summaryrefslogtreecommitdiffstats
path: root/bsd_eth_drivers/if_fxp/if_fxp.c
diff options
context:
space:
mode:
Diffstat (limited to 'bsd_eth_drivers/if_fxp/if_fxp.c')
-rw-r--r--bsd_eth_drivers/if_fxp/if_fxp.c2716
1 files changed, 2716 insertions, 0 deletions
diff --git a/bsd_eth_drivers/if_fxp/if_fxp.c b/bsd_eth_drivers/if_fxp/if_fxp.c
new file mode 100644
index 0000000..c181dd4
--- /dev/null
+++ b/bsd_eth_drivers/if_fxp/if_fxp.c
@@ -0,0 +1,2716 @@
+/*-
+ * Copyright (c) 1995, David Greenman
+ * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice unmodified, this list of conditions, and the following
+ * disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.266.6.1 2008/11/25 02:59:29 kensmith Exp $");
+
+/*
+ * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
+ */
+
+#ifdef HAVE_KERNEL_OPTION_HEADERS
+#include "opt_device_polling.h"
+#endif
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/endian.h>
+#include <sys/mbuf.h>
+ /* #include <sys/mutex.h> */
+#include <sys/kernel.h>
+#include <sys/module.h>
+#include <sys/socket.h>
+#include <sys/sysctl.h>
+
+#include <net/if.h>
+#include <net/if_dl.h>
+#include <net/if_media.h>
+
+#include <net/bpf.h>
+#include <sys/sockio.h>
+#include <sys/bus.h>
+#include <machine/bus.h>
+#include <sys/rman.h>
+#include <machine/resource.h>
+
+#include <net/ethernet.h>
+#include <net/if_arp.h>
+
+
+#include <net/if_types.h>
+#include <net/if_vlan_var.h>
+
+#ifdef FXP_IP_CSUM_WAR
+#include <netinet/in.h>
+#include <netinet/in_systm.h>
+#include <netinet/ip.h>
+#include <machine/in_cksum.h>
+#endif
+
+#include <dev/pci/pcivar.h>
+#include <dev/pci/pcireg.h> /* for PCIM_CMD_xxx */
+
+#include <dev/mii/mii.h>
+#include <dev/mii/miivar.h>
+
+#include <dev/fxp/if_fxpreg.h>
+#include <dev/fxp/if_fxpvar.h>
+#include <dev/fxp/rcvbundl.h>
+
+MODULE_DEPEND(fxp, pci, 1, 1, 1);
+MODULE_DEPEND(fxp, ether, 1, 1, 1);
+MODULE_DEPEND(fxp, miibus, 1, 1, 1);
+#include "miibus_if.h"
+
+/*
+ * NOTE! On the Alpha, we have an alignment constraint. The
+ * card DMAs the packet immediately following the RFA. However,
+ * the first thing in the packet is a 14-byte Ethernet header.
+ * This means that the packet is misaligned. To compensate,
+ * we actually offset the RFA 2 bytes into the cluster. This
+ * alignes the packet after the Ethernet header at a 32-bit
+ * boundary. HOWEVER! This means that the RFA is misaligned!
+ */
+#define RFA_ALIGNMENT_FUDGE 2
+
+/*
+ * Set initial transmit threshold at 64 (512 bytes). This is
+ * increased by 64 (512 bytes) at a time, to maximum of 192
+ * (1536 bytes), if an underrun occurs.
+ */
+static int tx_threshold = 64;
+
+/*
+ * The configuration byte map has several undefined fields which
+ * must be one or must be zero. Set up a template for these bits
+ * only, (assuming a 82557 chip) leaving the actual configuration
+ * to fxp_init.
+ *
+ * See struct fxp_cb_config for the bit definitions.
+ */
+static u_char fxp_cb_config_template[] = {
+ 0x0, 0x0, /* cb_status */
+ 0x0, 0x0, /* cb_command */
+ 0x0, 0x0, 0x0, 0x0, /* link_addr */
+ 0x0, /* 0 */
+ 0x0, /* 1 */
+ 0x0, /* 2 */
+ 0x0, /* 3 */
+ 0x0, /* 4 */
+ 0x0, /* 5 */
+ 0x32, /* 6 */
+ 0x0, /* 7 */
+ 0x0, /* 8 */
+ 0x0, /* 9 */
+ 0x6, /* 10 */
+ 0x0, /* 11 */
+ 0x0, /* 12 */
+ 0x0, /* 13 */
+ 0xf2, /* 14 */
+ 0x48, /* 15 */
+ 0x0, /* 16 */
+ 0x40, /* 17 */
+ 0xf0, /* 18 */
+ 0x0, /* 19 */
+ 0x3f, /* 20 */
+ 0x5 /* 21 */
+};
+
+struct fxp_ident {
+ uint16_t devid;
+ int16_t revid; /* -1 matches anything */
+ char *name;
+};
+
+/*
+ * Claim various Intel PCI device identifiers for this driver. The
+ * sub-vendor and sub-device field are extensively used to identify
+ * particular variants, but we don't currently differentiate between
+ * them.
+ */
+static struct fxp_ident fxp_ident_table[] = {
+ { 0x1029, -1, "Intel 82559 PCI/CardBus Pro/100" },
+ { 0x1030, -1, "Intel 82559 Pro/100 Ethernet" },
+ { 0x1031, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
+ { 0x1032, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
+ { 0x1033, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
+ { 0x1034, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
+ { 0x1035, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
+ { 0x1036, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
+ { 0x1037, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
+ { 0x1038, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
+ { 0x1039, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
+ { 0x103A, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
+ { 0x103B, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
+ { 0x103C, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
+ { 0x103D, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
+ { 0x103E, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
+ { 0x1050, -1, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
+ { 0x1051, -1, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
+ { 0x1059, -1, "Intel 82551QM Pro/100 M Mobile Connection" },
+ { 0x1064, -1, "Intel 82562EZ (ICH6)" },
+ { 0x1065, -1, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
+ { 0x1068, -1, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
+ { 0x1069, -1, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
+ { 0x1091, -1, "Intel 82562GX Pro/100 Ethernet" },
+ { 0x1092, -1, "Intel Pro/100 VE Network Connection" },
+ { 0x1093, -1, "Intel Pro/100 VM Network Connection" },
+ { 0x1094, -1, "Intel Pro/100 946GZ (ICH7) Network Connection" },
+ { 0x1209, -1, "Intel 82559ER Embedded 10/100 Ethernet" },
+ { 0x1229, 0x01, "Intel 82557 Pro/100 Ethernet" },
+ { 0x1229, 0x02, "Intel 82557 Pro/100 Ethernet" },
+ { 0x1229, 0x03, "Intel 82557 Pro/100 Ethernet" },
+ { 0x1229, 0x04, "Intel 82558 Pro/100 Ethernet" },
+ { 0x1229, 0x05, "Intel 82558 Pro/100 Ethernet" },
+ { 0x1229, 0x06, "Intel 82559 Pro/100 Ethernet" },
+ { 0x1229, 0x07, "Intel 82559 Pro/100 Ethernet" },
+ { 0x1229, 0x08, "Intel 82559 Pro/100 Ethernet" },
+ { 0x1229, 0x09, "Intel 82559ER Pro/100 Ethernet" },
+ { 0x1229, 0x0c, "Intel 82550 Pro/100 Ethernet" },
+ { 0x1229, 0x0d, "Intel 82550 Pro/100 Ethernet" },
+ { 0x1229, 0x0e, "Intel 82550 Pro/100 Ethernet" },
+ { 0x1229, 0x0f, "Intel 82551 Pro/100 Ethernet" },
+ { 0x1229, 0x10, "Intel 82551 Pro/100 Ethernet" },
+ { 0x1229, -1, "Intel 82557/8/9 Pro/100 Ethernet" },
+ { 0x2449, -1, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
+ { 0x27dc, -1, "Intel 82801GB (ICH7) 10/100 Ethernet" },
+ { 0, -1, NULL },
+};
+
+#ifdef FXP_IP_CSUM_WAR
+#define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
+#else
+#define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
+#endif
+
+static int fxp_probe(device_t dev);
+static int fxp_attach(device_t dev);
+static int fxp_detach(device_t dev);
+static int fxp_shutdown(device_t dev);
+static int fxp_suspend(device_t dev);
+static int fxp_resume(device_t dev);
+
+static void fxp_intr(void *xsc);
+static void fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
+ uint8_t statack, int count);
+static void fxp_init(void *xsc);
+static void fxp_init_body(struct fxp_softc *sc);
+static void fxp_tick(void *xsc);
+static void fxp_start(struct ifnet *ifp);
+static void fxp_start_body(struct ifnet *ifp);
+static int fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
+static void fxp_stop(struct fxp_softc *sc);
+static void fxp_release(struct fxp_softc *sc);
+static int fxp_ioctl(struct ifnet *ifp, u_long command,
+ caddr_t data);
+static void fxp_watchdog(struct fxp_softc *sc);
+static int fxp_add_rfabuf(struct fxp_softc *sc,
+ struct fxp_rx *rxp);
+static int fxp_mc_addrs(struct fxp_softc *sc);
+static void fxp_mc_setup(struct fxp_softc *sc);
+static uint16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset,
+ int autosize);
+static void fxp_eeprom_putword(struct fxp_softc *sc, int offset,
+ uint16_t data);
+static void fxp_autosize_eeprom(struct fxp_softc *sc);
+static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
+ int offset, int words);
+static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
+ int offset, int words);
+static int fxp_ifmedia_upd(struct ifnet *ifp);
+static void fxp_ifmedia_sts(struct ifnet *ifp,
+ struct ifmediareq *ifmr);
+static int fxp_serial_ifmedia_upd(struct ifnet *ifp);
+static void fxp_serial_ifmedia_sts(struct ifnet *ifp,
+ struct ifmediareq *ifmr);
+static int fxp_miibus_readreg(device_t dev, int phy, int reg);
+static void fxp_miibus_writereg(device_t dev, int phy, int reg,
+ int value);
+static void fxp_load_ucode(struct fxp_softc *sc);
+static int sysctl_int_range(SYSCTL_HANDLER_ARGS,
+ int low, int high);
+static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
+static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
+static void fxp_scb_wait(struct fxp_softc *sc);
+static void fxp_scb_cmd(struct fxp_softc *sc, int cmd);
+static void fxp_dma_wait(struct fxp_softc *sc,
+ volatile uint16_t *status, bus_dma_tag_t dmat,
+ bus_dmamap_t map);
+
+static device_method_t fxp_methods[] = {
+ /* Device interface */
+ DEVMETHOD(device_probe, fxp_probe),
+ DEVMETHOD(device_attach, fxp_attach),
+ DEVMETHOD(device_detach, fxp_detach),
+ DEVMETHOD(device_shutdown, fxp_shutdown),
+ DEVMETHOD(device_suspend, fxp_suspend),
+ DEVMETHOD(device_resume, fxp_resume),
+
+ /* MII interface */
+ DEVMETHOD(miibus_readreg, fxp_miibus_readreg),
+ DEVMETHOD(miibus_writereg, fxp_miibus_writereg),
+
+ { 0, 0 }
+};
+
+static driver_t fxp_driver = {
+ "fxp",
+ fxp_methods,
+ sizeof(struct fxp_softc),
+};
+
+static devclass_t fxp_devclass;
+
+DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
+DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
+DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
+
+static struct resource_spec fxp_res_spec_mem[] = {
+ { SYS_RES_MEMORY, FXP_PCI_MMBA, RF_ACTIVE },
+ { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
+ { -1, 0 }
+};
+
+static struct resource_spec fxp_res_spec_io[] = {
+ { SYS_RES_IOPORT, FXP_PCI_IOBA, RF_ACTIVE },
+ { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
+ { -1, 0 }
+};
+
+/*
+ * Wait for the previous command to be accepted (but not necessarily
+ * completed).
