#include #include #include /* Find a minimum in x=[0,1] of the interpolating quadratic through * (0,f0) (1,f1) with derivative fp0 at x=0. The interpolating * polynomial is q(x) = f0 + fp0 * z + (f1-f0-fp0) * z^2 */ static double interp_quad (double f0, double fp0, double f1, double zl, double zh) { double fl = f0 + zl*(fp0 + zl*(f1 - f0 -fp0)); double fh = f0 + zh*(fp0 + zh*(f1 - f0 -fp0)); double c = 2 * (f1 - f0 - fp0); /* curvature */ double zmin = zl, fmin = fl; if (fh < fmin) { zmin = zh; fmin = fh; } if (c > 0) /* positive curvature required for a minimum */ { double z = -fp0 / c; /* location of minimum */ if (z > zl && z < zh) { double f = f0 + z*(fp0 + z*(f1 - f0 -fp0)); if (f < fmin) { zmin = z; fmin = f; }; } } return zmin; } /* Find a minimum in x=[0,1] of the interpolating cubic through * (0,f0) (1,f1) with derivatives fp0 at x=0 and fp1 at x=1. * * The interpolating polynomial is: * * c(x) = f0 + fp0 * z + eta * z^2 + xi * z^3 * * where eta=3*(f1-f0)-2*fp0-fp1, xi=fp0+fp1-2*(f1-f0). */ static double cubic (double c0, double c1, double c2, double c3, double z) { return c0 + z * (c1 + z * (c2 + z * c3)); } static void check_extremum (double c0, double c1, double c2, double c3, double z, double *zmin, double *fmin) { /* could make an early return by testing curvature >0 for minimum */ double y = cubic (c0, c1, c2, c3, z); if (y < *fmin) { *zmin = z; /* accepted new point*/ *fmin = y; } } static double interp_cubic (double f0, double fp0, double f1, double fp1, double zl, double zh) { double eta = 3 * (f1 - f0) - 2 * fp0 - fp1; double xi = fp0 + fp1 - 2 * (f1 - f0); double c0 = f0, c1 = fp0, c2 = eta, c3 = xi; double zmin, fmin; double z0, z1; zmin = zl; fmin = cubic(c0, c1, c2, c3, zl); check_extremum (c0, c1, c2, c3, zh, &zmin, &fmin); { int n = gsl_poly_solve_quadratic (3 * c3, 2 * c2, c1, &z0, &z1); if (n == 2) /* found 2 roots */ { if (z0 > zl && z0 < zh) check_extremum (c0, c1, c2, c3, z0, &zmin, &fmin); if (z1 > zl && z1 < zh) check_extremum (c0, c1, c2, c3, z1, &zmin, &fmin); } else if (n == 1) /* found 1 root */ { if (z0 > zl && z0 < zh) check_extremum (c0, c1, c2, c3, z0, &zmin, &fmin); } } return zmin; } static double interpolate (double a, double fa, double fpa, double b, double fb, double fpb, double xmin, double xmax, int order) { /* Map [a,b] to [0,1] */ double z, alpha, zmin, zmax; zmin = (xmin - a) / (b - a); zmax = (xmax - a) / (b - a); if (zmin > zmax) { double tmp = zmin; zmin = zmax; zmax = tmp; }; if (order > 2 && GSL_IS_REAL(fpb)) { z = interp_cubic (fa, fpa * (b - a), fb, fpb * (b - a), zmin, zmax); } else { z = interp_quad (fa, fpa * (b - a), fb, zmin, zmax); } alpha = a + z * (b - a); return alpha; } /* recommended values from Fletcher are rho = 0.01, sigma = 0.1, tau1 = 9, tau2 = 0.05, tau3 = 0.5 */ static int minimize (gsl_function_fdf * fn, double rho, double sigma, double tau1, double tau2, double tau3, int order, double alpha1, double *alpha_new) { double f0, fp0, falpha, falpha_prev, fpalpha, fpalpha_prev, delta, alpha_next; double alpha = alpha1, alpha_prev = 0.0; double a, b, fa, fb, fpa, fpb; const size_t bracket_iters = 100, section_iters = 100; size_t i = 0; GSL_FN_FDF_EVAL_F_DF (fn, 0.0, &f0, &fp0); falpha_prev = f0; fpalpha_prev = fp0; /* Avoid uninitialized variables morning */ a = 0.0; b = alpha; fa = f0; fb = 0.0; fpa = fp0; fpb = 0.0; /* Begin bracketing */ while (i++ < bracket_iters) { falpha = GSL_FN_FDF_EVAL_F (fn, alpha); /* Fletcher's rho test */ if (falpha > f0 + alpha * rho * fp0 || falpha >= falpha_prev) { a = alpha_prev; fa = falpha_prev; fpa = fpalpha_prev; b = alpha; fb = falpha; fpb = GSL_NAN; break; /* goto sectioning */ } fpalpha = GSL_FN_FDF_EVAL_DF (fn, alpha); /* Fletcher's sigma test */ if (fabs (fpalpha) <= -sigma * fp0) { *alpha_new = alpha; return GSL_SUCCESS; } if (fpalpha >= 0) { a = alpha; fa = falpha; fpa = fpalpha; b = alpha_prev; fb = falpha_prev; fpb = fpalpha_prev; break; /* goto sectioning */ } delta = alpha - alpha_prev; { double lower = alpha + delta; double upper = alpha + tau1 * delta; alpha_next = interpolate (alpha_prev, falpha_prev, fpalpha_prev, alpha, falpha, fpalpha, lower, upper, order); } alpha_prev = alpha; falpha_prev = falpha; fpalpha_prev = fpalpha; alpha = alpha_next; } /* Sectioning of bracket [a,b] */ while (i++ < section_iters) { delta = b - a; { double lower = a + tau2 * delta; double upper = b - tau3 * delta; alpha = interpolate (a, fa, fpa, b, fb, fpb, lower, upper, order); } falpha = GSL_FN_FDF_EVAL_F (fn, alpha); if ((a-alpha)*fpa <= GSL_DBL_EPSILON) { /* roundoff prevents progress */ return GSL_ENOPROG; }; if (falpha > f0 + rho * alpha * fp0 || falpha >= fa) { /* a_next = a; */ b = alpha; fb = falpha; fpb = GSL_NAN; } else { fpalpha = GSL_FN_FDF_EVAL_DF (fn, alpha); if (fabs(fpalpha) <= -sigma * fp0) { *alpha_new = alpha; return GSL_SUCCESS; /* terminate */ } if ( ((b-a) >= 0 && fpalpha >= 0) || ((b-a) <=0 && fpalpha <= 0)) { b = a; fb = fa; fpb = fpa; a = alpha; fa = falpha; fpa = fpalpha; } else { a = alpha; fa = falpha; fpa = fpalpha; } } } return GSL_SUCCESS; }