summaryrefslogtreecommitdiffstats
path: root/bsd_eth_drivers/if_em/e1000_80003es2lan.c
blob: 4e4aeadce06d0b6c62d2702cfc2aeed9408e8a02 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
/*******************************************************************************

  Copyright (c) 2001-2007, Intel Corporation 
  All rights reserved.
  
  Redistribution and use in source and binary forms, with or without 
  modification, are permitted provided that the following conditions are met:
  
   1. Redistributions of source code must retain the above copyright notice, 
      this list of conditions and the following disclaimer.
  
   2. Redistributions in binary form must reproduce the above copyright 
      notice, this list of conditions and the following disclaimer in the 
      documentation and/or other materials provided with the distribution.
  
   3. Neither the name of the Intel Corporation nor the names of its 
      contributors may be used to endorse or promote products derived from 
      this software without specific prior written permission.
  
  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE.

*******************************************************************************/
/*$FreeBSD: src/sys/dev/em/e1000_80003es2lan.c,v 1.3 2007/05/16 00:14:23 jfv Exp $*/

/* e1000_80003es2lan
 */

#include "e1000_api.h"
#include "e1000_80003es2lan.h"

void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);

STATIC s32  e1000_init_phy_params_80003es2lan(struct e1000_hw *hw);
STATIC s32  e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw);
STATIC s32  e1000_init_mac_params_80003es2lan(struct e1000_hw *hw);
STATIC s32  e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
STATIC s32  e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
STATIC s32  e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
                                                   u32 offset,
                                                   u16 *data);
STATIC s32  e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
                                                    u32 offset,
                                                    u16 data);
STATIC s32  e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
                                        u16 words, u16 *data);
STATIC s32  e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
STATIC s32  e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
STATIC s32  e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
STATIC s32  e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
                                               u16 *duplex);
STATIC s32  e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
STATIC s32  e1000_init_hw_80003es2lan(struct e1000_hw *hw);
STATIC s32  e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
static s32  e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
static s32  e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
static s32  e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
static s32  e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);

/* A table for the GG82563 cable length where the range is defined
 * with a lower bound at "index" and the upper bound at
 * "index + 5".
 */
static const
u16 e1000_gg82563_cable_length_table[] =
         { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
#define GG82563_CABLE_LENGTH_TABLE_SIZE \
                (sizeof(e1000_gg82563_cable_length_table) / \
                 sizeof(e1000_gg82563_cable_length_table[0]))

/**
 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
 *  @hw: pointer to the HW structure
 *
 *  This is a function pointer entry point called by the api module.
 **/
STATIC s32
e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	struct e1000_functions *func = &hw->func;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_init_phy_params_80003es2lan");

	if (hw->media_type != e1000_media_type_copper) {
		phy->type        = e1000_phy_none;
		goto out;
	}

	phy->addr                = 1;
	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us      = 100;
	phy->type                = e1000_phy_gg82563;

	func->acquire_phy        = e1000_acquire_phy_80003es2lan;
	func->check_polarity     = e1000_check_polarity_m88;
	func->check_reset_block  = e1000_check_reset_block_generic;
	func->commit_phy         = e1000_phy_sw_reset_generic;
	func->get_cfg_done       = e1000_get_cfg_done_80003es2lan;
	func->get_phy_info       = e1000_get_phy_info_m88;
	func->release_phy        = e1000_release_phy_80003es2lan;
	func->reset_phy          = e1000_phy_hw_reset_generic;
	func->set_d3_lplu_state  = e1000_set_d3_lplu_state_generic;

	func->force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
	func->get_cable_length   = e1000_get_cable_length_80003es2lan;
	func->read_phy_reg       = e1000_read_phy_reg_gg82563_80003es2lan;
	func->write_phy_reg      = e1000_write_phy_reg_gg82563_80003es2lan;

	/* This can only be done after all function pointers are setup. */
	ret_val = e1000_get_phy_id(hw);

	/* Verify phy id */
	if (phy->id != GG82563_E_PHY_ID) {
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

out:
	return ret_val;
}

/**
 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
 *  @hw: pointer to the HW structure
 *
 *  This is a function pointer entry point called by the api module.
 **/
STATIC s32
e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_functions *func = &hw->func;
	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
	u16 size;

