summaryrefslogtreecommitdiff
path: root/cpukit/libtrace/record/record-client.c
blob: 5a6811526102a6a634747c01e84201aa3fb8c7a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
/*
 * SPDX-License-Identifier: BSD-2-Clause
 *
 * Copyright (C) 2018, 2019 embedded brains GmbH
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * This file must be compatible to general purpose POSIX system, e.g. Linux,
 * FreeBSD.  It may be used for utility programs.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <rtems/recordclient.h>

#include <stdlib.h>
#include <string.h>

#define TIME_MASK ( ( UINT32_C( 1 ) << RTEMS_RECORD_TIME_BITS ) - 1 )

static rtems_record_client_status visit(
  rtems_record_client_context *ctx,
  uint32_t                     time_event,
  uint64_t                     data
);

static rtems_record_client_status consume_error(
  rtems_record_client_context *ctx,
  const void                  *buf,
  size_t                       n
)
{
  (void) buf;
  (void) n;

  return ctx->status;
}

static rtems_record_client_status error(
  rtems_record_client_context *ctx,
  rtems_record_client_status   status
)
{
  ctx->status = status;
  ctx->consume = consume_error;

  return status;
}

static void set_to_bt_scaler(
  rtems_record_client_context *ctx,
  uint32_t                     frequency
)
{
  uint64_t bin_per_s;

  bin_per_s = UINT64_C( 1 ) << 32;
  ctx->to_bt_scaler = ( ( bin_per_s << 31 ) + frequency - 1 ) / frequency;
}

static rtems_record_client_status call_handler(
  const rtems_record_client_context *ctx,
  uint64_t                           bt,
  rtems_record_event                 event,
  uint64_t                           data
)
{
  return ( *ctx->handler )(
    bt,
    ctx->cpu,
    event,
    data,
    ctx->handler_arg
  );
}

static void signal_overflow(
  rtems_record_client_per_cpu *per_cpu,
  uint32_t                     data
)
{
  per_cpu->hold_back = true;
  per_cpu->item_index = 0;
  per_cpu->overflow += data;
}

static void resolve_hold_back(
  rtems_record_client_context *ctx,
  rtems_record_client_per_cpu *per_cpu
)
{
  if ( per_cpu->hold_back ) {
    uint32_t last_tail;
    uint32_t last_head;
    uint32_t last_capacity;
    uint32_t new_head;
    uint32_t new_content;
    uint32_t begin_index;
    uint32_t index;
    uint32_t first;
    uint32_t last;
    uint32_t delta;
    uint64_t uptime;

    last_head = per_cpu->head[ per_cpu->tail_head_index ];
    last_tail = per_cpu->tail[ per_cpu->tail_head_index ];
    new_head = per_cpu->head[ per_cpu->tail_head_index ^ 1 ];
    last_capacity = ( last_tail - last_head - 1 ) & ( ctx->count - 1 );
    new_content = new_head - last_head;

    if ( new_content > last_capacity ) {
      begin_index = new_content - last_capacity;
      per_cpu->overflow += begin_index;
    } else {
      begin_index = 0;
    }

    if ( begin_index >= per_cpu->item_index ) {
      per_cpu->item_index = 0;
      return;
    }

    per_cpu->hold_back = false;

    first = RTEMS_RECORD_GET_TIME( per_cpu->items[ begin_index ].event );
    last = first;
    delta = 0;
    uptime = 0;

    for ( index = begin_index; index < per_cpu->item_index; ++index ) {
      const rtems_record_item_64 *item;
      rtems_record_event          event;
      uint32_t                    time;

      item = &per_cpu->items[ index ];
      event = RTEMS_RECORD_GET_EVENT( item->event );
      time = RTEMS_RECORD_GET_TIME( item->event );
      delta += ( time - last ) & TIME_MASK;
      last = time;

      if (
        event == RTEMS_RECORD_UPTIME_LOW
          && index + 1 < per_cpu->item_index
          && RTEMS_RECORD_GET_EVENT( ( item + 1 )->event )
            == RTEMS_RECORD_UPTIME_HIGH
      ) {
        uptime = (uint32_t) item->data;
        uptime += ( item + 1 )->data << 32;
        break;
      }
    }

