/************************************************************************** Copyright (c) 2001-2007, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***************************************************************************/ /*$FreeBSD: src/sys/dev/em/if_em.c,v 1.181 2007/05/31 23:36:21 jfv Exp $*/ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #ifdef __rtems__ #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "e1000_api.h" #include "e1000_82575.h" #include "if_em.h" #ifdef __rtems__ /* Override things as necessary */ #include #endif /********************************************************************* * Set this to one to display debug statistics *********************************************************************/ int em_display_debug_stats = 0; /********************************************************************* * Driver version: *********************************************************************/ char em_driver_version[] = "Version - 6.5.3"; /********************************************************************* * PCI Device ID Table * * Used by probe to select devices to load on * Last field stores an index into e1000_strings * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } *********************************************************************/ static em_vendor_info_t em_vendor_info_array[] = { /* Intel(R) PRO/1000 Network Connection */ { 0x8086, E1000_DEV_ID_82540EM, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82540EM_LOM, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82540EP, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82540EP_LOM, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82540EP_LP, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82541EI, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82541ER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82541ER_LOM, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82541EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82541GI, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82541GI_LF, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82541GI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0}, #if !defined(NO_82542_SUPPORT) /* __rtems__ */ { 0x8086, E1000_DEV_ID_82542, PCI_ANY_ID, PCI_ANY_ID, 0}, #endif { 0x8086, E1000_DEV_ID_82543GC_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82543GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82544EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82544EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82544GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82544GC_LOM, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82545EM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82545EM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82545GM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82545GM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82545GM_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82546EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82546EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82546GB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82546GB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82546GB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82546GB_PCIE, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82547EI, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82547EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82547GI, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82571EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82571EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82571EB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82572EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82572EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82572EI_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82572EI, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82573E, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82573E_IAMT, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82573L, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_ICH8_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_ICH8_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_ICH8_IFE, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_ICH8_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_ICH8_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_ICH8_IGP_M, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_ICH9_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_ICH9_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_ICH9_IFE, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_ICH9_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_ICH9_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82575EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82575EM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82575EM_FIBER_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, { 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, /* required last entry */ { 0, 0, 0, 0, 0} }; /********************************************************************* * Table of branding strings for all supported NICs. *********************************************************************/ static char *em_strings[] = { "Intel(R) PRO/1000 Network Connection" }; /********************************************************************* * Function prototypes *********************************************************************/ static int em_probe(device_t); static int em_attach(device_t); static int em_detach(device_t); #ifndef __rtems__ static int em_shutdown(device_t); static int em_suspend(device_t); static int em_resume(device_t); #endif static void em_start(struct ifnet *); static void em_start_locked(struct ifnet *ifp); #ifndef __rtems__ static int em_ioctl(struct ifnet *, u_long, caddr_t); #else static int em_ioctl(struct ifnet *, ioctl_command_t, caddr_t); #endif static void em_watchdog(struct adapter *); static void em_init(void *); static void em_init_locked(struct adapter *); static void em_stop(void *); static void em_media_status(struct ifnet *, struct ifmediareq *); static int em_media_change(struct ifnet *); static void em_identify_hardware(struct adapter *); static int em_allocate_pci_resources(struct adapter *); static int em_allocate_intr(struct adapter *); static void em_free_intr(struct adapter *); static void em_free_pci_resources(struct adapter *); static void em_local_timer(void *); static int em_hardware_init(struct adapter *); static void em_setup_interface(device_t, struct adapter *); static int em_setup_transmit_structures(struct adapter *); static void em_initialize_transmit_unit(struct adapter *); static int em_setup_receive_structures(struct adapter *); static void em_initialize_receive_unit(struct adapter *); static void em_enable_intr(struct adapter *); static void em_disable_intr(struct adapter *); static void em_free_transmit_structures(struct adapter *); static void em_free_receive_structures(struct adapter *); static void em_update_stats_counters(struct adapter *); static void em_txeof(struct adapter *); static int em_allocate_receive_structures(struct adapter *); static int em_allocate_transmit_structures(struct adapter *); static int em_rxeof(struct adapter *, int); #ifndef __NO_STRICT_ALIGNMENT static int em_fixup_rx(struct adapter *); #endif #ifndef __rtems__ static void em_receive_checksum(struct adapter *, struct e1000_rx_desc *, struct mbuf *); static void em_transmit_checksum_setup(struct adapter *, struct mbuf *, uint32_t *, uint32_t *); static boolean_t em_tx_adv_ctx_setup(struct adapter *, struct mbuf *); static boolean_t em_tso_setup(struct adapter *, struct mbuf *, uint32_t *, uint32_t *); static boolean_t em_tso_adv_setup(struct adapter *, struct mbuf *, uint32_t *); #endif static void em_set_promisc(struct adapter *); static void em_disable_promisc(struct adapter *); static void em_set_multi(struct adapter *); #ifndef __rtems__ static void em_print_hw_stats(struct adapter *); #else void em_print_hw_stats(struct adapter *); #endif static void em_update_link_status(struct adapter *); static int em_get_buf(struct adapter *, int); #ifndef __rtems__ static void em_enable_vlans(struct adapter *); #endif static int em_encap(struct adapter *, struct mbuf **); static int em_adv_encap(struct adapter *, struct mbuf **); static void em_smartspeed(struct adapter *); static int em_82547_fifo_workaround(struct adapter *, int); static void em_82547_update_fifo_head(struct adapter *, int); static int em_82547_tx_fifo_reset(struct adapter *); static void em_82547_move_tail(void *); static int em_dma_malloc(struct adapter *, bus_size_t, struct em_dma_alloc *, int); static void em_dma_free(struct adapter *, struct em_dma_alloc *); #ifndef __rtems__ static void em_print_debug_info(struct adapter *); #else void em_print_debug_info(struct adapter *); #endif static int em_is_valid_ether_addr(uint8_t *); #ifndef __rtems__ static int em_sysctl_stats(SYSCTL_HANDLER_ARGS); static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); #endif static uint32_t em_fill_descriptors (bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array); #ifndef __rtems__ static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); #endif static void em_add_int_delay_sysctl(struct adapter *, const char *, const char *, struct em_int_delay_info *, int, int); /* Management and WOL Support */ static void em_init_manageability(struct adapter *); static void em_release_manageability(struct adapter *); static void em_get_hw_control(struct adapter *); static void em_release_hw_control(struct adapter *); static void em_enable_wakeup(device_t); #ifdef DEVICE_POLLING static poll_handler_t em_poll; static void em_intr(void *); #else static int em_intr_fast(void *); static void em_add_rx_process_limit(struct adapter *, const char *, const char *, int *, int); static void em_handle_rxtx(void *context, int pending); static void em_handle_link(void *context, int pending); #endif /********************************************************************* * FreeBSD Device Interface Entry Points *********************************************************************/ #ifndef __rtems__ static device_method_t em_methods[] = { /* Device interface */ DEVMETHOD(device_probe, em_probe), DEVMETHOD(device_attach, em_attach), DEVMETHOD(device_detach, em_detach), DEVMETHOD(device_shutdown, em_shutdown), DEVMETHOD(device_suspend, em_suspend), DEVMETHOD(device_resume, em_resume), {0, 0} }; static driver_t em_driver = { "em", em_methods, sizeof(struct adapter), }; static devclass_t em_devclass; DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0); MODULE_DEPEND(em, pci, 1, 1, 1); MODULE_DEPEND(em, ether, 1, 1, 1); #else static device_method_t em_methods = { probe: em_probe, attach: em_attach, detach: em_detach, irq_en: 0, irq_check_dis: 0, }; driver_t libbsdport_em_driver = { "em", &em_methods, DEV_TYPE_PCI, sizeof(struct adapter) }; #endif /********************************************************************* * Tunable default values. *********************************************************************/ #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) #define M_TSO_LEN 66 #ifdef __rtems__ #define static #define TUNABLE_INT(a,b) #endif static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV); static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR); static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV); static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV); static int em_rxd = EM_DEFAULT_RXD; static int em_txd = EM_DEFAULT_TXD; static int em_smart_pwr_down = FALSE; TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt); TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt); TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt); TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt); TUNABLE_INT("hw.em.rxd", &em_rxd); TUNABLE_INT("hw.em.txd", &em_txd); TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down); #ifndef DEVICE_POLLING /* How many packets rxeof tries to clean at a time */ static int em_rx_process_limit = 100; TUNABLE_INT("hw.em.rx_process_limit", &em_rx_process_limit); #endif #ifdef __rtems__ int em_bootverbose = 0; #define bootverbose em_bootverbose #undef static #define static static #endif /* Global used in WOL setup with multiport cards */ static int global_quad_port_a = 0; /********************************************************************* * Device identification routine * * em_probe determines if the driver should be loaded on * adapter based on PCI vendor/device id of the adapter. * * return BUS_PROBE_DEFAULT on success, positive on failure *********************************************************************/ static int em_probe(device_t dev) { char adapter_name[60]; uint16_t pci_vendor_id = 0; uint16_t pci_device_id = 0; uint16_t pci_subvendor_id = 0; uint16_t pci_subdevice_id = 0; em_vendor_info_t *ent; INIT_DEBUGOUT("em_probe: begin"); pci_vendor_id = pci_get_vendor(dev); if (pci_vendor_id != EM_VENDOR_ID) return (ENXIO); pci_device_id = pci_get_device(dev); pci_subvendor_id = pci_get_subvendor(dev); pci_subdevice_id = pci_get_subdevice(dev); ent = em_vendor_info_array; while (ent->vendor_id != 0) { if ((pci_vendor_id == ent->vendor_id) && (pci_device_id == ent->device_id) && ((pci_subvendor_id == ent->subvendor_id) || (ent->subvendor_id == PCI_ANY_ID)) && ((pci_subdevice_id == ent->subdevice_id) || (ent->subdevice_id == PCI_ANY_ID))) { sprintf(adapter_name, "%s %s", em_strings[ent->index], em_driver_version); device_set_desc_copy(dev, adapter_name); return (BUS_PROBE_DEFAULT); } ent++; } return (ENXIO); } /********************************************************************* * Device initialization routine * * The attach entry point is called when the driver is being loaded. * This routine identifies the type of hardware, allocates all resources * and initializes the hardware. * * return 0 on success, positive on failure *********************************************************************/ static int em_attach(device_t dev) { struct adapter *adapter; int tsize, rsize; int error = 0; u16 eeprom_data, device_id; INIT_DEBUGOUT("em_attach: begin"); adapter = device_get_softc(dev); adapter->dev = adapter->osdep.dev = dev; EM_LOCK_INIT(adapter, device_get_nameunit(dev)); /* SYSCTL stuff */ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, em_sysctl_debug_info, "I", "Debug Information"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, em_sysctl_stats, "I", "Statistics"); callout_init_mtx(&adapter->timer, &adapter->mtx, 0); callout_init_mtx(&adapter->tx_fifo_timer, &adapter->mtx, 0); /* Determine hardware and mac info */ em_identify_hardware(adapter); /* Setup PCI resources */ if (em_allocate_pci_resources(adapter)) { device_printf(dev, "Allocation of PCI resources failed\n"); error = ENXIO; goto err_pci; } /* ** For ICH8 and family we need to ** map the flash memory, and this ** must happen after the MAC is ** identified */ if ((adapter->hw.mac.type == e1000_ich8lan) || (adapter->hw.mac.type == e1000_ich9lan)) { int rid = EM_BAR_TYPE_FLASH; adapter->flash_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); /* This is used in the shared code */ adapter->hw.flash_address = (u8 *)adapter->flash_mem; adapter->osdep.flash_bus_space_tag = rman_get_bustag(adapter->flash_mem); adapter->osdep.flash_bus_space_handle = rman_get_bushandle(adapter->flash_mem); } /* Do Shared Code initialization */ if (e1000_setup_init_funcs(&adapter->hw, TRUE)) { device_printf(dev, "Setup of Shared code failed\n"); error = ENXIO; goto err_pci; } e1000_get_bus_info(&adapter->hw); /* Set up some sysctls for the tunable interrupt delays */ em_add_int_delay_sysctl(adapter, "rx_int_delay", "receive interrupt delay in usecs", &adapter->rx_int_delay, E1000_REGISTER(&adapter->hw, E1000_RDTR), em_rx_int_delay_dflt); em_add_int_delay_sysctl(adapter, "tx_int_delay", "transmit interrupt delay in usecs", &adapter->tx_int_delay, E1000_REGISTER(&adapter->hw, E1000_TIDV), em_tx_int_delay_dflt); if (adapter->hw.mac.type >= e1000_82540) { em_add_int_delay_sysctl(adapter, "rx_abs_int_delay", "receive interrupt delay limit in usecs", &adapter->rx_abs_int_delay, E1000_REGISTER(&adapter->hw, E1000_RADV), em_rx_abs_int_delay_dflt); em_add_int_delay_sysctl(adapter, "tx_abs_int_delay", "transmit interrupt delay limit in usecs", &adapter->tx_abs_int_delay, E1000_REGISTER(&adapter->hw, E1000_TADV), em_tx_abs_int_delay_dflt); } #ifndef DEVICE_POLLING /* Sysctls for limiting the amount of work done in the taskqueue */ em_add_rx_process_limit(adapter, "rx_processing_limit", "max number of rx packets to process", &adapter->rx_process_limit, em_rx_process_limit); #endif #ifdef __rtems__ { int em_txd_tmp = em_txd; int em_rxd_tmp = em_rxd; #define em_txd em_txd_tmp #define em_rxd em_rxd_tmp /* Does ifconfig override ? */ if ( dev->ifconfig ) { if ( dev->ifconfig->xbuf_count ) em_txd_tmp = dev->ifconfig->xbuf_count; if ( dev->ifconfig->rbuf_count ) em_rxd_tmp = dev->ifconfig->rbuf_count; } #endif /* * Validate number of transmit and receive descriptors. It * must not exceed hardware maximum, and must be multiple * of E1000_DBA_ALIGN. */ if (((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN) != 0 || (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) || (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) || (em_txd < EM_MIN_TXD)) { device_printf(dev, "Using %d TX descriptors instead of %d!