	DEBUGFUNC("e1000_init_nvm_params_80003es2lan");

	nvm->opcode_bits        = 8;
	nvm->delay_usec         = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size    = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size    = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	nvm->type               = e1000_nvm_eeprom_spi;

	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
	                  E1000_EECD_SIZE_EX_SHIFT);

	/* Added to a constant, "size" becomes the left-shift value
	 * for setting word_size.
	 */
	size += NVM_WORD_SIZE_BASE_SHIFT;
	nvm->word_size	= 1 << size;

	/* Function Pointers */
	func->acquire_nvm       = e1000_acquire_nvm_80003es2lan;
	func->read_nvm          = e1000_read_nvm_eerd;
	func->release_nvm       = e1000_release_nvm_80003es2lan;
	func->update_nvm        = e1000_update_nvm_checksum_generic;
	func->valid_led_default = e1000_valid_led_default_generic;
	func->validate_nvm      = e1000_validate_nvm_checksum_generic;
	func->write_nvm         = e1000_write_nvm_80003es2lan;

	return E1000_SUCCESS;
}

/**
 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 *  @hw: pointer to the HW structure
 *
 *  This is a function pointer entry point called by the api module.
 **/
STATIC s32
e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_functions *func = &hw->func;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_init_mac_params_80003es2lan");

	/* Set media type */
	switch (hw->device_id) {
	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
		hw->media_type = e1000_media_type_internal_serdes;
		break;
	default:
		hw->media_type = e1000_media_type_copper;
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;
	/* Set if part includes ASF firmware */
	mac->asf_firmware_present = TRUE;
	/* Set if manageability features are enabled. */
	mac->arc_subsystem_valid =
	        (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
	                ? TRUE : FALSE;

	/* Function pointers */

	/* bus type/speed/width */
	func->get_bus_info = e1000_get_bus_info_pcie_generic;
	/* reset */
	func->reset_hw = e1000_reset_hw_80003es2lan;
	/* hw initialization */
	func->init_hw = e1000_init_hw_80003es2lan;
	/* link setup */
	func->setup_link = e1000_setup_link_generic;
	/* physical interface link setup */
	func->setup_physical_interface =
	        (hw->media_type == e1000_media_type_copper)
	                ? e1000_setup_copper_link_80003es2lan
	                : e1000_setup_fiber_serdes_link_generic;
	/* check for link */
	switch (hw->media_type) {
	case e1000_media_type_copper:
		func->check_for_link = e1000_check_for_copper_link_generic;
		break;
	case e1000_media_type_fiber:
		func->check_for_link = e1000_check_for_fiber_link_generic;
		break;
	case e1000_media_type_internal_serdes:
		func->check_for_link = e1000_check_for_serdes_link_generic;
		break;
	default:
		ret_val = -E1000_ERR_CONFIG;
		goto out;
		break;
	}
	/* check management mode */
	func->check_mng_mode = e1000_check_mng_mode_generic;
	/* multicast address update */
	func->mc_addr_list_update = e1000_mc_addr_list_update_generic;
	/* writing VFTA */
	func->write_vfta = e1000_write_vfta_generic;
	/* clearing VFTA */
	func->clear_vfta = e1000_clear_vfta_generic;
	/* setting MTA */
	func->mta_set = e1000_mta_set_generic;
	/* blink LED */
	func->blink_led = e1000_blink_led_generic;
	/* setup LED */
	func->setup_led = e1000_setup_led_generic;
	/* cleanup LED */
	func->cleanup_led = e1000_cleanup_led_generic;
	/* turn on/off LED */
	func->led_on = e1000_led_on_generic;
	func->led_off = e1000_led_off_generic;
	/* remove device */
	func->remove_device = e1000_remove_device_generic;
	/* clear hardware counters */
	func->clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
	/* link info */
	func->get_link_up_info = e1000_get_link_up_info_80003es2lan;

out:
	return ret_val;
}

/**
 *  e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
 *  @hw: pointer to the HW structure
 *
 *  The only function explicitly called by the api module to initialize
 *  all function pointers and parameters.
 **/
void
e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_init_function_pointers_80003es2lan");

	hw->func.init_mac_params = e1000_init_mac_params_80003es2lan;
	hw->func.init_nvm_params = e1000_init_nvm_params_80003es2lan;
	hw->func.init_phy_params = e1000_init_phy_params_80003es2lan;
}