+ */
+static void
+fxp_scb_wait(struct fxp_softc *sc)
+{
+ union {
+ uint16_t w;
+ uint8_t b[2];
+ } flowctl;
+ int i = 10000;
+
+ while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
+ DELAY(2);
+ if (i == 0) {
+ flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
+ flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
+ device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
+ CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
+ CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
+ CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
+ }
+}
+
+static void
+fxp_scb_cmd(struct fxp_softc *sc, int cmd)
+{
+
+ if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
+ CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
+ fxp_scb_wait(sc);
+ }
+ CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
+}
+
+static void
+fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
+ bus_dma_tag_t dmat, bus_dmamap_t map)
+{
+ int i = 10000;
+
+ bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
+ while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
+ DELAY(2);
+ bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
+ }
+ if (i == 0)
+ device_printf(sc->dev, "DMA timeout\n");
+}
+
+/*
+ * Return identification string if this device is ours.
+ */
+static int
+fxp_probe(device_t dev)
+{
+ uint16_t devid;
+ uint8_t revid;
+ struct fxp_ident *ident;
+
+ if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
+ devid = pci_get_device(dev);
+ revid = pci_get_revid(dev);
+ for (ident = fxp_ident_table; ident->name != NULL; ident++) {
+ if (ident->devid == devid &&
+ (ident->revid == revid || ident->revid == -1)) {
+ device_set_desc(dev, ident->name);
+ return (BUS_PROBE_DEFAULT);
+ }
+ }
+ }
+ return (ENXIO);
+}
+
+static void
+fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
+{
+ uint32_t *addr;
+
+ if (error)
+ return;
+
+ KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
+ addr = arg;
+ *addr = segs->ds_addr;
+}
+
+static int
+fxp_attach(device_t dev)
+{
+ struct fxp_softc *sc;
+ struct fxp_cb_tx *tcbp;
+ struct fxp_tx *txp;
+ struct fxp_rx *rxp;
+ struct ifnet *ifp;
+ uint32_t val;
+ uint16_t data, myea[ETHER_ADDR_LEN / 2];
+ u_char eaddr[ETHER_ADDR_LEN];
+ int i, prefer_iomap;
+ int error;
+
+ error = 0;
+ sc = device_get_softc(dev);
+ sc->dev = dev;
+ mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
+ MTX_DEF);
+ callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
+ ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
+ fxp_serial_ifmedia_sts);
+
+ ifp = sc->ifp = if_alloc(IFT_ETHER);
+ if (ifp == NULL) {
+ device_printf(dev, "can not if_alloc()\n");
+ error = ENOSPC;
+ goto fail;
+ }
+
+ /*
+ * Enable bus mastering.
+ */
+ pci_enable_busmaster(dev);
+ val = pci_read_config(dev, PCIR_COMMAND, 2);
+
+ /*
+ * Figure out which we should try first - memory mapping or i/o mapping?
+ * We default to memory mapping. Then we accept an override from the
+ * command line. Then we check to see which one is enabled.
+ */
+ prefer_iomap = 0;
+ resource_int_value(device_get_name(dev), device_get_unit(dev),
+ "prefer_iomap", &prefer_iomap);
+ if (prefer_iomap)
+ sc->fxp_spec = fxp_res_spec_io;
+ else
+ sc->fxp_spec = fxp_res_spec_mem;
+
+ error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
+ if (error) {
+ if (sc->fxp_spec == fxp_res_spec_mem)
+ sc->fxp_spec = fxp_res_spec_io;
+ else
+ sc->fxp_spec = fxp_res_spec_mem;
+ error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
+ }
+ if (error) {
+ device_printf(dev, "could not allocate resources\n");
+ error = ENXIO;
+ goto fail;
+ }
+
+ if (bootverbose) {
+ device_printf(dev, "using %s space register mapping\n",
+ sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
+ }
+
+ /*
+ * Reset to a stable state.
+ */
+ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
+ DELAY(10);
+
+ /*
+ * Find out how large of an SEEPROM we have.
+ */
+ fxp_autosize_eeprom(sc);
+
+ /*
+ * Find out the chip revision; lump all 82557 revs together.
+ */
+ fxp_read_eeprom(sc, &data, 5, 1);
+ if ((data >> 8) == 1)
+ sc->revision = FXP_REV_82557;
+ else
+ sc->revision = pci_get_revid(dev);
+
+ /*
+ * Determine whether we must use the 503 serial interface.
+ */
+ fxp_read_eeprom(sc, &data, 6, 1);
+ if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
+ && (data & FXP_PHY_SERIAL_ONLY))
+ sc->flags |= FXP_FLAG_SERIAL_MEDIA;
+
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
+ &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
+ "FXP driver receive interrupt microcode bundling delay");
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
+ &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
+ "FXP driver receive interrupt microcode bundle size limit");
+ SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
+ "FXP RNR events");
+ SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
+ "FXP flow control disabled");
+
+ /*
+ * Pull in device tunables.
+ */
+ sc->tunable_int_delay = TUNABLE_INT_DELAY;
+ sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
+ sc->tunable_noflow = 1;
+ (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
+ "int_delay", &sc->tunable_int_delay);
+ (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
+ "bundle_max", &sc->tunable_bundle_max);
+ (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
+ "noflow", &sc->tunable_noflow);
+ sc->rnr = 0;
+
+ /*
+ * Enable workarounds for certain chip revision deficiencies.
+ *
+ * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
+ * some systems based a normal 82559 design, have a defect where
+ * the chip can cause a PCI protocol violation if it receives
+ * a CU_RESUME command when it is entering the IDLE state. The
+ * workaround is to disable Dynamic Standby Mode, so the chip never
+ * deasserts CLKRUN#, and always remains in an active state.
+ *
+ * See Intel 82801BA/82801BAM Specification Update, Errata #30.
+ */
+ i = pci_get_device(dev);
+ if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
+ sc->revision >= FXP_REV_82559_A0) {
+ fxp_read_eeprom(sc, &data, 10, 1);
+ if (data & 0x02) { /* STB enable */
+ uint16_t cksum;
+ int i;
+
+ device_printf(dev,
+ "Disabling dynamic standby mode in EEPROM\n");
+ data &= ~0x02;
+ fxp_write_eeprom(sc, &data, 10, 1);
+ device_printf(dev, "New EEPROM ID: 0x%x\n", data);
+ cksum = 0;
+ for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
+ fxp_read_eeprom(sc, &data, i, 1);
+ cksum += data;
+ }
+ i = (1 << sc->eeprom_size) - 1;
+ cksum = 0xBABA - cksum;
+ fxp_read_eeprom(sc, &data, i, 1);
+ fxp_write_eeprom(sc, &cksum, i, 1);
+ device_printf(dev,
+ "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
+ i, data, cksum);
+#if 1
+ /*
+ * If the user elects to continue, try the software
+ * workaround, as it is better than nothing.
+ */
+ sc->flags |= FXP_FLAG_CU_RESUME_BUG;
+#endif
+ }
+ }
+
+ /*
+ * If we are not a 82557 chip, we can enable extended features.
+ */
+ if (sc->revision != FXP_REV_82557) {
+ /*
+ * If MWI is enabled in the PCI configuration, and there
+ * is a valid cacheline size (8 or 16 dwords), then tell
+ * the board to turn on MWI.
+ */
+ if (val & PCIM_CMD_MWRICEN &&
+ pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
+ sc->flags |= FXP_FLAG_MWI_ENABLE;
+
+ /* turn on the extended TxCB feature */
+ sc->flags |= FXP_FLAG_EXT_TXCB;
+
+ /* enable reception of long frames for VLAN */
+ sc->flags |= FXP_FLAG_LONG_PKT_EN;
+ } else {
+ /* a hack to get long VLAN frames on a 82557 */
+ sc->flags |= FXP_FLAG_SAVE_BAD;
+ }
+
+ /*
+ * Enable use of extended RFDs and TCBs for 82550
+ * and later chips. Note: we need extended TXCB support
+ * too, but that's already enabled by the code above.
