summaryrefslogtreecommitdiffstats
path: root/networking/using_networking_rtems_app.rst
diff options
context:
space:
mode:
Diffstat (limited to 'networking/using_networking_rtems_app.rst')
-rw-r--r--networking/using_networking_rtems_app.rst851
1 files changed, 0 insertions, 851 deletions
diff --git a/networking/using_networking_rtems_app.rst b/networking/using_networking_rtems_app.rst
deleted file mode 100644
index 0d3e245..0000000
--- a/networking/using_networking_rtems_app.rst
+++ /dev/null
@@ -1,851 +0,0 @@
-.. SPDX-License-Identifier: CC-BY-SA-4.0
-
-.. COMMENT: Written by Eric Norum
-.. Copyright (C) 1988, 2002 On-Line Applications Research Corporation (OAR)
-
-Using Networking in an RTEMS Application
-########################################
-
-Makefile changes
-================
-
-Including the required managers
--------------------------------
-
-The FreeBSD networking code requires several RTEMS managers in the application:
-
-.. code-block:: makefile
-
- MANAGERS = io event semaphore
-
-Increasing the size of the heap
--------------------------------
-
-The networking tasks allocate a lot of memory. For most applications the heap
-should be at least 256 kbytes. The amount of memory set aside for the heap can
-be adjusted by setting the ``CFLAGS_LD`` definition as shown below:
-
-.. code-block:: makefile
-
- CFLAGS_LD += -Wl,--defsym -Wl,HeapSize=0x80000
-
-This sets aside 512 kbytes of memory for the heap.
-
-System Configuration
-====================
-
-The networking tasks allocate some RTEMS objects. These must be accounted for
-in the application configuration table. The following lists the requirements.
-
-*TASKS*
- One network task plus a receive and transmit task for each device.
-
-*SEMAPHORES*
- One network semaphore plus one syslog mutex semaphore if the application
- uses openlog/syslog.
-
-*EVENTS*
- The network stack uses ``RTEMS_EVENT_24`` and ``RTEMS_EVENT_25``. This has
- no effect on the application configuration, but application tasks which
- call the network functions should not use these events for other purposes.
-
-Initialization
-==============
-
-Additional include files
-------------------------
-
-The source file which declares the network configuration structures and calls
-the network initialization function must include
-
-.. code-block:: c
-
- #include <rtems/rtems_bsdnet.h>
-
-Network Configuration
----------------------
-
-The network configuration is specified by declaring and initializing the
-``rtems_bsdnet_config`` structure.
-
-.. code-block:: c
-
- struct rtems_bsdnet_config {
- /*
- * This entry points to the head of the ifconfig chain.
- */
- struct rtems_bsdnet_ifconfig *ifconfig;
- /*
- * This entry should be rtems_bsdnet_do_bootp if BOOTP
- * is being used to configure the network, and NULL
- * if BOOTP is not being used.
- */
- void (*bootp)(void);
- /*
- * The remaining items can be initialized to 0, in
- * which case the default value will be used.
- */
- rtems_task_priority network_task_priority; /* 100 */
- unsigned long mbuf_bytecount; /* 64 kbytes */
- unsigned long mbuf_cluster_bytecount; /* 128 kbytes */
- char *hostname; /* BOOTP */
- char *domainname; /* BOOTP */
- char *gateway; /* BOOTP */
- char *log_host; /* BOOTP */
- char *name_server[3]; /* BOOTP */
- char *ntp_server[3]; /* BOOTP */
- unsigned long sb_efficiency; /* 2 */
- /* UDP TX: 9216 bytes */
- unsigned long udp_tx_buf_size;
- /* UDP RX: 40 * (1024 + sizeof(struct sockaddr_in)) */
- unsigned long udp_rx_buf_size;
- /* TCP TX: 16 * 1024 bytes */
- unsigned long tcp_tx_buf_size;
- /* TCP TX: 16 * 1024 bytes */
- unsigned long tcp_rx_buf_size;
- /* Default Network Tasks CPU Affinity */
- #ifdef RTEMS_SMP
- const cpu_set_t *network_task_cpuset;
- size_t network_task_cpuset_size;
- #endif
- };
-
-The structure entries are described in the following table. If your
-application uses BOOTP/DHCP to obtain network configuration information and if
-you are happy with the default values described below, you need to provide only
-the first two entries in this structure.