/**
 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 *  @hw: pointer to the HW structure
 *
 *  A wrapper to acquire access rights to the correct PHY.  This is a
 *  function pointer entry point called by the api module.
 **/
STATIC s32
e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
{
	u16 mask;

	DEBUGFUNC("e1000_acquire_phy_80003es2lan");

	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;

	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
}

/**
 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 *  @hw: pointer to the HW structure
 *
 *  A wrapper to release access rights to the correct PHY.  This is a
 *  function pointer entry point called by the api module.
 **/
STATIC void
e1000_release_phy_80003es2lan(struct e1000_hw *hw)
{
	u16 mask;

	DEBUGFUNC("e1000_release_phy_80003es2lan");

	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
	e1000_release_swfw_sync_80003es2lan(hw, mask);
}

/**
 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 *  @hw: pointer to the HW structure
 *
 *  Acquire the semaphore to access the EEPROM.  This is a function
 *  pointer entry point called by the api module.
 **/
STATIC s32
e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val;

	DEBUGFUNC("e1000_acquire_nvm_80003es2lan");

	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
	if (ret_val)
		goto out;

	ret_val = e1000_acquire_nvm_generic(hw);

	if (ret_val)
		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);

out:
	return ret_val;
}

/**
 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 *  @hw: pointer to the HW structure
 *
 *  Release the semaphore used to access the EEPROM.  This is a
 *  function pointer entry point called by the api module.
 **/
STATIC void
e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_release_nvm_80003es2lan");

	e1000_release_nvm_generic(hw);
	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
}

/**
 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 *  will also specify which port we're acquiring the lock for.
 **/
static s32
e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
	s32 ret_val = E1000_SUCCESS;
	s32 i = 0, timeout = 200;

	DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");

	while (i < timeout) {
		if (e1000_get_hw_semaphore_generic(hw)) {
			ret_val = -E1000_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

		/* Firmware currently using resource (fwmask)
		 * or other software thread using resource (swmask) */
		e1000_put_hw_semaphore_generic(hw);
		msec_delay_irq(5);
		i++;
	}

	if (i == timeout) {
		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
		ret_val = -E1000_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);

	e1000_put_hw_semaphore_generic(hw);

out:
	return ret_val;
}

/**
 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 *  will also specify which port we're releasing the lock for.
 **/
static void
e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

	DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");

	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS);
	/* Empty */

	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
	swfw_sync &= ~mask;
	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);

	e1000_put_hw_semaphore_generic(hw);
}

/**
 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: offset of the register to read
 *  @data: pointer to the data returned from the operation
 *
 *  Read the GG82563 PHY register.  This is a function pointer entry
 *  point called by the api module.
 **/
STATIC s32
e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, u32 offset,
                                       u16 *data)
{
	s32 ret_val;
	u32 page_select;
	u16 temp;

	DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");

	/* Select Configuration Page */
	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
		page_select = GG82563_PHY_PAGE_SELECT;
	else {
		/* Use Alternative Page Select register to access
		 * registers 30 and 31
		 */
		page_select = GG82563_PHY_PAGE_SELECT_ALT;
	}

	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
	ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
	if (ret_val)
		goto out;

	/* The "ready" bit in the MDIC register may be incorrectly set
	 * before the device has completed the "Page Select" MDI
	 * transaction.  So we wait 200us after each MDI command...
	 */
	usec_delay(200);

	/* ...and verify the command was successful. */
	ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);

	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

	usec_delay(200);

	ret_val = e1000_read_phy_reg_m88(hw,
	                                 MAX_PHY_REG_ADDRESS & offset,
	                                 data);

	usec_delay(200);

out:
	return ret_val;
}

/**
 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 *  @hw: pointer to the HW structure
 *  @offset: offset of the register to read
 *  @data: value to write to the register
 *
 *  Write to the GG82563 PHY register.  This is a function pointer entry
 *  point called by the api module.
 **/
STATIC s32
e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, u32 offset,
                                        u16 data)
{
	s32 ret_val;
	u32 page_select;
	u16 temp;

	DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");

	/* Select Configuration Page */
	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
		page_select = GG82563_PHY_PAGE_SELECT;
	else {
		/* Use Alternative Page Select register to access
		 * registers 30 and 31
		 */
		page_select = GG82563_PHY_PAGE_SELECT_ALT;
	}

	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
	ret_val = e1000_write_phy_reg_m88(hw, page_select, temp);
	if (ret_val)
		goto out;