    per_cpu->uptime.bt = uptime - ( ( delta * ctx->to_bt_scaler ) >> 31 );
    per_cpu->uptime.time_at_bt = first;
    per_cpu->uptime.time_last = first;
    per_cpu->uptime.time_accumulated = 0;

    if ( per_cpu->overflow > 0 ) {
      call_handler(
        ctx,
        per_cpu->uptime.bt,
        RTEMS_RECORD_PER_CPU_OVERFLOW,
        per_cpu->overflow
      );
      per_cpu->overflow = 0;
    }

    for ( index = begin_index; index < per_cpu->item_index; ++index ) {
      const rtems_record_item_64 *item;

      item = &per_cpu->items[ index ];
      visit( ctx, item->event, item->data );
    }
  }
}

static void process_per_cpu_head(
  rtems_record_client_context *ctx,
  rtems_record_client_per_cpu *per_cpu,
  uint64_t                     data
)
{
  uint32_t last_tail;
  uint32_t last_head;
  uint32_t last_capacity;
  uint32_t new_tail;
  uint32_t new_head;
  uint32_t new_content;
  uint32_t content;

  new_tail = per_cpu->tail[ per_cpu->tail_head_index ];
  new_head = (uint32_t) data;
  content = new_head - new_tail;

  per_cpu->head[ per_cpu->tail_head_index ] = new_head;
  per_cpu->tail_head_index ^= 1;

  if ( content >= ctx->count ) {
    /*
     * This is a complete ring buffer overflow, the server will detect this
     * also.  It sets the tail to the head plus one and sends us all the
     * content.  This reduces the ring buffer capacity to zero.  So, during
     * transfer, new events will overwrite items in transfer.  This is handled
     * by resolve_hold_back().
     */
    per_cpu->tail[ per_cpu->tail_head_index ^ 1 ] = new_head + 1;
    signal_overflow( per_cpu, content - ctx->count + 1 );
    return;
  }

  last_tail = per_cpu->tail[ per_cpu->tail_head_index ];
  last_head = per_cpu->head[ per_cpu->tail_head_index ];

  if ( last_tail == last_head ) {
    if ( per_cpu->uptime.bt == 0 ) {
      /*
       * This is a special case during initial ramp up.  We hold back the items
       * to deduce the uptime of the first item via resolve_hold_back().
       */
      per_cpu->hold_back = true;
    } else {
      resolve_hold_back( ctx, per_cpu );
    }

    return;
  }

  last_capacity = ( last_tail - last_head - 1 ) & ( ctx->count - 1 );
  new_content = new_head - last_head;

  if ( new_content <= last_capacity || per_cpu->hold_back ) {
    resolve_hold_back( ctx, per_cpu );
    return;
  }

  signal_overflow( per_cpu, new_content - last_capacity );
}

static rtems_record_client_status process_per_cpu_count(
  rtems_record_client_context *ctx,
  uint64_t                     data
)
{
  size_t                per_cpu_items;
  rtems_record_item_64 *items;
  uint32_t              cpu;

  if ( ctx->count != 0 ) {
    return error( ctx, RTEMS_RECORD_CLIENT_ERROR_DOUBLE_PER_CPU_COUNT );
  }

  if ( ctx->cpu_count == 0 ) {
    return error( ctx, RTEMS_RECORD_CLIENT_ERROR_NO_CPU_MAX );
  }

  ctx->count = (uint32_t) data;

  /*
   * The ring buffer capacity plus two items for RTEMS_RECORD_PROCESSOR and
   * RTEMS_RECORD_PER_CPU_TAIL.
   */
  per_cpu_items = ctx->count + 1;

  items = malloc( per_cpu_items * ctx->cpu_count * sizeof( *items ) );

  if ( items == NULL ) {
    return error( ctx, RTEMS_RECORD_CLIENT_ERROR_NO_MEMORY );
  }

  for ( cpu = 0; cpu < ctx->cpu_count; ++cpu ) {
    ctx->per_cpu[ cpu ].items = items;
    items += per_cpu_items;
  }

  return RTEMS_RECORD_CLIENT_SUCCESS;
}

static rtems_record_client_status hold_back(
  rtems_record_client_context *ctx,
  rtems_record_client_per_cpu *per_cpu,
  uint32_t                     time_event,
  rtems_record_event           event,
  uint64_t                     data
)
{
  if ( event != RTEMS_RECORD_PER_CPU_HEAD ) {
    uint32_t item_index;