-
-``struct rtems_bsdnet_ifconfig *ifconfig``
- A pointer to the first configuration structure of the first network device.
- This structure is described in the following section. You must provide a
- value for this entry since there is no default value for it.
-
-``void (*bootp)(void)``
- This entry should be set to ``rtems_bsdnet_do_bootp`` if your application
- by default uses the BOOTP/DHCP client protocol to obtain network
- configuration information. It should be set to ``NULL`` if your
- application does not use BOOTP/DHCP. You can also use
- ``rtems_bsdnet_do_bootp_rootfs`` to have a set of standard files created
- with the information return by the BOOTP/DHCP protocol. The IP address is
- added to :file:`/etc/hosts` with the host name and domain returned. If no
- host name or domain is returned ``me.mydomain`` is used. The BOOTP/DHCP
- server's address is also added to :file:`/etc/hosts`. The domain name
- server listed in the BOOTP/DHCP information are added to
- :file:`/etc/resolv.conf`. A``search`` record is also added if a domain is
- returned. The files are created if they do not exist. The default
- ``rtems_bsdnet_do_bootp`` and ``rtems_bsdnet_do_bootp_rootfs`` handlers
- will loop for-ever waiting for a BOOTP/DHCP server to respond. If an error
- is detected such as not valid interface or valid hardware address the
- target will reboot allowing any hardware reset to correct itself. You can
- provide your own custom handler which allows you to perform an
- initialization that meets your specific system requirements. For example
- you could try BOOTP/DHCP then enter a configuration tool if no server is
- found allowing the user to switch to a static configuration.
-
-``int network_task_priority``
- The priority at which the network task and network device
- receive and transmit tasks will run.
- If a value of 0 is specified the tasks will run at priority 100.
-
-``unsigned long mbuf_bytecount``
- The number of bytes to allocate from the heap for use as mbufs.
- If a value of 0 is specified, 64 kbytes will be allocated.
-
-``unsigned long mbuf_cluster_bytecount``
- The number of bytes to allocate from the heap for use as mbuf clusters.
- If a value of 0 is specified, 128 kbytes will be allocated.
-
-``char *hostname``
- The host name of the system.
- If this, or any of the following, entries are ``NULL`` the value
- may be obtained from a BOOTP/DHCP server.
-
-``char *domainname``
- The name of the Internet domain to which the system belongs.
-
-``char *gateway``
- The Internet host number of the network gateway machine, specified in
- 'dotted decimal' (``129.128.4.1``) form.
-
-``char *log_host``
- The Internet host number of the machine to which ``syslog`` messages will
- be sent.
-
-``char *name_server[3]``
- The Internet host numbers of up to three machines to be used as Internet
- Domain Name Servers.
-
-``char *ntp_server[3]``
- The Internet host numbers of up to three machines to be used as
- Network Time Protocol (NTP) Servers.
-
-``unsigned long sb_efficiency``
- This is the first of five configuration parameters related to the amount of
- memory each socket may consume for buffers. The TCP/IP stack reserves
- buffers (e.g. mbufs) for each open socket. The TCP/IP stack has different
- limits for the transmit and receive buffers associated with each TCP and
- UDP socket. By tuning these parameters, the application developer can make
- trade-offs between memory consumption and performance. The default
- parameters favor performance over memory consumption. See
- http://www.rtems.org/ml/rtems-users/2004/february/msg00200.html for more
- details but note that after the RTEMS 4.8 release series, the
- ``sb_efficiency`` default was changed from ``8`` to ``2``. The user should
- also be aware of the ``SO_SNDBUF`` and ``SO_RCVBUF`` IO control operations.
