summaryrefslogtreecommitdiffstats
path: root/bsd_eth_drivers/if_em/e1000_nvm.c
diff options
context:
space:
mode:
Diffstat (limited to 'bsd_eth_drivers/if_em/e1000_nvm.c')
-rw-r--r--bsd_eth_drivers/if_em/e1000_nvm.c901
1 files changed, 901 insertions, 0 deletions
diff --git a/bsd_eth_drivers/if_em/e1000_nvm.c b/bsd_eth_drivers/if_em/e1000_nvm.c
new file mode 100644
index 0000000..6fc4987
--- /dev/null
+++ b/bsd_eth_drivers/if_em/e1000_nvm.c
@@ -0,0 +1,901 @@
+/*******************************************************************************
+
+ Copyright (c) 2001-2007, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+*******************************************************************************/
+/*$FreeBSD: src/sys/dev/em/e1000_nvm.c,v 1.3 2007/05/16 00:14:23 jfv Exp $*/
+
+
+#include "e1000_api.h"
+#include "e1000_nvm.h"
+
+/**
+ * e1000_raise_eec_clk - Raise EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Enable/Raise the EEPROM clock bit.
+ **/
+static void
+e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+ *eecd = *eecd | E1000_EECD_SK;
+ E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ * e1000_lower_eec_clk - Lower EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Clear/Lower the EEPROM clock bit.
+ **/
+static void
+e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+ *eecd = *eecd & ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
+ * @hw: pointer to the HW structure
+ * @data: data to send to the EEPROM
+ * @count: number of bits to shift out
+ *
+ * We need to shift 'count' bits out to the EEPROM. So, the value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ **/
+static void
+e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u32 mask;
+
+ DEBUGFUNC("e1000_shift_out_eec_bits");
+
+ mask = 0x01 << (count - 1);
+ if (nvm->type == e1000_nvm_eeprom_microwire)
+ eecd &= ~E1000_EECD_DO;
+ else if (nvm->type == e1000_nvm_eeprom_spi)
+ eecd |= E1000_EECD_DO;
+
+ do {
+ eecd &= ~E1000_EECD_DI;
+
+ if (data & mask)
+ eecd |= E1000_EECD_DI;
+
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(nvm->delay_usec);
+
+ e1000_raise_eec_clk(hw, &eecd);
+ e1000_lower_eec_clk(hw, &eecd);
+
+ mask >>= 1;
+ } while (mask);
+
+ eecd &= ~E1000_EECD_DI;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
+ * @hw: pointer to the HW structure
+ * @count: number of bits to shift in
+ *
+ * In order to read a register from the EEPROM, we need to shift 'count' bits
+ * in from the EEPROM. Bits are "shifted in" by raising the clock input to
+ * the EEPROM (setting the SK bit), and then reading the value of the data out
+ * "DO" bit. During this "shifting in" process the data in "DI" bit should
+ * always be clear.
+ **/
+static u16
+e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+{
+ u32 eecd;
+ u32 i;
+ u16 data;
+
+ DEBUGFUNC("e1000_shift_in_eec_bits");
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ data = 0;
+
+ for (i = 0; i < count; i++) {
+ data <<= 1;
+ e1000_raise_eec_clk(hw, &eecd);
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ eecd &= ~E1000_EECD_DI;
+ if (eecd & E1000_EECD_DO)
+ data |= 1;
+
+ e1000_lower_eec_clk(hw, &eecd);
+ }
+
+ return data;
+}
+
+/**
+ * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+ * @hw: pointer to the HW structure
+ * @ee_reg: EEPROM flag for polling
+ *
+ * Polls the EEPROM status bit for either read or write completion based
+ * upon the value of 'ee_reg'.
+ **/
+s32
+e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+{
+ u32 attempts = 100000;
+ u32 i, reg = 0;
+ s32 ret_val = -E1000_ERR_NVM;
+
+ DEBUGFUNC("e1000_poll_eerd_eewr_done");
+
+ for (i = 0; i < attempts; i++) {
+ if (ee_reg == E1000_NVM_POLL_READ)
+ reg = E1000_READ_REG(hw, E1000_EERD);
+ else
+ reg = E1000_READ_REG(hw, E1000_EEWR);
+
+ if (reg & E1000_NVM_RW_REG_DONE) {
+ ret_val = E1000_SUCCESS;
+ break;
+ }
+
+ usec_delay(5);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_acquire_nvm_generic - Generic request for access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+s32
+e1000_acquire_nvm_generic(struct e1000_hw *hw)
+{
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_acquire_nvm_generic");
+
+ E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ while (timeout) {
+ if (eecd & E1000_EECD_GNT)
+ break;
+ usec_delay(5);
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ timeout--;
+ }
+
+ if (!timeout) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ DEBUGOUT("Could not acquire NVM grant\n");
+ ret_val = -E1000_ERR_NVM;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_standby_nvm - Return EEPROM to standby state
+ * @hw: pointer to the HW structure
+ *
+ * Return the EEPROM to a standby state.