    item_index = per_cpu->item_index;

    if ( item_index <= ctx->count ) {
      per_cpu->items[ item_index ].event = time_event;
      per_cpu->items[ item_index ].data = data;
      per_cpu->item_index = item_index + 1;
    } else {
      return error( ctx, RTEMS_RECORD_CLIENT_ERROR_PER_CPU_ITEMS_OVERFLOW );
    }
  } else {
    return call_handler( ctx, 0, RTEMS_RECORD_GET_EVENT( time_event ), data );
  }

  return RTEMS_RECORD_CLIENT_SUCCESS;
}

static uint64_t time_bt(
  const rtems_record_client_context *ctx,
  rtems_record_client_per_cpu       *per_cpu,
  uint32_t                           time
)
{
  uint64_t bt;

  if ( time != 0 ) {
    uint32_t delta;

    delta = ( time - per_cpu->uptime.time_last ) & TIME_MASK;
    per_cpu->uptime.time_last = time;
    per_cpu->uptime.time_accumulated += delta;
    bt = ( per_cpu->uptime.time_accumulated * ctx->to_bt_scaler ) >> 31;
    bt += per_cpu->uptime.bt;
  } else {
    bt = 0;
  }

  return bt;
}

static rtems_record_client_status visit(
  rtems_record_client_context *ctx,
  uint32_t                     time_event,
  uint64_t                     data
)
{
  rtems_record_client_per_cpu *per_cpu;
  uint32_t                     time;
  rtems_record_event           event;
  rtems_record_client_status   status;

  per_cpu = &ctx->per_cpu[ ctx->cpu ];
  time = RTEMS_RECORD_GET_TIME( time_event );
  event = RTEMS_RECORD_GET_EVENT( time_event );

  switch ( event ) {
    case RTEMS_RECORD_PROCESSOR:
      if ( data >= ctx->cpu_count ) {
        return error( ctx, RTEMS_RECORD_CLIENT_ERROR_UNSUPPORTED_CPU );
      }

      ctx->cpu = (uint32_t) data;
      per_cpu = &ctx->per_cpu[ ctx->cpu ];
      break;
    case RTEMS_RECORD_UPTIME_LOW:
      per_cpu->uptime.bt = (uint32_t) data;
      per_cpu->uptime.time_at_bt = time;
      per_cpu->uptime.time_last = time;
      per_cpu->uptime.time_accumulated = 0;
      time = 0;
      break;
    case RTEMS_RECORD_UPTIME_HIGH:
      per_cpu->uptime.bt += data << 32;
      time = 0;
      break;
    case RTEMS_RECORD_PER_CPU_TAIL:
      per_cpu->tail[ per_cpu->tail_head_index ] = (uint32_t) data;
      break;
    case RTEMS_RECORD_PER_CPU_HEAD:
      process_per_cpu_head( ctx, per_cpu, data );
      break;
    case RTEMS_RECORD_PROCESSOR_MAXIMUM:
      if ( data >= RTEMS_RECORD_CLIENT_MAXIMUM_CPU_COUNT ) {
        return error( ctx, RTEMS_RECORD_CLIENT_ERROR_UNSUPPORTED_CPU_MAX );
      }

      if ( ctx->cpu_count != 0 ) {
        return error( ctx, RTEMS_RECORD_CLIENT_ERROR_DOUBLE_CPU_MAX );
      }

      ctx->cpu_count = (uint32_t) data + 1;
      break;
    case RTEMS_RECORD_PER_CPU_COUNT:
      status = process_per_cpu_count( ctx, data );

      if ( status != RTEMS_RECORD_CLIENT_SUCCESS ) {
        return status;
      }

      break;
    case RTEMS_RECORD_FREQUENCY:
      set_to_bt_scaler( ctx, (uint32_t) data );
      break;
    case RTEMS_RECORD_VERSION:
      if ( data != RTEMS_RECORD_THE_VERSION ) {
        return error( ctx, RTEMS_RECORD_CLIENT_ERROR_UNSUPPORTED_VERSION );
      }

      break;
    default:
      break;
  }

  if ( per_cpu->hold_back ) {
    return hold_back( ctx, per_cpu, time_event, event, data );
  }