- These can be used to specify the send and receive buffer sizes for a
- specific socket. There is no standard IO control to change the
- ``sb_efficiency`` factor. The ``sb_efficiency`` parameter is a buffering
- factor used in the implementation of the TCP/IP stack. The default is
- ``2`` which indicates double buffering. When allocating memory for each
- socket, this number is multiplied by the buffer sizes for that socket.
-
-``unsigned long udp_tx_buf_size``
- This configuration parameter specifies the maximum amount of buffer memory
- which may be used for UDP sockets to transmit with. The default size is
- 9216 bytes which corresponds to the maximum datagram size.
-
-``unsigned long udp_rx_buf_size``
- This configuration parameter specifies the maximum amount of buffer memory
- which may be used for UDP sockets to receive into. The default size is the
- following length in bytes:
-
- .. code-block:: c
-
- 40 * (1024 + sizeof(struct sockaddr_in))
-
-``unsigned long tcp_tx_buf_size``
- This configuration parameter specifies the maximum amount of buffer memory
- which may be used for TCP sockets to transmit with. The default size is
- sixteen kilobytes.
-
-``unsigned long tcp_rx_buf_size``
- This configuration parameter specifies the maximum amount of buffer memory
- which may be used for TCP sockets to receive into. The default size is
- sixteen kilobytes.
-
-``const cpu_set_t *network_task_cpuset``
- This configuration parameter specifies the CPU affinity of the network
- task. If set to ``0`` the network task can be scheduled on any CPU. Only
- available in SMP configurations.
-
-``size_t network_task_cpuset_size``
- This configuration parameter specifies the size of the
- ``network_task_cpuset`` used. Only available in SMP configurations.
-
-In addition, the following fields in the ``rtems_bsdnet_ifconfig`` are of
-interest.
-
-*int port*
- The I/O port number (ex: 0x240) on which the external Ethernet can be
- accessed.
-
-*int irno*
- The interrupt number of the external Ethernet controller.
-
-*int bpar*
- The address of the shared memory on the external Ethernet controller.
-
-Network device configuration
-----------------------------
-
-Network devices are specified and configured by declaring and initializing a
-``struct rtems_bsdnet_ifconfig`` structure for each network device.
-
-The structure entries are described in the following table. An application
-which uses a single network interface, gets network configuration information
-from a BOOTP/DHCP server, and uses the default values for all driver parameters
-needs to initialize only the first two entries in the structure.
-
-``char *name``
- The full name of the network device. This name consists of the driver name
- and the unit number (e.g. ``"scc1"``). The ``bsp.h`` include file usually
- defines ``RTEMS_BSP_NETWORK_DRIVER_NAME`` as the name of the primary (or
- only) network driver.
-
-``int (*attach)(struct rtems_bsdnet_ifconfig *conf)``
-
- The address of the driver ``attach`` function. The network initialization
- function calls this function to configure the driver and attach it to the
- network stack. The ``bsp.h`` include file usually defines
- ``RTEMS_BSP_NETWORK_DRIVER_ATTACH`` as the name of the attach function of
- the primary (or only) network driver.
-
-``struct rtems_bsdnet_ifconfig *next``
- A pointer to the network device configuration structure for the next
- network interface, or ``NULL`` if this is the configuration structure of
- the last network interface.
-
-``char *ip_address``
- The Internet address of the device, specified in 'dotted decimal'
- (``129.128.4.2``) form, or ``NULL`` if the device configuration information
- is being obtained from a BOOTP/DHCP server.
-
-``char *ip_netmask``
- The Internet inetwork mask of the device, specified in 'dotted decimal'
- (``255.255.255.0``) form, or ``NULL`` if the device configuration
- information is being obtained from a BOOTP/DHCP server.
-
-``void *hardware_address``
- The hardware address of the device, or ``NULL`` if the driver is to obtain
- the hardware address in some other way (usually by reading it from the
- device or from the bootstrap ROM).
-
-``int ignore_broadcast``
- Zero if the device is to accept broadcast packets, non-zero if the device
- is to ignore broadcast packets.