+ * Be careful to do this only on the right devices.
+ */
+ if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
+ sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
+ || sc->revision == FXP_REV_82551_10) {
+ sc->rfa_size = sizeof (struct fxp_rfa);
+ sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
+ sc->flags |= FXP_FLAG_EXT_RFA;
+ } else {
+ sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
+ sc->tx_cmd = FXP_CB_COMMAND_XMIT;
+ }
+
+ /*
+ * Allocate DMA tags and DMA safe memory.
+ */
+ sc->maxtxseg = FXP_NTXSEG;
+ if (sc->flags & FXP_FLAG_EXT_RFA)
+ sc->maxtxseg--;
+ error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
+ BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
+ MCLBYTES * sc->maxtxseg, sc->maxtxseg, MCLBYTES, 0,
+ busdma_lock_mutex, &Giant, &sc->fxp_mtag);
+ if (error) {
+ device_printf(dev, "could not allocate dma tag\n");
+ goto fail;
+ }
+
+ error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
+ BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
+ sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
+ busdma_lock_mutex, &Giant, &sc->fxp_stag);
+ if (error) {
+ device_printf(dev, "could not allocate dma tag\n");
+ goto fail;
+ }
+
+ error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
+ BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
+ if (error)
+ goto fail;
+ error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
+ sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
+ if (error) {
+ device_printf(dev, "could not map the stats buffer\n");
+ goto fail;
+ }
+
+ error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
+ BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
+ FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
+ busdma_lock_mutex, &Giant, &sc->cbl_tag);
+ if (error) {
+ device_printf(dev, "could not allocate dma tag\n");
+ goto fail;
+ }
+
+ error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
+ BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
+ if (error)
+ goto fail;
+
+ error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
+ sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
+ &sc->fxp_desc.cbl_addr, 0);
+ if (error) {
+ device_printf(dev, "could not map DMA memory\n");
+ goto fail;
+ }
+
+ error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
+ BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
+ sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
+ busdma_lock_mutex, &Giant, &sc->mcs_tag);
+ if (error) {
+ device_printf(dev, "could not allocate dma tag\n");
+ goto fail;
+ }
+
+ error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
+ BUS_DMA_NOWAIT, &sc->mcs_map);
+ if (error)
+ goto fail;
+ error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
+ sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
+ if (error) {
+ device_printf(dev, "can't map the multicast setup command\n");
+ goto fail;
+ }
+
+ /*
+ * Pre-allocate the TX DMA maps and setup the pointers to
+ * the TX command blocks.
+ */
+ txp = sc->fxp_desc.tx_list;
+ tcbp = sc->fxp_desc.cbl_list;
+ for (i = 0; i < FXP_NTXCB; i++) {
+ txp[i].tx_cb = tcbp + i;
+ error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
+ if (error) {
+ device_printf(dev, "can't create DMA map for TX\n");
+ goto fail;
+ }
+ }
+ error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
+ if (error) {
+ device_printf(dev, "can't create spare DMA map\n");
+ goto fail;
+ }
+
+ /*
+ * Pre-allocate our receive buffers.
+ */
+ sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
+ for (i = 0; i < FXP_NRFABUFS; i++) {
+ rxp = &sc->fxp_desc.rx_list[i];
+ error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
+ if (error) {
+ device_printf(dev, "can't create DMA map for RX\n");
+ goto fail;
+ }
+ if (fxp_add_rfabuf(sc, rxp) != 0) {
+ error = ENOMEM;
+ goto fail;
+ }
+ }
+
+ /*
+ * Read MAC address.
+ */
+ fxp_read_eeprom(sc, myea, 0, 3);
+ eaddr[0] = myea[0] & 0xff;
+ eaddr[1] = myea[0] >> 8;
+ eaddr[2] = myea[1] & 0xff;
+ eaddr[3] = myea[1] >> 8;
+ eaddr[4] = myea[2] & 0xff;
+ eaddr[5] = myea[2] >> 8;
+ if (bootverbose) {
+ device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
+ pci_get_vendor(dev), pci_get_device(dev),
+ pci_get_subvendor(dev), pci_get_subdevice(dev),
+ pci_get_revid(dev));
+ fxp_read_eeprom(sc, &data, 10, 1);
+ device_printf(dev, "Dynamic Standby mode is %s\n",
+ data & 0x02 ? "enabled" : "disabled");
+ }
+
+ /*
+ * If this is only a 10Mbps device, then there is no MII, and
+ * the PHY will use a serial interface instead.
+ *
+ * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
+ * doesn't have a programming interface of any sort. The
+ * media is sensed automatically based on how the link partner
+ * is configured. This is, in essence, manual configuration.
+ */
+ if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
+ ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
+ ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
+ } else {
+ if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
+ fxp_ifmedia_sts)) {
+ device_printf(dev, "MII without any PHY!\n");
+ error = ENXIO;
+ goto fail;
+ }
+ }
+
+ if_initname(ifp, device_get_name(dev), device_get_unit(dev));
+ ifp->if_init = fxp_init;
+ ifp->if_softc = sc;
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = fxp_ioctl;
+ ifp->if_start = fxp_start;
+
+ ifp->if_capabilities = ifp->if_capenable = 0;
+
+ /* Enable checksum offload for 82550 or better chips */
+ if (sc->flags & FXP_FLAG_EXT_RFA) {
+ ifp->if_hwassist = FXP_CSUM_FEATURES;
+ ifp->if_capabilities |= IFCAP_HWCSUM;
+ ifp->if_capenable |= IFCAP_HWCSUM;
+ }
+
+#ifdef DEVICE_POLLING
+ /* Inform the world we support polling. */
+ ifp->if_capabilities |= IFCAP_POLLING;
+#endif
+
+ /*
+ * Attach the interface.
+ */
+ ether_ifattach(ifp, eaddr);
+
+ /*
+ * Tell the upper layer(s) we support long frames.
+ * Must appear after the call to ether_ifattach() because
+ * ether_ifattach() sets ifi_hdrlen to the default value.
+ */
+ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
+ ifp->if_capabilities |= IFCAP_VLAN_MTU;
+ ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
+
+ /*
+ * Let the system queue as many packets as we have available
+ * TX descriptors.
+ */
+ IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
+ ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
+ IFQ_SET_READY(&ifp->if_snd);
+
+ /*
+ * Hook our interrupt after all initialization is complete.
+ */
+ error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
+ NULL, fxp_intr, sc, &sc->ih);
+ if (error) {
+ device_printf(dev, "could not setup irq\n");
+ ether_ifdetach(sc->ifp);
+ goto fail;
+ }
+
+fail:
+ if (error)
+ fxp_release(sc);
+ return (error);
+}
+
+/*
+ * Release all resources. The softc lock should not be held and the
+ * interrupt should already be torn down.
+ */
+static void
+fxp_release(struct fxp_softc *sc)
+{
+ struct fxp_rx *rxp;
+ struct fxp_tx *txp;
+ int i;
+
+ FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
+ KASSERT(sc->ih == NULL,
+ ("fxp_release() called with intr handle still active"));
+ if (sc->miibus)
+ device_delete_child(sc->dev, sc->miibus);
+ bus_generic_detach(sc->dev);
+ ifmedia_removeall(&sc->sc_media);
+ if (sc->fxp_desc.cbl_list) {
+ bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
+ bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
+ sc->cbl_map);
+ }
+ if (sc->fxp_stats) {
+ bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
+ bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
+ }
+ if (sc->mcsp) {
+ bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
+ bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
+ }
+ bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
+ if (sc->fxp_mtag) {
+ for (i = 0; i < FXP_NRFABUFS; i++) {
+ rxp = &sc->fxp_desc.rx_list[i];
+ if (rxp->rx_mbuf != NULL) {
+ bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
+ m_freem(rxp->rx_mbuf);
+ }
+ bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
+ }
+ bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
+ for (i = 0; i < FXP_NTXCB; i++) {
+ txp = &sc->fxp_desc.tx_list[i];
+ if (txp->tx_mbuf != NULL) {
+ bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
+ m_freem(txp->tx_mbuf);
+ }
+ bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
+ }
+ bus_dma_tag_destroy(sc->fxp_mtag);
+ }
+ if (sc->fxp_stag)
+ bus_dma_tag_destroy(sc->fxp_stag);
+ if (sc->cbl_tag)
+ bus_dma_tag_destroy(sc->cbl_tag);
+ if (sc->mcs_tag)
+ bus_dma_tag_destroy(sc->mcs_tag);
+ if (sc->ifp)
+ if_free(sc->ifp);
+
+ mtx_destroy(&sc->sc_mtx);
+}
+
+/*
+ * Detach interface.
+ */
+static int
+fxp_detach(device_t dev)
+{
+ struct fxp_softc *sc = device_get_softc(dev);
+
+#ifdef DEVICE_POLLING
+ if (sc->ifp->if_capenable & IFCAP_POLLING)
+ ether_poll_deregister(sc->ifp);
+#endif
+
+ FXP_LOCK(sc);
+ sc->suspended = 1; /* Do same thing as we do for suspend */
+ /*
+ * Stop DMA and drop transmit queue, but disable interrupts first.
+ */
+ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
+ fxp_stop(sc);
+ FXP_UNLOCK(sc);
+ callout_drain(&sc->stat_ch);
+
+ /*
+ * Close down routes etc.
+ */
+ ether_ifdetach(sc->ifp);
+
+ /*
+ * Unhook interrupt before dropping lock. This is to prevent
+ * races with fxp_intr().
+ */
+ bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
+ sc->ih = NULL;
+
+ /* Release our allocated resources. */
+ fxp_release(sc);
+ return (0);
+}
+
+/*
+ * Device shutdown routine. Called at system shutdown after sync. The
+ * main purpose of this routine is to shut off receiver DMA so that
+ * kernel memory doesn't get clobbered during warmboot.
