENT_25``. This has - no effect on the application configuration, but application tasks which - call the network functions should not use these events for other purposes. - -Initialization -============== - -Additional include files ------------------------- - -The source file which declares the network configuration structures and calls -the network initialization function must include - -.. code-block:: c - - #include - -Network Configuration ---------------------- - -The network configuration is specified by declaring and initializing the -``rtems_bsdnet_config`` structure. - -.. code-block:: c - - struct rtems_bsdnet_config { - /* - * This entry points to the head of the ifconfig chain. - */ - struct rtems_bsdnet_ifconfig *ifconfig; - /* - * This entry should be rtems_bsdnet_do_bootp if BOOTP - * is being used to configure the network, and NULL - * if BOOTP is not being used. - */ - void (*bootp)(void); - /* - * The remaining items can be initialized to 0, in - * which case the default value will be used. - */ - rtems_task_priority network_task_priority; /* 100 */ - unsigned long mbuf_bytecount; /* 64 kbytes */ - unsigned long mbuf_cluster_bytecount; /* 128 kbytes */ - char *hostname; /* BOOTP */ - char *domainname; /* BOOTP */ - char *gateway; /* BOOTP */ - char *log_host; /* BOOTP */ - char *name_server[3]; /* BOOTP */ - char *ntp_server[3]; /* BOOTP */ - unsigned long sb_efficiency; /* 2 */ - /* UDP TX: 9216 bytes */ - unsigned long udp_tx_buf_size; - /* UDP RX: 40 * (1024 + sizeof(struct sockaddr_in)) */ - unsigned long udp_rx_buf_size; - /* TCP TX: 16 * 1024 bytes */ - unsigned long tcp_tx_buf_size; - /* TCP TX: 16 * 1024 bytes */ - unsigned long tcp_rx_buf_size; - /* Default Network Tasks CPU Affinity */ - #ifdef RTEMS_SMP - const cpu_set_t *network_task_cpuset; - size_t network_task_cpuset_size; - #endif - }; - -The structure entries are described in the following table. If your -application uses BOOTP/DHCP to obtain network configuration information and if -you are happy with the default values described below, you need to provide only -the first two entries in this structure. - -``struct rtems_bsdnet_ifconfig *ifconfig`` - A pointer to the first configuration structure of the first network device. - This structure is described in the following section. You must provide a - value for this entry since there is no default value for it. - -``void (*bootp)(void)`` - This entry should be set to ``rtems_bsdnet_do_bootp`` if your application - by default uses the BOOTP/DHCP client protocol to obtain network - configuration information. It should be set to ``NULL`` if your - application does not use BOOTP/DHCP. You can also use - ``rtems_bsdnet_do_bootp_rootfs`` to have a set of standard files created - with the information return by the BOOTP/DHCP protocol. The IP address is - added to :file:`/etc/hosts` with the host name and domain returned. If no - host name or domain is returned ``me.mydomain`` is used. The BOOTP/DHCP - server's address is also added to :file:`/etc/hosts`. The domain name - server listed in the BOOTP/DHCP information are added to - :file:`/etc/resolv.conf`. A``search`` record is also added if a domain is - returned. The files are created if they do not exist. The default - ``rtems_bsdnet_do_bootp`` and ``rtems_bsdnet_do_bootp_rootfs`` handlers - will loop for-ever waiting for a BOOTP/DHCP server to respond. If an error - is detected such as not valid interface or valid hardware address the - target will reboot allowing any hardware reset to correct itself. You can - provide your own custom handler which allows you to perform an - initialization that meets your specific system requirements. For example - you could try BOOTP/DHCP then enter a configuration tool if no server is - found allowing the user to switch to a static configuration. - -``int network_task_priority`` - The priority at which the network task and network device - receive