-
-``int mtu``
- The maximum transmission unit of the device, or zero if the driver is to
- choose a default value (typically 1500 for Ethernet devices).
-
-``int rbuf_count``
- The number of receive buffers to use, or zero if the driver is to choose a
- default value
-
-``int xbuf_count``
- The number of transmit buffers to use, or zero if the driver is to choose a
- default value Keep in mind that some network devices may use 4 or more
- transmit descriptors for a single transmit buffer.
-
-A complete network configuration specification can be as simple as the one
-shown in the following example. This configuration uses a single network
-interface, gets network configuration information from a BOOTP/DHCP server, and
-uses the default values for all driver parameters.
-
-.. code-block:: c
-
- static struct rtems_bsdnet_ifconfig netdriver_config = {
- RTEMS_BSP_NETWORK_DRIVER_NAME,
- RTEMS_BSP_NETWORK_DRIVER_ATTACH
- };
- struct rtems_bsdnet_config rtems_bsdnet_config = {
- &netdriver_config,
- rtems_bsdnet_do_bootp,
- };
-
-Network initialization
-----------------------
-
-The networking tasks must be started before any network I/O operations can be
-performed. This is done by calling:
-
-.. code-block:: c
-
- rtems_bsdnet_initialize_network ();
-
-This function is declared in ``rtems/rtems_bsdnet.h``. t returns 0 on success
-and -1 on failure with an error code in ``errno``. It is not possible to undo
-the effects of a partial initialization, though, so the function can be called
-only once irregardless of the return code. Consequently, if the condition for
-the failure can be corrected, the system must be reset to permit another
-network initialization attempt.
-
-Application Programming Interface
-=================================
-
-The RTEMS network package provides almost a complete set of BSD network
-services. The network functions work like their BSD counterparts with the
-following exceptions:
-
-- A given socket can be read or written by only one task at a time.
-
-- The ``select`` function only works for file descriptors associated with
- sockets.
-
-- You must call ``openlog`` before calling any of the ``syslog`` functions.
-
-- *Some of the network functions are not thread-safe.* For example the
- following functions return a pointer to a static buffer which remains valid
- only until the next call:
-
- ``gethostbyaddr``
- ``gethostbyname``
- ``inet_ntoa`` (``inet_ntop`` is thread-safe, though).
-
-- The RTEMS network package gathers statistics.
-
-- Addition of a mechanism to "tap onto" an interface and monitor every packet
- received and transmitted.
-
-- Addition of ``SO_SNDWAKEUP`` and ``SO_RCVWAKEUP`` socket options.
-
-Some of the new features are discussed in more detail in the following
-sections.
-
-Network Statistics
-------------------
-
-There are a number of functions to print statistics gathered by the network
-stack. These function are declared in ``rtems/rtems_bsdnet.h``.
-
-``rtems_bsdnet_show_if_stats``
- Display statistics gathered by network interfaces.
-
-``rtems_bsdnet_show_ip_stats``
- Display IP packet statistics.
-
-``rtems_bsdnet_show_icmp_stats``
- Display ICMP packet statistics.
-
-``rtems_bsdnet_show_tcp_stats``
- Display TCP packet statistics.
-
-``rtems_bsdnet_show_udp_stats``
- Display UDP packet statistics.
-
-``rtems_bsdnet_show_mbuf_stats``
- Display mbuf statistics.
-
-``rtems_bsdnet_show_inet_routes``
- Display the routing table.
-
-Tapping Into an Interface
--------------------------
-
-RTEMS add two new ioctls to the BSD networking code, ``SIOCSIFTAP`` and
-``SIOCGIFTAP``. These may be used to set and get a *tap function*. The tap
-function will be called for every Ethernet packet received by the interface.
-
-These are called like other interface ioctls, such as ``SIOCSIFADDR``. When
-setting the tap function with ``SIOCSIFTAP``, set the ifr_tap field of the
-ifreq struct to the tap function. When retrieving the tap function with
-``SIOCGIFTAP``, the current tap function will be returned in the ifr_tap field.