	/* The "ready" bit in the MDIC register may be incorrectly set
	 * before the device has completed the "Page Select" MDI
	 * transaction.  So we wait 200us after each MDI command...
	 */
	usec_delay(200);

	/* ...and verify the command was successful. */
	ret_val = e1000_read_phy_reg_m88(hw, page_select, &temp);

	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

	usec_delay(200);

	ret_val = e1000_write_phy_reg_m88(hw,
	                                  MAX_PHY_REG_ADDRESS & offset,
	                                  data);

	usec_delay(200);

out:
	return ret_val;
}

/**
 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 *  @hw: pointer to the HW structure
 *  @offset: offset of the register to read
 *  @words: number of words to write
 *  @data: buffer of data to write to the NVM
 *
 *  Write "words" of data to the ESB2 NVM.  This is a function
 *  pointer entry point called by the api module.
 **/
STATIC s32
e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
                            u16 words, u16 *data)
{
	DEBUGFUNC("e1000_write_nvm_80003es2lan");

	return e1000_write_nvm_spi(hw, offset, words, data);
}

/**
 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 *  @hw: pointer to the HW structure
 *
 *  Wait a specific amount of time for manageability processes to complete.
 *  This is a function pointer entry point called by the phy module.
 **/
STATIC s32
e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = E1000_SUCCESS;
	u32 mask = E1000_NVM_CFG_DONE_PORT_0;

	DEBUGFUNC("e1000_get_cfg_done_80003es2lan");

	if (hw->bus.func == 1)
		mask = E1000_NVM_CFG_DONE_PORT_1;

	while (timeout) {
		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
			break;
		msec_delay(1);
		timeout--;
	}
	if (!timeout) {
		DEBUGOUT("MNG configuration cycle has not completed.\n");
		ret_val = -E1000_ERR_RESET;
		goto out;
	}

out:
	return ret_val;
}

/**
 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 *  @hw: pointer to the HW structure
 *
 *  Force the speed and duplex settings onto the PHY.  This is a
 *  function pointer entry point called by the phy module.
 **/
STATIC s32
e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 phy_data;
	boolean_t link;

	DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");

	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
	 * forced whenever speed and duplex are forced.
	 */
	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		goto out;

	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		goto out;

	DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);

	ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data);
	if (ret_val)
		goto out;

	e1000_phy_force_speed_duplex_setup(hw, &phy_data);

	/* Reset the phy to commit changes. */
	phy_data |= MII_CR_RESET;

	ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data);
	if (ret_val)
		goto out;

	usec_delay(1);

	if (hw->phy.wait_for_link) {
		DEBUGOUT("Waiting for forced speed/duplex link "
		         "on GG82563 phy.\n");

		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
		                                     100000, &link);
		if (ret_val)
			goto out;

		if (!link) {
			/* We didn't get link.
			 * Reset the DSP and cross our fingers.
			 */
			ret_val = e1000_phy_reset_dsp_generic(hw);
			if (ret_val)
				goto out;
		}

		/* Try once more */
		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
		                                     100000, &link);
		if (ret_val)
			goto out;
	}

	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
	if (ret_val)
		goto out;

	/* Resetting the phy means we need to verify the TX_CLK corresponds
	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
	 */
	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
	else
		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;

	/* In addition, we must re-enable CRS on Tx for both half and full
	 * duplex.
	 */
	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);

out:
	return ret_val;
}

/**
 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 *  @hw: pointer to the HW structure
 *
 *  Find the approximate cable length as measured by the GG82563 PHY.
 *  This is a function pointer entry point called by the phy module.
 **/
STATIC s32
e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 phy_data, index;

	DEBUGFUNC("e1000_get_cable_length_80003es2lan");

	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
	if (ret_val)
		goto out;

	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
	phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];

	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;

out:
	return ret_val;
}

/**
 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to speed buffer
 *  @duplex: pointer to duplex buffer
 *
 *  Retrieve the current speed and duplex configuration.
 *  This is a function pointer entry point called by the api module.
 **/
STATIC s32
e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, u16 *duplex)
{
	s32 ret_val;

