/** * @file * * @brief RTEMS File Systems Bitmap Routines * @ingroup rtems_rfs * * These functions manage bit maps. A bit map consists of the map of bit * allocated in a block and a search map where a bit represents 32 actual * bits. The search map allows for a faster search for an available bit as 32 * search bits can checked in a test. */ /* * COPYRIGHT (c) 2010 Chris Johns * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rtems.org/license/LICENSE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif /** * Set to 1 to enable warnings when developing. */ #define RTEMS_RFS_BITMAP_WARNINGS 0 #if RTEMS_RFS_BITMAP_WARNINGS #include #endif #include #include /** * Test a bit in an element. If set return true else return false. * * @param target The target to test the bit in. * @param bit The bit to test. * @retval true The bit is set. * @retval false The bit is clear. */ static bool rtems_rfs_bitmap_test (rtems_rfs_bitmap_element target, rtems_rfs_bitmap_bit bit) { return RTEMS_RFS_BITMAP_TEST_BIT (target, bit); } /** * Set the bits in the element. Bits not set in the bit argument are left * unchanged. * * @param target The target element bits are set. * @param bits The bits in the target to set. A 1 in the bits will set the * same bit in the target. */ static rtems_rfs_bitmap_element rtems_rfs_bitmap_set (rtems_rfs_bitmap_element target, rtems_rfs_bitmap_element bits) { return RTEMS_RFS_BITMAP_SET_BITS (target, bits); } /** * Clear the bits in the element. Bits not set in the bit argument are left * unchanged. * * @param target The target element to clear the bits in. * @param bits The bits in the target to clear. A 1 in the bits will clear the * bit in the target. */ static rtems_rfs_bitmap_element rtems_rfs_bitmap_clear (rtems_rfs_bitmap_element target, rtems_rfs_bitmap_element bits) { return RTEMS_RFS_BITMAP_CLEAR_BITS (target, bits); } /** * Merge the bits in 2 variables based on the mask. A set bit in the mask will * merge the bits from bits1 and a clear bit will merge the bits from bits2. * The mask is always defined as 1 being set and 0 being clear. */ static rtems_rfs_bitmap_element rtems_rfs_bitmap_merge (rtems_rfs_bitmap_element bits1, rtems_rfs_bitmap_element bits2, rtems_rfs_bitmap_element mask) { /* * Use the normal bit operators because we do not change the bits just merge * the 2 separate parts. */ bits1 &= mask; bits2 &= RTEMS_RFS_BITMAP_INVERT_MASK (mask); return bits1 | bits2; } /** * Match the bits of 2 elements and return true if they match else return * false. * * @param bits1 One set of bits to match. * @param bits2 The second set of bits to match. * @retval true The bits match. * @retval false The bits do not match. */ static bool rtems_rfs_bitmap_match (rtems_rfs_bitmap_element bits1, rtems_rfs_bitmap_element bits2) { return bits1 ^ bits2 ? false : true; } #if RTEMS_NOT_USED_BUT_KEPT /** * Match the bits of 2 elements within the mask and return true if they match * else return false. * * @param mask The mask over which the match occurs. A 1 is a valid mask bit. * @param bits1 One set of bits to match. * @param bits2 The second set of bits to match. * @retval true The bits match. * @retval false The bits do not match. */ static bool rtems_rfs_bitmap_match_masked (rtems_rfs_bitmap_element mask, rtems_rfs_bitmap_element bits1, rtems_rfs_bitmap_element bits2) { return (bits1 ^ bits2) & mask ? false : true; } #endif /** * Return the map after loading from disk if not already loaded. * * @param control The bitmap control. * @param rtems_rfs_bitmap_map* Pointer to the bitmap map data if no error. * @return int The error number (errno). No error if 0. */ static int rtems_rfs_bitmap_load_map (rtems_rfs_bitmap_control* control, rtems_rfs_bitmap_map* map) { int rc; if (!control->buffer) return ENXIO; *map = NULL; rc = rtems_rfs_buffer_handle_request (control->fs, control->buffer, control->block, true); if (rc) return rc; *map = rtems_rfs_buffer_data (control->buffer); return 0; } rtems_rfs_bitmap_element rtems_rfs_bitmap_mask (unsigned int size) { rtems_rfs_bitmap_element mask = RTEMS_RFS_BITMAP_ELEMENT_FULL_MASK; mask >>= (rtems_rfs_bitmap_element_bits () - size); return mask; } rtems_rfs_bitmap_element rtems_rfs_bitmap_mask_section (unsigned int start, unsigned int end) { rtems_rfs_bitmap_element mask = 0; if (end > start) mask = rtems_rfs_bitmap_mask (end - start) << start; return mask; } int rtems_rfs_bitmap_map_set (rtems_rfs_bitmap_control* control, rtems_rfs_bitmap_bit bit) { rtems_rfs_bitmap_map map; rtems_rfs_bitmap_map search_map; int index; int offset; int rc; rtems_rfs_bitmap_element element; rc = rtems_rfs_bitmap_load_map (control, &map); if (rc > 0) return rc; if (bit >= control->size) return EINVAL; search_map = control->search_bits; index = rtems_rfs_bitmap_map_index (bit); offset = rtems_rfs_bitmap_map_offset (bit); element = map[index]; map[index] = rtems_rfs_bitmap_set (element, 1 << offset); /* * If the element does not change, the bit was already set. There will be no * further action to take. */ if (rtems_rfs_bitmap_match(element, map[index])) return 0; control->free--; rtems_rfs_buffer_mark_dirty (control->buffer); if (rtems_rfs_bitmap_match(map[index], RTEMS_RFS_BITMAP_ELEMENT_SET)) { bit = index; index = rtems_rfs_bitmap_map_index (bit); offset = rtems_rfs_bitmap_map_offset (bit); search_map[index] = rtems_rfs_bitmap_set (search_map[index], 1 << offset); } return 0; } int rtems_rfs_bitmap_map_clear (rtems_rfs_bitmap_control* control, rtems_rfs_bitmap_bit bit) { rtems_rfs_bitmap_map map; rtems_rfs_bitmap_map search_map; int index; int offset; int rc; rtems_rfs_bitmap_element element; rc = rtems_rfs_bitmap_load_map (control, &map); if (rc > 0) return rc; if (bit >= control->size) return EINVAL; search_map = control->search_bits; index = rtems_rfs_bitmap_map_index (bit); offset = rtems_rfs_bitmap_map_offset (bit); element = map[index]; map[index] = rtems_rfs_bitmap_clear (element, 1 << offset); /* * If the element does not change, the bit was already clear. There will be * no further action to take. */ if (rtems_rfs_bitmap_match(element, map[index])) return 0; bit = index; index = rtems_rfs_bitmap_map_index (bit); offset = rtems_rfs_bitmap_map_offset(bit); search_map[index] = rtems_rfs_bitmap_clear (search_map[index], 1 << offset); rtems_rfs_buffer_mark_dirty (control->buffer); control->free++; return 0; } int rtems_rfs_bitmap_map_test (rtems_rfs_bitmap_control* control, rtems_rfs_bitmap_bit bit, bool* state) { rtems_rfs_bitmap_map map; int index; int rc; rc = rtems_rfs_bitmap_load_map (control, &map); if (rc > 0) return rc; if (bit >= control->size) return EINVAL; index = rtems_rfs_bitmap_map_index (bit); *state = rtems_rfs_bitmap_test (map[index], bit); return 0; } int rtems_rfs_bitmap_map_set_all (rtems_rfs_bitmap_control* control) { rtems_rfs_bitmap_map map; size_t elements; int e; int rc; rc = rtems_rfs_bitmap_load_map (control, &map); if (rc > 0) return rc; elements = rtems_rfs_bitmap_elements (control->size); control->free = 0; for (e = 0; e < elements; e++) map[e] = RTEMS_RFS_BITMAP_ELEMENT_SET; elements = rtems_rfs_bitmap_elements (elements); for (e = 0; e < elements; e++) control->search_bits[e] = RTEMS_RFS_BITMAP_ELEMENT_SET; rtems_rfs_buffer_mark_dirty (control->buffer); return 0; } int rtems_rfs_bitmap_map_clear_all (rtems_rfs_bitmap_control* control) { rtems_rfs_bitmap_map map; rtems_rfs_bitmap_bit last_search_bit; size_t elements; int e; int rc; rc = rtems_rfs_bitmap_load_map (control, &map); if (rc > 0) return rc; elements = rtems_rfs_bitmap_elements (control->size); control->free = control->size; for (e = 0; e < elements; e++) map[e] = RTEMS_RFS_BITMAP_ELEMENT_CLEAR; /* * Set the un-mapped bits in the last search element so the available logic * works. */ last_search_bit = rtems_rfs_bitmap_map_offset (elements); if (last_search_bit == 0) last_search_bit = rtems_rfs_bitmap_element_bits (); elements = rtems_rfs_bitmap_elements (elements); for (e = 0; e < (elements - 1); e++) control->search_bits[e] = RTEMS_RFS_BITMAP_ELEMENT_CLEAR; control->search_bits[elements - 1] = rtems_rfs_bitmap_merge (RTEMS_RFS_BITMAP_ELEMENT_CLEAR, RTEMS_RFS_BITMAP_ELEMENT_SET, rtems_rfs_bitmap_mask (last_search_bit)); rtems_rfs_buffer_mark_dirty (control->buffer); return 0; } static int rtems_rfs_search_map_for_clear_bit (rtems_rfs_bitmap_control* control, rtems_rfs_bitmap_bit* bit, bool* found, size_t window, int direction) { rtems_rfs_bitmap_map map; rtems_rfs_bitmap_bit test_bit; rtems_rfs_bitmap_bit end_bit; rtems_rfs_bitmap_element* search_bits; int search_index; int search_offset; rtems_rfs_bitmap_element* map_bits; int map_index; int map_offset; int rc; *found = false; /* * Load the bitmap. */ rc = rtems_rfs_bitmap_load_map (control, &map); if (rc > 0) return rc; /* * Calculate the bit we are testing plus the end point we search over. */ test_bit = *bit; end_bit = test_bit + (window * direction); if (end_bit < 0) end_bit = 0; else if (end_bit >= control->size) end_bit = control->size - 1; map_index = rtems_rfs_bitmap_map_index (test_bit); map_offset = rtems_rfs_bitmap_map_offset (test_bit); search_index = rtems_rfs_bitmap_map_index (map_index); search_offset = rtems_rfs_bitmap_map_offset (map_index); search_bits = &control->search_bits[search_index]; map_bits = &map[map_index]; /* * Check each bit from the search map offset for a clear bit. */ do { /* * If any bit is clear find that bit and then search the map element. If * all bits are set there are no map bits so move to the next search * element. */ if (!rtems_rfs_bitmap_match (*search_bits, RTEMS_RFS_BITMAP_ELEMENT_SET)) { while ((search_offset >= 0) && (search_offset < rtems_rfs_bitmap_element_bits ())) { if (!rtems_rfs_bitmap_test (*search_bits, search_offset)) { /* * Find the clear bit in the map. Update the search map and map if * found. We may find none are spare if searching up from the seed. */ while ((map_offset >= 0) && (map_offset < rtems_rfs_bitmap_element_bits ())) { if (!rtems_rfs_bitmap_test (*map_bits, map_offset)) { *map_bits = rtems_rfs_bitmap_set (*map_bits, 1 << map_offset); if (rtems_rfs_bitmap_match(*map_bits, RTEMS_RFS_BITMAP_ELEMENT_SET)) *search_bits = rtems_rfs_bitmap_set (*search_bits, 1 << search_offset); control->free--; *bit = test_bit; *found = true; rtems_rfs_buffer_mark_dirty (control->buffer); return 0; } if (test_bit == end_bit) break; map_offset += direction; test_bit += direction; } } map_bits += direction; map_index += direction; map_offset = direction > 0 ? 0 : rtems_rfs_bitmap_element_bits () - 1; test_bit = (map_index * rtems_rfs_bitmap_element_bits ()) + map_offset; search_offset += direction; if (((direction < 0) && (test_bit <= end_bit)) || ((direction > 0) && (test_bit >= end_bit))) break; } } else { /* * Move to the next search element. We need to determine the number of * bits in the search offset that are being skipped so the map bits * pointer can be updated. If we are moving down and we have a search * offset of 0 then the search map adjustment is to the top bit of the * pervious search bit's value. * * Align test_bit either up or down depending on the direction to next 32 * bit boundary. */ rtems_rfs_bitmap_bit bits_skipped; test_bit &= ~((1 << RTEMS_RFS_ELEMENT_BITS_POWER_2) - 1); if (direction > 0) { bits_skipped = rtems_rfs_bitmap_element_bits () - search_offset; test_bit += bits_skipped * rtems_rfs_bitmap_element_bits (); map_offset = 0; } else { bits_skipped = search_offset + 1; /* * Need to remove 1 for the rounding up. The above rounds down and * adds 1. Remember the logic is for subtraction. */ test_bit -= ((bits_skipped - 1) * rtems_rfs_bitmap_element_bits ()) + 1; map_offset = rtems_rfs_bitmap_element_bits () - 1; } map_bits += direction * bits_skipped; map_index += direction * bits_skipped; } search_bits += direction; search_offset = direction > 0 ? 