-To stop tapping packets, call ``SIOCSIFTAP`` with a ``ifr_tap`` field of ``0``.
-
-The tap function is called like this:
-
-.. code-block:: c
-
- int tap (struct ifnet *, struct ether_header *, struct mbuf *)
-
-The tap function should return ``1`` if the packet was fully handled, in which
-case the caller will simply discard the mbuf. The tap function should return
-``0`` if the packet should be passed up to the higher networking layers.
-
-The tap function is called with the network semaphore locked. It must not make
-any calls on the application levels of the networking level itself. It is safe
-to call other non-networking RTEMS functions.
-
-Socket Options
---------------
-
-RTEMS adds two new ``SOL_SOCKET`` level options for ``setsockopt`` and
-``getsockopt``: ``SO_SNDWAKEUP`` and ``SO_RCVWAKEUP``. For both, the option
-value should point to a sockwakeup structure. The sockwakeup structure has the
-following fields:
-
-.. code-block:: c
-
- void (*sw_pfn) (struct socket *, caddr_t);
- caddr_t sw_arg;
-
-These options are used to set a callback function to be called when, for
-example, there is data available from the socket (``SO_RCVWAKEUP``) and when
-there is space available to accept data written to the socket
-(``SO_SNDWAKEUP``).
-
-If ``setsockopt`` is called with the ``SO_RCVWAKEUP`` option, and the
-``sw_pfn`` field is not zero, then when there is data available to be read from
-the socket, the function pointed to by the ``sw_pfn`` field will be called. A
-pointer to the socket structure will be passed as the first argument to the
-function. The ``sw_arg`` field set by the ``SO_RCVWAKEUP`` call will be passed
-as the second argument to the function.
-
-If ``setsockopt`` is called with the ``SO_SNDWAKEUP`` function, and the
-``sw_pfn`` field is not zero, then when there is space available to accept data
-written to the socket, the function pointed to by the ``sw_pfn`` field will be
-called. The arguments passed to the function will be as with ``SO_SNDWAKEUP``.
-
-When the function is called, the network semaphore will be locked and the
-callback function runs in the context of the networking task. The function
-must be careful not to call any networking functions. It is OK to call an
-RTEMS function; for example, it is OK to send an RTEMS event.
-
-The purpose of these callback functions is to permit a more efficient
-alternative to the select call when dealing with a large number of sockets.
-
-The callbacks are called by the same criteria that the select function uses for
-indicating "ready" sockets. In Stevens *Unix Network Programming* on page
-153-154 in the section "Under what Conditions Is a Descriptor Ready?" you will
-find the definitive list of conditions for readable and writable that also
-determine when the functions are called.
-
-When the number of received bytes equals or exceeds the socket receive buffer
-"low water mark" (default 1 byte) you get a readable callback. If there are 100
-bytes in the receive buffer and you only read 1, you will not immediately get
-another callback. However, you will get another callback after you read the
-remaining 99 bytes and at least 1 more byte arrives. Using a non-blocking
-socket you should probably read until it produces error ``EWOULDBLOCK`` and
-then allow the readable callback to tell you when more data has arrived.
-(Condition 1.a.)
-
-For sending, when the socket is connected and the free space becomes at or
-above the "low water mark" for the send buffer (default 4096 bytes) you will
-receive a writable callback. You don't get continuous callbacks if you don't
-write anything. Using a non-blocking write socket, you can then call write
-until it returns a value less than the amount of data requested to be sent or
-it produces error ``EWOULDBLOCK`` (indicating buffer full and no longer
-writable). When this happens you can try the write again, but it is often
-better to go do other things and let the writable callback tell you when space
-is available to send again. You only get a writable callback when the free
-space transitions to above the "low water mark" and not every time you write to
-a non-full send buffer. (Condition 2.a.)