+ **/
+static void
+e1000_standby_nvm(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ DEBUGFUNC("e1000_standby_nvm");
+
+ if (nvm->type == e1000_nvm_eeprom_microwire) {
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+
+ e1000_raise_eec_clk(hw, &eecd);
+
+ /* Select EEPROM */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+
+ e1000_lower_eec_clk(hw, &eecd);
+ } else if (nvm->type == e1000_nvm_eeprom_spi) {
+ /* Toggle CS to flush commands */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+ eecd &= ~E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+ }
+}
+
+/**
+ * e1000_stop_nvm - Terminate EEPROM command
+ * @hw: pointer to the HW structure
+ *
+ * Terminates the current command by inverting the EEPROM's chip select pin.
+ **/
+void
+e1000_stop_nvm(struct e1000_hw *hw)
+{
+ u32 eecd;
+
+ DEBUGFUNC("e1000_stop_nvm");
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+ /* Pull CS high */
+ eecd |= E1000_EECD_CS;
+ e1000_lower_eec_clk(hw, &eecd);
+ } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
+ /* CS on Microcwire is active-high */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ e1000_raise_eec_clk(hw, &eecd);
+ e1000_lower_eec_clk(hw, &eecd);
+ }
+}
+
+/**
+ * e1000_release_nvm_generic - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+void
+e1000_release_nvm_generic(struct e1000_hw *hw)
+{
+ u32 eecd;
+
+ DEBUGFUNC("e1000_release_nvm_generic");
+
+ e1000_stop_nvm(hw);
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
+ * @hw: pointer to the HW structure
+ *
+ * Setups the EEPROM for reading and writing.
+ **/
+static s32
+e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ s32 ret_val = E1000_SUCCESS;
+ u16 timeout = 0;
+ u8 spi_stat_reg;
+
+ DEBUGFUNC("e1000_ready_nvm_eeprom");
+
+ if (nvm->type == e1000_nvm_eeprom_microwire) {
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ } else if (nvm->type == e1000_nvm_eeprom_spi) {
+ /* Clear SK and CS */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ usec_delay(1);
+ timeout = NVM_MAX_RETRY_SPI;
+
+ /* Read "Status Register" repeatedly until the LSB is cleared.
+ * The EEPROM will signal that the command has been completed
+ * by clearing bit 0 of the internal status register. If it's
+ * not cleared within 'timeout', then error out. */
+ while (timeout) {
+ e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
+ hw->nvm.opcode_bits);
+ spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
+ if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
+ break;
+
+ usec_delay(5);
+ e1000_standby_nvm(hw);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("SPI NVM Status error\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_spi - Read EEPROM's using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ **/
+s32
+e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i = 0;
+ s32 ret_val;
+ u16 word_in;
+ u8 read_opcode = NVM_READ_OPCODE_SPI;
+
+ DEBUGFUNC("e1000_read_nvm_spi");
+
+ /* A check for invalid values: offset too large, too many words,
+ * and not enough words. */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_standby_nvm(hw);
+
+ if ((nvm->address_bits == 8) && (offset >= 128))
+ read_opcode |= NVM_A8_OPCODE_SPI;
+
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
+
+ /* Read the data. SPI NVMs increment the address with each byte
+ * read and will roll over if reading beyond the end. This allows
+ * us to read the whole NVM from any offset */
+ for (i = 0; i < words; i++) {
+ word_in = e1000_shift_in_eec_bits(hw, 16);
+ data[i] = (word_in >> 8) | (word_in << 8);
+ }
+
+release:
+ e1000_release_nvm(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_microwire - Reads EEPROM's using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ **/
+s32
+e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i = 0;
+ s32 ret_val;
+ u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
+
+ DEBUGFUNC("e1000_read_nvm_microwire");
+
+ /* A check for invalid values: offset too large, too many words,
+ * and not enough words. */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ for (i = 0; i < words; i++) {
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)(offset + i),
+ nvm->address_bits);
+
+ /* Read the data. For microwire, each word requires the
+ * overhead of setup and tear-down. */
+ data[i] = e1000_shift_in_eec_bits(hw, 16);
+ e1000_standby_nvm(hw);
+ }
+
+release:
+ e1000_release_nvm(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_eerd - Reads EEPROM using EERD register
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM using the EERD register.
+ **/
+s32
+e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i, eerd = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_nvm_eerd");
+
+ /* A check for invalid values: offset too large, too many words,
+ * and not enough words. */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ for (i = 0; i < words; i++) {
+ eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
+ E1000_NVM_RW_REG_START;
+
+ E1000_WRITE_REG(hw, E1000_EERD, eerd);
+ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+ if (ret_val)
+ break;
+
+ data[i] = (E1000_READ_REG(hw, E1000_EERD) >> E1000_NVM_RW_REG_DATA);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_spi - Write to EEPROM using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using SPI interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likley contain an invalid checksum.