0 : rtems_rfs_bitmap_element_bits () - 1; } while (((direction < 0) && (test_bit >= end_bit)) || ((direction > 0) && (test_bit <= end_bit))); return 0; } int rtems_rfs_bitmap_map_alloc (rtems_rfs_bitmap_control* control, rtems_rfs_bitmap_bit seed, bool* allocated, rtems_rfs_bitmap_bit* bit) { rtems_rfs_bitmap_bit upper_seed; rtems_rfs_bitmap_bit lower_seed; rtems_rfs_bitmap_bit window; /* may become a parameter */ int rc = 0; /* * By default we assume the allocation failed. */ *allocated = false; /* * The window is the number of bits we search over in either direction each * time. */ window = RTEMS_RFS_BITMAP_SEARCH_WINDOW; /* * Start from the seed and move in either direction. Search in window amounts * of bits from the original seed above then below. That is search from the * seed up then from the seed down a window number of bits, then repeat the * process from the window distance from the seed, again above then * below. Keep moving out until all bits have been searched. */ upper_seed = seed; lower_seed = seed; /* * If the upper and lower seed values have reached the limits of the bitmap * we have searched all of the map. The seed may not be aligned to a window * boundary so we may need to search a partial window and this may also not * be balanced for the upper or lower seeds. We move to the limits, search * then return false if no clear bits are found. */ while (((upper_seed >= 0) && (upper_seed < control->size)) || ((lower_seed >= 0) && (lower_seed < control->size))) { /* * Search up first so bits allocated in succession are grouped together. */ if (upper_seed < control->size) { *bit = upper_seed; rc = rtems_rfs_search_map_for_clear_bit (control, bit, allocated, window, 1); if ((rc > 0) || *allocated) break; } if (lower_seed >= 0) { *bit = lower_seed; rc = rtems_rfs_search_map_for_clear_bit (control, bit, allocated, window, -1); if ((rc > 0) || *allocated) break; } /* * Do not bound the limits at the edges of the map. Do not update if an * edge has been passed. */ if (upper_seed < control->size) upper_seed += window; if (lower_seed >= 0) lower_seed -= window; } return 0; } int rtems_rfs_bitmap_create_search (rtems_rfs_bitmap_control* control) { rtems_rfs_bitmap_map search_map; rtems_rfs_bitmap_map map; size_t size; rtems_rfs_bitmap_bit bit; int rc; rc = rtems_rfs_bitmap_load_map (control, &map); if (rc > 0) return rc; control->free = 0; search_map = control->search_bits; size = control->size; bit = 0; *search_map = RTEMS_RFS_BITMAP_ELEMENT_CLEAR; while (size) { rtems_rfs_bitmap_element bits; int available; if (size < rtems_rfs_bitmap_element_bits ()) { bits = rtems_rfs_bitmap_merge (*map, RTEMS_RFS_BITMAP_ELEMENT_SET, rtems_rfs_bitmap_mask_section (0, size)); available = size; } else { bits = *map; available = rtems_rfs_bitmap_element_bits (); } if (rtems_rfs_bitmap_match (bits, RTEMS_RFS_BITMAP_ELEMENT_SET)) rtems_rfs_bitmap_set (*search_map, bit); else { int b; for (b = 0; b < available; b++) if (!rtems_rfs_bitmap_test (bits, b)) control->free++; } size -= available; /* Iterate from 0 to 1 less than the number of bits in an element */ if (bit == (rtems_rfs_bitmap_element_bits () - 1)) { bit = 0; search_map++; *search_map = RTEMS_RFS_BITMAP_ELEMENT_CLEAR; } else bit++; map++; } return 0; } int rtems_rfs_bitmap_open (rtems_rfs_bitmap_control* control, rtems_rfs_file_system* fs, rtems_rfs_buffer_handle* buffer, size_t size, rtems_rfs_buffer_block block) { size_t elements = rtems_rfs_bitmap_elements (size); control->buffer = buffer; control->fs = fs; control->block = block; control->size = size; elements = rtems_rfs_bitmap_elements (elements); control->search_bits = malloc (elements * sizeof (rtems_rfs_bitmap_element)); if (!control->search_bits) return ENOMEM; return rtems_rfs_bitmap_create_search (control); } int rtems_rfs_bitmap_close (rtems_rfs_bitmap_control* control) { free (control->search_bits); return 0; }