and transmit tasks will run. - If a value of 0 is specified the tasks will run at priority 100. - -``unsigned long mbuf_bytecount`` - The number of bytes to allocate from the heap for use as mbufs. - If a value of 0 is specified, 64 kbytes will be allocated. - -``unsigned long mbuf_cluster_bytecount`` - The number of bytes to allocate from the heap for use as mbuf clusters. - If a value of 0 is specified, 128 kbytes will be allocated. - -``char *hostname`` - The host name of the system. - If this, or any of the following, entries are ``NULL`` the value - may be obtained from a BOOTP/DHCP server. - -``char *domainname`` - The name of the Internet domain to which the system belongs. - -``char *gateway`` - The Internet host number of the network gateway machine, specified in - 'dotted decimal' (``129.128.4.1``) form. - -``char *log_host`` - The Internet host number of the machine to which ``syslog`` messages will - be sent. - -``char *name_server[3]`` - The Internet host numbers of up to three machines to be used as Internet - Domain Name Servers. - -``char *ntp_server[3]`` - The Internet host numbers of up to three machines to be used as - Network Time Protocol (NTP) Servers. - -``unsigned long sb_efficiency`` - This is the first of five configuration parameters related to the amount of - memory each socket may consume for buffers. The TCP/IP stack reserves - buffers (e.g. mbufs) for each open socket. The TCP/IP stack has different - limits for the transmit and receive buffers associated with each TCP and - UDP socket. By tuning these parameters, the application developer can make - trade-offs between memory consumption and performance. The default - parameters favor performance over memory consumption. See - http://www.rtems.org/ml/rtems-users/2004/february/msg00200.html for more - details but note that after the RTEMS 4.8 release series, the - ``sb_efficiency`` default was changed from ``8`` to ``2``. The user should - also be aware of the ``SO_SNDBUF`` and ``SO_RCVBUF`` IO control operations. - These can be used to specify the send and receive buffer sizes for a - specific socket. There is no standard IO control to change the - ``sb_efficiency`` factor. The ``sb_efficiency`` parameter is a buffering - factor used in the implementation of the TCP/IP stack. The default is - ``2`` which indicates double buffering. When allocating memory for each - socket, this number is multiplied by the buffer sizes for that socket. - -``unsigned long udp_tx_buf_size`` - This configuration parameter specifies the maximum amount of buffer memory - which may be used for UDP sockets to transmit with. The default size is - 9216 bytes which corresponds to the maximum datagram size. - -``unsigned long udp_rx_buf_size`` - This configuration parameter specifies the maximum amount of buffer memory - which may be used for UDP sockets to receive into. The default size is the - following length in bytes: - - .. code-block:: c - - 40 * (1024 + sizeof(struct sockaddr_in)) - -``unsigned long tcp_tx_buf_size`` - This configuration parameter specifies the maximum amount of buffer memory - which may be used for TCP sockets to transmit with. The default size is - sixteen kilobytes. - -``unsigned long tcp_rx_buf_size`` - This configuration parameter specifies the maximum amount of buffer memory - which may be used for TCP sockets to receive into. The default size is - sixteen kilobytes. - -``const cpu_set_t *network_task_cpuset`` - This configuration parameter specifies the CPU affinity of the network - task. If set to ``0`` the network task can be scheduled on any CPU. Only - available in SMP configurations. - -``size_t network_task_cpuset_size`` - This configuration parameter specifies the size of the - ``network_task_cpuset`` used. Only available in SMP configurations. - -In addition, the following fields in the ``rtems_bsdnet_ifconfig`` are of -interest. - -*int port* - The I/O port number (ex: 0x240) on which the external Ethernet can be - accessed. - -*int irno* - The interrupt number of the external Ethernet controller. - -*int bpar* - The address of the shared memory on the external Ethernet controller. - -Network device configuration ----------------------------- - -Network devices are specified and configured by declaring and initializing a -``struct rtems_bsdnet_ifconfig`` structure for each network device. - -The structure entries are described in the following table. An application -which uses a single network interface, gets network configuration information -from a BOOTP/DHCP server, and uses the default values for all driver parameters -needs to initialize only the first two entries in the structure. - -``char *name`` - The full name of the network device. This name consists of the driver name - and the unit number (e.g. ``"scc1"``). The ``bsp.h`` include file usually - defines ``RTEMS_BSP_NETWORK_DRIVER_NAME`` as the name of the primary (or - only) network driver. - -``int (*attach)(struct rtems_bsdnet_ifconfig *conf)`` - - The address of the driver ``attach`` function. The network initialization - function calls this function to configure the driver and attach it to the - network stack. The ``bsp.h`` include file usually defines - ``RTEMS_BSP_NETWORK_DRIVER_ATTACH`` as the name of the attach function of - the primary (or only) network driver. - -``struct rtems_bsdnet_ifconfig *next`` - A pointer to the network device configuration structure for the next - network interface, or ``NULL`` if this is the configuration structure of - the last network interface. - -``char *ip_address`` - The Internet address of the device, specified in 'dotted decimal' - (``129.128.4.2``) form, or ``NULL`` if the device configuration information - is being obtained from a BOOTP/DHCP server. - -``char *ip_netmask`` - The Internet inetwork mask of the device, specified in 'dotted decimal' - (``255.255.255.0``) form, or ``NULL`` if the device configuration - information is being obtained from a BOOTP/DHCP server. - -``void *hardware_address`` - The hardware address of the device, or ``NULL`` if the driver is to obtain - the hardware address in some other way (usually by reading it from the - device or from the bootstrap ROM). - -``int ignore_broadcast`` - Zero if the device is to accept broadcast packets, non-zero if the device - is to ignore broadcast packets. - -``int mtu`` - The maximum transmission unit of the device, or zero if the driver is to - choose a default value (typically 1500 for Ethernet devices). - -``int rbuf_count`` - The number of receive buffers to use, or zero if the driver is to choose a - default value - -``int xbuf_count`` - The number of transmit buffers to use, or zero if the driver is to choose a - default value Keep in mind that some network devices may use 4 or more - transmit descriptors for a single transmit buffer. - -A complete network configuration specification can be as simple as the one -shown in the following example. This configuration uses a single network -interface, gets network configuration information from a BOOTP/DHCP server, and -uses the default values for all driver parameters. - -.. code-block:: c - - static struct rtems_bsdnet_ifconfig netdriver_config = { - RTEMS_BSP_NETWORK_DRIVER_NAME, - RTEMS_BSP_NETWORK_DRIVER_ATTACH - }; - struct rtems_bsdnet_config rtems_bsdnet_config = { - &netdriver_config, - rtems_bsdnet_do_bootp, - }; - -Network initialization ----------------------- - -The networking tasks must be started before any network I/O operations can be -performed. This is done by calling: - -.. code-block:: c - - rtems_bsdnet_initialize_network (); - -This function is declared in ``rtems/rtems_bsdnet.h``. t returns 0 on success -and -1 on failure with an error code in ``errno``. It is not possible to undo -the effects of a partial initialization, though, so the function can be called -only once irregardless