\n", EM_DEFAULT_TXD, em_txd); adapter->num_tx_desc = EM_DEFAULT_TXD; } else adapter->num_tx_desc = em_txd; if (((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN) != 0 || (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) || (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) || (em_rxd < EM_MIN_RXD)) { device_printf(dev, "Using %d RX descriptors instead of %d!\n", EM_DEFAULT_RXD, em_rxd); adapter->num_rx_desc = EM_DEFAULT_RXD; } else adapter->num_rx_desc = em_rxd; #ifdef __rtems__ #undef em_txd #undef em_rxd } #endif adapter->hw.mac.autoneg = DO_AUTO_NEG; adapter->hw.phy.wait_for_link = FALSE; adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; adapter->rx_buffer_len = 2048; e1000_init_script_state_82541(&adapter->hw, TRUE); e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE); /* Copper options */ if (adapter->hw.media_type == e1000_media_type_copper) { adapter->hw.phy.mdix = AUTO_ALL_MODES; adapter->hw.phy.disable_polarity_correction = FALSE; adapter->hw.phy.ms_type = EM_MASTER_SLAVE; } /* * Set the max frame size assuming standard ethernet * sized frames. */ adapter->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; adapter->hw.mac.min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE; /* * This controls when hardware reports transmit completion * status. */ adapter->hw.mac.report_tx_early = 1; tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); /* Allocate Transmit Descriptor ring */ if (em_dma_malloc(adapter, tsize, &adapter->txdma, BUS_DMA_NOWAIT)) { device_printf(dev, "Unable to allocate tx_desc memory\n"); error = ENOMEM; goto err_tx_desc; } adapter->tx_desc_base = (struct e1000_tx_desc *)adapter->txdma.dma_vaddr; rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN); /* Allocate Receive Descriptor ring */ if (em_dma_malloc(adapter, rsize, &adapter->rxdma, BUS_DMA_NOWAIT)) { device_printf(dev, "Unable to allocate rx_desc memory\n"); error = ENOMEM; goto err_rx_desc; } adapter->rx_desc_base = (struct e1000_rx_desc *)adapter->rxdma.dma_vaddr; /* Make sure we have a good EEPROM before we read from it */ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) { /* ** Some PCI-E parts fail the first check due to ** the link being in sleep state, call it again, ** if it fails a second time its a real issue. */ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) { device_printf(dev, "The EEPROM Checksum Is Not Valid\n"); error = EIO; goto err_hw_init; } } if (e1000_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) { device_printf(dev, "EEPROM read error " "reading part number\n"); error = EIO; goto err_hw_init; } /* Initialize the hardware */ if (em_hardware_init(adapter)) { device_printf(dev, "Unable to initialize the hardware\n"); error = EIO; goto err_hw_init; } /* Copy the permanent MAC address out of the EEPROM */ if (e1000_read_mac_addr(&adapter->hw) < 0) { device_printf(dev, "EEPROM read error while reading MAC" " address\n"); error = EIO; goto err_hw_init; } if (!em_is_valid_ether_addr((uint8_t*)adapter->hw.mac.addr)) { device_printf(dev, "Invalid MAC address\n"); error = EIO; goto err_hw_init; } /* Setup OS specific network interface */ em_setup_interface(dev, adapter); em_allocate_intr(adapter); /* Initialize statistics */ em_update_stats_counters(adapter); adapter->hw.mac.get_link_status = 1; em_update_link_status(adapter); /* Indicate SOL/IDER usage */ if (e1000_check_reset_block(&adapter->hw)) device_printf(dev, "PHY reset is blocked due to SOL/IDER session.\n"); /* Determine if we have to control management hardware */ adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw); /* * Setup Wake-on-Lan */ switch (adapter->hw.mac.type) { #if !defined(NO_82542_SUPPORT) /* __rtems__ */ case e1000_82542: #endif case e1000_82543: break; case e1000_82546: case e1000_82546_rev_3: case e1000_82571: case e1000_80003es2lan: if (adapter->hw.bus.func == 1) e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); else e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); eeprom_data &= EM_EEPROM_APME; break; default: /* APME bit in EEPROM is mapped to WUC.APME */ eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC) & E1000_WUC_APME; break; } if (eeprom_data) adapter->wol = E1000_WUFC_MAG; /* * We have the eeprom settings, now apply the special cases * where the eeprom may be wrong or the board won't support * wake on lan on a particular port */ device_id = pci_get_device(dev); switch (device_id) { case E1000_DEV_ID_82546GB_PCIE: adapter->wol = 0; break; case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546GB_FIBER: case E1000_DEV_ID_82571EB_FIBER: /* Wake events only supported on port A for dual fiber * regardless of eeprom setting */ if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_FUNC_1) adapter->wol = 0; break; case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: case E1000_DEV_ID_82571EB_QUAD_COPPER: case E1000_DEV_ID_82571EB_QUAD_FIBER: case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: /* if quad port adapter, disable WoL on all but port A */ if (global_quad_port_a != 0) adapter->wol = 0; /* Reset for multiple quad port adapters */ if (++global_quad_port_a == 4) global_quad_port_a = 0; break; } /* Do we need workaround for 82544 PCI-X adapter? */ if (adapter->hw.bus.type == e1000_bus_type_pcix && adapter->hw.mac.type == e1000_82544) adapter->pcix_82544 = TRUE; else adapter->pcix_82544 = FALSE; /* Tell the stack that the interface is not active */ adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); INIT_DEBUGOUT("em_attach: end"); return (0); err_hw_init: em_release_hw_control(adapter); e1000_remove_device(&adapter->hw); em_dma_free(adapter, &adapter->rxdma); err_rx_desc: em_dma_free(adapter, &adapter->txdma); err_tx_desc: err_pci: em_free_intr(adapter); em_free_pci_resources(adapter); EM_LOCK_DESTROY(adapter); return (error); } /********************************************************************* * Device removal routine * * The detach entry point is called when the driver is being removed. * This routine stops the adapter and deallocates all the resources * that were allocated for driver operation. * * return 0 on success, positive on failure *********************************************************************/ static int em_detach(device_t dev) { struct adapter *adapter = device_get_softc(dev); struct ifnet *ifp = adapter->ifp; INIT_DEBUGOUT("em_detach: begin"); #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif em_disable_intr(adapter); em_free_intr(adapter); EM_LOCK(adapter); adapter->in_detach = 1; em_stop(adapter); e1000_phy_hw_reset(&adapter->hw); em_release_manageability(adapter); if (((adapter->hw.mac.type == e1000_82573) || (adapter->hw.mac.type == e1000_ich8lan) || (adapter->hw.mac.type == e1000_ich9lan)) && e1000_check_mng_mode(&adapter->hw)) em_release_hw_control(adapter); if (adapter->wol) { E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); em_enable_wakeup(dev); } EM_UNLOCK(adapter); ether_ifdetach(adapter->ifp); callout_drain(&adapter->timer); callout_drain(&adapter->tx_fifo_timer); em_free_pci_resources(adapter); bus_generic_detach(dev); if_free(ifp); e1000_remove_device(&adapter->hw); em_free_transmit_structures(adapter); em_free_receive_structures(adapter); /* Free Transmit Descriptor ring */ if (adapter->tx_desc_base) { em_dma_free(adapter, &adapter->txdma); adapter->tx_desc_base = NULL; } /* Free Receive Descriptor ring */ if (adapter->rx_desc_base) { em_dma_free(adapter, &adapter->rxdma); adapter->rx_desc_base = NULL; } EM_LOCK_DESTROY(adapter); return (0); } #ifndef __rtems__ /********************************************************************* * * Shutdown entry point * **********************************************************************/ static int em_shutdown(device_t dev) { return em_suspend(dev); } /* * Suspend/resume device methods. */ static int em_suspend(device_t dev) { struct adapter *adapter = device_get_softc(dev); EM_LOCK(adapter); em_stop(adapter); em_release_manageability(adapter); if (((adapter->hw.mac.type == e1000_82573) || (adapter->hw.mac.type == e1000_ich8lan) || (adapter->hw.mac.type == e1000_ich9lan)) && e1000_check_mng_mode(&adapter->hw)) em_release_hw_control(adapter); if (adapter->wol) { E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); em_enable_wakeup(dev); } EM_UNLOCK(adapter); return bus_generic_suspend(dev); } static int em_resume(device_t dev) { struct adapter *adapter = device_get_softc(dev); struct ifnet *ifp = adapter->ifp; EM_LOCK(adapter); em_init_locked(adapter); em_init_manageability(adapter); if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) em_start_locked(ifp); EM_UNLOCK(adapter); return bus_generic_resume(dev); } #endif /********************************************************************* * Transmit entry point * * em_start is called by the stack to initiate a transmit. * The driver will remain in this routine as long as there are * packets to transmit and transmit resources are available. * In case resources are not available stack is notified and * the packet is requeued. **********************************************************************/ static void em_start_locked(struct ifnet *ifp) { struct adapter *adapter = ifp->if_softc; struct mbuf *m_head; EM_LOCK_ASSERT(adapter); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return; if (!adapter->link_active) return; while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Encapsulation can modify our pointer, and or make it * NULL on failure. In that event, we can't requeue. * * We now use a pointer to accomodate legacy and * advanced transmit functions. */ if (adapter->em_xmit(adapter, &m_head)) { if (m_head == NULL) break; ifp->if_drv_flags |= IFF_DRV_OACTIVE; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); break; } /* Send a copy of the frame to the BPF listener */ ETHER_BPF_MTAP(ifp, m_head); /* Set timeout in case hardware has problems transmitting. */ adapter->watchdog_timer = EM_TX_TIMEOUT; } } static void em_start(struct ifnet *ifp) { struct adapter *adapter = ifp->if_softc; EM_LOCK(adapter); if (ifp->if_drv_flags & IFF_DRV_RUNNING) em_start_locked(ifp); EM_UNLOCK(adapter); } /********************************************************************* * Ioctl entry point * * em_ioctl is called when the user wants to configure the * interface. * * return 0 on success, positive on failure **********************************************************************/ static int #ifndef __rtems__ em_ioctl(struct ifnet *ifp, u_long command, caddr_t data) #else em_ioctl(struct ifnet *ifp, ioctl_command_t command, caddr_t data) #endif { struct adapter *adapter = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa = (struct ifaddr *)data; int error = 0; if (adapter->in_detach) return (error); switch (command) { case SIOCSIFADDR: if (ifa->ifa_addr->sa_family == AF_INET) { /* * XXX * Since resetting hardware takes a very long time * and results in link renegotiation we only * initialize the hardware only when it is absolutely * required. */ ifp->if_flags |= IFF_UP; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { EM_LOCK(adapter); em_init_locked(adapter); EM_UNLOCK(adapter); } arp_ifinit(ifp, ifa); } else error = ether_ioctl(ifp, command, data); break; case SIOCSIFMTU: { int max_frame_size; uint16_t eeprom_data = 0; IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); EM_LOCK(adapter); switch (adapter->hw.mac.type) { case e1000_82573: /* * 82573 only supports jumbo frames * if ASPM is disabled. */ e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1, &eeprom_data); if (eeprom_data & NVM_WORD1A_ASPM_MASK) { max_frame_size = ETHER_MAX_LEN; break; } /* Allow Jumbo frames - fall thru */ case e1000_82571: case e1000_82572: case e1000_ich9lan: case e1000_82575: case e1000_80003es2lan: /* Limit Jumbo Frame size */ max_frame_size = 9234; break; /* Adapters that do not support jumbo frames */ #if !defined(NO_82542_SUPPORT) /* __rtems__ */ case e1000_82542: #endif case e1000_ich8lan: max_frame_size = ETHER_MAX_LEN; break; default: max_frame_size = MAX_JUMBO_FRAME_SIZE; } if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) { EM_UNLOCK(adapter); error = EINVAL; break; } ifp->if_mtu = ifr->ifr_mtu; adapter->hw.mac.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; em_init_locked(adapter); EM_UNLOCK(adapter); break; } case SIOCSIFFLAGS: IOCTL_DEBUGOUT("ioctl rcv'd:\ SIOCSIFFLAGS (Set Interface Flags)"); EM_LOCK(adapter); if (ifp->if_flags & IFF_UP) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) { if ((ifp->if_flags ^ adapter->if_flags) & IFF_PROMISC) { em_disable_promisc(adapter); em_set_promisc(adapter); } } else em_init_locked(adapter); } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) em_stop(adapter); adapter->if_flags = ifp->if_flags; EM_UNLOCK(adapter); break; case SIOCADDMULTI: case SIOCDELMULTI: IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI"); #ifdef __rtems__ if ( ETHER_SIOCMULTIFRAG(error, command, ifr, ifp) ) break; #endif if (ifp->if_drv_flags & IFF_DRV_RUNNING) { EM_LOCK(adapter); em_disable_intr(adapter); em_set_multi(adapter); #if !defined(NO_82542_SUPPORT) /* __rtems__ */ if (adapter->hw.mac.type == e1000_82542 && adapter->hw.revision_id == E1000_REVISION_2) { em_initialize_receive_unit(adapter); } #endif #ifdef DEVICE_POLLING if (!(ifp->if_capenable & IFCAP_POLLING)) #endif em_enable_intr(adapter); EM_UNLOCK(adapter); } #ifdef __rtems__ else error = 0; #endif break; case SIOCSIFMEDIA: /* Check SOL/IDER usage */ EM_LOCK(adapter); if (e1000_check_reset_block(&adapter->hw)) { EM_UNLOCK(adapter); device_printf(adapter->dev, "Media change is" " blocked due to SOL/IDER session.\n"); #ifdef __rtems__ /* it seems we should set error here */ error = EBUSY; #endif break; } EM_UNLOCK(adapter); case SIOCGIFMEDIA: IOCTL_DEBUGOUT("ioctl rcv'd: \ SIOCxIFMEDIA (Get/Set Interface Media)"); error = ifmedia_ioctl(ifp, ifr, &adapter->media, command); break; #ifndef __rtems__ case SIOCSIFCAP: { int mask, reinit; IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)"); reinit = 0; mask = ifr->ifr_reqcap ^ ifp->if_capenable; #ifdef DEVICE_POLLING if (mask & IFCAP_POLLING) { if (ifr->ifr_reqcap & IFCAP_POLLING) { error = ether_poll_register(em_poll, ifp); if (error) return (error); EM_LOCK(adapter); em_disable_intr(adapter); ifp->if_capenable |= IFCAP_POLLING; EM_UNLOCK(adapter); } else { error = ether_poll_deregister(ifp); /* Enable interrupt even in error case */ EM_LOCK(adapter); em_enable_intr(adapter); ifp->if_capenable &= ~IFCAP_POLLING; EM_UNLOCK(adapter); } } #endif if (mask & IFCAP_HWCSUM) { ifp->if_capenable ^= IFCAP_HWCSUM; reinit = 1; } if (mask & IFCAP_TSO4) { ifp->if_capenable ^= IFCAP_TSO4; reinit = 1; } if (mask & IFCAP_VLAN_HWTAGGING) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; reinit = 1; } if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING)) em_init(adapter); VLAN_CAPABILITIES(ifp); break; } #endif #ifdef __rtems__ case SIO_RTEMS_SHOW_STATS: em_print_hw_stats(adapter); error = 0; break; #endif default: error = ether_ioctl(ifp, command, data); break; } return (error); } /********************************************************************* * Watchdog timer: * * This routine is called from the local timer every second. * As long as transmit descriptors are being cleaned the value * is non-zero and we do nothing. Reaching 0 indicates a tx hang * and we then reset the device. * **********************************************************************/ static void em_watchdog(struct adapter *adapter) { EM_LOCK_ASSERT(adapter); /* ** The timer is set to 5 every time start queues a packet. ** Then txeof keeps resetting to 5 as long as it cleans at ** least one descriptor. ** Finally, anytime all descriptors are clean the timer is ** set to 0. */ if (adapter->watchdog_timer == 0 || --adapter->watchdog_timer) return; /* If we are in this routine because of pause frames, then * don't reset the hardware. */ if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_TXOFF) { adapter->watchdog_timer = EM_TX_TIMEOUT; return; } if (e1000_check_for_link(&adapter->hw) == 0) device_printf(adapter->dev, "watchdog timeout -- resetting\n"); adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; adapter->watchdog_events++; em_init_locked(adapter); } /********************************************************************* * Init entry point * * This routine is used in two ways. It is used by the stack as * init entry point in network interface structure. It is also used * by the driver as a hw/sw initialization routine to get to a * consistent state. * * return 0 on