-
-The remaining conditions enumerated by Stevens handle the fact that sockets
-become readable and/or writable when connects, disconnects and errors occur,
-not just when data is received or sent. For example, when a server "listening"
-socket becomes readable it indicates that a client has connected and accept can
-be called without blocking, not that network data was received (Condition 1.c).
-
-Adding an IP Alias
-------------------
-
-The following code snippet adds an IP alias:
-
-.. code-block:: c
-
- void addAlias(const char *pName, const char *pAddr, const char *pMask)
- {
- struct ifaliasreq aliasreq;
- struct sockaddr_in *in;
-
- /* initialize alias request */
- memset(&aliasreq, 0, sizeof(aliasreq));
- sprintf(aliasreq.ifra_name, pName);
-
- /* initialize alias address */
- in = (struct sockaddr_in *)&aliasreq.ifra_addr;
- in->sin_family = AF_INET;
- in->sin_len = sizeof(aliasreq.ifra_addr);
- in->sin_addr.s_addr = inet_addr(pAddr);
-
- /* initialize alias mask */
- in = (struct sockaddr_in *)&aliasreq.ifra_mask;
- in->sin_family = AF_INET;
- in->sin_len = sizeof(aliasreq.ifra_mask);
- in->sin_addr.s_addr = inet_addr(pMask);
-
- /* call to setup the alias */
- rtems_bsdnet_ifconfig(pName, SIOCAIFADDR, &aliasreq);
- }
-
-Thanks to Mike Seirs <mailto:mikes@poliac.com> for this example code.
-
-Adding a Default Route
-----------------------
-
-The function provided in this section is functionally equivalent to the command
-``route add default gw yyy.yyy.yyy.yyy``:
-
-.. code-block:: c
-
- void mon_ifconfig(int argc, char *argv[], unsigned32 command_arg, bool verbose)
- {
- struct sockaddr_in ipaddr;
- struct sockaddr_in dstaddr;
- struct sockaddr_in netmask;
- struct sockaddr_in broadcast;
- char *iface;
- int f_ip = 0;
- int f_ptp = 0;
- int f_netmask = 0;
- int f_up = 0;
- int f_down = 0;
- int f_bcast = 0;
- int cur_idx;
- int rc;
- int flags;
-
- bzero((void*) &ipaddr, sizeof(ipaddr));
- bzero((void*) &dstaddr, sizeof(dstaddr));
- bzero((void*) &netmask, sizeof(netmask));
- bzero((void*) &broadcast, sizeof(broadcast));
- ipaddr.sin_len = sizeof(ipaddr);
- ipaddr.sin_family = AF_INET;
- dstaddr.sin_len = sizeof(dstaddr);
- dstaddr.sin_family = AF_INET;
- netmask.sin_len = sizeof(netmask);
- netmask.sin_family = AF_INET;
- broadcast.sin_len = sizeof(broadcast);
- broadcast.sin_family = AF_INET;
- cur_idx = 0;
-
- if (argc <= 1) {
- /* display all interfaces */
- iface = NULL;
- cur_idx += 1;
- } else {
- iface = argv[1];
- if (isdigit(*argv[2])) {
- if (inet_pton(AF_INET, argv[2], &ipaddr.sin_addr) < 0) {
- printf("bad ip address: %s\n", argv[2]);
- return;
- }
- f_ip = 1;
- cur_idx += 3;
- } else {
- cur_idx += 2;
- }
- }
-
- if ((f_down !=0) && (f_ip != 0)) {
- f_up = 1;
- }
-
- while(argc > cur_idx) {
- if (strcmp(argv[cur_idx], "up") == 0) {
- f_up = 1;
- if (f_down != 0) {
- printf("Can't make interface up and down\n");
- }
- } else if(strcmp(argv[cur_idx], "down") == 0) {
- f_down = 1;
- if (f_up != 0) {
- printf("Can't make interface up and down\n");
- }