+ */
+static int
+fxp_shutdown(device_t dev)
+{
+ struct fxp_softc *sc = device_get_softc(dev);
+
+ /*
+ * Make sure that DMA is disabled prior to reboot. Not doing
+ * do could allow DMA to corrupt kernel memory during the
+ * reboot before the driver initializes.
+ */
+ FXP_LOCK(sc);
+ fxp_stop(sc);
+ FXP_UNLOCK(sc);
+ return (0);
+}
+
+/*
+ * Device suspend routine. Stop the interface and save some PCI
+ * settings in case the BIOS doesn't restore them properly on
+ * resume.
+ */
+static int
+fxp_suspend(device_t dev)
+{
+ struct fxp_softc *sc = device_get_softc(dev);
+
+ FXP_LOCK(sc);
+
+ fxp_stop(sc);
+
+ sc->suspended = 1;
+
+ FXP_UNLOCK(sc);
+ return (0);
+}
+
+/*
+ * Device resume routine. re-enable busmastering, and restart the interface if
+ * appropriate.
+ */
+static int
+fxp_resume(device_t dev)
+{
+ struct fxp_softc *sc = device_get_softc(dev);
+ struct ifnet *ifp = sc->ifp;
+
+ FXP_LOCK(sc);
+
+ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
+ DELAY(10);
+
+ /* reinitialize interface if necessary */
+ if (ifp->if_flags & IFF_UP)
+ fxp_init_body(sc);
+
+ sc->suspended = 0;
+
+ FXP_UNLOCK(sc);
+ return (0);
+}
+
+static void
+fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
+{
+ uint16_t reg;
+ int x;
+
+ /*
+ * Shift in data.
+ */
+ for (x = 1 << (length - 1); x; x >>= 1) {
+ if (data & x)
+ reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
+ else
+ reg = FXP_EEPROM_EECS;
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
+ DELAY(1);
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
+ DELAY(1);
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
+ DELAY(1);
+ }
+}
+
+/*
+ * Read from the serial EEPROM. Basically, you manually shift in
+ * the read opcode (one bit at a time) and then shift in the address,
+ * and then you shift out the data (all of this one bit at a time).
+ * The word size is 16 bits, so you have to provide the address for
+ * every 16 bits of data.
+ */
+static uint16_t
+fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
+{
+ uint16_t reg, data;
+ int x;
+
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
+ /*
+ * Shift in read opcode.
+ */
+ fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
+ /*
+ * Shift in address.
+ */
+ data = 0;
+ for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
+ if (offset & x)
+ reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
+ else
+ reg = FXP_EEPROM_EECS;
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
+ DELAY(1);
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
+ DELAY(1);
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
+ DELAY(1);
+ reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
+ data++;
+ if (autosize && reg == 0) {
+ sc->eeprom_size = data;
+ break;
+ }
+ }
+ /*
+ * Shift out data.
+ */
+ data = 0;
+ reg = FXP_EEPROM_EECS;
+ for (x = 1 << 15; x; x >>= 1) {
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
+ DELAY(1);
+ if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
+ data |= x;
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
+ DELAY(1);
+ }
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
+ DELAY(1);
+
+ return (data);
+}
+
+static void
+fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
+{
+ int i;
+
+ /*
+ * Erase/write enable.
+ */
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
+ fxp_eeprom_shiftin(sc, 0x4, 3);
+ fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
+ DELAY(1);
+ /*
+ * Shift in write opcode, address, data.
+ */
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
+ fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
+ fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
+ fxp_eeprom_shiftin(sc, data, 16);
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
+ DELAY(1);
+ /*
+ * Wait for EEPROM to finish up.
+ */
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
+ DELAY(1);
+ for (i = 0; i < 1000; i++) {
+ if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
+ break;
+ DELAY(50);
+ }
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
+ DELAY(1);
+ /*
+ * Erase/write disable.
+ */
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
+ fxp_eeprom_shiftin(sc, 0x4, 3);
+ fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
+ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
+ DELAY(1);
+}
+
+/*
+ * From NetBSD:
+ *
+ * Figure out EEPROM size.
+ *
+ * 559's can have either 64-word or 256-word EEPROMs, the 558
+ * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
+ * talks about the existance of 16 to 256 word EEPROMs.
+ *
+ * The only known sizes are 64 and 256, where the 256 version is used
+ * by CardBus cards to store CIS information.
+ *
+ * The address is shifted in msb-to-lsb, and after the last
+ * address-bit the EEPROM is supposed to output a `dummy zero' bit,
+ * after which follows the actual data. We try to detect this zero, by
+ * probing the data-out bit in the EEPROM control register just after
+ * having shifted in a bit. If the bit is zero, we assume we've
+ * shifted enough address bits. The data-out should be tri-state,
+ * before this, which should translate to a logical one.
+ */
+static void
+fxp_autosize_eeprom(struct fxp_softc *sc)
+{
+
+ /* guess maximum size of 256 words */
+ sc->eeprom_size = 8;
+
+ /* autosize */
+ (void) fxp_eeprom_getword(sc, 0, 1);
+}
+
+static void
+fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
+{
+ int i;
+
+ for (i = 0; i < words; i++)
+ data[i] = fxp_eeprom_getword(sc, offset + i, 0);
+}
+
+static void
+fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
+{
+ int i;
+
+ for (i = 0; i < words; i++)
+ fxp_eeprom_putword(sc, offset + i, data[i]);
+}
+
+/*
+ * Grab the softc lock and call the real fxp_start_body() routine
+ */
+static void
+fxp_start(struct ifnet *ifp)
+{
+ struct fxp_softc *sc = ifp->if_softc;
+
+ FXP_LOCK(sc);
+ fxp_start_body(ifp);
+ FXP_UNLOCK(sc);
+}
+
+/*
+ * Start packet transmission on the interface.
+ * This routine must be called with the softc lock held, and is an
+ * internal entry point only.
+ */
+static void
+fxp_start_body(struct ifnet *ifp)
+{
+ struct fxp_softc *sc = ifp->if_softc;
+ struct mbuf *mb_head;
+ int error, txqueued;
+
+ FXP_LOCK_ASSERT(sc, MA_OWNED);
+
+ /*
+ * See if we need to suspend xmit until the multicast filter
+ * has been reprogrammed (which can only be done at the head
+ * of the command chain).
+ */
+ if (sc->need_mcsetup)
+ return;
+
+ /*
+ * We're finished if there is nothing more to add to the list or if
+ * we're all filled up with buffers to transmit.
+ * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
+ * a NOP command when needed.
+ */
+ txqueued = 0;
+ while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
+ sc->tx_queued < FXP_NTXCB - 1) {
+
+ /*
+ * Grab a packet to transmit.
+ */
+ IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
+ if (mb_head == NULL)
+ break;
+
+ error = fxp_encap(sc, mb_head);
+ if (error)
+ break;
+ txqueued = 1;
+ }
+ bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
+
+ /*
+ * We're finished. If we added to the list, issue a RESUME to get DMA
+ * going again if suspended.
+ */
+ if (txqueued) {
+ fxp_scb_wait(sc);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
+ }
+}
+
+static int
+fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
+{
+ struct ifnet *ifp;
+ struct mbuf *m;
+ struct fxp_tx *txp;
+ struct fxp_cb_tx *cbp;
+ bus_dma_segment_t segs[FXP_NTXSEG];
+ int chainlen, error, i, nseg;
+
+ FXP_LOCK_ASSERT(sc, MA_OWNED);
+ ifp = sc->ifp;
+
+ /*
+ * Get pointer to next available tx desc.
+ */
+ txp = sc->fxp_desc.tx_last->tx_next;
+
+ /*
+ * A note in Appendix B of the Intel 8255x 10/100 Mbps
+ * Ethernet Controller Family Open Source Software
+ * Developer Manual says:
+ * Using software parsing is only allowed with legal
+ * TCP/IP or UDP/IP packets.
+ * ...
+ * For all other datagrams, hardware parsing must
+ * be used.
+ * Software parsing appears to truncate ICMP and
+ * fragmented UDP packets that contain one to three
+ * bytes in the second (and final) mbuf of the packet.
+ */
+ if (sc->flags & FXP_FLAG_EXT_RFA)
+ txp->tx_cb->ipcb_ip_activation_high =
+ FXP_IPCB_HARDWAREPARSING_ENABLE;
+
+ /*
+ * Deal with TCP/IP checksum offload. Note that
+ * in order for TCP checksum offload to work,
+ * the pseudo header checksum must have already
+ * been computed and stored in the checksum field
+ * in the TCP header. The stack should have
+ * already done this for us.
+ */
+ if (m_head->m_pkthdr.csum_flags) {
+ if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
+ txp->tx_cb->ipcb_ip_schedule =
+ FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
+ if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
+ txp->tx_cb->ipcb_ip_schedule |=
+ FXP_IPCB_TCP_PACKET;
+ }
+
+#ifdef FXP_IP_CSUM_WAR
+ /*
+ * XXX The 82550 chip appears to have trouble
+ * dealing with IP header checksums in very small
+ * datagrams, namely fragments from 1 to 3 bytes
+ * in size. For example, say you want to transmit
+ * a UDP packet of 1473 bytes. The packet will be
+ * fragmented over two IP datagrams, the latter
+ * containing only one byte of data. The 82550 will
+ * botch the header checksum on the 1-byte fragment.
+ * As long as the datagram contains 4 or more bytes
+ * of data, you're ok.
+ *
+ * The following code attempts to work around this
+ * problem: if the datagram is less than 38 bytes
+ * in size (14 bytes ether header, 20 bytes IP header,
+ * plus 4 bytes of data), we punt and compute the IP
+ * header checksum by hand. This workaround doesn't
+ * work very well, however, since it can be fooled
+ * by things like VLAN tags and IP options that make
+ * the header sizes/offsets vary.