success, positive on failure **********************************************************************/ static void em_init_locked(struct adapter *adapter) { struct ifnet *ifp = adapter->ifp; device_t dev = adapter->dev; uint32_t pba; INIT_DEBUGOUT("em_init: begin"); EM_LOCK_ASSERT(adapter); em_stop(adapter); /* * Packet Buffer Allocation (PBA) * Writing PBA sets the receive portion of the buffer * the remainder is used for the transmit buffer. * * Devices before the 82547 had a Packet Buffer of 64K. * Default allocation: PBA=48K for Rx, leaving 16K for Tx. * After the 82547 the buffer was reduced to 40K. * Default allocation: PBA=30K for Rx, leaving 10K for Tx. * Note: default does not leave enough room for Jumbo Frame >10k. */ switch (adapter->hw.mac.type) { case e1000_82547: case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */ if (adapter->hw.mac.max_frame_size > 8192) pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */ else pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */ adapter->tx_fifo_head = 0; adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT; adapter->tx_fifo_size = (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT; break; /* Total Packet Buffer on these is 48K */ case e1000_82571: case e1000_82572: case e1000_82575: case e1000_80003es2lan: pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ break; case e1000_82573: /* 82573: Total Packet Buffer is 32K */ pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ break; case e1000_ich9lan: #define E1000_PBA_10K 0x000A pba = E1000_PBA_10K; break; case e1000_ich8lan: pba = E1000_PBA_8K; break; default: /* Devices before 82547 had a Packet Buffer of 64K. */ if (adapter->hw.mac.max_frame_size > 8192) pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ else pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ } INIT_DEBUGOUT1("em_init: pba=%dK",(int)pba); E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba); /* Get the latest mac address, User can use a LAA */ bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN); /* Put the address into the Receive Address Array */ e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); /* * With 82571 controllers, LAA may be overwritten * due to controller reset from the other port. */ if (adapter->hw.mac.type == e1000_82571) e1000_set_laa_state_82571(&adapter->hw, TRUE); /* Initialize the hardware */ if (em_hardware_init(adapter)) { device_printf(dev, "Unable to initialize the hardware\n"); return; } em_update_link_status(adapter); #ifndef __rtems__ if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) em_enable_vlans(adapter); /* Set hardware offload abilities */ ifp->if_hwassist = 0; if (adapter->hw.mac.type >= e1000_82543) { if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP); if (ifp->if_capenable & IFCAP_TSO4) ifp->if_hwassist |= CSUM_TSO; } #endif /* Configure for OS presence */ em_init_manageability(adapter); /* Prepare transmit descriptors and buffers */ if (em_setup_transmit_structures(adapter)) { device_printf(dev, "Could not setup transmit structures\n"); em_stop(adapter); return; } em_initialize_transmit_unit(adapter); /* Setup Multicast table */ em_set_multi(adapter); /* Prepare receive descriptors and buffers */ if (em_setup_receive_structures(adapter)) { device_printf(dev, "Could not setup receive structures\n"); em_stop(adapter); return; } em_initialize_receive_unit(adapter); /* Don't lose promiscuous settings */ em_set_promisc(adapter); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&adapter->timer, hz, em_local_timer, adapter); e1000_clear_hw_cntrs_base_generic(&adapter->hw); #ifdef DEVICE_POLLING /* * Only enable interrupts if we are not polling, make sure * they are off otherwise. */ if (ifp->if_capenable & IFCAP_POLLING) em_disable_intr(adapter); else #endif /* DEVICE_POLLING */ em_enable_intr(adapter); /* Don't reset the phy next time init gets called */ adapter->hw.phy.reset_disable = TRUE; } static void em_init(void *arg) { struct adapter *adapter = arg; EM_LOCK(adapter); em_init_locked(adapter); EM_UNLOCK(adapter); } #ifdef DEVICE_POLLING /********************************************************************* * * Legacy polling routine * *********************************************************************/ static void em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct adapter *adapter = ifp->if_softc; uint32_t reg_icr; EM_LOCK(adapter); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { EM_UNLOCK(adapter); return; } if (cmd == POLL_AND_CHECK_STATUS) { reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { callout_stop(&adapter->timer); adapter->hw.mac.get_link_status = 1; e1000_check_for_link(&adapter->hw); em_update_link_status(adapter); callout_reset(&adapter->timer, hz, em_local_timer, adapter); } } em_rxeof(adapter, count); em_txeof(adapter); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) em_start_locked(ifp); EM_UNLOCK(adapter); } /********************************************************************* * * Legacy Interrupt Service routine * *********************************************************************/ static void em_intr(void *arg) { struct adapter *adapter = arg; struct ifnet *ifp; uint32_t reg_icr; EM_LOCK(adapter); ifp = adapter->ifp; if (ifp->if_capenable & IFCAP_POLLING) { EM_UNLOCK(adapter); return; } for (;;) { reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); if (adapter->hw.mac.type >= e1000_82571 && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) break; else if (reg_icr == 0) break; /* * XXX: some laptops trigger several spurious interrupts * on em(4) when in the resume cycle. The ICR register * reports all-ones value in this case. Processing such * interrupts would lead to a freeze. I don't know why. */ if (reg_icr == 0xffffffff) break; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { em_rxeof(adapter, -1); em_txeof(adapter); } /* Link status change */ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { callout_stop(&adapter->timer); adapter->hw.mac.get_link_status = 1; e1000_check_for_link(&adapter->hw); em_update_link_status(adapter); callout_reset(&adapter->timer, hz, em_local_timer, adapter); } if (reg_icr & E1000_ICR_RXO) adapter->rx_overruns++; } if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) em_start_locked(ifp); EM_UNLOCK(adapter); } #else /* if not DEVICE_POLLING, then fast interrupt routines only */ static void em_handle_link(void *context, int pending) { struct adapter *adapter = context; struct ifnet *ifp; ifp = adapter->ifp; EM_LOCK(adapter); if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { EM_UNLOCK(adapter); return; } callout_stop(&adapter->timer); adapter->hw.mac.get_link_status = 1; e1000_check_for_link(&adapter->hw); em_update_link_status(adapter); callout_reset(&adapter->timer, hz, em_local_timer, adapter); EM_UNLOCK(adapter); } int em_rxtx_irqs=0; int em_rxtx_hirqs=0; static void em_handle_rxtx(void *context, int pending) { struct adapter *adapter = context; struct ifnet *ifp; em_rxtx_irqs ++ ; NET_LOCK_GIANT(); ifp = adapter->ifp; /* * TODO: * It should be possible to run the tx clean loop without the lock. */ if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if (em_rxeof(adapter, adapter->rx_process_limit) != 0) taskqueue_enqueue(adapter->tq, &adapter->rxtx_task); EM_LOCK(adapter); em_txeof(adapter); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) em_start_locked(ifp); EM_UNLOCK(adapter); } em_enable_intr(adapter); NET_UNLOCK_GIANT(); } /********************************************************************* * * Fast Interrupt Service routine * *********************************************************************/ static int em_intr_fast(void *arg) { struct adapter *adapter = arg; struct ifnet *ifp; uint32_t reg_icr; ifp = adapter->ifp; reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); /* Hot eject? */ if (reg_icr == 0xffffffff) return (FILTER_STRAY); /* Definitely not our interrupt. */ if (reg_icr == 0x0) return (FILTER_STRAY); /* * Starting with the 82571 chip, bit 31 should be used to * determine whether the interrupt belongs to us. */ if (adapter->hw.mac.type >= e1000_82571 && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) return (FILTER_STRAY); /* * Mask interrupts until the taskqueue is finished running. This is * cheap, just assume that it is needed. This also works around the * MSI message reordering errata on certain systems. */ em_disable_intr(adapter); taskqueue_enqueue(adapter->tq, &adapter->rxtx_task); em_rxtx_hirqs++; /* Link status change */ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) taskqueue_enqueue(taskqueue_fast, &adapter->link_task); if (reg_icr & E1000_ICR_RXO) adapter->rx_overruns++; return (FILTER_HANDLED); } #endif /* ! DEVICE_POLLING */ /********************************************************************* * * Media Ioctl callback * * This routine is called whenever the user queries the status of * the interface using ifconfig. * **********************************************************************/ static void em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct adapter *adapter = ifp->if_softc; u_char fiber_type = IFM_1000_SX; INIT_DEBUGOUT("em_media_status: begin"); EM_LOCK(adapter); e1000_check_for_link(&adapter->hw); em_update_link_status(adapter); ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (!adapter->link_active) { EM_UNLOCK(adapter); return; } ifmr->ifm_status |= IFM_ACTIVE; if ((adapter->hw.media_type == e1000_media_type_fiber) || (adapter->hw.media_type == e1000_media_type_internal_serdes)) { if (adapter->hw.mac.type == e1000_82545) fiber_type = IFM_1000_LX; ifmr->ifm_active |= fiber_type | IFM_FDX; } else { switch (adapter->link_speed) { case 10: ifmr->ifm_active |= IFM_10_T; break; case 100: ifmr->ifm_active |= IFM_100_TX; break; case 1000: ifmr->ifm_active |= IFM_1000_T; break; } if (adapter->link_duplex == FULL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; } EM_UNLOCK(adapter); } /********************************************************************* * * Media Ioctl callback * * This routine is called when the user changes speed/duplex using * media/mediopt option with ifconfig. * **********************************************************************/ static int em_media_change(struct ifnet *ifp) { struct adapter *adapter = ifp->if_softc; struct ifmedia *ifm = &adapter->media; INIT_DEBUGOUT("em_media_change: begin"); if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); EM_LOCK(adapter); switch (IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: adapter->hw.mac.autoneg = DO_AUTO_NEG; adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; break; case IFM_1000_LX: case IFM_1000_SX: case IFM_1000_T: adapter->hw.mac.autoneg = DO_AUTO_NEG; adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; break; case IFM_100_TX: adapter->hw.mac.autoneg = FALSE; adapter->hw.phy.autoneg_advertised = 0; if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; else adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; break; case IFM_10_T: adapter->hw.mac.autoneg = FALSE; adapter->hw.phy.autoneg_advertised = 0; if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; else adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; break; default: device_printf(adapter->dev, "Unsupported media type\n"); } /* As the speed/duplex settings my have changed we need to * reset the PHY. */ adapter->hw.phy.reset_disable = FALSE; em_init_locked(adapter); EM_UNLOCK(adapter); return (0); } /********************************************************************* * * This routine maps the mbufs to tx descriptors. * * return 0 on success, positive on failure **********************************************************************/ static int em_encap(struct adapter *adapter, struct mbuf **m_headp) { bus_dma_segment_t segs[EM_MAX_SCATTER]; bus_dmamap_t map; struct em_buffer *tx_buffer, *tx_buffer_mapped; struct e1000_tx_desc *ctxd = NULL; struct mbuf *m_head; uint32_t txd_upper, txd_lower, txd_used, txd_saved; int nsegs, i, j, first, last = 0; int error, do_tso, tso_desc = 0; m_head = *m_headp; txd_upper = txd_lower = txd_used = txd_saved = 0; #ifndef __rtems__ do_tso = ((m_head->m_pkthdr.csum_flags & CSUM_TSO) != 0); #else do_tso = 0; #endif /* * Force a cleanup if number of TX descriptors * available hits the threshold */ if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) { em_txeof(adapter); /* Now do we at least have a minimal? */ if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD) { adapter->no_tx_desc_avail1++; return (ENOBUFS); } } /* * TSO workaround: * If an mbuf is only header we need * to pull 4 bytes of data into it. */ if (do_tso && (m_head->m_len <= M_TSO_LEN)) { m_head = m_pullup(m_head, M_TSO_LEN + 4); *m_headp = m_head; if (m_head == NULL) return (ENOBUFS); } /* * Map the packet for DMA * * Capture the first descriptor index, * this descriptor will have the index * of the EOP which is the only one that * now gets a DONE bit writeback. */ first = adapter->next_avail_tx_desc; tx_buffer = &adapter->tx_buffer_area[first]; tx_buffer_mapped = tx_buffer; map = tx_buffer->map; error = bus_dmamap_load_mbuf_sg(adapter->txtag, map, *m_headp, segs, &nsegs, BUS_DMA_NOWAIT); /* * There are two types of errors we can (try) to handle: * - EFBIG means the mbuf chain was too long and bus_dma ran * out of segments. Defragment the mbuf chain and try again. * - ENOMEM means bus_dma could not obtain enough bounce buffers * at this point in time. Defer sending and try again later. * All other errors, in particular EINVAL, are fatal and prevent the * mbuf chain from ever going through. Drop it and report error. */ if (error == EFBIG) { struct mbuf *m; m = m_defrag(*m_headp, M_DONTWAIT); if (m == NULL) { adapter->mbuf_alloc_failed++; m_freem(*m_headp); *m_headp = NULL; return (ENOBUFS); } *m_headp = m; /* Try it again */ error = bus_dmamap_load_mbuf_sg(adapter->txtag, map, *m_headp, segs, &nsegs, BUS_DMA_NOWAIT); if (error == ENOMEM) { adapter->no_tx_dma_setup++; return (error); } else if (error != 0) { adapter->no_tx_dma_setup++; m_freem(*m_headp); *m_headp = NULL; return (error); } } else if (error == ENOMEM) { adapter->no_tx_dma_setup++; return (error); } else if (error != 0) { adapter->no_tx_dma_setup++; m_freem(*m_headp); *m_headp = NULL; return (error); } /* * TSO Hardware workaround, if this packet is not * TSO, and is only a single descriptor long, and * it follows a TSO burst, then we need to add a * sentinel descriptor to prevent premature writeback. */ if ((do_tso == 0) && (adapter->tx_tso == TRUE)) { if (nsegs == 1) tso_desc = TRUE; adapter->tx_tso = FALSE; } if (nsegs > (adapter->num_tx_desc_avail - 2)) { adapter->no_tx_desc_avail2++; bus_dmamap_unload(adapter->txtag, map); return (ENOBUFS); } m_head = *m_headp; #ifndef __rtems__ /* Do hardware assists */ if (em_tso_setup(adapter, m_head, &txd_upper, &txd_lower)) /* we need to make a final sentinel transmit desc */ tso_desc = TRUE; else if (m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD) em_transmit_checksum_setup(adapter, m_head, &txd_upper, &txd_lower); #endif i = adapter->next_avail_tx_desc; if (adapter->pcix_82544) txd_saved = i; /* Set up our transmit descriptors */ for (j = 0; j < nsegs; j++) { bus_size_t seg_len; bus_addr_t seg_addr; /* If adapter is 82544 and on PCIX bus */ if(adapter->pcix_82544) { DESC_ARRAY desc_array; uint32_t array_elements, counter; /* * Check the Address and Length combination and * split the data accordingly */ array_elements = em_fill_descriptors(segs[j].ds_addr, segs[j].ds_len, &desc_array); for (counter = 0; counter < array_elements; counter++) { if (txd_used == adapter->num_tx_desc_avail) { adapter->next_avail_tx_desc = txd_saved; adapter->no_tx_desc_avail2++; bus_dmamap_unload(adapter->txtag, map); return (ENOBUFS); } tx_buffer = &adapter->tx_buffer_area[i]; ctxd = &adapter->tx_desc_base[i]; ctxd->buffer_addr = htole64( desc_array.descriptor[counter].address); ctxd->lower.data = htole32( (adapter->txd_cmd | txd_lower | (uint16_t) desc_array.descriptor[counter].length)); ctxd->upper.data = htole32((txd_upper)); last = i; if (++i == adapter->num_tx_desc) i = 0; tx_buffer->m_head = NULL; tx_buffer->next_eop = -1; txd_used++; } } else { tx_buffer = &adapter->tx_buffer_area[i]; ctxd = &adapter->tx_desc_base[i]; seg_addr = segs[j].ds_addr; seg_len = segs[j].ds_len; /* ** TSO Workaround: ** If this is the last descriptor, we want to ** split it so we have a small final sentinel */ if (tso_desc && (j == (nsegs -1)) && (seg_len > 8)) { seg_len -= 4; ctxd->buffer_addr = htole64(seg_addr); ctxd->lower.data = htole32( adapter->txd_cmd | txd_lower | seg_len); ctxd->upper.data = htole32(txd_upper); if (++i == adapter->num_tx_desc) i = 0; /* Now make the sentinel */ ++txd_used; /* using an extra txd */ ctxd = &adapter->tx_desc_base[i]; tx_buffer = &adapter->tx_buffer_area[i]; ctxd->buffer_addr = htole64(seg_addr + seg_len); ctxd->lower.data = htole32( adapter->txd_cmd | txd_lower | 4); ctxd->upper.data = htole32(txd_upper); last = i; if (++i == adapter->num_tx_desc) i = 