- } else if(strcmp(argv[cur_idx], "netmask") == 0) {
- if ((cur_idx + 1) >= argc) {
- printf("No netmask address\n");
- return;
- }
- if (inet_pton(AF_INET, argv[cur_idx+1], &netmask.sin_addr) < 0) {
- printf("bad netmask: %s\n", argv[cur_idx]);
- return;
- }
- f_netmask = 1;
- cur_idx += 1;
- } else if(strcmp(argv[cur_idx], "broadcast") == 0) {
- if ((cur_idx + 1) >= argc) {
- printf("No broadcast address\n");
- return;
- }
- if (inet_pton(AF_INET, argv[cur_idx+1], &broadcast.sin_addr) < 0) {
- printf("bad broadcast: %s\n", argv[cur_idx]);
- return;
- }
- f_bcast = 1;
- cur_idx += 1;
- } else if(strcmp(argv[cur_idx], "pointopoint") == 0) {
- if ((cur_idx + 1) >= argc) {
- printf("No pointopoint address\n");
- return;
- }
- if (inet_pton(AF_INET, argv[cur_idx+1], &dstaddr.sin_addr) < 0) {
- printf("bad pointopoint: %s\n", argv[cur_idx]);
- return;
- }
- f_ptp = 1;
- cur_idx += 1;
- } else {
- printf("Bad parameter: %s\n", argv[cur_idx]);
- return;
- }
- cur_idx += 1;
- }
-
- printf("ifconfig ");
-
- if (iface != NULL) {
- printf("%s ", iface);
- if (f_ip != 0) {
- char str[256];
- inet_ntop(AF_INET, &ipaddr.sin_addr, str, 256);
- printf("%s ", str);
- }
- if (f_netmask != 0) {
- char str[256];
- inet_ntop(AF_INET, &netmask.sin_addr, str, 256);
- printf("netmask %s ", str);
- }
- if (f_bcast != 0) {
- char str[256];
- inet_ntop(AF_INET, &broadcast.sin_addr, str, 256);
- printf("broadcast %s ", str);
- }
- if (f_ptp != 0) {
- char str[256];
- inet_ntop(AF_INET, &dstaddr.sin_addr, str, 256);
- printf("pointopoint %s ", str);
- }
- if (f_up != 0) {
- printf("up\n");
- } else if (f_down != 0) {
- printf("down\n");
- } else {
- printf("\n");
- }
- }
-
- if ((iface == NULL) || ((f_ip == 0) && (f_down == 0) && (f_up == 0))) {
- rtems_bsdnet_show_if_stats();
- return;
- }
-
- flags = 0;
- if (f_netmask) {
- rc = rtems_bsdnet_ifconfig(iface, SIOCSIFNETMASK, &netmask);
- if (rc < 0) {
- printf("Could not set netmask: %s\n", strerror(errno));
- return;
- }
- }
- if (f_bcast) {
- rc = rtems_bsdnet_ifconfig(iface, SIOCSIFBRDADDR, &broadcast);
- if (rc < 0) {
- printf("Could not set broadcast: %s\n", strerror(errno));
- return;
- }
- }
- if (f_ptp) {
- rc = rtems_bsdnet_ifconfig(iface, SIOCSIFDSTADDR, &dstaddr);
- if (rc < 0) {
- printf("Could not set destination address: %s\n", strerror(errno));
- return;
- }
- flags |= IFF_POINTOPOINT;
- }
-
- /* This must come _after_ setting the netmask, broadcast addresses */
- if (f_ip) {
- rc = rtems_bsdnet_ifconfig(iface, SIOCSIFADDR, &ipaddr);
- if (rc < 0) {
- printf("Could not set IP address: %s\n", strerror(errno));
- return;
- }
- }
- if (f_up != 0) {
- flags |= IFF_UP;
- }
- if (f_down != 0) {
- printf("Warning: taking interfaces down is not supported\n");
- }
-
- rc = rtems_bsdnet_ifconfig(iface, SIOCSIFFLAGS, &flags);
- if (rc < 0) {
- printf("Could not set interface flags: %s\n", strerror(errno));
- return;
- }
- }
-
- void mon_route(int argc, char *argv[], unsigned32 command_arg, bool verbose)
- {
- int cmd;
- struct sockaddr_in dst;