+ **/
+s32
+e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val;
+ u16 widx = 0;
+
+ DEBUGFUNC("e1000_write_nvm_spi");
+
+ /* A check for invalid values: offset too large, too many words,
+ * and not enough words. */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ msec_delay(10);
+
+ while (widx < words) {
+ u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_standby_nvm(hw);
+
+ /* Send the WRITE ENABLE command (8 bit opcode) */
+ e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
+ nvm->opcode_bits);
+
+ e1000_standby_nvm(hw);
+
+ /* Some SPI eeproms use the 8th address bit embedded in the
+ * opcode */
+ if ((nvm->address_bits == 8) && (offset >= 128))
+ write_opcode |= NVM_A8_OPCODE_SPI;
+
+ /* Send the Write command (8-bit opcode + addr) */
+ e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
+ nvm->address_bits);
+
+ /* Loop to allow for up to whole page write of eeprom */
+ while (widx < words) {
+ u16 word_out = data[widx];
+ word_out = (word_out >> 8) | (word_out << 8);
+ e1000_shift_out_eec_bits(hw, word_out, 16);
+ widx++;
+
+ if ((((offset + widx) * 2) % nvm->page_size) == 0) {
+ e1000_standby_nvm(hw);
+ break;
+ }
+ }
+ }
+
+ msec_delay(10);
+release:
+ e1000_release_nvm(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_microwire - Writes EEPROM using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using microwire interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likley contain an invalid checksum.
+ **/
+s32
+e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val;
+ u32 eecd;
+ u16 words_written = 0;
+ u16 widx = 0;
+
+ DEBUGFUNC("e1000_write_nvm_microwire");
+
+ /* A check for invalid values: offset too large, too many words,
+ * and not enough words. */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
+ (u16)(nvm->opcode_bits + 2));
+
+ e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+ e1000_standby_nvm(hw);
+
+ while (words_written < words) {
+ e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
+ nvm->opcode_bits);
+
+ e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
+ nvm->address_bits);
+
+ e1000_shift_out_eec_bits(hw, data[words_written], 16);
+
+ e1000_standby_nvm(hw);
+
+ for (widx = 0; widx < 200; widx++) {
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & E1000_EECD_DO)
+ break;
+ usec_delay(50);
+ }
+
+ if (widx == 200) {
+ DEBUGOUT("NVM Write did not complete\n");
+ ret_val = -E1000_ERR_NVM;
+ goto release;
+ }
+
+ e1000_standby_nvm(hw);
+
+ words_written++;
+ }
+
+ e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
+ (u16)(nvm->opcode_bits + 2));
+
+ e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+release:
+ e1000_release_nvm(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_part_num_generic - Read device part number
+ * @hw: pointer to the HW structure
+ * @part_num: pointer to device part number
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in part_num.
+ **/
+s32
+e1000_read_part_num_generic(struct e1000_hw *hw, u32 *part_num)
+{
+ s32 ret_val;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_read_part_num_generic");
+
+ ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ *part_num = (u32)(nvm_data << 16);
+
+ ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ *part_num |= nvm_data;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_mac_addr_generic - Read device MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the device MAC address from the EEPROM and stores the value.
+ * Since devices with two ports use the same EEPROM, we increment the
+ * last bit in the MAC address for the second port.
+ **/
+s32
+e1000_read_mac_addr_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 offset, nvm_data, i;
+
+ DEBUGFUNC("e1000_read_mac_addr");
+
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = i >> 1;
+ ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+ hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
+ }
+
+ /* Flip last bit of mac address if we're on second port */
+ if (hw->bus.func == E1000_FUNC_1)
+ hw->mac.perm_addr[5] ^= 1;
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32
+e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_generic");
+
+ for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+ ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+
+ if (checksum != (u16) NVM_SUM) {
+ DEBUGOUT("NVM Checksum Invalid\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_generic - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ **/
+s32
+e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_update_nvm_checksum");
+
+ for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+ ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error while updating checksum.\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+ checksum = (u16) NVM_SUM - checksum;
+ ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
+ if (ret_val) {
+ DEBUGOUT("NVM Write Error while updating checksum.\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reload_nvm_generic - Reloads EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ * extended control register.
+ **/
+void
+e1000_reload_nvm_generic(struct e1000_hw *hw)
+{
+ u32 ctrl_ext;
+
+ DEBUGFUNC("e1000_reload_nvm_generic");
+
+ usec_delay(10);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/* Function pointers local to this file and not intended for public use */
+
+/**
+ * e1000_acquire_nvm - Acquire exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * For those silicon families which have implemented a NVM acquire function,
+ * run the defined function else return success.
+ **/
+s32
+e1000_acquire_nvm(struct e1000_hw *hw)
+{
+ if (hw->func.acquire_nvm != NULL)
+ return hw->func.acquire_nvm(hw);
+ else
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_release_nvm - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * For those silicon families which have implemented a NVM release function,
+ * run the defined fucntion else return success.
+ **/
+void
+e1000_release_nvm(struct e1000_hw *hw)
+{
+ if (hw->func.release_nvm != NULL)
+ hw->func.release_nvm(hw);
+}
+