of the return code. Consequently, if the condition for -the failure can be corrected, the system must be reset to permit another -network initialization attempt. - -Application Programming Interface -================================= - -The RTEMS network package provides almost a complete set of BSD network -services. The network functions work like their BSD counterparts with the -following exceptions: - -- A given socket can be read or written by only one task at a time. - -- The ``select`` function only works for file descriptors associated with - sockets. - -- You must call ``openlog`` before calling any of the ``syslog`` functions. - -- *Some of the network functions are not thread-safe.* For example the - following functions return a pointer to a static buffer which remains valid - only until the next call: - - ``gethostbyaddr`` - ``gethostbyname`` - ``inet_ntoa`` (``inet_ntop`` is thread-safe, though). - -- The RTEMS network package gathers statistics. - -- Addition of a mechanism to "tap onto" an interface and monitor every packet - received and transmitted. - -- Addition of ``SO_SNDWAKEUP`` and ``SO_RCVWAKEUP`` socket options. - -Some of the new features are discussed in more detail in the following -sections. - -Network Statistics ------------------- - -There are a number of functions to print statistics gathered by the network -stack. These function are declared in ``rtems/rtems_bsdnet.h``. - -``rtems_bsdnet_show_if_stats`` - Display statistics gathered by network interfaces. - -``rtems_bsdnet_show_ip_stats`` - Display IP packet statistics. - -``rtems_bsdnet_show_icmp_stats`` - Display ICMP packet statistics. - -``rtems_bsdnet_show_tcp_stats`` - Display TCP packet statistics. - -``rtems_bsdnet_show_udp_stats`` - Display UDP packet statistics. - -``rtems_bsdnet_show_mbuf_stats`` - Display mbuf statistics. - -``rtems_bsdnet_show_inet_routes`` - Display the routing table. - -Tapping Into an Interface -------------------------- - -RTEMS add two new ioctls to the BSD networking code, ``SIOCSIFTAP`` and -``SIOCGIFTAP``. These may be used to set and get a *tap function*. The tap -function will be called for every Ethernet packet received by the interface. - -These are called like other interface ioctls, such as ``SIOCSIFADDR``. When -setting the tap function with ``SIOCSIFTAP``, set the ifr_tap field of the -ifreq struct to the tap function. When retrieving the tap function with -``SIOCGIFTAP``, the current tap function will be returned in the ifr_tap field. -To stop tapping packets, call ``SIOCSIFTAP`` with a ``ifr_tap`` field of ``0``. - -The tap function is called like this: - -.. code-block:: c - - int tap (struct ifnet *, struct ether_header *, struct mbuf *) - -The tap function should return ``1`` if the packet was fully handled, in which -case the caller will simply discard the mbuf. The tap function should return -``0`` if the packet should be passed up to the higher networking layers. - -The tap function is called with the network semaphore locked. It must not make -any calls on the application levels of the networking level itself. It is safe -to call other non-networking RTEMS functions. - -Socket Options --------------- - -RTEMS adds two new ``SOL_SOCKET`` level options for ``setsockopt`` and -``getsockopt``: ``SO_SNDWAKEUP`` and ``SO_RCVWAKEUP``. For both, the option -value should point to a sockwakeup structure. The sockwakeup structure has the -following fields: - -.. code-block:: c - - void (*sw_pfn) (struct socket *, caddr_t); - caddr_t sw_arg; - -These options are used to set a callback function to be called when, for -example, there is data available from the socket (``SO_RCVWAKEUP``) and when -there is space available to accept data written to the socket -(``SO_SNDWAKEUP``). - -If ``setsockopt`` is called with the ``SO_RCVWAKEUP`` option, and the -``sw_pfn`` field is not zero, then when there is data available to be read from -the