From ca49bfd73be27cae4a7df00da22e9e7ca5bd8dfa Mon Sep 17 00:00:00 2001 From: Amar Takhar Date: Sat, 16 Jan 2016 18:26:00 -0500 Subject: Split document. --- networking/dec_21140.rst | 246 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 246 insertions(+) create mode 100644 networking/dec_21140.rst (limited to 'networking/dec_21140.rst') diff --git a/networking/dec_21140.rst b/networking/dec_21140.rst new file mode 100644 index 0000000..8cc041c --- /dev/null +++ b/networking/dec_21140.rst @@ -0,0 +1,246 @@ +DEC 21140 Driver +################ + +DEC 21240 Driver Introduction +============================= + +.. COMMENT: XXX add back in cross reference to list of boards. + +One aim of our project is to port RTEMS on a standard PowerPC platform. +To achieve it, we have chosen a Motorola MCP750 board. This board includes +an Ethernet controller based on a DEC21140 chip. Because RTEMS has a +TCP/IP stack, we will +have to develop the DEC21140 related ethernet driver for the PowerPC port of +RTEMS. As this controller is able to support 100Mbps network and as there is +a lot of PCI card using this DEC chip, we have decided to first +implement this driver on an Intel PC386 target to provide a solution for using +RTEMS on PC with the 100Mbps network and then to port this code on PowerPC in +a second phase. + +The aim of this document is to give some PCI board generalities and +to explain the software architecture of the RTEMS driver. Finally, we will see +what will be done for ChorusOs and Netboot environment . + +Document Revision History +========================= + +*Current release*: + +- Current applicable release is 1.0. + +*Existing releases*: + +- 1.0 : Released the 10/02/98. First version of this document. + +- 0.1 : First draft of this document + +*Planned releases*: + +- None planned today. + +DEC21140 PCI Board Generalities +=============================== + +.. COMMENT: XXX add crossreference to PCI Register Figure + +This chapter describes rapidely the PCI interface of this Ethernet controller. +The board we have chosen for our PC386 implementation is a D-Link DFE-500TX. +This is a dual-speed 10/100Mbps Ethernet PCI adapter with a DEC21140AF chip. +Like other PCI devices, this board has a PCI device’s header containing some +required configuration registers, as shown in the PCI Register Figure. +By reading +or writing these registers, a driver can obtain information about the type of +the board, the interrupt it uses, the mapping of the chip specific registers, ... + +On Intel target, the chip specific registers can be accessed via 2 +methods : I/O port access or PCI address mapped access. We have chosen to implement +the PCI address access to obtain compatible source code to the port the driver +on a PowerPC target. + +.. COMMENT: PCI Device's Configuration Header Space Format + + +.. image:: images/PCIreg.jpg + + +.. COMMENT: XXX add crossreference to PCI Register Figure + +On RTEMS, a PCI API exists. We have used it to configure the board. After initializing +this PCI module via the ``pci_initialize()`` function, we try to detect +the DEC21140 based ethernet board. This board is characterized by its Vendor +ID (0x1011) and its Device ID (0x0009). We give these arguments to the``pcib_find_by_deviceid`` +function which returns , if the device is present, a pointer to the configuration +header space (see PCI Registers Fgure). Once this operation performed, +the driver +is able to extract the information it needs to configure the board internal +registers, like the interrupt line, the base address,... The board internal +registers will not be detailled here. You can find them in *DIGITAL +Semiconductor 21140A PCI Fast Ethernet LAN Controller +- Hardware Reference Manual*. + +.. COMMENT: fix citation + +RTEMS Driver Software Architecture +================================== + +In this chapter will see the initialization phase, how the controller uses the +host memory and the 2 threads launched at the initialization time. + +Initialization phase +-------------------- + +The DEC21140 Ethernet driver keeps the same software architecture than the other +RTEMS ethernet drivers. The only API the programmer can use is the ``rtems_dec21140_driver_attach````(struct rtems_bsdnet_ifconfig \*config)`` function which +detects the board and initializes the associated data structure (with registers +base address, entry points to low-level initialization function,...), if the +board is found. + +Once the attach function executed, the driver initializes the DEC +chip. Then the driver connects an interrupt handler to the interrupt line driven +by the Ethernet controller (the only interrupt which will be treated is the +receive interrupt) and launches 2 threads : a receiver thread and a transmitter +thread. Then the driver waits for incoming frame to give to the protocol stack +or outcoming frame to send on the physical link. + +Memory Buffer +------------- + +.. COMMENT: XXX add cross reference to Problem + +This DEC chip uses the host memory to store the incoming Ethernet frames and +the descriptor of these frames. We have chosen to use 7 receive buffers and +1 transmit buffer to optimize memory allocation due to cache and paging problem +that will be explained in the section *Encountered Problems*. + +To reference these buffers to the DEC chip we use a buffer descriptors +ring. The descriptor structure is defined in the Buffer Descriptor Figure. +Each