  return call_handler( ctx, time_bt( ctx, per_cpu, time ), event, data );
}

static rtems_record_client_status consume_32(
  rtems_record_client_context *ctx,
  const void                  *buf,
  size_t                       n
)
{
  while ( n > 0 ) {
    size_t m;
    char *pos;

    m = ctx->todo < n ? ctx->todo : n;
    pos = ctx->pos;
    pos = memcpy( pos, buf, m );
    n -= m;
    buf = (char *) buf + m;

    if ( m == ctx->todo ) {
      rtems_record_client_status status;

      ctx->todo = sizeof( ctx->item.format_32 );
      ctx->pos = &ctx->item.format_32;

      status = visit(
        ctx,
        ctx->item.format_32.event,
        ctx->item.format_32.data
      );

      if ( status != RTEMS_RECORD_CLIENT_SUCCESS ) {
        return status;
      }
    } else {
      ctx->todo -= m;
      ctx->pos = pos + m;
    }
  }

  return RTEMS_RECORD_CLIENT_SUCCESS;
}

static rtems_record_client_status consume_64(
  rtems_record_client_context *ctx,
  const void                  *buf,
  size_t                       n
)
{
  while ( n > 0 ) {
    size_t m;
    char *pos;

    m = ctx->todo < n ? ctx->todo : n;
    pos = ctx->pos;
    pos = memcpy( pos, buf, m );
    n -= m;
    buf = (char *) buf + m;

    if ( m == ctx->todo ) {
      rtems_record_client_status status;

      ctx->todo = sizeof( ctx->item.format_64 );
      ctx->pos = &ctx->item.format_64;

      status = visit(
        ctx,
        ctx->item.format_64.event,
        ctx->item.format_64.data
      );

      if ( status != RTEMS_RECORD_CLIENT_SUCCESS ) {
        return status;
      }
    } else {
      ctx->todo -= m;
      ctx->pos = pos + m;
    }
  }

  return RTEMS_RECORD_CLIENT_SUCCESS;
}

static rtems_record_client_status consume_swap_32(
  rtems_record_client_context *ctx,
  const void                  *buf,
  size_t                       n
)
{
  while ( n > 0 ) {
    size_t m;
    char *pos;

    m = ctx->todo < n ? ctx->todo : n;
    pos = ctx->pos;
    pos = memcpy( pos, buf, m );
    n -= m;
    buf = (char *) buf + m;

    if ( m == ctx->todo ) {
      rtems_record_client_status status;

      ctx->todo = sizeof( ctx->item.format_32 );
      ctx->pos = &ctx->item.format_32;

      status = visit(
        ctx,
        __builtin_bswap32( ctx->item.format_32.event ),
        __builtin_bswap32( ctx->item.format_32.data )
      );

      if ( status != RTEMS_RECORD_CLIENT_SUCCESS ) {
        return status;
      }
    } else {
      ctx->todo -= m;
      ctx->pos = pos + m;
    }
  }

  return RTEMS_RECORD_CLIENT_SUCCESS;
}

static rtems_record_client_status consume_swap_64(
  rtems_record_client_context *ctx,
  const void                  *buf,
  size_t                       n
)
{
  while ( n > 0 ) {
    size_t m;
    char *pos;

    m = ctx->todo < n ? ctx->todo : n;
    pos = ctx->pos;
    pos = memcpy( pos, buf, m );
    n -= m;
    buf = (char *) buf + m;

    if ( m == ctx->todo ) {
      rtems_record_client_status status;

      ctx->todo = sizeof( ctx->item.format_64 );
      ctx->pos = &ctx->item.format_64;

      status = visit(
        ctx,
        __builtin_bswap32( ctx->item.format_64.event ),
        __builtin_bswap64( ctx->item.format_64.data )
      );

      if ( status != RTEMS_RECORD_CLIENT_SUCCESS ) {
        return status;
      }
    } else {
      ctx->todo -= m;
      ctx->pos = pos + m;
    }
  }

  return RTEMS_RECORD_CLIENT_SUCCESS;
}

static rtems_record_client_status consume_init(
  rtems_record_client_context *ctx,
  const void                  *buf,
  size_t                       n
)
{
  while ( n > 0 ) {
    size_t m;
    char *pos;

    m = ctx->todo < n ? ctx->todo : n;
    pos = ctx->pos;
    pos = memcpy( pos, buf, m );
    n -= m;
    buf = (char *) buf + m;