socket, the function pointed to by the ``sw_pfn`` field will be called. A -pointer to the socket structure will be passed as the first argument to the -function. The ``sw_arg`` field set by the ``SO_RCVWAKEUP`` call will be passed -as the second argument to the function. - -If ``setsockopt`` is called with the ``SO_SNDWAKEUP`` function, and the -``sw_pfn`` field is not zero, then when there is space available to accept data -written to the socket, the function pointed to by the ``sw_pfn`` field will be -called. The arguments passed to the function will be as with ``SO_SNDWAKEUP``. - -When the function is called, the network semaphore will be locked and the -callback function runs in the context of the networking task. The function -must be careful not to call any networking functions. It is OK to call an -RTEMS function; for example, it is OK to send an RTEMS event. - -The purpose of these callback functions is to permit a more efficient -alternative to the select call when dealing with a large number of sockets. - -The callbacks are called by the same criteria that the select function uses for -indicating "ready" sockets. In Stevens *Unix Network Programming* on page -153-154 in the section "Under what Conditions Is a Descriptor Ready?" you will -find the definitive list of conditions for readable and writable that also -determine when the functions are called. - -When the number of received bytes equals or exceeds the socket receive buffer -"low water mark" (default 1 byte) you get a readable callback. If there are 100 -bytes in the receive buffer and you only read 1, you will not immediately get -another callback. However, you will get another callback after you read the -remaining 99 bytes and at least 1 more byte arrives. Using a non-blocking -socket you should probably read until it produces error ``EWOULDBLOCK`` and -then allow the readable callback to tell you when more data has arrived. -(Condition 1.a.) - -For sending, when the socket is connected and the free space becomes at or -above the "low water mark" for the send buffer (default 4096 bytes) you will -receive a writable callback. You don't get continuous callbacks if you don't -write anything. Using a non-blocking write socket, you can then call write -until it returns a value less than the amount of data requested to be sent or -it produces error ``EWOULDBLOCK`` (indicating buffer full and no longer -writable). When this happens you can try the write again, but it is often -better to go do other things and let the writable callback tell you when space -is available to send again. You only get a writable callback when the free -space transitions to above the "low water mark" and not every time you write to -a non-full send buffer. (Condition 2.a.) - -The remaining conditions enumerated by Stevens handle the fact that sockets -become readable and/or writable when connects, disconnects and errors occur, -not just when data is received or sent. For example, when a server "listening" -socket becomes readable it indicates that a client has connected and accept can -be called without blocking, not that network data was received (Condition 1.c). - -Adding an IP Alias ------------------- - -The following code snippet adds an IP alias: - -.. code-block:: c - - void addAlias(const char *pName, const char *pAddr, const char *pMask) - { - struct ifaliasreq aliasreq; - struct sockaddr_in *in; - - /* initialize alias request */ - memset(&aliasreq, 0, sizeof(aliasreq)); - sprintf(aliasreq.ifra_name, pName); - - /* initialize alias address */ - in = (struct sockaddr_in *)&aliasreq.ifra_addr; - in->sin_family = AF_INET; - in->sin_len = sizeof(aliasreq.ifra_addr); - in->sin_addr.s_addr = inet_addr(pAddr); - - /* initialize alias mask */ - in = (struct sockaddr_in *)&aliasreq.ifra_mask; - in->sin_family = AF_INET; - in->sin_len = sizeof(aliasreq.ifra_mask); - in->sin_addr.s_addr = inet_addr(pMask); - - /* call to