+ */
+
+ if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
+ if (m_head->m_pkthdr.len < 38) {
+ struct ip *ip;
+ m_head->m_data += ETHER_HDR_LEN;
+ ip = mtod(mb_head, struct ip *);
+ ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
+ m_head->m_data -= ETHER_HDR_LEN;
+ } else {
+ txp->tx_cb->ipcb_ip_activation_high =
+ FXP_IPCB_HARDWAREPARSING_ENABLE;
+ txp->tx_cb->ipcb_ip_schedule |=
+ FXP_IPCB_IP_CHECKSUM_ENABLE;
+ }
+ }
+#endif
+ }
+
+ chainlen = 0;
+ for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
+ chainlen++;
+ if (chainlen > sc->maxtxseg) {
+ struct mbuf *mn;
+
+ /*
+ * We ran out of segments. We have to recopy this
+ * mbuf chain first. Bail out if we can't get the
+ * new buffers.
+ */
+ mn = m_defrag(m_head, M_DONTWAIT);
+ if (mn == NULL) {
+ m_freem(m_head);
+ return (-1);
+ } else {
+ m_head = mn;
+ }
+ }
+
+ /*
+ * Go through each of the mbufs in the chain and initialize
+ * the transmit buffer descriptors with the physical address
+ * and size of the mbuf.
+ */
+ error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
+ m_head, segs, &nseg, 0);
+ if (error) {
+ device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
+ m_freem(m_head);
+ return (-1);
+ }
+
+ KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
+
+ cbp = txp->tx_cb;
+ for (i = 0; i < nseg; i++) {
+ KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
+ /*
+ * If this is an 82550/82551, then we're using extended
+ * TxCBs _and_ we're using checksum offload. This means
+ * that the TxCB is really an IPCB. One major difference
+ * between the two is that with plain extended TxCBs,
+ * the bottom half of the TxCB contains two entries from
+ * the TBD array, whereas IPCBs contain just one entry:
+ * one entry (8 bytes) has been sacrificed for the TCP/IP
+ * checksum offload control bits. So to make things work
+ * right, we have to start filling in the TBD array
+ * starting from a different place depending on whether
+ * the chip is an 82550/82551 or not.
+ */
+ if (sc->flags & FXP_FLAG_EXT_RFA) {
+ cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
+ cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
+ } else {
+ cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
+ cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
+ }
+ }
+ cbp->tbd_number = nseg;
+
+ bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
+ txp->tx_mbuf = m_head;
+ txp->tx_cb->cb_status = 0;
+ txp->tx_cb->byte_count = 0;
+ if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
+ txp->tx_cb->cb_command =
+ htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
+ FXP_CB_COMMAND_S);
+ } else {
+ txp->tx_cb->cb_command =
+ htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
+ FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
+ /*
+ * Set a 5 second timer just in case we don't hear
+ * from the card again.
+ */
+ sc->watchdog_timer = 5;
+ }
+ txp->tx_cb->tx_threshold = tx_threshold;
+
+ /*
+ * Advance the end of list forward.
+ */
+
+#ifdef __alpha__
+ /*
+ * On platforms which can't access memory in 16-bit
+ * granularities, we must prevent the card from DMA'ing
+ * up the status while we update the command field.
+ * This could cause us to overwrite the completion status.
+ * XXX This is probably bogus and we're _not_ looking
+ * for atomicity here.
+ */
+ atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
+ htole16(FXP_CB_COMMAND_S));
+#else
+ sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
+#endif /*__alpha__*/
+ sc->fxp_desc.tx_last = txp;
+
+ /*
+ * Advance the beginning of the list forward if there are
+ * no other packets queued (when nothing is queued, tx_first
+ * sits on the last TxCB that was sent out).
+ */
+ if (sc->tx_queued == 0)
+ sc->fxp_desc.tx_first = txp;
+
+ sc->tx_queued++;
+
+ /*
+ * Pass packet to bpf if there is a listener.
+ */
+ BPF_MTAP(ifp, m_head);
+ return (0);
+}
+
+#ifdef DEVICE_POLLING
+static poll_handler_t fxp_poll;
+
+static void
+fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
+{
+ struct fxp_softc *sc = ifp->if_softc;
+ uint8_t statack;
+
+ FXP_LOCK(sc);
+ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
+ FXP_UNLOCK(sc);
+ return;
+ }
+
+ statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
+ FXP_SCB_STATACK_FR;
+ if (cmd == POLL_AND_CHECK_STATUS) {
+ uint8_t tmp;
+
+ tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
+ if (tmp == 0xff || tmp == 0) {
+ FXP_UNLOCK(sc);
+ return; /* nothing to do */
+ }
+ tmp &= ~statack;
+ /* ack what we can */
+ if (tmp != 0)
+ CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
+ statack |= tmp;
+ }
+ fxp_intr_body(sc, ifp, statack, count);
+ FXP_UNLOCK(sc);
+}
+#endif /* DEVICE_POLLING */
+
+/*
+ * Process interface interrupts.
+ */
+static void
+fxp_intr(void *xsc)
+{
+ struct fxp_softc *sc = xsc;
+ struct ifnet *ifp = sc->ifp;
+ uint8_t statack;
+
+ FXP_LOCK(sc);
+ if (sc->suspended) {
+ FXP_UNLOCK(sc);
+ return;
+ }
+
+#ifdef DEVICE_POLLING
+ if (ifp->if_capenable & IFCAP_POLLING) {
+ FXP_UNLOCK(sc);
+ return;
+ }
+#endif
+ while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
+ /*
+ * It should not be possible to have all bits set; the
+ * FXP_SCB_INTR_SWI bit always returns 0 on a read. If
+ * all bits are set, this may indicate that the card has
+ * been physically ejected, so ignore it.
+ */
+ if (statack == 0xff) {
+ FXP_UNLOCK(sc);
+ return;
+ }
+
+ /*
+ * First ACK all the interrupts in this pass.
+ */
+ CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
+ fxp_intr_body(sc, ifp, statack, -1);
+ }
+ FXP_UNLOCK(sc);
+}
+
+static void
+fxp_txeof(struct fxp_softc *sc)
+{
+ struct fxp_tx *txp;
+
+ bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
+ for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
+ (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
+ txp = txp->tx_next) {
+ if (txp->tx_mbuf != NULL) {
+ bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
+ m_freem(txp->tx_mbuf);
+ txp->tx_mbuf = NULL;
+ /* clear this to reset csum offload bits */
+ txp->tx_cb->tbd[0].tb_addr = 0;
+ }
+ sc->tx_queued--;
+ }
+ sc->fxp_desc.tx_first = txp;
+ bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
+}
+
+static void
+fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
+ int count)
+{
+ struct mbuf *m;
+ struct fxp_rx *rxp;
+ struct fxp_rfa *rfa;
+ int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
+ int fxp_rc = 0;
+
+ FXP_LOCK_ASSERT(sc, MA_OWNED);
+ if (rnr)
+ sc->rnr++;
+#ifdef DEVICE_POLLING
+ /* Pick up a deferred RNR condition if `count' ran out last time. */
+ if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
+ sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
+ rnr = 1;
+ }
+#endif
+
+ /*
+ * Free any finished transmit mbuf chains.
+ *
+ * Handle the CNA event likt a CXTNO event. It used to
+ * be that this event (control unit not ready) was not
+ * encountered, but it is now with the SMPng modifications.
+ * The exact sequence of events that occur when the interface
+ * is brought up are different now, and if this event
+ * goes unhandled, the configuration/rxfilter setup sequence
+ * can stall for several seconds. The result is that no
+ * packets go out onto the wire for about 5 to 10 seconds
+ * after the interface is ifconfig'ed for the first time.
+ */
+ if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
+ fxp_txeof(sc);
+
+ sc->watchdog_timer = 0;
+ if (sc->tx_queued == 0) {
+ if (sc->need_mcsetup)
+ fxp_mc_setup(sc);
+ }
+ /*
+ * Try to start more packets transmitting.
+ */
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ fxp_start_body(ifp);
+ }
+
+ /*
+ * Just return if nothing happened on the receive side.
+ */
+ if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
+ return;
+
+ /*
+ * Process receiver interrupts. If a no-resource (RNR)
+ * condition exists, get whatever packets we can and
+ * re-start the receiver.
+ *
+ * When using polling, we do not process the list to completion,
+ * so when we get an RNR interrupt we must defer the restart
+ * until we hit the last buffer with the C bit set.
+ * If we run out of cycles and rfa_headm has the C bit set,
+ * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
+ * that the info will be used in the subsequent polling cycle.
+ */
+ for (;;) {
+ rxp = sc->fxp_desc.rx_head;
+ m = rxp->rx_mbuf;
+ rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
+ RFA_ALIGNMENT_FUDGE);
+ bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
+ BUS_DMASYNC_POSTREAD);
+
+#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
+ if (count >= 0 && count-- == 0) {
+ if (rnr) {
+ /* Defer RNR processing until the next time. */
+ sc->flags |= FXP_FLAG_DEFERRED_RNR;
+ rnr = 0;
+ }
+ break;
+ }
+#endif /* DEVICE_POLLING */
+
+ if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
+ break;
+
+ /*
+ * Advance head forward.
+ */
+ sc->fxp_desc.rx_head = rxp->rx_next;
+
+ /*
+ * Add a new buffer to the receive chain.
+ * If this fails, the old buffer is recycled
+ * instead.
+ */
+ fxp_rc = fxp_add_rfabuf(sc, rxp);
+ if (fxp_rc == 0) {
+ int total_len;
+
+ /*
+ * Fetch packet length (the top 2 bits of
+ * actual_size are flags set by the controller
+ * upon completion), and drop the packet in case
+ * of bogus length or CRC errors.