0; } else { ctxd->buffer_addr = htole64(seg_addr); ctxd->lower.data = htole32( adapter->txd_cmd | txd_lower | seg_len); ctxd->upper.data = htole32(txd_upper); last = i; if (++i == adapter->num_tx_desc) i = 0; } tx_buffer->m_head = NULL; tx_buffer->next_eop = -1; } } adapter->next_avail_tx_desc = i; if (adapter->pcix_82544) adapter->num_tx_desc_avail -= txd_used; else { adapter->num_tx_desc_avail -= nsegs; if (tso_desc) /* TSO used an extra for sentinel */ adapter->num_tx_desc_avail -= txd_used; } #ifndef __rtems__ if (m_head->m_flags & M_VLANTAG) { /* Set the vlan id. */ ctxd->upper.fields.special = htole16(m_head->m_pkthdr.ether_vtag); /* Tell hardware to add tag */ ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE); } #endif tx_buffer->m_head = m_head; tx_buffer_mapped->map = tx_buffer->map; tx_buffer->map = map; bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE); /* * Last Descriptor of Packet * needs End Of Packet (EOP) * and Report Status (RS) */ ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS); /* * Keep track in the first buffer which * descriptor will be written back */ tx_buffer = &adapter->tx_buffer_area[first]; tx_buffer->next_eop = last; /* * Advance the Transmit Descriptor Tail (TDT), this tells the E1000 * that this frame is available to transmit. */ bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); if (adapter->hw.mac.type == e1000_82547 && adapter->link_duplex == HALF_DUPLEX) em_82547_move_tail(adapter); else { E1000_WRITE_REG(&adapter->hw, E1000_TDT, i); if (adapter->hw.mac.type == e1000_82547) em_82547_update_fifo_head(adapter, m_head->m_pkthdr.len); } return (0); } /********************************************************************* * * This routine maps the mbufs to Advanced TX descriptors. * used by the 82575 adapter. It also needs no workarounds. * **********************************************************************/ static int em_adv_encap(struct adapter *adapter, struct mbuf **m_headp) { bus_dma_segment_t segs[EM_MAX_SCATTER]; bus_dmamap_t map; struct em_buffer *tx_buffer, *tx_buffer_mapped; union e1000_adv_tx_desc *txd = NULL; struct mbuf *m_head; u32 olinfo_status = 0, cmd_type_len = 0; #ifndef __rtems__ u32 paylen = 0; #endif int nsegs, i, j, error, first, last = 0; m_head = *m_headp; /* Set basic descriptor constants */ cmd_type_len |= E1000_ADVTXD_DTYP_DATA; cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT; /* * Force a cleanup if number of TX descriptors * available hits the threshold */ if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) { em_txeof(adapter); /* Now do we at least have a minimal? */ if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD) { adapter->no_tx_desc_avail1++; return (ENOBUFS); } } /* * Map the packet for DMA. * * Capture the first descriptor index, * this descriptor will have the index * of the EOP which is the only one that * now gets a DONE bit writeback. */ first = adapter->next_avail_tx_desc; tx_buffer = &adapter->tx_buffer_area[first]; tx_buffer_mapped = tx_buffer; map = tx_buffer->map; error = bus_dmamap_load_mbuf_sg(adapter->txtag, map, *m_headp, segs, &nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { struct mbuf *m; m = m_defrag(*m_headp, M_DONTWAIT); if (m == NULL) { adapter->mbuf_alloc_failed++; m_freem(*m_headp); *m_headp = NULL; return (ENOBUFS); } *m_headp = m; /* Try it again */ error = bus_dmamap_load_mbuf_sg(adapter->txtag, map, *m_headp, segs, &nsegs, BUS_DMA_NOWAIT); if (error == ENOMEM) { adapter->no_tx_dma_setup++; return (error); } else if (error != 0) { adapter->no_tx_dma_setup++; m_freem(*m_headp); *m_headp = NULL; return (error); } } else if (error == ENOMEM) { adapter->no_tx_dma_setup++; return (error); } else if (error != 0) { adapter->no_tx_dma_setup++; m_freem(*m_headp); *m_headp = NULL; return (error); } /* Check again to be sure we have enough descriptors */ if (nsegs > (adapter->num_tx_desc_avail - 2)) { adapter->no_tx_desc_avail2++; bus_dmamap_unload(adapter->txtag, map); return (ENOBUFS); } m_head = *m_headp; #ifndef __rtems__ /* * Set up the context descriptor: * used when any hardware offload is done. * This includes CSUM, VLAN, and TSO. It * will use the first descriptor. */ /* First try TSO */ if (em_tso_adv_setup(adapter, m_head, &paylen)) { cmd_type_len |= E1000_ADVTXD_DCMD_TSE; olinfo_status |= E1000_TXD_POPTS_IXSM << 8; olinfo_status |= E1000_TXD_POPTS_TXSM << 8; olinfo_status |= paylen << E1000_ADVTXD_PAYLEN_SHIFT; } else if (m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD) { if (em_tx_adv_ctx_setup(adapter, m_head)) olinfo_status |= E1000_TXD_POPTS_TXSM << 8; } #endif /* Set up our transmit descriptors */ i = adapter->next_avail_tx_desc; for (j = 0; j < nsegs; j++) { bus_size_t seg_len; bus_addr_t seg_addr; tx_buffer = &adapter->tx_buffer_area[i]; txd = (union e1000_adv_tx_desc *)&adapter->tx_desc_base[i]; seg_addr = segs[j].ds_addr; seg_len = segs[j].ds_len; txd->read.buffer_addr = htole64(seg_addr); txd->read.cmd_type_len = htole32( adapter->txd_cmd | cmd_type_len | seg_len); txd->read.olinfo_status = htole32(olinfo_status); last = i; if (++i == adapter->num_tx_desc) i = 0; tx_buffer->m_head = NULL; tx_buffer->next_eop = -1; } adapter->next_avail_tx_desc = i; adapter->num_tx_desc_avail -= nsegs; tx_buffer->m_head = m_head; tx_buffer_mapped->map = tx_buffer->map; tx_buffer->map = map; bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE); /* * Last Descriptor of Packet * needs End Of Packet (EOP) * and Report Status (RS) */ txd->read.cmd_type_len |= htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS); /* * Keep track in the first buffer which * descriptor will be written back */ tx_buffer = &adapter->tx_buffer_area[first]; tx_buffer->next_eop = last; /* * Advance the Transmit Descriptor Tail (TDT), this tells the E1000 * that this frame is available to transmit. */ bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); E1000_WRITE_REG(&adapter->hw, E1000_TDT, i); return (0); } /********************************************************************* * * 82547 workaround to avoid controller hang in half-duplex environment. * The workaround is to avoid queuing a large packet that would span * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers * in this case. We do that only when FIFO is quiescent. * **********************************************************************/ static void em_82547_move_tail(void *arg) { struct adapter *adapter = arg; uint16_t hw_tdt; uint16_t sw_tdt; struct e1000_tx_desc *tx_desc; uint16_t length = 0; boolean_t eop = 0; EM_LOCK_ASSERT(adapter); hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT); sw_tdt = adapter->next_avail_tx_desc; while (hw_tdt != sw_tdt) { tx_desc = &adapter->tx_desc_base[hw_tdt]; length += tx_desc->lower.flags.length; eop = tx_desc->lower.data & E1000_TXD_CMD_EOP; if (++hw_tdt == adapter->num_tx_desc) hw_tdt = 0; if (eop) { if (em_82547_fifo_workaround(adapter, length)) { adapter->tx_fifo_wrk_cnt++; callout_reset(&adapter->tx_fifo_timer, 1, em_82547_move_tail, adapter); break; } E1000_WRITE_REG(&adapter->hw, E1000_TDT, hw_tdt); em_82547_update_fifo_head(adapter, length); length = 0; } } } static int em_82547_fifo_workaround(struct adapter *adapter, int len) { int fifo_space, fifo_pkt_len; fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR); if (adapter->link_duplex == HALF_DUPLEX) { fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) { if (em_82547_tx_fifo_reset(adapter)) return (0); else return (1); } } return (0); } static void em_82547_update_fifo_head(struct adapter *adapter, int len) { int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR); /* tx_fifo_head is always 16 byte aligned */ adapter->tx_fifo_head += fifo_pkt_len; if (adapter->tx_fifo_head >= adapter->tx_fifo_size) { adapter->tx_fifo_head -= adapter->tx_fifo_size; } } static int em_82547_tx_fifo_reset(struct adapter *adapter) { uint32_t tctl; if ((E1000_READ_REG(&adapter->hw, E1000_TDT) == E1000_READ_REG(&adapter->hw, E1000_TDH)) && (E1000_READ_REG(&adapter->hw, E1000_TDFT) == E1000_READ_REG(&adapter->hw, E1000_TDFH)) && (E1000_READ_REG(&adapter->hw, E1000_TDFTS) == E1000_READ_REG(&adapter->hw, E1000_TDFHS)) && (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) { /* Disable TX unit */ tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL); E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl & ~E1000_TCTL_EN); /* Reset FIFO pointers */ E1000_WRITE_REG(&adapter->hw, E1000_TDFT, adapter->tx_head_addr); E1000_WRITE_REG(&adapter->hw, E1000_TDFH, adapter->tx_head_addr); E1000_WRITE_REG(&adapter->hw, E1000_TDFTS, adapter->tx_head_addr); E1000_WRITE_REG(&adapter->hw, E1000_TDFHS, adapter->tx_head_addr); /* Re-enable TX unit */ E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl); E1000_WRITE_FLUSH(&adapter->hw); adapter->tx_fifo_head = 0; adapter->tx_fifo_reset_cnt++; return (TRUE); } else { return (FALSE); } } static void em_set_promisc(struct adapter *adapter) { struct ifnet *ifp = adapter->ifp; uint32_t reg_rctl; reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); if (ifp->if_flags & IFF_PROMISC) { reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); } else if (ifp->if_flags & IFF_ALLMULTI) { reg_rctl |= E1000_RCTL_MPE; reg_rctl &= ~E1000_RCTL_UPE; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); } } static void em_disable_promisc(struct adapter *adapter) { uint32_t reg_rctl; reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); reg_rctl &= (~E1000_RCTL_UPE); reg_rctl &= (~E1000_RCTL_MPE); E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); } /********************************************************************* * Multicast Update * * This routine is called whenever multicast address list is updated. * **********************************************************************/ static void em_set_multi(struct adapter *adapter) { struct ifnet *ifp = adapter->ifp; #ifndef __rtems__ struct ifmultiaddr *ifma; #endif uint32_t reg_rctl = 0; uint8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_ADDR_LEN]; /* Largest MTS is 4096 bits */ int mcnt = 0; IOCTL_DEBUGOUT("em_set_multi: begin"); #if !defined(NO_82542_SUPPORT) /* __rtems__ */ if (adapter->hw.mac.type == e1000_82542 && adapter->hw.revision_id == E1000_REVISION_2) { reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) e1000_pci_clear_mwi(&adapter->hw); reg_rctl |= E1000_RCTL_RST; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); msec_delay(5); } #endif #ifndef __rtems__ IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; if (mcnt == MAX_NUM_MULTICAST_ADDRESSES) break; bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN); mcnt++; } IF_ADDR_UNLOCK(ifp); #else { /* This is untested -- in particular I don't know how to * handle address ranges in the ether_multi struct */ struct ether_multi *enm; struct ether_multistep step; ETHER_FIRST_MULTI(step, (struct arpcom *)ifp, enm); while ( enm != NULL ) { if ( mcnt == MAX_NUM_MULTICAST_ADDRESSES ) break; if ( memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) ) { printk("if_em: Unable to handle multicast wildcard (not ported yet); skipping\n"); goto skiptonext; } else { bcopy(enm->enm_addrlo, &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN); } mcnt++; skiptonext: ETHER_NEXT_MULTI( step, enm ); } } #endif if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) { reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); reg_rctl |= E1000_RCTL_MPE; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); } else e1000_mc_addr_list_update(&adapter->hw, mta, mcnt, 1, adapter->hw.mac.rar_entry_count); #if !defined(NO_82542_SUPPORT) /* __rtems__ */ if (adapter->hw.mac.type == e1000_82542 && adapter->hw.revision_id == E1000_REVISION_2) { reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); reg_rctl &= ~E1000_RCTL_RST; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); msec_delay(5); if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) e1000_pci_set_mwi(&adapter->hw); } #endif } /********************************************************************* * Timer routine * * This routine checks for link status and updates statistics. * **********************************************************************/ static void em_local_timer(void *arg) { struct adapter *adapter = arg; struct ifnet *ifp = adapter->ifp; EM_LOCK_ASSERT(adapter); e1000_check_for_link(&adapter->hw); em_update_link_status(adapter); em_update_stats_counters(adapter); /* Check for 82571 LAA reset by other port */ if (e1000_get_laa_state_82571(&adapter->hw) == TRUE) e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); if (em_display_debug_stats && ifp->if_drv_flags & IFF_DRV_RUNNING) em_print_hw_stats(adapter); em_smartspeed(adapter); /* * Each second we check the watchdog to * protect against hardware hangs. */ em_watchdog(adapter); callout_reset(&adapter->timer, hz, em_local_timer, adapter); } static void em_update_link_status(struct adapter *adapter) { struct ifnet *ifp = adapter->ifp; device_t dev = adapter->dev; if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU) { if (adapter->link_active == 0) { e1000_get_speed_and_duplex(&adapter->hw, &adapter->link_speed, &adapter->link_duplex); /* Check if we must disable SPEED_MODE bit on PCI-E */ if ((adapter->link_speed != SPEED_1000) && ((adapter->hw.mac.type == e1000_82571) || (adapter->hw.mac.type == e1000_82572))) { int tarc0; tarc0 = E1000_READ_REG(&adapter->hw, E1000_TARC0); tarc0 &= ~SPEED_MODE_BIT; E1000_WRITE_REG(&adapter->hw, E1000_TARC0, tarc0); } if (bootverbose) device_printf(dev, "Link is up %d Mbps %s\n", adapter->link_speed, ((adapter->link_duplex == FULL_DUPLEX) ? "Full Duplex" : "Half Duplex")); adapter->link_active = 1; adapter->smartspeed = 0; ifp->if_baudrate = adapter->link_speed * 1000000; if_link_state_change(ifp, LINK_STATE_UP); } } else { if (adapter->link_active == 1) { ifp->if_baudrate = adapter->link_speed = 0; adapter->link_duplex = 0; if (bootverbose) device_printf(dev, "Link is Down\n"); adapter->link_active = 0; if_link_state_change(ifp, LINK_STATE_DOWN); } } } /********************************************************************* * * This routine disables all traffic on the adapter by issuing a * global reset on the MAC and deallocates TX/RX buffers. * **********************************************************************/ static void em_stop(void *arg) { struct adapter *adapter = arg; struct ifnet *ifp = adapter->ifp; EM_LOCK_ASSERT(adapter); INIT_DEBUGOUT("em_stop: begin"); em_disable_intr(adapter); callout_stop(&adapter->timer); callout_stop(&adapter->tx_fifo_timer); em_free_transmit_structures(adapter); em_free_receive_structures(adapter); /* Tell the stack that the interface is no longer active */ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); e1000_reset_hw(&adapter->hw); if (adapter->hw.mac.type >= e1000_82544) E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0); } /********************************************************************* * * Determine hardware revision. * **********************************************************************/ static void em_identify_hardware(struct adapter *adapter) { device_t dev = adapter->dev; /* Make sure our PCI config space has the necessary stuff set */ adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); if ((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) == 0 && (adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN)) { device_printf(dev, "Memory Access and/or Bus Master bits " "were not set!