	DEBUGFUNC("e1000_get_link_up_info_80003es2lan");

	if (hw->media_type == e1000_media_type_copper) {
		ret_val = e1000_get_speed_and_duplex_copper_generic(hw,
		                                                    speed,
		                                                    duplex);
		if (ret_val)
			goto out;
		if (*speed == SPEED_1000)
			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
		else
			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
			                                      *duplex);
	} else
		ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
		                                                  speed,
		                                                  duplex);

out:
	return ret_val;
}

/**
 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 *  @hw: pointer to the HW structure
 *
 *  Perform a global reset to the ESB2 controller.
 *  This is a function pointer entry point called by the api module.
 **/
STATIC s32
e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
{
	u32 ctrl, icr;
	s32 ret_val;

	DEBUGFUNC("e1000_reset_hw_80003es2lan");

	/* Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000_disable_pcie_master_generic(hw);
	if (ret_val) {
		DEBUGOUT("PCI-E Master disable polling has failed.\n");
	}

	DEBUGOUT("Masking off all interrupts\n");
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);

	E1000_WRITE_REG(hw, E1000_RCTL, 0);
	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
	E1000_WRITE_FLUSH(hw);

	msec_delay(10);

	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	DEBUGOUT("Issuing a global reset to MAC\n");
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);

	ret_val = e1000_get_auto_rd_done_generic(hw);
	if (ret_val)
		/* We don't want to continue accessing MAC registers. */
		goto out;

	/* Clear any pending interrupt events. */
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
	icr = E1000_READ_REG(hw, E1000_ICR);

out:
	return ret_val;
}

/**
 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 *  @hw: pointer to the HW structure
 *
 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 *  This is a function pointer entry point called by the api module.
 **/
STATIC s32
e1000_init_hw_80003es2lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg_data;
	s32 ret_val;
	u16 i;

	DEBUGFUNC("e1000_init_hw_80003es2lan");

	e1000_initialize_hw_bits_80003es2lan(hw);

	/* Initialize identification LED */
	ret_val = e1000_id_led_init_generic(hw);
	if (ret_val) {
		DEBUGOUT("Error initializing identification LED\n");
		goto out;
	}

	/* Disabling VLAN filtering */
	DEBUGOUT("Initializing the IEEE VLAN\n");
	e1000_clear_vfta(hw);

	/* Setup the receive address. */
	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
	DEBUGOUT("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Setup link and flow control */
	ret_val = e1000_setup_link(hw);

	/* Set the transmit descriptor write-back policy */
	reg_data = E1000_READ_REG(hw, E1000_TXDCTL);
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
	           E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
	E1000_WRITE_REG(hw, E1000_TXDCTL, reg_data);

	/* ...for both queues. */
	reg_data = E1000_READ_REG(hw, E1000_TXDCTL1);
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
	           E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
	E1000_WRITE_REG(hw, E1000_TXDCTL1, reg_data);

	/* Enable retransmit on late collisions */
	reg_data = E1000_READ_REG(hw, E1000_TCTL);
	reg_data |= E1000_TCTL_RTLC;
	E1000_WRITE_REG(hw, E1000_TCTL, reg_data);

	/* Configure Gigabit Carry Extend Padding */
	reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
	E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);

	/* Configure Transmit Inter-Packet Gap */
	reg_data = E1000_READ_REG(hw, E1000_TIPG);
	reg_data &= ~E1000_TIPG_IPGT_MASK;
	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
	E1000_WRITE_REG(hw, E1000_TIPG, reg_data);

	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
	reg_data &= ~0x00100000;
	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);

	/* Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_80003es2lan(hw);

out:
	return ret_val;
}

/**
 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 *  @hw: pointer to the HW structure
 *
 *  Initializes required hardware-dependent bits needed for normal operation.
 **/
static void
e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
{
	u32 reg;

	DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");

	if (hw->mac.disable_hw_init_bits)
		goto out;

	/* Transmit Descriptor Control 0 */
	reg = E1000_READ_REG(hw, E1000_TXDCTL);
	reg |= (1 << 22);
	E1000_WRITE_REG(hw, E1000_TXDCTL, reg);

	/* Transmit Descriptor Control 1 */
	reg = E1000_READ_REG(hw, E1000_TXDCTL1);
	reg |= (1 << 22);
	E1000_WRITE_REG(hw, E1000_TXDCTL1, reg);

	/* Transmit Arbitration Control 0 */
	reg = E1000_READ_REG(hw, E1000_TARC0);
	reg &= ~(0xF << 27); /* 30:27 */
	if (hw->media_type != e1000_media_type_copper)
		reg &= ~(1 << 20);
	E1000_WRITE_REG(hw, E1000_TARC0, reg);