    if ( m == ctx->todo ) {
      uint32_t magic;

      magic = ctx->header[ 1 ];

      switch ( ctx->header[ 0 ] ) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
        case RTEMS_RECORD_FORMAT_LE_32:
          ctx->todo = sizeof( ctx->item.format_32 );
          ctx->pos = &ctx->item.format_32;
          ctx->consume = consume_32;
          ctx->data_size = 4;
          break;
        case RTEMS_RECORD_FORMAT_LE_64:
          ctx->todo = sizeof( ctx->item.format_64 );
          ctx->pos = &ctx->item.format_64;
          ctx->consume = consume_64;
          ctx->data_size = 8;
          break;
        case RTEMS_RECORD_FORMAT_BE_32:
          ctx->todo = sizeof( ctx->item.format_32 );
          ctx->pos = &ctx->item.format_32;
          ctx->consume = consume_swap_32;
          ctx->data_size = 4;
          magic = __builtin_bswap32( magic );
          break;
        case RTEMS_RECORD_FORMAT_BE_64:
          ctx->todo = sizeof( ctx->item.format_64 );
          ctx->pos = &ctx->item.format_64;
          ctx->consume = consume_swap_64;
          ctx->data_size = 8;
          magic = __builtin_bswap32( magic );
          break;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
        case RTEMS_RECORD_FORMAT_LE_32:
          ctx->todo = sizeof( ctx->item.format_32 );
          ctx->pos = &ctx->item.format_32;
          ctx->consume = consume_swap_32;
          ctx->data_size = 4;
          magic = __builtin_bswap32( magic );
          break;
        case RTEMS_RECORD_FORMAT_LE_64:
          ctx->todo = sizeof( ctx->item.format_64 );
          ctx->pos = &ctx->item.format_64;
          ctx->consume = consume_swap_64;
          ctx->data_size = 8;
          magic = __builtin_bswap32( magic );
          break;
        case RTEMS_RECORD_FORMAT_BE_32:
          ctx->todo = sizeof( ctx->item.format_32 );
          ctx->pos = &ctx->item.format_32;
          ctx->consume = consume_32;
          ctx->data_size = 4;
          break;
        case RTEMS_RECORD_FORMAT_BE_64:
          ctx->todo = sizeof( ctx->item.format_64 );
          ctx->pos = &ctx->item.format_64;
          ctx->consume = consume_64;
          ctx->data_size = 8;
          break;
#else
#error "unexpected __BYTE_ORDER__"
#endif
        default:
          return error( ctx, RTEMS_RECORD_CLIENT_ERROR_UNKNOWN_FORMAT );
      }

      if ( magic != RTEMS_RECORD_MAGIC ) {
        return error( ctx, RTEMS_RECORD_CLIENT_ERROR_INVALID_MAGIC );
      }

      return rtems_record_client_run( ctx, buf, n );
    } else {
      ctx->todo -= m;
      ctx->pos = pos + m;
    }
  }

  return RTEMS_RECORD_CLIENT_SUCCESS;
}

void rtems_record_client_init(
  rtems_record_client_context *ctx,
  rtems_record_client_handler  handler,
  void                        *arg
)
{
  ctx = memset( ctx, 0, sizeof( *ctx ) );
  ctx->to_bt_scaler = UINT64_C( 1 ) << 31;
  ctx->handler = handler;
  ctx->handler_arg = arg;
  ctx->todo = sizeof( ctx->header );
  ctx->pos = &ctx->header;
  ctx->consume = consume_init;
}

rtems_record_client_status rtems_record_client_run(
  rtems_record_client_context *ctx,
  const void                  *buf,
  size_t                       n
)
{
  return ( *ctx->consume )( ctx, buf, n );
}

void rtems_record_client_destroy(
  rtems_record_client_context *ctx
)
{
  uint32_t cpu;

  for ( cpu = 0; cpu < ctx->cpu_count; ++cpu ) {
    rtems_record_client_per_cpu *per_cpu;

    ctx->cpu = cpu;
    per_cpu = &ctx->per_cpu[ cpu ];
    per_cpu->head[ per_cpu->tail_head_index ^ 1 ] =
      per_cpu->head[ per_cpu->tail_head_index ];
    resolve_hold_back( ctx, per_cpu );
  }

  free( ctx->per_cpu[ 0 ].items );
}