\n"); adapter->hw.bus.pci_cmd_word |= (PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN); pci_write_config(dev, PCIR_COMMAND, adapter->hw.bus.pci_cmd_word, 2); } /* Save off the information about this board */ adapter->hw.vendor_id = pci_get_vendor(dev); adapter->hw.device_id = pci_get_device(dev); adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); adapter->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2); adapter->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2); /* Do Shared Code Init and Setup */ if (e1000_set_mac_type(&adapter->hw)) { device_printf(dev, "Setup init failure\n"); return; } } static int em_allocate_pci_resources(struct adapter *adapter) { device_t dev = adapter->dev; int val, rid; rid = PCIR_BAR(0); adapter->res_memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (adapter->res_memory == NULL) { device_printf(dev, "Unable to allocate bus resource: memory\n"); return (ENXIO); } adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->res_memory); adapter->osdep.mem_bus_space_handle = rman_get_bushandle(adapter->res_memory); adapter->hw.hw_addr = (uint8_t*)&adapter->osdep.mem_bus_space_handle; /* Only older adapters use IO mapping */ if ((adapter->hw.mac.type >= e1000_82543) && /* __rtems__ >82542 -> >= 82543 */ (adapter->hw.mac.type < e1000_82571)) { /* Figure our where our IO BAR is ? */ for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { val = pci_read_config(dev, rid, 4); if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { adapter->io_rid = rid; break; } rid += 4; /* check for 64bit BAR */ if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) rid += 4; } if (rid >= PCIR_CIS) { device_printf(dev, "Unable to locate IO BAR\n"); return (ENXIO); } adapter->res_ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE); if (adapter->res_ioport == NULL) { device_printf(dev, "Unable to allocate bus resource: " "ioport\n"); return (ENXIO); } adapter->hw.io_base = 0; adapter->osdep.io_bus_space_tag = rman_get_bustag(adapter->res_ioport); adapter->osdep.io_bus_space_handle = rman_get_bushandle(adapter->res_ioport); } /* * Setup MSI/X or MSI if PCI Express * only the latest can use MSI/X and * real support for it is forthcoming */ adapter->msi = 0; /* Set defaults */ rid = 0x0; if (adapter->hw.mac.type >= e1000_82575) { /* * Setup MSI/X */ rid = PCIR_BAR(EM_MSIX_BAR); adapter->msix_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (!adapter->msix_mem) { device_printf(dev,"Unable to map MSIX table \n"); return (ENXIO); } /* * Eventually this may be used * for Multiqueue, for now we will * just use one vector. * * val = pci_msix_count(dev); */ val = 1; if ((val) && pci_alloc_msix(dev, &val) == 0) { rid = 1; adapter->msi = 1; } } else if (adapter->hw.mac.type > e1000_82571) { val = pci_msi_count(dev); if (val == 1 && pci_alloc_msi(dev, &val) == 0) { rid = 1; adapter->msi = 1; } } adapter->res_interrupt = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (adapter->res_interrupt == NULL) { device_printf(dev, "Unable to allocate bus resource: " "interrupt\n"); return (ENXIO); } adapter->hw.back = &adapter->osdep; return (0); } /********************************************************************* * * Setup the appropriate Interrupt handlers. * **********************************************************************/ int em_allocate_intr(struct adapter *adapter) { device_t dev = adapter->dev; int error; /* Manually turn off all interrupts */ E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff); #ifdef DEVICE_POLLING /* We do Legacy setup */ if (adapter->int_handler_tag == NULL && (error = bus_setup_intr(dev, adapter->res_interrupt, INTR_TYPE_NET | INTR_MPSAFE, NULL, em_intr, adapter, &adapter->int_handler_tag)) != 0) { device_printf(dev, "Failed to register interrupt handler"); return (error); } #else /* * Try allocating a fast interrupt and the associated deferred * processing contexts. */ TASK_INIT(&adapter->rxtx_task, 0, em_handle_rxtx, adapter); TASK_INIT(&adapter->link_task, 0, em_handle_link, adapter); adapter->tq = taskqueue_create_fast("em_taskq", M_NOWAIT, taskqueue_thread_enqueue, &adapter->tq); taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq", device_get_nameunit(adapter->dev)); if ((error = bus_setup_intr(dev, adapter->res_interrupt, INTR_TYPE_NET, em_intr_fast, NULL, adapter, &adapter->int_handler_tag)) != 0) { device_printf(dev, "Failed to register fast interrupt " "handler: %d\n", error); taskqueue_free(adapter->tq); adapter->tq = NULL; return (error); } #endif em_enable_intr(adapter); return (0); } static void em_free_intr(struct adapter *adapter) { device_t dev = adapter->dev; if (adapter->res_interrupt != NULL) { bus_teardown_intr(dev, adapter->res_interrupt, adapter->int_handler_tag); adapter->int_handler_tag = NULL; } if (adapter->tq != NULL) { taskqueue_drain(adapter->tq, &adapter->rxtx_task); taskqueue_drain(taskqueue_fast, &adapter->link_task); taskqueue_free(adapter->tq); adapter->tq = NULL; } } static void em_free_pci_resources(struct adapter *adapter) { device_t dev = adapter->dev; if (adapter->res_interrupt != NULL) bus_release_resource(dev, SYS_RES_IRQ, adapter->msi ? 1 : 0, adapter->res_interrupt); if (adapter->msix_mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(EM_MSIX_BAR), adapter->msix_mem); if (adapter->msi) pci_release_msi(dev); if (adapter->res_memory != NULL) bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), adapter->res_memory); if (adapter->flash_mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, EM_FLASH, adapter->flash_mem); if (adapter->res_ioport != NULL) bus_release_resource(dev, SYS_RES_IOPORT, adapter->io_rid, adapter->res_ioport); } /********************************************************************* * * Initialize the hardware to a configuration * as specified by the adapter structure. * **********************************************************************/ static int em_hardware_init(struct adapter *adapter) { device_t dev = adapter->dev; uint16_t rx_buffer_size; INIT_DEBUGOUT("em_hardware_init: begin"); /* Issue a global reset */ e1000_reset_hw(&adapter->hw); /* Get control from any management/hw control */ if (((adapter->hw.mac.type == e1000_82573) || (adapter->hw.mac.type == e1000_ich8lan) || (adapter->hw.mac.type == e1000_ich9lan)) && e1000_check_mng_mode(&adapter->hw)) em_get_hw_control(adapter); /* When hardware is reset, fifo_head is also reset */ adapter->tx_fifo_head = 0; /* Set up smart power down as default off on newer adapters. */ if (!em_smart_pwr_down && (adapter->hw.mac.type == e1000_82571 || adapter->hw.mac.type == e1000_82572)) { uint16_t phy_tmp = 0; /* Speed up time to link by disabling smart power down. */ e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp); phy_tmp &= ~IGP02E1000_PM_SPD; e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp); } /* * These parameters control the automatic generation (Tx) and * response (Rx) to Ethernet PAUSE frames. * - High water mark should allow for at least two frames to be * received after sending an XOFF. * - Low water mark works best when it is very near the high water mark. * This allows the receiver to restart by sending XON when it has * drained a bit. Here we use an arbitary value of 1500 which will * restart after one full frame is pulled from the buffer. There * could be several smaller frames in the buffer and if so they will * not trigger the XON until their total number reduces the buffer * by 1500. * - The pause time is fairly large at 1000 x 512ns = 512 usec. */ rx_buffer_size = ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10 ); adapter->hw.mac.fc_high_water = rx_buffer_size - roundup2(adapter->hw.mac.max_frame_size, 1024); adapter->hw.mac.fc_low_water = adapter->hw.mac.fc_high_water - 1500; if (adapter->hw.mac.type == e1000_80003es2lan) adapter->hw.mac.fc_pause_time = 0xFFFF; else adapter->hw.mac.fc_pause_time = EM_FC_PAUSE_TIME; adapter->hw.mac.fc_send_xon = TRUE; adapter->hw.mac.fc = e1000_fc_full; if (e1000_init_hw(&adapter->hw) < 0) { device_printf(dev, "Hardware Initialization Failed\n"); return (EIO); } e1000_check_for_link(&adapter->hw); return (0); } /********************************************************************* * * Setup networking device structure and register an interface. * **********************************************************************/ static void em_setup_interface(device_t dev, struct adapter *adapter) { struct ifnet *ifp; INIT_DEBUGOUT("em_setup_interface: begin"); ifp = adapter->ifp = if_alloc(IFT_ETHER); if (ifp == NULL) panic("%s: can not if_alloc()", device_get_nameunit(dev)); if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_mtu = ETHERMTU; ifp->if_init = em_init; ifp->if_softc = adapter; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = em_ioctl; ifp->if_start = em_start; IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1); ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1; IFQ_SET_READY(&ifp->if_snd); ether_ifattach(ifp, adapter->hw.mac.addr); #ifndef __rtems__ ifp->if_capabilities = ifp->if_capenable = 0; if (adapter->hw.mac.type >= e1000_82543) { ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM; ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM; } /* Identify TSO capable adapters */ if ((adapter->hw.mac.type > e1000_82544) && (adapter->hw.mac.type != e1000_82547)) ifp->if_capabilities |= IFCAP_TSO4; /* * By default only enable on PCI-E, this * can be overriden by ifconfig. */ if (adapter->hw.mac.type >= e1000_82571) ifp->if_capenable |= IFCAP_TSO4; /* * Tell the upper layer(s) we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU; ifp->if_capenable |= IFCAP_VLAN_MTU; #ifdef DEVICE_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif #endif /* * Specify the media types supported by this adapter and register * callbacks to update media and link information */ ifmedia_init(&adapter->media, IFM_IMASK, em_media_change, em_media_status); if ((adapter->hw.media_type == e1000_media_type_fiber) || (adapter->hw.media_type == e1000_media_type_internal_serdes)) { u_char fiber_type = IFM_1000_SX; /* default type */ if (adapter->hw.mac.type == e1000_82545) fiber_type = IFM_1000_LX; ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL); ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL); } else { ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL); ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL); ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); if (adapter->hw.phy.type != e1000_phy_ife) { ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL); } } ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO); } /********************************************************************* * * Workaround for SmartSpeed on 82541 and 82547 controllers * **********************************************************************/ static void em_smartspeed(struct adapter *adapter) { uint16_t phy_tmp; if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) || adapter->hw.mac.autoneg == 0 || (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0) return; if (adapter->smartspeed == 0) { /* If Master/Slave config fault is asserted twice, * we assume back-to-back */ e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) return; e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp); if(phy_tmp & CR_1000T_MS_ENABLE) { phy_tmp &= ~CR_1000T_MS_ENABLE; e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp); adapter->smartspeed++; if(adapter->hw.mac.autoneg && !e1000_phy_setup_autoneg(&adapter->hw) && !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) { phy_tmp |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp); } } } return; } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { /* If still no link, perhaps using 2/3 pair cable */ e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp); phy_tmp |= CR_1000T_MS_ENABLE; e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp); if(adapter->hw.mac.autoneg && !e1000_phy_setup_autoneg(&adapter->hw) && !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) { phy_tmp |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp); } } /* Restart process after EM_SMARTSPEED_MAX iterations */ if(adapter->smartspeed++ == EM_SMARTSPEED_MAX) adapter->smartspeed = 0; } /* * Manage DMA'able memory. */ static void em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error) return; *(bus_addr_t *) arg = segs[0].ds_addr; } static int em_dma_malloc(struct adapter *adapter, bus_size_t size, struct em_dma_alloc *dma, int mapflags) { int error; error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */ EM_DBA_ALIGN, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ size, /* maxsize */ 1, /* nsegments */ size, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &dma->dma_tag); if (error) { device_printf(adapter->dev, "%s: bus_dma_tag_create failed: %d\n", __func__, error); goto fail_0; } error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr, BUS_DMA_NOWAIT, &dma->dma_map); if (error) { device_printf(adapter->dev, "%s: bus_dmamem_alloc(%ju) failed: %d\n", __func__, (uintmax_t)size, error); goto fail_2; } dma->dma_paddr = 0; error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size, em_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT); if (error || dma->dma_paddr == 0) { device_printf(adapter->dev, "%s: bus_dmamap_load failed: %d\n", __func__, error); goto fail_3; } return (0); fail_3: bus_dmamap_unload(dma->dma_tag, dma->dma_map); fail_2: bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); bus_dma_tag_destroy(dma->dma_tag); fail_0: dma->dma_map = NULL; dma->dma_tag = NULL; return (error); } static void em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma) { if (dma->dma_tag == NULL) return; if (dma->dma_map != NULL) { bus_dmamap_sync(dma->dma_tag, dma->dma_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->dma_tag, dma->dma_map); bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); dma->dma_map = NULL; } bus_dma_tag_destroy(dma->dma_tag); dma->dma_tag = NULL; } /********************************************************************* * * Allocate memory for tx_buffer structures. The tx_buffer stores all * the information needed to transmit a packet on the wire. * **********************************************************************/ #ifdef __rtems__ #define M_ZERO 0 #endif static int em_allocate_transmit_structures(struct adapter *adapter) { device_t dev = adapter->dev; adapter->tx_buffer_area = malloc(sizeof(struct em_buffer) * adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO); if (adapter->tx_buffer_area == NULL) { device_printf(dev, "Unable to allocate tx_buffer memory\n"); return (ENOMEM); } bzero(adapter->tx_buffer_area, (sizeof(struct em_buffer)) * adapter->num_tx_desc); return (0); } /********************************************************************* * * Initialize transmit structures. * **********************************************************************/ static int em_setup_transmit_structures(struct adapter *adapter) { device_t dev = adapter->dev; struct em_buffer *tx_buffer; int error, i; /* * Create DMA tags for tx descriptors */ if ((error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ EM_TSO_SIZE, /* maxsize */ EM_MAX_SCATTER, /* nsegments */ EM_TSO_SEG_SIZE, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &adapter->txtag)) != 0) { device_printf(dev, "Unable to allocate TX DMA tag\n"); goto fail; } if ((error = em_allocate_transmit_structures(adapter)) != 0) goto fail; /* Clear the old ring contents */ bzero(adapter->tx_desc_base, (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc); /* Create the descriptor buffer dma maps */ tx_buffer = adapter->tx_buffer_area; for (i = 0; i < adapter->num_tx_desc; i++) { error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map); if (error != 0) { device_printf(dev, "Unable to create TX DMA map\n"); goto fail; } tx_buffer->next_eop = -1; tx_buffer++; } adapter->next_avail_tx_desc = 0; adapter->next_tx_to_clean = 0; /* Set number of descriptors available */ adapter->num_tx_desc_avail = adapter->num_tx_desc; bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); fail: em_free_transmit_structures(adapter); return (error); } /********************************************************************* * * Enable transmit unit. * **********************************************************************/ static void em_initialize_transmit_unit(struct adapter *adapter) { uint32_t tctl, tarc, tipg = 0; uint64_t bus_addr; INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); /* Setup the Base and Length of the Tx Descriptor Ring */ bus_addr = adapter->txdma.dma_paddr; E1000_WRITE_REG(&adapter->hw, E1000_TDLEN, adapter->num_tx_desc * sizeof(struct e1000_tx_desc)); E1000_WRITE_REG(&adapter->hw, E1000_TDBAH, (uint32_t)(bus_addr >> 32)); E1000_WRITE_REG(&adapter->hw, E1000_TDBAL, (uint32_t)bus_addr); /* Setup the HW Tx Head and Tail descriptor pointers */ E1000_WRITE_REG(&adapter->hw, E1000_TDT, 0); E1000_WRITE_REG(&adapter->hw, E1000_TDH, 0); HW_DEBUGOUT2("Base = %x, Length = %x\n", E1000_READ_REG(&adapter->hw, E1000_TDBAL), E1000_READ_REG(&adapter->hw, E1000_TDLEN)); /* Set the default values for the Tx Inter Packet Gap timer */ switch (adapter->hw.mac.type) { #if !defined(NO_82542_SUPPORT) /* __rtems__ */ case e1000_82542: tipg = DEFAULT_82542_TIPG_IPGT; tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; break; #endif case e1000_80003es2lan: tipg = DEFAULT_82543_TIPG_IPGR1; tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; break; default: if ((adapter->hw.media_type == e1000_media_type_fiber) || (adapter->hw.media_type == e1000_media_type_internal_serdes)) tipg = DEFAULT_82543_TIPG_IPGT_FIBER; else tipg = DEFAULT_82543_TIPG_IPGT_COPPER; tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; } E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg); E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value); if(adapter->hw.mac.type >= e1000_82540) E1000_WRITE_REG(&adapter->hw, E1000_TADV, adapter->tx_abs_int_delay.value); if ((adapter->hw.mac.type == e1000_82571) || (adapter->hw.mac.type == e1000_82572)) { tarc = E1000_READ_REG(&adapter->hw, E1000_TARC0); tarc |= SPEED_MODE_BIT; E1000_WRITE_REG(&adapter->hw, E1000_TARC0, tarc); } else if (adapter->hw.mac.type == e1000_80003es2lan) { tarc = E1000_READ_REG(&adapter->hw, E1000_TARC0); tarc |= 1; E1000_WRITE_REG(&adapter->hw, E1000_TARC0, tarc); tarc = E1000_READ_REG(&adapter->hw, E1000_TARC1); tarc |= 1; E1000_WRITE_REG(&adapter->hw, E1000_TARC1, tarc); } /* Program the Transmit Control Register */ tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL); tctl &= ~E1000_TCTL_CT; tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); if (adapter->hw.mac.type >= e1000_82571) tctl |= E1000_TCTL_MULR; /* This write will effectively turn on the transmit unit. */ E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl); /* Setup Transmit Descriptor Base Settings */ adapter->txd_cmd = E1000_TXD_CMD_IFCS; if ((adapter->tx_int_delay.value > 0) && (adapter->hw.mac.type != e1000_82575)) adapter->txd_cmd |= E1000_TXD_CMD_IDE; /* Set the function pointer for the transmit routine */ if (adapter->hw.mac.type >= e1000_82575) adapter->em_xmit = em_adv_encap; else adapter->em_xmit = em_encap; } /********************************************************************* * * Free all transmit related data structures. * **********************************************************************/ static void em_free_transmit_structures(struct adapter *adapter) { struct em_buffer *tx_buffer; int i; INIT_DEBUGOUT("free_transmit_structures: begin"); if (adapter->tx_buffer_area != NULL) { tx_buffer = adapter->tx_buffer_area; for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) { if (tx_buffer->m_head != NULL) { bus_dmamap_sync(adapter->txtag, tx_buffer->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(adapter->txtag, tx_buffer->map); m_freem(tx_buffer->m_head); tx_buffer->m_head = NULL; } else if (tx_buffer->map != NULL) bus_dmamap_unload(adapter->txtag, tx_buffer->map); if (tx_buffer->map != NULL) { bus_dmamap_destroy(adapter->txtag, tx_buffer->map); tx_buffer->map = NULL; } } } if (adapter->tx_buffer_area != NULL) { free(adapter->tx_buffer_area, M_DEVBUF); adapter->tx_buffer_area = NULL; } if (adapter->txtag != NULL) { bus_dma_tag_destroy(adapter->txtag); adapter->txtag = NULL; } } #ifndef __rtems__ /********************************************************************* * * The offload context needs to be set when we transfer the first * packet of a particular protocol (TCP/UDP). This routine has been * enhanced to deal with inserted VLAN headers, and IPV6 (not complete) * **********************************************************************/ static void em_transmit_checksum_setup(struct adapter *adapter, struct mbuf *mp, uint32_t *txd_upper, uint32_t *txd_lower) { struct e1000_context_desc *TXD; struct em_buffer *tx_buffer; struct ether_vlan_header *eh; struct ip *ip; struct ip6_hdr *ip6; struct tcp_hdr *th; int curr_txd, ehdrlen, hdr_len, ip_hlen; uint32_t cmd = 0; uint16_t etype; uint8_t ipproto; /* Setup checksum offload context. */ curr_txd = adapter->next_avail_tx_desc; tx_buffer = &adapter->tx_buffer_area[curr_txd]; TXD = (struct e1000_context_desc *) &adapter->tx_desc_base[curr_txd]; *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */ E1000_TXD_DTYP_D; /* Data descr */ /* * Determine where frame payload starts. * Jump over vlan headers if already present, * helpful for QinQ too. */ eh = mtod(mp, struct ether_vlan_header *); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { etype = ntohs(eh->evl_proto); ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; } else { etype = ntohs(eh->evl_encap_proto); ehdrlen = ETHER_HDR_LEN; } /* * We only support TCP/UDP for IPv4 and IPv6 for the moment. * TODO: Support SCTP too when it hits the tree. */ switch (etype) { case ETHERTYPE_IP: ip = (struct ip *)(mp->m_data + ehdrlen); ip_hlen = ip->ip_hl << 2; /* Setup of IP header checksum. */ if (mp->m_pkthdr.csum_flags & CSUM_IP) { /* * Start offset for header checksum calculation. * End offset for header checksum calculation. * Offset of place to put the checksum. */ TXD->lower_setup.ip_fields.ipcss = ehdrlen; TXD->lower_setup.ip_fields.ipcse = htole16(ehdrlen + ip_hlen); TXD->lower_setup.ip_fields.ipcso = ehdrlen + offsetof(struct ip, ip_sum); cmd |= E1000_TXD_CMD_IP; *txd_upper |= E1000_TXD_POPTS_IXSM << 8; } if (mp->m_len < ehdrlen + ip_hlen) return; /* failure */ hdr_len = ehdrlen + ip_hlen; ipproto = ip->ip_p; break; case ETHERTYPE_IPV6: ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen); ip_hlen = sizeof(struct ip6_hdr); /* XXX: No header stacking. */ if (mp->m_len < ehdrlen + ip_hlen) return; /* failure */ /* IPv6 doesn't have a header checksum. */ hdr_len = ehdrlen + ip_hlen; ipproto = ip6->ip6_nxt; break; default: *txd_upper = 0; *txd_lower = 0; return; } switch (ipproto) { case IPPROTO_TCP: if (mp->m_pkthdr.csum_flags & CSUM_TCP) { /* * Start offset for payload checksum calculation. * End offset for payload checksum calculation. * Offset of place to put the checksum. */ th = (struct tcp_hdr *)(mp->m_data + hdr_len); TXD->upper_setup.tcp_fields.tucss = hdr_len; TXD->upper_setup.tcp_fields.tucse = htole16(0); TXD->upper_setup.tcp_fields.tucso = hdr_len + offsetof(struct tcphdr, th_sum); cmd |= E1000_TXD_CMD_TCP; *txd_upper |= E1000_TXD_POPTS_TXSM << 8; } break; case IPPROTO_UDP: if (mp->m_pkthdr.csum_flags & CSUM_UDP) { /* * Start offset for header checksum calculation. * End offset for header checksum calculation. * Offset of place to put the checksum. */ TXD->upper_setup.tcp_fields.tucss = hdr_len; TXD->upper_setup.tcp_fields.tucse = htole16(0); TXD->upper_setup.tcp_fields.tucso = hdr_len + offsetof(struct udphdr, uh_sum); *txd_upper |= E1000_TXD_POPTS_TXSM << 8; } break; default: break; } TXD->tcp_seg_setup.data = htole32(0); TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT | cmd); tx_buffer->m_head = NULL; tx_buffer->next_eop = -1; if (++curr_txd == adapter->num_tx_desc) curr_txd = 0; adapter->num_tx_desc_avail--; adapter->next_avail_tx_desc = curr_txd; } /********************************************************************** * * Setup work for hardware segmentation offload (TSO) * **********************************************************************/ static boolean_t em_tso_setup(struct adapter *adapter, struct mbuf *mp, uint32_t *txd_upper, uint32_t *txd_lower) { struct e1000_context_desc *TXD; struct em_buffer *tx_buffer; struct ether_vlan_header *eh; struct ip *ip; struct ip6_hdr *ip6; struct tcphdr *th; int curr_txd, ehdrlen, hdr_len, ip_hlen, isip6; uint16_t etype; /* * XXX: This is not really correct as the stack would not have * set up all checksums. * XXX: Return FALSE is not sufficient as we may have to return * in true failure cases as well. Should do -1 (failure), 0 (no) * and 1 (success). */ if (((mp->m_pkthdr.csum_flags & CSUM_TSO) == 0) || (mp->m_pkthdr.len <= EM_TX_BUFFER_SIZE)) return FALSE; /* * This function could/should be extended to support IP/IPv6 * fragmentation as well. But as they say, one step at a time. */ /* * Determine where frame payload starts. * Jump over vlan headers if already present, * helpful for QinQ too. */ eh = mtod(mp, struct ether_vlan_header *); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { etype = ntohs(eh->evl_proto); ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; } else { etype = ntohs(eh->evl_encap_proto); ehdrlen = ETHER_HDR_LEN; } /* Ensure we have at least the IP+TCP header in the first mbuf. */ if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr)) return FALSE; /* -1 */ /* * We only support TCP for IPv4 and IPv6 (notyet) for the moment. * TODO: Support SCTP too when it hits the tree. */ switch (etype) { case ETHERTYPE_IP: isip6 = 0; ip = (struct ip *)(mp->m_data + ehdrlen); if (ip->ip_p != IPPROTO_TCP) return FALSE; /* 0 */ ip->ip_len = 0; ip->ip_sum = 0; ip_hlen = ip->ip_hl << 2; if (mp->m_len < ehdrlen + ip_hlen + sizeof(struct tcphdr)) return FALSE; /* -1 */ th = (struct tcphdr *)((caddr_t)ip + ip_hlen); #if 1 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); #else th->th_sum = mp->m_pkthdr.csum_data; #endif break; case ETHERTYPE_IPV6: isip6 = 1; return FALSE; /* Not supported yet. */ ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen); if (ip6->ip6_nxt != IPPROTO_TCP) return FALSE; /* 0 */ ip6->ip6_plen = 0; ip_hlen = sizeof(struct ip6_hdr); /* XXX: no header stacking. */ if (mp->m_len < ehdrlen + ip_hlen + sizeof(struct tcphdr)) return FALSE; /* -1 */ th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen); #if 0 th->th_sum = in6_pseudo(ip6->ip6_src, ip->ip6_dst, htons(IPPROTO_TCP)); /* XXX: function notyet. */ #else th->th_sum = mp->m_pkthdr.csum_data; #endif break; default: return FALSE; } hdr_len = ehdrlen + ip_hlen + (th->th_off << 2); *txd_lower = (E1000_TXD_CMD_DEXT | /* Extended descr type */ E1000_TXD_DTYP_D | /* Data descr type */ E1000_TXD_CMD_TSE); /* Do TSE on this packet */ /* IP and/or TCP header checksum calculation and insertion. */ *txd_upper = ((isip6 ? 0 : E1000_TXD_POPTS_IXSM) | E1000_TXD_POPTS_TXSM) << 8; curr_txd = adapter->next_avail_tx_desc; tx_buffer = &adapter->tx_buffer_area[curr_txd]; TXD = (struct e1000_context_desc *) &adapter->tx_desc_base[curr_txd]; /* IPv6 doesn't have a header checksum. */ if (!isip6) { /* * Start offset for header checksum calculation. * End offset for header checksum calculation. * Offset of place put the checksum. */ TXD->lower_setup.ip_fields.ipcss = ehdrlen; TXD->lower_setup.ip_fields.ipcse = htole16(ehdrlen + ip_hlen - 1); TXD->lower_setup.ip_fields.ipcso = ehdrlen + offsetof(struct ip, ip_sum); } /* * Start offset for payload checksum calculation. * End offset for payload checksum calculation. * Offset of place to put the checksum. */ TXD->upper_setup.tcp_fields.tucss = ehdrlen + ip_hlen; TXD->upper_setup.tcp_fields.tucse = 0; TXD->upper_setup.tcp_fields.tucso = ehdrlen + ip_hlen + offsetof(struct tcphdr, th_sum); /* * Payload size per packet w/o any headers. * Length of all headers up to payload. */ TXD->tcp_seg_setup.fields.mss = htole16(mp->m_pkthdr.tso_segsz); TXD->tcp_seg_setup.fields.hdr_len = hdr_len; TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT | /* Extended descr */ E1000_TXD_CMD_TSE | /* TSE context */ (isip6 ? 0 : E1000_TXD_CMD_IP) | /* Do IP csum */ E1000_TXD_CMD_TCP | /* Do TCP checksum */ (mp->m_pkthdr.len - (hdr_len))); /* Total len */ tx_buffer->m_head = NULL; tx_buffer->next_eop = -1; if (++curr_txd == adapter->num_tx_desc) curr_txd = 0; adapter->num_tx_desc_avail--; adapter->next_avail_tx_desc = curr_txd; adapter->tx_tso = TRUE; return TRUE; } /********************************************************************** * * Setup work for hardware segmentation offload (TSO) on * adapters using advanced tx descriptors * **********************************************************************/ static boolean_t em_tso_adv_setup(struct adapter *adapter, struct mbuf *mp, u32 *paylen) { struct e1000_adv_tx_context_desc *TXD; struct em_buffer *tx_buffer; u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0; u32 mss_l4len_idx = 0; u16 vtag = 0; int ctxd, ehdrlen, hdrlen, ip_hlen, tcp_hlen; struct ether_vlan_header *eh; struct ip *ip; struct tcphdr *th; if (((mp->m_pkthdr.csum_flags & CSUM_TSO) == 0) || (mp->m_pkthdr.len <= EM_TX_BUFFER_SIZE)) return FALSE; /* * Determine where frame payload starts. * Jump over vlan headers if already present */ eh = mtod(mp, struct ether_vlan_header *); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; else ehdrlen = ETHER_HDR_LEN; /* Ensure we have at least the IP+TCP header in the first mbuf. */ if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr)) return FALSE; /* Only supports IPV4 for now */ ctxd = adapter->next_avail_tx_desc; tx_buffer = &adapter->tx_buffer_area[ctxd]; TXD = (struct e1000_adv_tx_context_desc *) &adapter->tx_desc_base[ctxd]; ip = (struct ip *)(mp->m_data + ehdrlen); if (ip->ip_p != IPPROTO_TCP) return FALSE; /* 0 */ ip->ip_len = 0; ip->ip_sum = 0; ip_hlen = ip->ip_hl << 2; th = (struct tcphdr *)((caddr_t)ip + ip_hlen); th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); tcp_hlen = th->th_off << 2; hdrlen = ehdrlen + ip_hlen + tcp_hlen; /* Calculate payload, this is used in the transmit desc in encap */ *paylen = mp->m_pkthdr.len - hdrlen; #ifndef __rtems__ /* VLAN MACLEN IPLEN */ if (mp->m_flags & M_VLANTAG) { vtag = htole16(mp->m_pkthdr.ether_vtag); vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT); } #endif vlan_macip_lens |= (ehdrlen << E1000_ADVTXD_MACLEN_SHIFT); vlan_macip_lens |= ip_hlen; TXD->vlan_macip_lens |= htole32(vlan_macip_lens); /* ADV DTYPE TUCMD */ type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT; type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP; type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4; TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl); /* MSS L4LEN IDX */ mss_l4len_idx |= (mp->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT); mss_l4len_idx |= (tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT); TXD->mss_l4len_idx = htole32(mss_l4len_idx); TXD->seqnum_seed = htole32(0); tx_buffer->m_head = NULL; tx_buffer->next_eop = -1; if (++ctxd == adapter->num_tx_desc) ctxd = 0; adapter->num_tx_desc_avail--; adapter->next_avail_tx_desc = ctxd; return TRUE; } /********************************************************************* * * Advanced Context Descriptor setup for VLAN or CSUM * **********************************************************************/ static boolean_t em_tx_adv_ctx_setup(struct adapter *adapter, struct mbuf *mp) { struct e1000_adv_tx_context_desc *TXD; struct em_buffer *tx_buffer; uint32_t vlan_macip_lens = 0, type_tucmd_mlhl = 0; struct ether_vlan_header *eh; struct ip *ip; struct ip6_hdr *ip6; int ehdrlen, ip_hlen; u16 etype; u8 ipproto; int ctxd = adapter->next_avail_tx_desc; u16 vtag = 0; tx_buffer = &adapter->tx_buffer_area[ctxd]; TXD = (struct e1000_adv_tx_context_desc *) &adapter->tx_desc_base[ctxd]; /* ** In advanced descriptors the vlan tag must ** be placed into the descriptor itself. */ if (mp->m_flags & M_VLANTAG) { vtag = htole16(mp->m_pkthdr.ether_vtag); vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT); } /* * Determine where frame payload starts. * Jump over vlan headers if already present, * helpful for QinQ too. */ eh = mtod(mp, struct ether_vlan_header *); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { etype = ntohs(eh->evl_proto); ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; } else { etype = ntohs(eh->evl_encap_proto); ehdrlen = ETHER_HDR_LEN; } /* Set the ether header length */ vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT; switch (etype) { case ETHERTYPE_IP: ip = (struct ip *)(mp->m_data + ehdrlen); ip_hlen = ip->ip_hl << 2; if (mp->m_len < ehdrlen + ip_hlen) return FALSE; /* failure */ ipproto = ip->ip_p; type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4; break; case ETHERTYPE_IPV6: ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen); ip_hlen = sizeof(struct ip6_hdr); if (mp->m_len < ehdrlen + ip_hlen) return FALSE; /* failure */ ipproto = ip6->ip6_nxt; type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6; break; default: return FALSE; } vlan_macip_lens |= ip_hlen; type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT; switch (ipproto) { case IPPROTO_TCP: if (mp->m_pkthdr.csum_flags & CSUM_TCP) type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP; break; case IPPROTO_UDP: if (mp->m_pkthdr.csum_flags & CSUM_UDP) type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP; break; } /* Now copy bits into descriptor */ TXD->vlan_macip_lens |= htole32(vlan_macip_lens); TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl); TXD->seqnum_seed = htole32(0); TXD->mss_l4len_idx = htole32(0); tx_buffer->m_head = NULL; tx_buffer->next_eop = -1; /* We've consumed the first desc, adjust counters */ if (++ctxd == adapter->num_tx_desc) ctxd = 0; adapter->next_avail_tx_desc = ctxd; --adapter->num_tx_desc_avail; return TRUE; } #endif /********************************************************************** * * Examine each tx_buffer in the used queue. If the hardware is done * processing the packet then free associated resources. The * tx_buffer is put back on the free queue. * **********************************************************************/ static void em_txeof(struct adapter *adapter) { int first, last, done, num_avail; struct em_buffer *tx_buffer; struct e1000_tx_desc *tx_desc, *eop_desc; struct ifnet *ifp = adapter->ifp; EM_LOCK_ASSERT(adapter); if (adapter->num_tx_desc_avail == adapter->num_tx_desc) return; num_avail = adapter->num_tx_desc_avail; first = adapter->next_tx_to_clean; tx_desc = &adapter->tx_desc_base[first]; tx_buffer = &adapter->tx_buffer_area[first]; last = tx_buffer->next_eop; eop_desc = &adapter->tx_desc_base[last]; /* * What this does is get the index of the * first descriptor AFTER the EOP of the * first packet, that way we can do the * simple comparison on the inner while loop. */ if (++last == adapter->num_tx_desc) last = 0; done = last; bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map, BUS_DMASYNC_POSTREAD); while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) { /* We clean the range of the packet */ while (first != done) { tx_desc->upper.data = 0; tx_desc->lower.data = 0; tx_desc->buffer_addr = 0; num_avail++; if (tx_buffer->m_head) { ifp->if_opackets++; bus_dmamap_sync(adapter->txtag, tx_buffer->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(adapter->txtag, tx_buffer->map); m_freem(tx_buffer->m_head); tx_buffer->m_head = NULL; } tx_buffer->next_eop = -1; if (++first == adapter->num_tx_desc) first = 0; tx_buffer = &adapter->tx_buffer_area[first]; tx_desc = &adapter->tx_desc_base[first]; } /* See if we can continue to the next packet */ last = tx_buffer->next_eop; if (last != -1) { eop_desc = &adapter->tx_desc_base[last]; /* Get new done point */ if (++last == adapter->num_tx_desc) last = 0; done = last; } else break; } bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); adapter->next_tx_to_clean = first; /* * If we have enough room, clear IFF_DRV_OACTIVE to tell the stack * that it is OK to send packets. * If there are no pending descriptors, clear the timeout. Otherwise, * if some descriptors have been freed, restart the timeout. */ if (num_avail > EM_TX_CLEANUP_THRESHOLD) { ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* All clean, turn off the timer */ if (num_avail == adapter->num_tx_desc) adapter->watchdog_timer = 0; /* Some cleaned, reset the timer */ else if (num_avail != adapter->num_tx_desc_avail) adapter->watchdog_timer = EM_TX_TIMEOUT; } adapter->num_tx_desc_avail = num_avail; return; } /********************************************************************* * * Get a buffer from system mbuf buffer pool. * **********************************************************************/ static int em_get_buf(struct adapter *adapter, int i) { struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; struct em_buffer *rx_buffer; int error, nsegs; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { adapter->mbuf_cluster_failed++; return (ENOBUFS); } m->m_len = m->m_pkthdr.len = MCLBYTES; if (adapter->hw.mac.max_frame_size <= (MCLBYTES - ETHER_ALIGN)) m_adj(m, ETHER_ALIGN); /* * Using memory from the mbuf cluster pool, invoke the * bus_dma machinery to arrange the memory mapping. */ error = bus_dmamap_load_mbuf_sg(adapter->rxtag, adapter->rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { m_free(m); return (error); } /* If nsegs is wrong then the stack is corrupt. */ KASSERT(nsegs == 1, ("Too many segments returned!")); rx_buffer = &adapter->rx_buffer_area[i]; if (rx_buffer->m_head != NULL) bus_dmamap_unload(adapter->rxtag, rx_buffer->map); map = rx_buffer->map; rx_buffer->map = adapter->rx_sparemap; adapter->rx_sparemap = map; bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD); rx_buffer->m_head = m; adapter->rx_desc_base[i].buffer_addr = htole64(segs[0].ds_addr); return (0); } /********************************************************************* * * Allocate memory for rx_buffer structures. Since we use one * rx_buffer per received packet, the maximum number of rx_buffer's * that we'll need is equal to the number of receive descriptors * that we've allocated. * **********************************************************************/ static int em_allocate_receive_structures(struct adapter *adapter) { device_t dev = adapter->dev; struct em_buffer *rx_buffer; int i, error; adapter->rx_buffer_area = malloc(sizeof(struct em_buffer) * adapter->num_rx_desc, M_DEVBUF, M_NOWAIT); if (adapter->rx_buffer_area == NULL) { device_printf(dev, "Unable to allocate rx_buffer memory\n"); return (ENOMEM); } bzero(adapter->rx_buffer_area, sizeof(struct em_buffer) * adapter->num_rx_desc); error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &adapter->rxtag); if (error) { device_printf(dev, "%s: bus_dma_tag_create failed %d\n", __func__, error); goto fail; } /* Create the spare map (used by getbuf) */ error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT, &adapter->rx_sparemap); if (error) { device_printf(dev, "%s: bus_dmamap_create failed: %d\n", __func__, error); goto fail; } rx_buffer = adapter->rx_buffer_area; for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) { error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT, &rx_buffer->map); if (error) { device_printf(dev, "%s: bus_dmamap_create failed: %d\n", __func__, error); goto fail; } } /* Setup the initial buffers */ for (i = 0; i < adapter->num_rx_desc; i++) { error = em_get_buf(adapter, i); if (error) goto fail; } bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); fail: em_free_receive_structures(adapter); return (error); } /********************************************************************* * * Allocate and initialize receive structures. * **********************************************************************/ static int em_setup_receive_structures(struct adapter *adapter) { int error; bzero(adapter->rx_desc_base, (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc); if ((error = em_allocate_receive_structures(adapter)) !=0) return (error); /* Setup our descriptor pointers */ adapter->next_rx_desc_to_check = 0; return (0); } /********************************************************************* * * Enable receive unit. * **********************************************************************/ static void em_initialize_receive_unit(struct adapter *adapter) { struct ifnet *ifp = adapter->ifp; uint64_t bus_addr; uint32_t reg_rctl; #ifndef __rtems__ uint32_t reg_rxcsum; #endif INIT_DEBUGOUT("em_initialize_receive_unit: begin"); /* * Make sure receives are disabled while setting * up the descriptor ring */ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl & ~E1000_RCTL_EN); if(adapter->hw.mac.type >= e1000_82540) { E1000_WRITE_REG(&adapter->hw, E1000_RADV, adapter->rx_abs_int_delay.value); /* * Set the interrupt throttling rate. Value is calculated * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ #define MAX_INTS_PER_SEC 8000 #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) E1000_WRITE_REG(&adapter->hw, E1000_ITR, DEFAULT_ITR); } /* Setup the Base and Length of the Rx Descriptor Ring */ bus_addr = adapter->rxdma.dma_paddr; E1000_WRITE_REG(&adapter->hw, E1000_RDLEN, adapter->num_rx_desc * sizeof(struct e1000_rx_desc)); E1000_WRITE_REG(&adapter->hw, E1000_RDBAH, (uint32_t)(bus_addr >> 32)); E1000_WRITE_REG(&adapter->hw, E1000_RDBAL, (uint32_t)bus_addr); /* Setup the Receive Control Register */ reg_rctl &= ~(3 << E1000_RCTL_MO_SHIFT); reg_rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); if (e1000_tbi_sbp_enabled_82543(&adapter->hw)) reg_rctl |= E1000_RCTL_SBP; else reg_rctl &= ~E1000_RCTL_SBP; switch (adapter->rx_buffer_len) { default: case 2048: reg_rctl |= E1000_RCTL_SZ_2048; break; case 4096: reg_rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE; break; case 8192: reg_rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE; break; case 16384: reg_rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE; break; } if (ifp->if_mtu > ETHERMTU) reg_rctl |= E1000_RCTL_LPE; else reg_rctl &= ~E1000_RCTL_LPE; #ifndef __rtems__ /* Enable 82543 Receive Checksum Offload for TCP and UDP */ if ((adapter->hw.mac.type >= e1000_82543) && (ifp->if_capenable & IFCAP_RXCSUM)) { reg_rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM); reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, reg_rxcsum); } #endif /* ** XXX TEMPORARY WORKAROUND: on some systems with 82573 ** long latencies are observed, like Lenovo X60. This ** change eliminates the problem, but since having positive ** values in RDTR is a known source of problems on other ** platforms another solution is being sought. */ if (adapter->hw.mac.type == e1000_82573) E1000_WRITE_REG(&adapter->hw, E1000_RDTR, 0x20); /* Enable Receives */ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); /* * Setup the HW Rx Head and * Tail Descriptor Pointers */ E1000_WRITE_REG(&adapter->hw, E1000_RDH, 0); E1000_WRITE_REG(&adapter->hw, E1000_RDT, adapter->num_rx_desc - 1); return; } /********************************************************************* * * Free receive related data structures. * **********************************************************************/ static void em_free_receive_structures(struct adapter *adapter) { struct em_buffer *rx_buffer; int i; INIT_DEBUGOUT("free_receive_structures: begin"); if (adapter->rx_sparemap) { bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap); adapter->rx_sparemap = NULL; } /* Cleanup any existing buffers */ if (adapter->rx_buffer_area != NULL) { rx_buffer = adapter->rx_buffer_area; for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) { if (rx_buffer->m_head != NULL) { bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(adapter->rxtag, rx_buffer->map); m_freem(rx_buffer->m_head); rx_buffer->m_head = NULL; } else if (rx_buffer->map != NULL) bus_dmamap_unload(adapter->rxtag, rx_buffer->map); if (rx_buffer->map != NULL) { bus_dmamap_destroy(adapter->rxtag, rx_buffer->map); rx_buffer->map = NULL; } } } if (adapter->rx_buffer_area != NULL) { free(adapter->rx_buffer_area, M_DEVBUF); adapter->rx_buffer_area = NULL; } if (adapter->rxtag != NULL) { bus_dma_tag_destroy(adapter->rxtag); adapter->rxtag = NULL; } } /********************************************************************* * * This routine executes in interrupt context. It replenishes * the mbufs in the descriptor and sends data which has been * dma'ed into host memory to upper layer. * * We loop at most count times if count is > 0, or until done if * count < 0. * *********************************************************************/ static int em_rxeof(struct adapter *adapter, int count) { struct ifnet *ifp; struct mbuf *mp; uint8_t accept_frame = 0; uint8_t eop = 0; uint16_t len, desc_len, prev_len_adj; int i; /* Pointer to the receive descriptor being examined. */ struct e1000_rx_desc *current_desc; uint8_t status; ifp = adapter->ifp; i = adapter->next_rx_desc_to_check; current_desc = &adapter->rx_desc_base[i]; bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map, BUS_DMASYNC_POSTREAD); if (!((current_desc->status) & E1000_RXD_STAT_DD)) return (0); while ((current_desc->status & E1000_RXD_STAT_DD) && (count != 0) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { struct mbuf *m = NULL; mp = adapter->rx_buffer_area[i].m_head; /* * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT * needs to access the last received byte in the mbuf. */ bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map, BUS_DMASYNC_POSTREAD); accept_frame = 1; prev_len_adj = 0; desc_len = le16toh(current_desc->length); status = current_desc->status; if (status & E1000_RXD_STAT_EOP) { count--; eop = 1; if (desc_len < ETHER_CRC_LEN) { len = 0; prev_len_adj = ETHER_CRC_LEN - desc_len; } else len = desc_len - ETHER_CRC_LEN; } else { eop = 0; len = desc_len; } if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { uint8_t last_byte; uint32_t pkt_len = desc_len; if (adapter->fmp != NULL) pkt_len += adapter->fmp->m_pkthdr.len; last_byte = *(mtod(mp, caddr_t) + desc_len - 1); if (TBI_ACCEPT(&adapter->hw, status, current_desc->errors, pkt_len, last_byte)) { e1000_tbi_adjust_stats_82543(&adapter->hw, &adapter->stats, pkt_len, adapter->hw.mac.addr); if (len > 0) len--; } else accept_frame = 0; } if (accept_frame) { if (em_get_buf(adapter, i) != 0) { ifp->if_iqdrops++; goto discard; } /* Assign correct length to the current fragment */ mp->m_len = len; if (adapter->fmp == NULL) { mp->m_pkthdr.len = len; adapter->fmp = mp; /* Store the first mbuf */ adapter->lmp = mp; } else { /* Chain mbuf's together */ mp->m_flags &= ~M_PKTHDR; /* * Adjust length of previous mbuf in chain if * we received less than 4 bytes in the last * descriptor. */ if (prev_len_adj > 0) { adapter->lmp->m_len -= prev_len_adj; adapter->fmp->m_pkthdr.len -= prev_len_adj; } adapter->lmp->m_next = mp; adapter->lmp = adapter->lmp->m_next; adapter->fmp->m_pkthdr.len += len; } if (eop) { adapter->fmp->m_pkthdr.rcvif = ifp; ifp->if_ipackets++; #ifndef __rtems__ em_receive_checksum(adapter, current_desc, adapter->fmp); #endif #ifndef __NO_STRICT_ALIGNMENT if (adapter->hw.mac.max_frame_size > (MCLBYTES - ETHER_ALIGN) && em_fixup_rx(adapter) != 0) goto skip; #endif if (status & E1000_RXD_STAT_VP) { #ifndef __rtems__ adapter->fmp->m_pkthdr.ether_vtag = (le16toh(current_desc->special) & E1000_RXD_SPC_VLAN_MASK); adapter->fmp->m_flags |= M_VLANTAG; #else ifp->if_iqdrops++; goto discard; #endif } #ifndef __NO_STRICT_ALIGNMENT skip: #endif m = adapter->fmp; adapter->fmp = NULL; adapter->lmp = NULL; } } else { ifp->if_ierrors++; discard: /* Reuse loaded DMA map and just update mbuf chain */ mp = adapter->rx_buffer_area[i].m_head; mp->m_len = mp->m_pkthdr.len = MCLBYTES; mp->m_data = mp->m_ext.ext_buf; mp->m_next = NULL; if (adapter->hw.mac.max_frame_size <= (MCLBYTES - ETHER_ALIGN)) m_adj(mp, ETHER_ALIGN); if (adapter->fmp != NULL) { m_freem(adapter->fmp); adapter->fmp = NULL; adapter->lmp = NULL; } m = NULL; } /* Zero out the receive descriptors status. */ current_desc->status = 0; bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Advance our pointers to the next descriptor. */ if (++i == adapter->num_rx_desc) i = 0; if (m != NULL) { adapter->next_rx_desc_to_check = i; #ifdef DEVICE_POLLING EM_UNLOCK(adapter); # ifndef __rtems__ (*ifp->if_input)(ifp, m); # else ether_input_skipping(ifp, m); # endif EM_LOCK(adapter); #else /* Already running unlocked */ # ifndef __rtems__ (*ifp->if_input)(ifp, m); # else ether_input_skipping(ifp, m); # endif #endif i = adapter->next_rx_desc_to_check; } current_desc = &adapter->rx_desc_base[i]; } adapter->next_rx_desc_to_check = i; /* Advance the E1000's Receive Queue #0 "Tail Pointer". */ if (--i < 0) i = adapter->num_rx_desc - 1; E1000_WRITE_REG(&adapter->hw, E1000_RDT, i); if (!((current_desc->status) & E1000_RXD_STAT_DD)) return (0); return (1); } #ifndef __NO_STRICT_ALIGNMENT /* * When jumbo frames are enabled we should realign entire payload on * architecures with strict alignment. This is serious design mistake of 8254x * as it nullifies DMA operations. 8254x just allows RX buffer size to be * 2048/4096/8192/16384. What we really want is 2048 - ETHER_ALIGN to align its * payload. On architecures without strict alignment restrictions 8254x still * performs unaligned memory access which would reduce the performance too. * To avoid copying over an entire frame to align, we allocate a new mbuf and * copy ethernet header to the new mbuf. The new mbuf is prepended into the * existing mbuf chain. * * Be aware, best performance of the 8254x is achived only when jumbo frame is * not used at all on architectures with strict alignment. */ static int em_fixup_rx(struct adapter *adapter) { struct mbuf *m, *n; int error; error = 0; m = adapter->fmp; if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) { bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len); m->m_data += ETHER_HDR_LEN; } else { MGETHDR(n, M_DONTWAIT, MT_DATA); if (n != NULL) { bcopy(m->m_data, n->m_data, ETHER_HDR_LEN); m->m_data += ETHER_HDR_LEN; m->m_len -= ETHER_HDR_LEN; n->m_len = ETHER_HDR_LEN; M_MOVE_PKTHDR(n, m); n->m_next = m; adapter->fmp = n; } else { adapter->dropped_pkts++; m_freem(adapter->fmp); adapter->fmp = NULL; error = ENOMEM; } } return (error); } #endif #ifndef __rtems__ /********************************************************************* * * Verify that the hardware indicated that the checksum is valid. * Inform the stack about the status of checksum so that stack * doesn't spend time verifying the checksum. * *********************************************************************/ static void em_receive_checksum(struct adapter *adapter, struct e1000_rx_desc *rx_desc, struct mbuf *mp) { /* 82543 or newer only */ if ((adapter->hw.mac.type < e1000_82543) || /* Ignore Checksum bit is set */ (rx_desc->status & E1000_RXD_STAT_IXSM)) { mp->m_pkthdr.csum_flags = 0; return; } if (rx_desc->status & E1000_RXD_STAT_IPCS) { /* Did it pass? */ if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) { /* IP Checksum Good */ mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED; mp->m_pkthdr.csum_flags |= CSUM_IP_VALID; } else { mp->m_pkthdr.csum_flags = 0; } } if (rx_desc->status & E1000_RXD_STAT_TCPCS) { /* Did it pass? */ if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) { mp->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); mp->m_pkthdr.csum_data = htons(0xffff); } } } static void em_enable_vlans(struct adapter *adapter) { uint32_t ctrl; E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN); ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); ctrl |= E1000_CTRL_VME; E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); } #endif static void em_enable_intr(struct adapter *adapter) { E1000_WRITE_REG(&adapter->hw, E1000_IMS, (IMS_ENABLE_MASK)); } static void em_disable_intr(struct adapter *adapter) { E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff); } /* * Bit of a misnomer, what this really means is * to enable OS management of the system... aka * to disable special hardware management features */ static void em_init_manageability(struct adapter *adapter) { /* A shared code workaround */ #define E1000_82542_MANC2H E1000_MANC2H if (adapter->has_manage) { int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H); int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); /* disable hardware interception of ARP */ manc &= ~(E1000_MANC_ARP_EN); /* enable