setup the alias */ - rtems_bsdnet_ifconfig(pName, SIOCAIFADDR, &aliasreq); - } - -Thanks to Mike Seirs for this example code. - -Adding a Default Route ----------------------- - -The function provided in this section is functionally equivalent to the command -``route add default gw yyy.yyy.yyy.yyy``: - -.. code-block:: c - - void mon_ifconfig(int argc, char *argv[], unsigned32 command_arg, bool verbose) - { - struct sockaddr_in ipaddr; - struct sockaddr_in dstaddr; - struct sockaddr_in netmask; - struct sockaddr_in broadcast; - char *iface; - int f_ip = 0; - int f_ptp = 0; - int f_netmask = 0; - int f_up = 0; - int f_down = 0; - int f_bcast = 0; - int cur_idx; - int rc; - int flags; - - bzero((void*) &ipaddr, sizeof(ipaddr)); - bzero((void*) &dstaddr, sizeof(dstaddr)); - bzero((void*) &netmask, sizeof(netmask)); - bzero((void*) &broadcast, sizeof(broadcast)); - ipaddr.sin_len = sizeof(ipaddr); - ipaddr.sin_family = AF_INET; - dstaddr.sin_len = sizeof(dstaddr); - dstaddr.sin_family = AF_INET; - netmask.sin_len = sizeof(netmask); - netmask.sin_family = AF_INET; - broadcast.sin_len = sizeof(broadcast); - broadcast.sin_family = AF_INET; - cur_idx = 0; - - if (argc <= 1) { - /* display all interfaces */ - iface = NULL; - cur_idx += 1; - } else { - iface = argv[1]; - if (isdigit(*argv[2])) { - if (inet_pton(AF_INET, argv[2], &ipaddr.sin_addr) < 0) { - printf("bad ip address: %s\n", argv[2]); - return; - } - f_ip = 1; - cur_idx += 3; - } else { - cur_idx += 2; - } - } - - if ((f_down !=0) && (f_ip != 0)) { - f_up = 1; - } - - while(argc > cur_idx) { - if (strcmp(argv[cur_idx], "up") == 0) { - f_up = 1; - if (f_down != 0) { - printf("Can't make interface up and down\n"); - } - } else if(strcmp(argv[cur_idx], "down") == 0) { - f_down = 1; - if (f_up != 0) { - printf("Can't make interface up and down\n"); - } - } else if(strcmp(argv[cur_idx], "netmask") == 0) { - if ((cur_idx + 1) >= argc) { - printf("No netmask address\n"); - return; - } - if (inet_pton(AF_INET, argv[cur_idx+1], &netmask.sin_addr) < 0) { - printf("bad netmask: %s\n", argv[cur_idx]); - return; - } - f_netmask = 1; - cur_idx += 1; - } else if(strcmp(argv[cur_idx], "broadcast") == 0) { - if ((cur_idx + 1) >= argc) { - printf("No broadcast address\n"); - return; - } - if (inet_pton(AF_INET, argv[cur_idx+1], &broadcast.sin_addr) < 0) { - printf("bad broadcast: %s\n", argv[cur_idx]); - return; - } - f_bcast = 1; - cur_idx += 1; - } else if(strcmp(argv[cur_idx], "pointopoint") == 0) { - if ((cur_idx + 1) >= argc) { - printf("No pointopoint address\n"); - return; - } - if (inet_pton(AF_INET, argv[cur_idx+1], &dstaddr.sin_addr) < 0) { - printf("bad pointopoint: %s\n", argv[cur_idx]); - return; - } - f_ptp = 1; - cur_idx += 1; - } else { - printf("Bad parameter: %s\n", argv[cur_idx]); - return; - } - cur_idx += 1; - } - - printf("ifconfig "); - - if (iface != NULL) { - printf("%s ", iface); - if (f_ip != 0) { - char str[256]; - inet_ntop(AF_INET, &ipaddr.sin_addr, str, 256); - printf("%s ", str); - } - if (f_netmask != 0) { - char str[256]; - inet_ntop(AF_INET, &netmask.sin_addr, str, 256); - printf("netmask %s ", str); - } - if (f_bcast != 0) { - char str[256]; - inet_ntop(AF_INET, &broadcast.sin_addr, str, 256); - printf("broadcast %s ", str); - } - if (f_ptp != 0) { - char str[256]; - inet_ntop(AF_INET, &dstaddr.sin_addr, str, 256); - printf("pointopoint %s ", str); - } - if (f_up != 0) { - printf("up\n"); - } else if (f_down != 0) { - printf("down\n"); - } else { - printf("\n"); - } - } - - if ((iface == NULL) || ((f_ip == 0) && (f_down == 0) && (f_up == 0))) { - rtems_bsdnet_show_if_stats(); - return; - } - - flags = 0; - if (f_netmask) { - rc = rtems_bsdnet_ifconfig(iface, SIOCSIFNETMASK, &netmask); - if (rc < 0) { - printf("Could not set netmask: %s\n", strerror(errno)); - return; - } - } - if (f_bcast) { - rc = rtems_bsdnet_ifconfig(iface, SIOCSIFBRDADDR, &broadcast); - if (rc < 0) { - printf("Could not set