descriptor +can reference one or two memory buffers. We choose to use only one buffer of +1520 bytes per descriptor. + +The difference between a receive and a transmit buffer descriptor +is located in the status and control bits fields. We do not give details here, +please refer to the \[DEC21140 Hardware Manual]. + +.. COMMENT: Buffer Descriptor + + +.. image:: images/recvbd.jpg + + +Receiver Thread +--------------- + +This thread is event driven. Each time a DEC PCI board interrupt occurs, the +handler checks if this is a receive interrupt and send an event “reception” +to the receiver thread which looks into the entire buffer descriptors ring the +ones that contain a valid incoming frame (bit OWN=0 means descriptor belongs +to host processor). Each valid incoming ethernet frame is sent to the protocol +stack and the buffer descriptor is given back to the DEC board (the host processor +reset bit OWN, which means descriptor belongs to 21140). + +Transmitter Thread +------------------ + +This thread is also event driven. Each time an Ethernet frame is put in the +transmit queue, an event is sent to the transmit thread, which empty the queue +by sending each outcoming frame. Because we use only one transmit buffer, we +are sure that the frame is well-sent before sending the next. + +Encountered Problems +==================== + +On Intel PC386 target, we were faced with a problem of memory cache management. +Because the DEC chip uses the host memory to store the incoming frame and because +the DEC21140 configuration registers are mapped into the PCI address space, +we must ensure that the data read (or written) by the host processor are the +ones written (or read) by the DEC21140 device in the host memory and not old +data stored in the cache memory. Therefore, we had to provide a way to manage +the cache. This module is described in the document *RTEMS +Cache Management For Intel*. On Intel, the +memory region cache management is available only if the paging unit is enabled. +We have used this paging mechanism, with 4Kb page. All the buffers allocated +to store the incoming or outcoming frames, buffer descriptor and also the PCI +address space of the DEC board are located in a memory space with cache disable. + +Concerning the buffers and their descriptors, we have tried to optimize +the memory space in term of allocated page. One buffer has 1520 bytes, one descriptor +has 16 bytes. We have 7 receive buffers and 1 transmit buffer, and for each, +1 descriptor : (7+1)*(1520+16) = 12288 bytes = 12Kb = 3 entire pages. This +allows not to lose too much memory or not to disable cache memory for a page +which contains other data than buffer, which could decrease performance. + +ChorusOs DEC Driver +=================== + +Because ChorusOs is used in several Canon CRF projects, we must provide such +a driver on this OS to ensure compatibility between the RTEMS and ChorusOs developments. +On ChorusOs, a DEC driver source code already exists but only for a PowerPC +target. We plan to port this code (which uses ChorusOs API) on Intel target. +This will allow us to have homogeneous developments. Moreover, the port of the +development performed with ChorusOs environment to RTEMS environment will be +easier for the developers. + +Netboot DEC driver +================== + +We use Netboot tool to load our development from a server to the target via +an ethernet network. Currently, this tool does not support the DEC board. We +plan to port the DEC driver for the Netboot tool. + +But concerning the port of the DEC driver into Netboot, we are faced +with a problem : in RTEMS environment, the DEC driver is interrupt or event +driven, in Netboot environment, it must be used in polling mode. It means that +we will have to re-write some mechanisms of this driver. + +List of Ethernet cards using the DEC chip +========================================= + +Many Ethernet adapter cards use the Tulip chip. Here is a non exhaustive list +of adapters which support this driver : + +- Accton EtherDuo PCI. + +- Accton EN1207 All three media types supported. + +- Adaptec ANA6911/TX 21140-AC. + +- Cogent EM110 21140-A with DP83840 N-Way MII transceiver. + +- Cogent EM400 EM100 with 4 21140 100mbps-only ports + PCI Bridge. + +- Danpex EN-9400P3. + +- D-Link DFE500-Tx 21140-A with DP83840 transceiver. + +- Kingston EtherX KNE100TX 21140AE. + +- Netgear FX310 TX 10/100 21140AE. + +- SMC EtherPower10/100 With DEC21140 and 68836 SYM transceiver. + +- SMC EtherPower10/100 With DEC21140-AC and DP83840 MII transceiver. + Note: The EtherPower II uses the EPIC chip, which requires a different driver. + +- Surecom EP-320X DEC 21140. + +- Thomas Conrad TC5048. + +- Znyx ZX345 21140-A, usually with the DP83840 N-Way MII transciever. Some ZX345 + cards made in 1996 have an ICS 1890 transciver instead. + +- ZNYX ZX348 Two 21140-A chips using ICS 1890 transcievers and either a 21052 + or 21152 bridge. Early versions used National 83840 transcievers, but later + versions are depopulated ZX346 boards. + +- ZNYX ZX351 21140 chip with a Broadcom 100BaseT4 transciever. + +Our DEC driver has not been tested with all these cards, only with the D-Link +DFE500-TX. + +- *[DEC21140 Hardware Manual] DIGITAL, *DIGITAL + Semiconductor 21140A PCI Fast Ethernet LAN Controller - Hardware + Reference Manual**. + +- *[99.TA.0021.M.ER]Emmanuel Raguet,*RTEMS Cache Management For Intel**. + -- cgit v1.2.3