+ */
+ total_len = le16toh(rfa->actual_size) & 0x3fff;
+ if (total_len < sizeof(struct ether_header) ||
+ total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
+ sc->rfa_size ||
+ le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
+ m_freem(m);
+ continue;
+ }
+
+ /* Do IP checksum checking. */
+ if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
+ if (rfa->rfax_csum_sts &
+ FXP_RFDX_CS_IP_CSUM_BIT_VALID)
+ m->m_pkthdr.csum_flags |=
+ CSUM_IP_CHECKED;
+ if (rfa->rfax_csum_sts &
+ FXP_RFDX_CS_IP_CSUM_VALID)
+ m->m_pkthdr.csum_flags |=
+ CSUM_IP_VALID;
+ if ((rfa->rfax_csum_sts &
+ FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
+ (rfa->rfax_csum_sts &
+ FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
+ m->m_pkthdr.csum_flags |=
+ CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
+ m->m_pkthdr.csum_data = 0xffff;
+ }
+ }
+
+ m->m_pkthdr.len = m->m_len = total_len;
+ m->m_pkthdr.rcvif = ifp;
+
+ /*
+ * Drop locks before calling if_input() since it
+ * may re-enter fxp_start() in the netisr case.
+ * This would result in a lock reversal. Better
+ * performance might be obtained by chaining all
+ * packets received, dropping the lock, and then
+ * calling if_input() on each one.
+ */
+ FXP_UNLOCK(sc);
+ (*ifp->if_input)(ifp, m);
+ FXP_LOCK(sc);
+ } else if (fxp_rc == ENOBUFS) {
+ rnr = 0;
+ break;
+ }
+ }
+ if (rnr) {
+ fxp_scb_wait(sc);
+ CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
+ sc->fxp_desc.rx_head->rx_addr);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
+ }
+}
+
+/*
+ * Update packet in/out/collision statistics. The i82557 doesn't
+ * allow you to access these counters without doing a fairly
+ * expensive DMA to get _all_ of the statistics it maintains, so
+ * we do this operation here only once per second. The statistics
+ * counters in the kernel are updated from the previous dump-stats
+ * DMA and then a new dump-stats DMA is started. The on-chip
+ * counters are zeroed when the DMA completes. If we can't start
+ * the DMA immediately, we don't wait - we just prepare to read
+ * them again next time.
+ */
+static void
+fxp_tick(void *xsc)
+{
+ struct fxp_softc *sc = xsc;
+ struct ifnet *ifp = sc->ifp;
+ struct fxp_stats *sp = sc->fxp_stats;
+
+ FXP_LOCK_ASSERT(sc, MA_OWNED);
+ bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
+ ifp->if_opackets += le32toh(sp->tx_good);
+ ifp->if_collisions += le32toh(sp->tx_total_collisions);
+ if (sp->rx_good) {
+ ifp->if_ipackets += le32toh(sp->rx_good);
+ sc->rx_idle_secs = 0;
+ } else {
+ /*
+ * Receiver's been idle for another second.
+ */
+ sc->rx_idle_secs++;
+ }
+ ifp->if_ierrors +=
+ le32toh(sp->rx_crc_errors) +
+ le32toh(sp->rx_alignment_errors) +
+ le32toh(sp->rx_rnr_errors) +
+ le32toh(sp->rx_overrun_errors);
+ /*
+ * If any transmit underruns occured, bump up the transmit
+ * threshold by another 512 bytes (64 * 8).
+ */
+ if (sp->tx_underruns) {
+ ifp->if_oerrors += le32toh(sp->tx_underruns);
+ if (tx_threshold < 192)
+ tx_threshold += 64;
+ }
+
+ /*
+ * Release any xmit buffers that have completed DMA. This isn't
+ * strictly necessary to do here, but it's advantagous for mbufs
+ * with external storage to be released in a timely manner rather
+ * than being defered for a potentially long time. This limits
+ * the delay to a maximum of one second.
+ */
+ fxp_txeof(sc);
+
+ /*
+ * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
+ * then assume the receiver has locked up and attempt to clear
+ * the condition by reprogramming the multicast filter. This is
+ * a work-around for a bug in the 82557 where the receiver locks
+ * up if it gets certain types of garbage in the syncronization
+ * bits prior to the packet header. This bug is supposed to only
+ * occur in 10Mbps mode, but has been seen to occur in 100Mbps
+ * mode as well (perhaps due to a 10/100 speed transition).
+ */
+ if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
+ sc->rx_idle_secs = 0;
+ fxp_mc_setup(sc);
+ }
+ /*
+ * If there is no pending command, start another stats
+ * dump. Otherwise punt for now.
+ */
+ if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
+ /*
+ * Start another stats dump.
+ */
+ bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
+ BUS_DMASYNC_PREREAD);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
+ } else {
+ /*
+ * A previous command is still waiting to be accepted.
+ * Just zero our copy of the stats and wait for the
+ * next timer event to update them.
+ */
+ sp->tx_good = 0;
+ sp->tx_underruns = 0;
+ sp->tx_total_collisions = 0;
+
+ sp->rx_good = 0;
+ sp->rx_crc_errors = 0;
+ sp->rx_alignment_errors = 0;
+ sp->rx_rnr_errors = 0;
+ sp->rx_overrun_errors = 0;
+ }
+ if (sc->miibus != NULL)
+ mii_tick(device_get_softc(sc->miibus));
+
+ /*
+ * Check that chip hasn't hung.
+ */
+ fxp_watchdog(sc);
+
+ /*
+ * Schedule another timeout one second from now.
+ */
+ callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
+}
+
+/*
+ * Stop the interface. Cancels the statistics updater and resets
+ * the interface.
+ */
+static void
+fxp_stop(struct fxp_softc *sc)
+{
+ struct ifnet *ifp = sc->ifp;
+ struct fxp_tx *txp;
+ int i;
+
+ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+ sc->watchdog_timer = 0;
+
+ /*
+ * Cancel stats updater.
+ */
+ callout_stop(&sc->stat_ch);
+
+ /*
+ * Issue software reset, which also unloads the microcode.
+ */
+ sc->flags &= ~FXP_FLAG_UCODE;
+ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
+ DELAY(50);
+
+ /*
+ * Release any xmit buffers.
+ */
+ txp = sc->fxp_desc.tx_list;
+ if (txp != NULL) {
+ for (i = 0; i < FXP_NTXCB; i++) {
+ if (txp[i].tx_mbuf != NULL) {
+ bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
+ m_freem(txp[i].tx_mbuf);
+ txp[i].tx_mbuf = NULL;
+ /* clear this to reset csum offload bits */
+ txp[i].tx_cb->tbd[0].tb_addr = 0;
+ }
+ }
+ }
+ bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
+ sc->tx_queued = 0;
+}
+
+/*
+ * Watchdog/transmission transmit timeout handler. Called when a
+ * transmission is started on the interface, but no interrupt is
+ * received before the timeout. This usually indicates that the
+ * card has wedged for some reason.
+ */
+static void
+fxp_watchdog(struct fxp_softc *sc)
+{
+
+ FXP_LOCK_ASSERT(sc, MA_OWNED);
+
+ if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
+ return;
+
+ device_printf(sc->dev, "device timeout\n");
+ sc->ifp->if_oerrors++;
+
+ fxp_init_body(sc);
+}
+
+/*
+ * Acquire locks and then call the real initialization function. This
+ * is necessary because ether_ioctl() calls if_init() and this would
+ * result in mutex recursion if the mutex was held.
+ */
+static void
+fxp_init(void *xsc)
+{
+ struct fxp_softc *sc = xsc;
+
+ FXP_LOCK(sc);
+ fxp_init_body(sc);
+ FXP_UNLOCK(sc);
+}
+
+/*
+ * Perform device initialization. This routine must be called with the
+ * softc lock held.
+ */
+static void
+fxp_init_body(struct fxp_softc *sc)
+{
+ struct ifnet *ifp = sc->ifp;
+ struct fxp_cb_config *cbp;
+ struct fxp_cb_ias *cb_ias;
+ struct fxp_cb_tx *tcbp;
+ struct fxp_tx *txp;
+ struct fxp_cb_mcs *mcsp;
+ int i, prm;
+
+ FXP_LOCK_ASSERT(sc, MA_OWNED);
+ /*
+ * Cancel any pending I/O
+ */
+ fxp_stop(sc);
+
+ prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
+
+ /*
+ * Initialize base of CBL and RFA memory. Loading with zero
+ * sets it up for regular linear addressing.
+ */
+ CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
+
+ fxp_scb_wait(sc);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
+
+ /*
+ * Initialize base of dump-stats buffer.
+ */
+ fxp_scb_wait(sc);
+ bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
+ CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
+
+ /*
+ * Attempt to load microcode if requested.
+ */
+ if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
+ fxp_load_ucode(sc);
+
+ /*
+ * Initialize the multicast address list.
+ */
+ if (fxp_mc_addrs(sc)) {
+ mcsp = sc->mcsp;
+ mcsp->cb_status = 0;
+ mcsp->cb_command =
+ htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
+ mcsp->link_addr = 0xffffffff;
+ /*
+ * Start the multicast setup command.
+ */
+ fxp_scb_wait(sc);
+ bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
+ CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
+ /* ...and wait for it to complete. */
+ fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
+ bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
+ BUS_DMASYNC_POSTWRITE);
+ }
+
+ /*
+ * We temporarily use memory that contains the TxCB list to
+ * construct the config CB. The TxCB list memory is rebuilt
+ * later.
+ */
+ cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
+
+ /*
+ * This bcopy is kind of disgusting, but there are a bunch of must be
+ * zero and must be one bits in this structure and this is the easiest
+ * way to initialize them all to proper values.