broadcast: %s\n", strerror(errno)); - return; - } - } - if (f_ptp) { - rc = rtems_bsdnet_ifconfig(iface, SIOCSIFDSTADDR, &dstaddr); - if (rc < 0) { - printf("Could not set destination address: %s\n", strerror(errno)); - return; - } - flags |= IFF_POINTOPOINT; - } - - /* This must come _after_ setting the netmask, broadcast addresses */ - if (f_ip) { - rc = rtems_bsdnet_ifconfig(iface, SIOCSIFADDR, &ipaddr); - if (rc < 0) { - printf("Could not set IP address: %s\n", strerror(errno)); - return; - } - } - if (f_up != 0) { - flags |= IFF_UP; - } - if (f_down != 0) { - printf("Warning: taking interfaces down is not supported\n"); - } - - rc = rtems_bsdnet_ifconfig(iface, SIOCSIFFLAGS, &flags); - if (rc < 0) { - printf("Could not set interface flags: %s\n", strerror(errno)); - return; - } - } - - void mon_route(int argc, char *argv[], unsigned32 command_arg, bool verbose) - { - int cmd; - struct sockaddr_in dst; - struct sockaddr_in gw; - struct sockaddr_in netmask; - int f_host; - int f_gw = 0; - int cur_idx; - int flags; - int rc; - - memset(&dst, 0, sizeof(dst)); - memset(&gw, 0, sizeof(gw)); - memset(&netmask, 0, sizeof(netmask)); - dst.sin_len = sizeof(dst); - dst.sin_family = AF_INET; - dst.sin_addr.s_addr = inet_addr("0.0.0.0"); - gw.sin_len = sizeof(gw); - gw.sin_family = AF_INET; - gw.sin_addr.s_addr = inet_addr("0.0.0.0"); - netmask.sin_len = sizeof(netmask); - netmask.sin_family = AF_INET; - netmask.sin_addr.s_addr = inet_addr("255.255.255.0"); - - if (argc < 2) { - rtems_bsdnet_show_inet_routes(); - return; - } - - if (strcmp(argv[1], "add") == 0) { - cmd = RTM_ADD; - } else if (strcmp(argv[1], "del") == 0) { - cmd = RTM_DELETE; - } else { - printf("invalid command: %s\n", argv[1]); - printf("\tit should be 'add' or 'del'\n"); - return; - } - - if (argc < 3) { - printf("not enough arguments\n"); - return; - } - - if (strcmp(argv[2], "-host") == 0) { - f_host = 1; - } else if (strcmp(argv[2], "-net") == 0) { - f_host = 0; - } else { - printf("Invalid type: %s\n", argv[1]); - printf("\tit should be '-host' or '-net'\n"); - return; - } - - if (argc < 4) { - printf("not enough arguments\n"); - return; - } - - inet_pton(AF_INET, argv[3], &dst.sin_addr); - - cur_idx = 4; - while(cur_idx < argc) { - if (strcmp(argv[cur_idx], "gw") == 0) { - if ((cur_idx +1) >= argc) { - printf("no gateway address\n"); - return; - } - f_gw = 1; - inet_pton(AF_INET, argv[cur_idx + 1], &gw.sin_addr); - cur_idx += 1; - } else if(strcmp(argv[cur_idx], "netmask") == 0) { - if ((cur_idx +1) >= argc) { - printf("no netmask address\n"); - return; - } - f_gw = 1; - inet_pton(AF_INET, argv[cur_idx + 1], &netmask.sin_addr); - cur_idx += 1; - } else { - printf("Unknown argument\n"); - return; - } - cur_idx += 1; - } - - flags = RTF_STATIC; - if (f_gw != 0) { - flags |= RTF_GATEWAY; - } - if (f_host != 0) { - flags |= RTF_HOST; - } - - rc = rtems_bsdnet_rtrequest(cmd, &dst, &gw, &netmask, flags, NULL); - if (rc < 0) { - printf("Error adding route\n"); - } - } - -Thanks to Jay Monkman for this example -code. - -Time Synchronization Using NTP ------------------------------- - -.. code-block:: c - - int rtems_bsdnet_synchronize_ntp (int interval, rtems_task_priority priority); - -If the interval argument is ``0`` the routine synchronizes the RTEMS -time-of-day clock with the first NTP server in the ``rtems_bsdnet_ntpserve`` -array and returns. The priority argument is ignored. - -If the interval argument is greater than 0, the routine also starts an RTEMS -task at the specified priority and polls the NTP server every 'interval' -seconds. NOTE: This mode of operation has not yet been implemented. - -On successful synchronization of the RTEMS time-of-day clock the routine -returns ``0``. If an error occurs a message is printed and the routine returns -``-1`` with an error code in errno. There is no timeout - if there is no -response from an NTP server the routine will wait forever. -- cgit v1.2.3