	/* Transmit Arbitration Control 1 */
	reg = E1000_READ_REG(hw, E1000_TARC1);
	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	E1000_WRITE_REG(hw, E1000_TARC1, reg);

out:
	return;
}

/**
 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 *  @hw: pointer to the HW structure
 *
 *  Setup some GG82563 PHY registers for obtaining link
 **/
static s32
e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
{
	struct   e1000_phy_info *phy = &hw->phy;
	s32  ret_val;
	u32 ctrl_ext;
	u16 data;

	DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");

	if (!phy->reset_disable) {
		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
		                             &data);
		if (ret_val)
			goto out;

		data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
		/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
		data |= GG82563_MSCR_TX_CLK_1000MBPS_25;

		ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
		                              data);
		if (ret_val)
			goto out;

		/* Options:
		 *   MDI/MDI-X = 0 (default)
		 *   0 - Auto for all speeds
		 *   1 - MDI mode
		 *   2 - MDI-X mode
		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
		 */
		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
		if (ret_val)
			goto out;

		data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;

		switch (phy->mdix) {
		case 1:
			data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
			break;
		case 2:
			data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
			break;
		case 0:
		default:
			data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
			break;
		}

		/* Options:
		 *   disable_polarity_correction = 0 (default)
		 *       Automatic Correction for Reversed Cable Polarity
		 *   0 - Disabled
		 *   1 - Enabled
		 */
		data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
		if (phy->disable_polarity_correction == TRUE)
			data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;

		ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, data);
		if (ret_val)
			goto out;

		/* SW Reset the PHY so all changes take effect */
		ret_val = e1000_phy_commit(hw);
		if (ret_val) {
			DEBUGOUT("Error Resetting the PHY\n");
			goto out;
		}

	}

	/* Bypass RX and TX FIFO's */
	ret_val = e1000_write_kmrn_reg(hw,
	                        E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
	                        E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
	                                E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
	if (ret_val)
		goto out;

	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
	if (ret_val)
		goto out;

	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
	if (ret_val)
		goto out;

	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);

	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
	if (ret_val)
		goto out;

	/* Do not init these registers when the HW is in IAMT mode, since the
	 * firmware will have already initialized them.  We only initialize
	 * them if the HW is not in IAMT mode.
	 */
	if (e1000_check_mng_mode(hw) == FALSE) {
		/* Enable Electrical Idle on the PHY */
		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
		ret_val = e1000_write_phy_reg(hw,
		                             GG82563_PHY_PWR_MGMT_CTRL,
		                             data);
		if (ret_val)
			goto out;

		ret_val = e1000_read_phy_reg(hw,
		                            GG82563_PHY_KMRN_MODE_CTRL,
		                            &data);
		if (ret_val)
			goto out;

		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
		ret_val = e1000_write_phy_reg(hw,
		                             GG82563_PHY_KMRN_MODE_CTRL,
		                             data);

		if (ret_val)
			goto out;
	}

	/* Workaround: Disable padding in Kumeran interface in the MAC
	 * and in the PHY to avoid CRC errors.
	 */
	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
	if (ret_val)
		goto out;

	data |= GG82563_ICR_DIS_PADDING;
	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, data);
	if (ret_val)
		goto out;

out:
	return ret_val;
}

/**
 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
 *  @hw: pointer to the HW structure
 *
 *  Essentially a wrapper for setting up all things "copper" related.
 *  This is a function pointer entry point called by the mac module.
 **/
STATIC s32
e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32  ret_val;
	u16 reg_data;

	DEBUGFUNC("e1000_setup_copper_link_80003es2lan");

	ctrl = E1000_READ_REG(hw, E1000_CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);

	/* Set the mac to wait the maximum time between each
	 * iteration and increase the max iterations when
	 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
	if (ret_val)
		goto out;
	ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
	if (ret_val)
		goto out;
	reg_data |= 0x3F;
	ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
	if (ret_val)
		goto out;
	ret_val = e1000_read_kmrn_reg(hw,
	                              E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
	                              &reg_data);
	if (ret_val)
		goto out;
	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
	ret_val = e1000_write_kmrn_reg(hw,
	                               E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
	                               reg_data);
	if (ret_val)
		goto out;