+ */
+ bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
+
+ cbp->cb_status = 0;
+ cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
+ FXP_CB_COMMAND_EL);
+ cbp->link_addr = 0xffffffff; /* (no) next command */
+ cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
+ cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
+ cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
+ cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
+ cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
+ cbp->type_enable = 0; /* actually reserved */
+ cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
+ cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
+ cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
+ cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
+ cbp->dma_mbce = 0; /* (disable) dma max counters */
+ cbp->late_scb = 0; /* (don't) defer SCB update */
+ cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */
+ cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
+ cbp->ci_int = 1; /* interrupt on CU idle */
+ cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
+ cbp->ext_stats_dis = 1; /* disable extended counters */
+ cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
+ cbp->save_bf = sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
+ cbp->disc_short_rx = !prm; /* discard short packets */
+ cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */
+ cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
+ cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
+ cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
+ cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
+ cbp->csma_dis = 0; /* (don't) disable link */
+ cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
+ cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
+ cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
+ cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
+ cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */
+ cbp->nsai = 1; /* (don't) disable source addr insert */
+ cbp->preamble_length = 2; /* (7 byte) preamble */
+ cbp->loopback = 0; /* (don't) loopback */
+ cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
+ cbp->linear_pri_mode = 0; /* (wait after xmit only) */
+ cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
+ cbp->promiscuous = prm; /* promiscuous mode */
+ cbp->bcast_disable = 0; /* (don't) disable broadcasts */
+ cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
+ cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
+ cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
+ cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
+
+ cbp->stripping = !prm; /* truncate rx packet to byte count */
+ cbp->padding = 1; /* (do) pad short tx packets */
+ cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
+ cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
+ cbp->ia_wake_en = 0; /* (don't) wake up on address match */
+ cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
+ /* must set wake_en in PMCSR also */
+ cbp->force_fdx = 0; /* (don't) force full duplex */
+ cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
+ cbp->multi_ia = 0; /* (don't) accept multiple IAs */
+ cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
+ cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
+
+ if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
+ /*
+ * The 82557 has no hardware flow control, the values
+ * below are the defaults for the chip.
+ */
+ cbp->fc_delay_lsb = 0;
+ cbp->fc_delay_msb = 0x40;
+ cbp->pri_fc_thresh = 3;
+ cbp->tx_fc_dis = 0;
+ cbp->rx_fc_restop = 0;
+ cbp->rx_fc_restart = 0;
+ cbp->fc_filter = 0;
+ cbp->pri_fc_loc = 1;
+ } else {
+ cbp->fc_delay_lsb = 0x1f;
+ cbp->fc_delay_msb = 0x01;
+ cbp->pri_fc_thresh = 3;
+ cbp->tx_fc_dis = 0; /* enable transmit FC */
+ cbp->rx_fc_restop = 1; /* enable FC restop frames */
+ cbp->rx_fc_restart = 1; /* enable FC restart frames */
+ cbp->fc_filter = !prm; /* drop FC frames to host */
+ cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
+ }
+
+ /*
+ * Start the config command/DMA.
+ */
+ fxp_scb_wait(sc);
+ bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
+ CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
+ /* ...and wait for it to complete. */
+ fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
+ bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
+
+ /*
+ * Now initialize the station address. Temporarily use the TxCB
+ * memory area like we did above for the config CB.
+ */
+ cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
+ cb_ias->cb_status = 0;
+ cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
+ cb_ias->link_addr = 0xffffffff;
+ bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
+
+ /*
+ * Start the IAS (Individual Address Setup) command/DMA.
+ */
+ fxp_scb_wait(sc);
+ bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
+ /* ...and wait for it to complete. */
+ fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
+ bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
+
+ /*
+ * Initialize transmit control block (TxCB) list.
+ */
+ txp = sc->fxp_desc.tx_list;
+ tcbp = sc->fxp_desc.cbl_list;
+ bzero(tcbp, FXP_TXCB_SZ);
+ for (i = 0; i < FXP_NTXCB; i++) {
+ txp[i].tx_mbuf = NULL;
+ tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
+ tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
+ tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
+ (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
+ if (sc->flags & FXP_FLAG_EXT_TXCB)
+ tcbp[i].tbd_array_addr =
+ htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
+ else
+ tcbp[i].tbd_array_addr =
+ htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
+ txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
+ }
+ /*
+ * Set the suspend flag on the first TxCB and start the control
+ * unit. It will execute the NOP and then suspend.
+ */
+ tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
+ bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
+ sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
+ sc->tx_queued = 1;
+
+ fxp_scb_wait(sc);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
+
+ /*
+ * Initialize receiver buffer area - RFA.
+ */
+ fxp_scb_wait(sc);
+ CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
+
+ /*
+ * Set current media.
+ */
+ if (sc->miibus != NULL)
+ mii_mediachg(device_get_softc(sc->miibus));
+
+ ifp->if_drv_flags |= IFF_DRV_RUNNING;
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+
+ /*
+ * Enable interrupts.
+ */
+#ifdef DEVICE_POLLING
+ /*
+ * ... but only do that if we are not polling. And because (presumably)
+ * the default is interrupts on, we need to disable them explicitly!
+ */
+ if (ifp->if_capenable & IFCAP_POLLING )
+ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
+ else
+#endif /* DEVICE_POLLING */
+ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
+
+ /*
+ * Start stats updater.
+ */
+ callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
+}
+
+static int
+fxp_serial_ifmedia_upd(struct ifnet *ifp)
+{
+
+ return (0);
+}
+
+static void
+fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
+{
+
+ ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
+}
+
+/*
+ * Change media according to request.
+ */
+static int
+fxp_ifmedia_upd(struct ifnet *ifp)
+{
+ struct fxp_softc *sc = ifp->if_softc;
+ struct mii_data *mii;
+
+ mii = device_get_softc(sc->miibus);
+ FXP_LOCK(sc);
+ if (mii->mii_instance) {
+ struct mii_softc *miisc;
+ LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
+ mii_phy_reset(miisc);
+ }
+ mii_mediachg(mii);
+ FXP_UNLOCK(sc);
+ return (0);
+}
+
+/*
+ * Notify the world which media we're using.
+ */
+static void
+fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
+{
+ struct fxp_softc *sc = ifp->if_softc;
+ struct mii_data *mii;
+
+ mii = device_get_softc(sc->miibus);
+ FXP_LOCK(sc);
+ mii_pollstat(mii);
+ ifmr->ifm_active = mii->mii_media_active;
+ ifmr->ifm_status = mii->mii_media_status;
+
+ if (IFM_SUBTYPE(ifmr->ifm_active) == IFM_10_T &&
+ sc->flags & FXP_FLAG_CU_RESUME_BUG)
+ sc->cu_resume_bug = 1;
+ else
+ sc->cu_resume_bug = 0;
+ FXP_UNLOCK(sc);
+}
+
+/*
+ * Add a buffer to the end of the RFA buffer list.
+ * Return 0 if successful, 1 for failure. A failure results in
+ * adding the 'oldm' (if non-NULL) on to the end of the list -
+ * tossing out its old contents and recycling it.
+ * The RFA struct is stuck at the beginning of mbuf cluster and the
+ * data pointer is fixed up to point just past it.
+ */
+static int
+fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
+{
+ struct mbuf *m;
+ struct fxp_rfa *rfa, *p_rfa;
+ struct fxp_rx *p_rx;
+ bus_dmamap_t tmp_map;
+ int error;
+
+ m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
+ if (m == NULL)
+ return (ENOBUFS);
+
+ /*
+ * Move the data pointer up so that the incoming data packet
+ * will be 32-bit aligned.
+ */
+ m->m_data += RFA_ALIGNMENT_FUDGE;
+
+ /*
+ * Get a pointer to the base of the mbuf cluster and move
+ * data start past it.
+ */
+ rfa = mtod(m, struct fxp_rfa *);
+ m->m_data += sc->rfa_size;
+ rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
+
+ rfa->rfa_status = 0;
+ rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
+ rfa->actual_size = 0;
+
+ /*
+ * Initialize the rest of the RFA. Note that since the RFA
+ * is misaligned, we cannot store values directly. We're thus
+ * using the le32enc() function which handles endianness and
+ * is also alignment-safe.
+ */
+ le32enc(&rfa->link_addr, 0xffffffff);
+ le32enc(&rfa->rbd_addr, 0xffffffff);
+
+ /* Map the RFA into DMA memory. */
+ error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
+ MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
+ &rxp->rx_addr, 0);
+ if (error) {
+ m_freem(m);
+ return (error);
+ }
+
+ bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
+ tmp_map = sc->spare_map;
+ sc->spare_map = rxp->rx_map;
+ rxp->rx_map = tmp_map;
+ rxp->rx_mbuf = m;
+
+ bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ /*
+ * If there are other buffers already on the list, attach this
+ * one to the end by fixing up the tail to point to this one.
+ */
+ if (sc->fxp_desc.rx_head != NULL) {
+ p_rx = sc->fxp_desc.rx_tail;
+ p_rfa = (struct fxp_rfa *)
+ (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
+ p_rx->rx_next = rxp;
+ le32enc(&p_rfa->link_addr, rxp->rx_addr);
+ p_rfa->rfa_control = 0;
+ bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
+ BUS_DMASYNC_PREWRITE);
+ } else {
+ rxp->rx_next = NULL;
+ sc->fxp_desc.rx_head = rxp;
+ }
+ sc->fxp_desc.rx_tail = rxp;
+ return (0);
+}
+
+static int
+fxp_miibus_readreg(device_t dev, int phy, int reg)
+{
+ struct fxp_softc *sc = device_get_softc(dev);
+ int count = 10000;
+ int value;
+
+ CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
+ (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
+
+ while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
+ && count--)
+ DELAY(10);
+
+ if (count <= 0)
+ device_printf(dev, "fxp_miibus_readreg: timed out\n");
+
+ return (value & 0xffff);
+}
+
+static void
+fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
+{
+ struct fxp_softc *sc = device_get_softc(dev);
+ int count = 10000;
+
+ CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
+ (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
+ (value & 0xffff));
+
+ while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
+ count--)
+ DELAY(10);
+
+ if (count <= 0)
+ device_printf(dev, "fxp_miibus_writereg: timed out\n");
+}
+
+static int
+fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
+{
+ struct fxp_softc *sc = ifp->if_softc;
+ struct ifreq *ifr = (struct ifreq *)data;
+ struct mii_data *mii;
+ int flag, mask, error = 0;
+
+ switch (command) {
+ case SIOCSIFFLAGS:
+ FXP_LOCK(sc);
+ if (ifp->if_flags & IFF_ALLMULTI)
+ sc->flags |= FXP_FLAG_ALL_MCAST;
+ else
+ sc->flags &= ~FXP_FLAG_ALL_MCAST;
+
+ /*
+ * If interface is marked up and not running, then start it.