receiving management packets to the host */ if (adapter->hw.mac.type >= e1000_82571) { manc |= E1000_MANC_EN_MNG2HOST; #define E1000_MNG2HOST_PORT_623 (1 << 5) #define E1000_MNG2HOST_PORT_664 (1 << 6) manc2h |= E1000_MNG2HOST_PORT_623; manc2h |= E1000_MNG2HOST_PORT_664; E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h); } E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); } } /* * Give control back to hardware management * controller if there is one. */ static void em_release_manageability(struct adapter *adapter) { if (adapter->has_manage) { int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); /* re-enable hardware interception of ARP */ manc |= E1000_MANC_ARP_EN; if (adapter->hw.mac.type >= e1000_82571) manc &= ~E1000_MANC_EN_MNG2HOST; E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); } } /* * em_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that * the driver is loaded. For AMT version (only with 82573) * of the f/w this means that the network i/f is open. * */ static void em_get_hw_control(struct adapter *adapter) { u32 ctrl_ext, swsm; /* Let firmware know the driver has taken over */ switch (adapter->hw.mac.type) { case e1000_82573: swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); E1000_WRITE_REG(&adapter->hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD); break; case e1000_82571: case e1000_82572: case e1000_80003es2lan: case e1000_ich8lan: case e1000_ich9lan: ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); break; default: break; } } /* * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that the * driver is no longer loaded. For AMT version (only with 82573) i * of the f/w this means that the network i/f is closed. * */ static void em_release_hw_control(struct adapter *adapter) { u32 ctrl_ext, swsm; /* Let firmware taken over control of h/w */ switch (adapter->hw.mac.type) { case e1000_82573: swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); E1000_WRITE_REG(&adapter->hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD); break; case e1000_82571: case e1000_82572: case e1000_80003es2lan: case e1000_ich8lan: case e1000_ich9lan: ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); break; default: break; } } static int em_is_valid_ether_addr(uint8_t *addr) { char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { return (FALSE); } return (TRUE); } /* * NOTE: the following routines using the e1000 * naming style are provided to the shared * code which expects that rather than 'em' */ void e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) { pci_write_config(((struct e1000_osdep *)hw->back)->dev, reg, *value, 2); } void e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) { *value = pci_read_config(((struct e1000_osdep *)hw->back)->dev, reg, 2); } void e1000_pci_set_mwi(struct e1000_hw *hw) { pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND, (hw->bus.pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2); } void e1000_pci_clear_mwi(struct e1000_hw *hw) { pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND, (hw->bus.pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2); } /* * Read the PCI Express capabilities */ int32_t e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) { int32_t error = E1000_SUCCESS; uint16_t cap_off; switch (hw->mac.type) { case e1000_82571: case e1000_82572: case e1000_82573: case e1000_80003es2lan: cap_off = 0xE0; e1000_read_pci_cfg(hw, cap_off + reg, value); break; default: error = ~E1000_NOT_IMPLEMENTED; break; } return (error); } int32_t e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, uint32_t size) { int32_t error = 0; hw->dev_spec = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); if (hw->dev_spec == NULL) error = ENOMEM; #ifdef __rtems__ /* M_ZERO not implemented :-( */ if ( hw->dev_spec ) memset(hw->dev_spec, 0, size); #endif return (error); } void e1000_free_dev_spec_struct(struct e1000_hw *hw) { if (hw->dev_spec != NULL) free(hw->dev_spec, M_DEVBUF); return; } /* * Enable PCI Wake On Lan capability */ void em_enable_wakeup(device_t dev) { u16 cap, status; u8 id; /* First find the capabilities pointer*/ cap = pci_read_config(dev, PCIR_CAP_PTR, 2); /* Read the PM Capabilities */ id = pci_read_config(dev, cap, 1); if (id != PCIY_PMG) /* Something wrong */ return; /* OK, we have the power capabilities, so now get the status register */ cap += PCIR_POWER_STATUS; status = pci_read_config(dev, cap, 2); status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; pci_write_config(dev, cap, status, 2); return; } /********************************************************************* * 82544 Coexistence issue workaround. * There are 2 issues. * 1. Transmit Hang issue. * To detect this issue, following equation can be used... * SIZE[3:0] + ADDR[2:0] = SUM[3:0]. * If SUM[3:0] is in between 1 to 4, we will have this issue. * * 2. DAC issue. * To detect this issue, following equation can be used... * SIZE[3:0] + ADDR[2:0] = SUM[3:0]. * If SUM[3:0] is in between 9 to c, we will have this issue. * * * WORKAROUND: * Make sure we do not have ending address * as 1,2,3,4(Hang) or 9,a,b,c (DAC) * *************************************************************************/ static uint32_t em_fill_descriptors (bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array) { /* Since issue is sensitive to length and address.*/ /* Let us first check the address...*/ uint32_t safe_terminator; if (length <= 4) { desc_array->descriptor[0].address = address; desc_array->descriptor[0].length = length; desc_array->elements = 1; return (desc_array->elements); } safe_terminator = (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF); /* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */ if (safe_terminator == 0 || (safe_terminator > 4 && safe_terminator < 9) || (safe_terminator > 0xC && safe_terminator <= 0xF)) { desc_array->descriptor[0].address = address; desc_array->descriptor[0].length = length; desc_array->elements = 1; return (desc_array->elements); } desc_array->descriptor[0].address = address; desc_array->descriptor[0].length = length - 4; desc_array->descriptor[1].address = address + (length - 4); desc_array->descriptor[1].length = 4; desc_array->elements = 2; return (desc_array->elements); } /********************************************************************** * * Update the board statistics counters. * **********************************************************************/ static void em_update_stats_counters(struct adapter *adapter) { struct ifnet *ifp; if(adapter->hw.media_type == e1000_media_type_copper || (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) { adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS); adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC); } adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS); adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC); adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC); adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL); adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC); adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL); adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC); adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC); adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC); adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC); adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC); adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC); adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC); adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC); adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64); adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127); adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255); adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511); adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023); adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522); adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC); adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC); adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC); adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC); /* For the 64-bit byte counters the low dword must be read first. */ /* Both registers clear on the read of the high dword */ adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, E1000_GORCL); adapter->stats.gorch += E1000_READ_REG(&adapter->hw, E1000_GORCH); adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, E1000_GOTCL); adapter->stats.gotch += E1000_READ_REG(&adapter->hw, E1000_GOTCH); adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC); adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC); adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC); adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC); adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC); adapter->stats.torl += E1000_READ_REG(&adapter->hw, E1000_TORL); adapter->stats.torh += E1000_READ_REG(&adapter->hw, E1000_TORH); adapter->stats.totl += E1000_READ_REG(&adapter->hw, E1000_TOTL); adapter->stats.toth += E1000_READ_REG(&adapter->hw, E1000_TOTH); adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR); adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT); adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64); adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127); adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255); adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511); adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023); adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522); adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC); adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC); if (adapter->hw.mac.type >= e1000_82543) { adapter->stats.algnerrc += E1000_READ_REG(&adapter->hw, E1000_ALGNERRC); adapter->stats.rxerrc += E1000_READ_REG(&adapter->hw, E1000_RXERRC); adapter->stats.tncrs += E1000_READ_REG(&adapter->hw, E1000_TNCRS); adapter->stats.cexterr += E1000_READ_REG(&adapter->hw, E1000_CEXTERR); adapter->stats.tsctc += E1000_READ_REG(&adapter->hw, E1000_TSCTC); adapter->stats.tsctfc += E1000_READ_REG(&adapter->hw, E1000_TSCTFC); } ifp = adapter->ifp; ifp->if_collisions = adapter->stats.colc; /* Rx Errors */ ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc + adapter->stats.crcerrs + adapter->stats.algnerrc + adapter->stats.ruc + adapter->stats.roc + adapter->stats.mpc + adapter->stats.cexterr; /* Tx Errors */ ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol + adapter->watchdog_events; } /********************************************************************** * * This routine is called only when em_display_debug_stats is enabled. * This routine provides a way to take a look at important statistics * maintained by the driver and hardware. * **********************************************************************/ #ifndef __rtems__ static void #else void #endif em_print_debug_info(struct adapter *adapter) { #ifndef __rtems__ device_t dev = adapter->dev; uint8_t *hw_addr = adapter->hw.hw_addr; #else device_t dev; uint8_t *hw_addr; if ( !adapter ) { printk("Need 'adapter' arg\n"); return; } dev = adapter->dev; hw_addr = adapter->hw.hw_addr; #endif device_printf(dev, "Adapter hardware address = %p \n", hw_addr); device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n", E1000_READ_REG(&adapter->hw, E1000_CTRL), E1000_READ_REG(&adapter->hw, E1000_RCTL)); device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n", ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\ (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) ); device_printf(dev, "Flow control watermarks high = %d low = %d\n", adapter->hw.mac.fc_high_water, adapter->hw.mac.fc_low_water); device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n", E1000_READ_REG(&adapter->hw, E1000_TIDV), E1000_READ_REG(&adapter->hw, E1000_TADV)); device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n", E1000_READ_REG(&adapter->hw, E1000_RDTR), E1000_READ_REG(&adapter->hw, E1000_RADV)); device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n", (long long)adapter->tx_fifo_wrk_cnt, (long long)adapter->tx_fifo_reset_cnt); device_printf(dev, "hw tdh = %d, hw tdt = %d\n", E1000_READ_REG(&adapter->hw, E1000_TDH), E1000_READ_REG(&adapter->hw, E1000_TDT)); device_printf(dev, "hw rdh = %d, hw rdt = %d\n", E1000_READ_REG(&adapter->hw, E1000_RDH), E1000_READ_REG(&adapter->hw, E1000_RDT)); device_printf(dev, "Num Tx descriptors avail = %d\n", adapter->num_tx_desc_avail); device_printf(dev, "Tx Descriptors not avail1 = %ld\n", adapter->no_tx_desc_avail1); device_printf(dev, "Tx Descriptors not avail2 = %ld\n", adapter->no_tx_desc_avail2); device_printf(dev, "Std mbuf failed = %ld\n", adapter->mbuf_alloc_failed); device_printf(dev, "Std mbuf cluster failed = %ld\n", adapter->mbuf_cluster_failed); device_printf(dev, "Driver dropped packets = %ld\n", adapter->dropped_pkts); device_printf(dev, "Driver tx dma failure in encap = %ld\n", adapter->no_tx_dma_setup); } #ifndef __rtems__ static void #else void #endif em_print_hw_stats(struct adapter *adapter) { device_t dev = adapter->dev; device_printf(dev, "Excessive collisions = %lld\n", (long long)adapter->stats.ecol); #if (DEBUG_HW > 0) /* Dont output these errors normally */ device_printf(dev, "Symbol errors = %lld\n", (long long)adapter->stats.symerrs); #endif device_printf(dev, "Sequence errors = %lld\n", (long long)adapter->stats.sec); device_printf(dev, "Defer count = %lld\n", (long long)adapter->stats.dc); device_printf(dev, "Missed Packets = %lld\n", (long long)adapter->stats.mpc); device_printf(dev, "Receive No Buffers = %lld\n", (long long)adapter->stats.rnbc); /* RLEC is inaccurate on some hardware, calculate our own. */ device_printf(dev, "Receive Length Errors = %lld\n", ((long long)adapter->stats.roc + (long long)adapter->stats.ruc)); device_printf(dev, "Receive errors = %lld\n", (long long)adapter->stats.rxerrc); device_printf(dev, "Crc errors = %lld\n", (long long)adapter->stats.crcerrs); device_printf(dev, "Alignment errors = %lld\n", (long long)adapter->stats.algnerrc); device_printf(dev, "Carrier extension errors = %lld\n", (long long)adapter->stats.cexterr); device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns); device_printf(dev, "watchdog timeouts = %ld\n", adapter->watchdog_events); device_printf(dev, "XON Rcvd = %lld\n", (long long)adapter->stats.xonrxc); device_printf(dev, "XON Xmtd = %lld\n", (long long)adapter->stats.xontxc); device_printf(dev, "XOFF Rcvd = %lld\n", (long long)adapter->stats.xoffrxc); device_printf(dev, "XOFF Xmtd = %lld\n", (long long)adapter->stats.xofftxc); device_printf(dev, "Good Packets Rcvd = %lld\n", (long long)adapter->stats.gprc); device_printf(dev, "Good Packets Xmtd = %lld\n", (long long)adapter->stats.gptc); device_printf(dev, "TSO Contexts Xmtd = %lld\n", (long long)adapter->stats.tsctc); device_printf(dev, "TSO Contexts Failed = %lld\n", (long long)adapter->stats.tsctfc); } #ifndef __rtems__ static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) { struct adapter *adapter; int error; int result; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { adapter = (struct adapter *)arg1; em_print_debug_info(adapter); } return (error); } static int em_sysctl_stats(SYSCTL_HANDLER_ARGS) { struct adapter *adapter; int error; int result; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { adapter = (struct adapter *)arg1; em_print_hw_stats(adapter); } return (error); } static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) { struct em_int_delay_info *info; struct adapter *adapter; uint32_t regval; int error; int usecs; int ticks; info = (struct em_int_delay_info *)arg1; usecs = info->value; error = sysctl_handle_int(oidp, &usecs, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535)) return (EINVAL); info->value = usecs; ticks = EM_USECS_TO_TICKS(usecs); adapter = info->adapter; EM_LOCK(adapter); regval = E1000_READ_OFFSET(&adapter->hw, info->offset); regval = (regval & ~0xffff) | (ticks & 0xffff); /* Handle a few special cases. */ switch (info->offset) { case E1000_RDTR: break; case E1000_TIDV: if (ticks == 0) { adapter->txd_cmd &= ~E1000_TXD_CMD_IDE; /* Don't write 0 into the TIDV register. */ regval++; } else if (adapter->hw.mac.type != e1000_82575) adapter->txd_cmd |= E1000_TXD_CMD_IDE; break; } E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval); EM_UNLOCK(adapter); return (0); } #endif static void em_add_int_delay_sysctl(struct adapter *adapter, const char *name, const char *description, struct em_int_delay_info *info, int offset, int value) { info->adapter = adapter; info->offset = offset; info->value = value; SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, info, 0, em_sysctl_int_delay, "I", description); } #ifndef DEVICE_POLLING static void em_add_rx_process_limit(struct adapter *adapter, const char *name, const char *description, int *limit, int value) { *limit = value; SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description); } #endif