	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_setup_copper_link_generic(hw);

out:
	return ret_val;
}

/**
 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
 *  @hw: pointer to the HW structure
 *  @duplex: current duplex setting
 *
 *  Configure the KMRN interface by applying last minute quirks for
 *  10/100 operation.
 **/
static s32
e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
{
	s32 ret_val = E1000_SUCCESS;
	u32 tipg;
	u32 i = 0;
	u16 reg_data, reg_data2;

	DEBUGFUNC("e1000_configure_kmrn_for_10_100");

	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
	ret_val = e1000_write_kmrn_reg(hw,
	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
	                               reg_data);
	if (ret_val)
		goto out;

	/* Configure Transmit Inter-Packet Gap */
	tipg = E1000_READ_REG(hw, E1000_TIPG);
	tipg &= ~E1000_TIPG_IPGT_MASK;
	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
	E1000_WRITE_REG(hw, E1000_TIPG, tipg);


	do {
		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
		                             &reg_data);
		if (ret_val)
			goto out;

		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
		                             &reg_data2);
		if (ret_val)
			goto out;
		i++;
	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));

	if (duplex == HALF_DUPLEX)
		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
	else
		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;

	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);

out:
	return ret_val;
}

/**
 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
 *  @hw: pointer to the HW structure
 *
 *  Configure the KMRN interface by applying last minute quirks for
 *  gigabit operation.
 **/
static s32
e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u16 reg_data, reg_data2;
	u32 tipg;
	u32 i = 0;

	DEBUGFUNC("e1000_configure_kmrn_for_1000");

	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
	ret_val = e1000_write_kmrn_reg(hw,
	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
	                               reg_data);
	if (ret_val)
		goto out;

	/* Configure Transmit Inter-Packet Gap */
	tipg = E1000_READ_REG(hw, E1000_TIPG);
	tipg &= ~E1000_TIPG_IPGT_MASK;
	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
	E1000_WRITE_REG(hw, E1000_TIPG, tipg);


	do {
		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
		                             &reg_data);
		if (ret_val)
			goto out;

		ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
		                             &reg_data2);
		if (ret_val)
			goto out;
		i++;
	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));

	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);

out:
	return ret_val;
}

/**
 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
STATIC void
e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
{
	volatile u32 temp;

	DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");

	e1000_clear_hw_cntrs_base_generic(hw);

	temp = E1000_READ_REG(hw, E1000_PRC64);
	temp = E1000_READ_REG(hw, E1000_PRC127);
	temp = E1000_READ_REG(hw, E1000_PRC255);
	temp = E1000_READ_REG(hw, E1000_PRC511);
	temp = E1000_READ_REG(hw, E1000_PRC1023);
	temp = E1000_READ_REG(hw, E1000_PRC1522);
	temp = E1000_READ_REG(hw, E1000_PTC64);
	temp = E1000_READ_REG(hw, E1000_PTC127);
	temp = E1000_READ_REG(hw, E1000_PTC255);
	temp = E1000_READ_REG(hw, E1000_PTC511);
	temp = E1000_READ_REG(hw, E1000_PTC1023);
	temp = E1000_READ_REG(hw, E1000_PTC1522);

	temp = E1000_READ_REG(hw, E1000_ALGNERRC);
	temp = E1000_READ_REG(hw, E1000_RXERRC);
	temp = E1000_READ_REG(hw, E1000_TNCRS);
	temp = E1000_READ_REG(hw, E1000_CEXTERR);
	temp = E1000_READ_REG(hw, E1000_TSCTC);
	temp = E1000_READ_REG(hw, E1000_TSCTFC);

	temp = E1000_READ_REG(hw, E1000_MGTPRC);
	temp = E1000_READ_REG(hw, E1000_MGTPDC);
	temp = E1000_READ_REG(hw, E1000_MGTPTC);

	temp = E1000_READ_REG(hw, E1000_IAC);
	temp = E1000_READ_REG(hw, E1000_ICRXOC);

	temp = E1000_READ_REG(hw, E1000_ICRXPTC);
	temp = E1000_READ_REG(hw, E1000_ICRXATC);
	temp = E1000_READ_REG(hw, E1000_ICTXPTC);
	temp = E1000_READ_REG(hw, E1000_ICTXATC);
	temp = E1000_READ_REG(hw, E1000_ICTXQEC);
	temp = E1000_READ_REG(hw, E1000_ICTXQMTC);
	temp = E1000_READ_REG(hw, E1000_ICRXDMTC);
}