- struct sockaddr_in gw;
- struct sockaddr_in netmask;
- int f_host;
- int f_gw = 0;
- int cur_idx;
- int flags;
- int rc;
-
- memset(&dst, 0, sizeof(dst));
- memset(&gw, 0, sizeof(gw));
- memset(&netmask, 0, sizeof(netmask));
- dst.sin_len = sizeof(dst);
- dst.sin_family = AF_INET;
- dst.sin_addr.s_addr = inet_addr("0.0.0.0");
- gw.sin_len = sizeof(gw);
- gw.sin_family = AF_INET;
- gw.sin_addr.s_addr = inet_addr("0.0.0.0");
- netmask.sin_len = sizeof(netmask);
- netmask.sin_family = AF_INET;
- netmask.sin_addr.s_addr = inet_addr("255.255.255.0");
-
- if (argc < 2) {
- rtems_bsdnet_show_inet_routes();
- return;
- }
-
- if (strcmp(argv[1], "add") == 0) {
- cmd = RTM_ADD;
- } else if (strcmp(argv[1], "del") == 0) {
- cmd = RTM_DELETE;
- } else {
- printf("invalid command: %s\n", argv[1]);
- printf("\tit should be 'add' or 'del'\n");
- return;
- }
-
- if (argc < 3) {
- printf("not enough arguments\n");
- return;
- }
-
- if (strcmp(argv[2], "-host") == 0) {
- f_host = 1;
- } else if (strcmp(argv[2], "-net") == 0) {
- f_host = 0;
- } else {
- printf("Invalid type: %s\n", argv[1]);
- printf("\tit should be '-host' or '-net'\n");
- return;
- }
-
- if (argc < 4) {
- printf("not enough arguments\n");
- return;
- }
-
- inet_pton(AF_INET, argv[3], &dst.sin_addr);
-
- cur_idx = 4;
- while(cur_idx < argc) {
- if (strcmp(argv[cur_idx], "gw") == 0) {
- if ((cur_idx +1) >= argc) {
- printf("no gateway address\n");
- return;
- }
- f_gw = 1;
- inet_pton(AF_INET, argv[cur_idx + 1], &gw.sin_addr);
- cur_idx += 1;
- } else if(strcmp(argv[cur_idx], "netmask") == 0) {
- if ((cur_idx +1) >= argc) {
- printf("no netmask address\n");
- return;
- }
- f_gw = 1;
- inet_pton(AF_INET, argv[cur_idx + 1], &netmask.sin_addr);
- cur_idx += 1;
- } else {
- printf("Unknown argument\n");
- return;
- }
- cur_idx += 1;
- }
-
- flags = RTF_STATIC;
- if (f_gw != 0) {
- flags |= RTF_GATEWAY;
- }
- if (f_host != 0) {
- flags |= RTF_HOST;
- }
-
- rc = rtems_bsdnet_rtrequest(cmd, &dst, &gw, &netmask, flags, NULL);
- if (rc < 0) {
- printf("Error adding route\n");
- }
- }
-
-Thanks to Jay Monkman <mailto:jtm@smoothmsmoothie.com> for this example
-code.
-
-Time Synchronization Using NTP
-------------------------------
-
-.. code-block:: c
-
- int rtems_bsdnet_synchronize_ntp (int interval, rtems_task_priority priority);
-
-If the interval argument is ``0`` the routine synchronizes the RTEMS
-time-of-day clock with the first NTP server in the ``rtems_bsdnet_ntpserve``
-array and returns. The priority argument is ignored.
-
-If the interval argument is greater than 0, the routine also starts an RTEMS
-task at the specified priority and polls the NTP server every 'interval'
-seconds. NOTE: This mode of operation has not yet been implemented.
-
-On successful synchronization of the RTEMS time-of-day clock the routine
-returns ``0``. If an error occurs a message is printed and the routine returns
-``-1`` with an error code in errno. There is no timeout - if there is no
-response from an NTP server the routine will wait forever.