+ * If it is marked down and running, stop it.
+ * XXX If it's up then re-initialize it. This is so flags
+ * such as IFF_PROMISC are handled.
+ */
+ if (ifp->if_flags & IFF_UP) {
+ fxp_init_body(sc);
+ } else {
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING)
+ fxp_stop(sc);
+ }
+ FXP_UNLOCK(sc);
+ break;
+
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+ FXP_LOCK(sc);
+ if (ifp->if_flags & IFF_ALLMULTI)
+ sc->flags |= FXP_FLAG_ALL_MCAST;
+ else
+ sc->flags &= ~FXP_FLAG_ALL_MCAST;
+ /*
+ * Multicast list has changed; set the hardware filter
+ * accordingly.
+ */
+ if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
+ fxp_mc_setup(sc);
+ /*
+ * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
+ * again rather than else {}.
+ */
+ if (sc->flags & FXP_FLAG_ALL_MCAST)
+ fxp_init_body(sc);
+ FXP_UNLOCK(sc);
+ error = 0;
+ break;
+
+ case SIOCSIFMEDIA:
+ case SIOCGIFMEDIA:
+ if (sc->miibus != NULL) {
+ mii = device_get_softc(sc->miibus);
+ error = ifmedia_ioctl(ifp, ifr,
+ &mii->mii_media, command);
+ } else {
+ error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
+ }
+ break;
+
+ case SIOCSIFCAP:
+ mask = ifp->if_capenable ^ ifr->ifr_reqcap;
+#ifdef DEVICE_POLLING
+ if (mask & IFCAP_POLLING) {
+ if (ifr->ifr_reqcap & IFCAP_POLLING) {
+ error = ether_poll_register(fxp_poll, ifp);
+ if (error)
+ return(error);
+ FXP_LOCK(sc);
+ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
+ FXP_SCB_INTR_DISABLE);
+ ifp->if_capenable |= IFCAP_POLLING;
+ FXP_UNLOCK(sc);
+ } else {
+ error = ether_poll_deregister(ifp);
+ /* Enable interrupts in any case */
+ FXP_LOCK(sc);
+ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
+ ifp->if_capenable &= ~IFCAP_POLLING;
+ FXP_UNLOCK(sc);
+ }
+ }
+#endif
+ if (mask & IFCAP_VLAN_MTU) {
+ FXP_LOCK(sc);
+ ifp->if_capenable ^= IFCAP_VLAN_MTU;
+ if (sc->revision != FXP_REV_82557)
+ flag = FXP_FLAG_LONG_PKT_EN;
+ else /* a hack to get long frames on the old chip */
+ flag = FXP_FLAG_SAVE_BAD;
+ sc->flags ^= flag;
+ if (ifp->if_flags & IFF_UP)
+ fxp_init_body(sc);
+ FXP_UNLOCK(sc);
+ }
+ break;
+
+ default:
+ error = ether_ioctl(ifp, command, data);
+ }
+ return (error);
+}
+
+/*
+ * Fill in the multicast address list and return number of entries.
+ */
+static int
+fxp_mc_addrs(struct fxp_softc *sc)
+{
+ struct fxp_cb_mcs *mcsp = sc->mcsp;
+ struct ifnet *ifp = sc->ifp;
+ struct ifmultiaddr *ifma;
+ int nmcasts;
+
+ nmcasts = 0;
+ if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
+ IF_ADDR_LOCK(ifp);
+ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
+ if (ifma->ifma_addr->sa_family != AF_LINK)
+ continue;
+ if (nmcasts >= MAXMCADDR) {
+ sc->flags |= FXP_FLAG_ALL_MCAST;
+ nmcasts = 0;
+ break;
+ }
+ bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
+ &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
+ nmcasts++;
+ }
+ IF_ADDR_UNLOCK(ifp);
+ }
+ mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
+ return (nmcasts);
+}
+
+/*
+ * Program the multicast filter.
+ *
+ * We have an artificial restriction that the multicast setup command
+ * must be the first command in the chain, so we take steps to ensure
+ * this. By requiring this, it allows us to keep up the performance of
+ * the pre-initialized command ring (esp. link pointers) by not actually
+ * inserting the mcsetup command in the ring - i.e. its link pointer
+ * points to the TxCB ring, but the mcsetup descriptor itself is not part
+ * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
+ * lead into the regular TxCB ring when it completes.
+ *
+ * This function must be called at splimp.
+ */
+static void
+fxp_mc_setup(struct fxp_softc *sc)
+{
+ struct fxp_cb_mcs *mcsp = sc->mcsp;
+ struct fxp_tx *txp;
+ int count;
+
+ FXP_LOCK_ASSERT(sc, MA_OWNED);
+ /*
+ * If there are queued commands, we must wait until they are all
+ * completed. If we are already waiting, then add a NOP command
+ * with interrupt option so that we're notified when all commands
+ * have been completed - fxp_start() ensures that no additional
+ * TX commands will be added when need_mcsetup is true.
+ */
+ if (sc->tx_queued) {
+ /*
+ * need_mcsetup will be true if we are already waiting for the
+ * NOP command to be completed (see below). In this case, bail.
+ */
+ if (sc->need_mcsetup)
+ return;
+ sc->need_mcsetup = 1;
+
+ /*
+ * Add a NOP command with interrupt so that we are notified
+ * when all TX commands have been processed.
+ */
+ txp = sc->fxp_desc.tx_last->tx_next;
+ txp->tx_mbuf = NULL;
+ txp->tx_cb->cb_status = 0;
+ txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
+ FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
+ /*
+ * Advance the end of list forward.
+ */
+ sc->fxp_desc.tx_last->tx_cb->cb_command &=
+ htole16(~FXP_CB_COMMAND_S);
+ bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
+ sc->fxp_desc.tx_last = txp;
+ sc->tx_queued++;
+ /*
+ * Issue a resume in case the CU has just suspended.
+ */
+ fxp_scb_wait(sc);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
+ /*
+ * Set a 5 second timer just in case we don't hear from the
+ * card again.
+ */
+ sc->watchdog_timer = 5;
+
+ return;
+ }
+ sc->need_mcsetup = 0;
+
+ /*
+ * Initialize multicast setup descriptor.
+ */
+ mcsp->cb_status = 0;
+ mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
+ FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
+ mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
+ txp = &sc->fxp_desc.mcs_tx;
+ txp->tx_mbuf = NULL;
+ txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
+ txp->tx_next = sc->fxp_desc.tx_list;
+ (void) fxp_mc_addrs(sc);
+ sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
+ sc->tx_queued = 1;
+
+ /*
+ * Wait until command unit is not active. This should never
+ * be the case when nothing is queued, but make sure anyway.
+ */
+ count = 100;
+ while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
+ FXP_SCB_CUS_ACTIVE && --count)
+ DELAY(10);
+ if (count == 0) {
+ device_printf(sc->dev, "command queue timeout\n");
+ return;
+ }
+
+ /*
+ * Start the multicast setup command.
+ */
+ fxp_scb_wait(sc);
+ bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
+ CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
+
+ sc->watchdog_timer = 2;
+ return;
+}
+
+static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
+static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
+static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
+static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
+static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
+static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
+static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
+
+#define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
+
+struct ucode {
+ uint32_t revision;
+ uint32_t *ucode;
+ int length;
+ u_short int_delay_offset;
+ u_short bundle_max_offset;
+} ucode_table[] = {
+ { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
+ { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
+ { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
+ D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
+ { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
+ D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
+ { FXP_REV_82550, UCODE(fxp_ucode_d102),
+ D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
+ { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
+ D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
+ { FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
+ D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
+ { 0, NULL, 0, 0, 0 }
+};
+
+static void
+fxp_load_ucode(struct fxp_softc *sc)
+{
+ struct ucode *uc;
+ struct fxp_cb_ucode *cbp;
+ int i;
+
+ for (uc = ucode_table; uc->ucode != NULL; uc++)
+ if (sc->revision == uc->revision)
+ break;
+ if (uc->ucode == NULL)
+ return;
+ cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
+ cbp->cb_status = 0;
+ cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
+ cbp->link_addr = 0xffffffff; /* (no) next command */
+ for (i = 0; i < uc->length; i++)
+ cbp->ucode[i] = htole32(uc->ucode[i]);
+ if (uc->int_delay_offset)
+ *(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
+ htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
+ if (uc->bundle_max_offset)
+ *(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
+ htole16(sc->tunable_bundle_max);
+ /*
+ * Download the ucode to the chip.
+ */
+ fxp_scb_wait(sc);
+ bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
+ CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
+ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
+ /* ...and wait for it to complete. */
+ fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
+ bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
+ device_printf(sc->dev,
+ "Microcode loaded, int_delay: %d usec bundle_max: %d\n",
+ sc->tunable_int_delay,
+ uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
+ sc->flags |= FXP_FLAG_UCODE;
+}
+
+static int
+sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
+{
+ int error, value;
+
+ value = *(int *)arg1;
+ error = sysctl_handle_int(oidp, &value, 0, req);
+ if (error || !req->newptr)
+ return (error);
+ if (value < low || value > high)
+ return (EINVAL);
+ *(int *)arg1 = value;
+ return (0);
+}
+
+/*
+ * Interrupt delay is expressed in microseconds, a multiplier is used
+ * to convert this to the appropriate clock ticks before using.
+ */
+static int
+sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
+{
+ return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
+}
+
+static int
+sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
+{
+ return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
+}