@cindex Zeta functions The Riemann zeta function is defined in Abramowitz & Stegun, Section 23.2. The functions described in this section are declared in the header file @file{gsl_sf_zeta.h}. @menu * Riemann Zeta Function:: * Riemann Zeta Function Minus One:: * Hurwitz Zeta Function:: * Eta Function:: @end menu @node Riemann Zeta Function @subsection Riemann Zeta Function The Riemann zeta function is defined by the infinite sum @c{$\zeta(s) = \sum_{k=1}^\infty k^{-s}$} @math{\zeta(s) = \sum_@{k=1@}^\infty k^@{-s@}}. @deftypefun double gsl_sf_zeta_int (int @var{n}) @deftypefunx int gsl_sf_zeta_int_e (int @var{n}, gsl_sf_result * @var{result}) These routines compute the Riemann zeta function @math{\zeta(n)} for integer @var{n}, @math{n \ne 1}. @comment Domain: n integer, n != 1 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_zeta (double @var{s}) @deftypefunx int gsl_sf_zeta_e (double @var{s}, gsl_sf_result * @var{result}) These routines compute the Riemann zeta function @math{\zeta(s)} for arbitrary @var{s}, @math{s \ne 1}. @comment Domain: s != 1.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun @node Riemann Zeta Function Minus One @subsection Riemann Zeta Function Minus One For large positive argument, the Riemann zeta function approaches one. In this region the fractional part is interesting, and therefore we need a function to evaluate it explicitly. @deftypefun double gsl_sf_zetam1_int (int @var{n}) @deftypefunx int gsl_sf_zetam1_int_e (int @var{n}, gsl_sf_result * @var{result}) These routines compute @math{\zeta(n) - 1} for integer @var{n}, @math{n \ne 1}. @comment Domain: n integer, n != 1 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_zetam1 (double @var{s}) @deftypefunx int gsl_sf_zetam1_e (double @var{s}, gsl_sf_result * @var{result}) These routines compute @math{\zeta(s) - 1} for arbitrary @var{s}, @math{s \ne 1}. @comment Domain: s != 1.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun @node Hurwitz Zeta Function @subsection Hurwitz Zeta Function The Hurwitz zeta function is defined by @c{$\zeta(s,q) = \sum_0^\infty (k+q)^{-s}$} @math{\zeta(s,q) = \sum_0^\infty (k+q)^@{-s@}}. @deftypefun double gsl_sf_hzeta (double @var{s}, double @var{q}) @deftypefunx int gsl_sf_hzeta_e (double @var{s}, double @var{q}, gsl_sf_result * @var{result}) These routines compute the Hurwitz zeta function @math{\zeta(s,q)} for @math{s > 1}, @math{q > 0}. @comment Domain: s > 1.0, q > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun @node Eta Function @subsection Eta Function The eta function is defined by @c{$\eta(s) = (1-2^{1-s}) \zeta(s)$} @math{\eta(s) = (1-2^@{1-s@}) \zeta(s)}. @deftypefun double gsl_sf_eta_int (int @var{n}) @deftypefunx int gsl_sf_eta_int_e (int @var{n}, gsl_sf_result * @var{result}) These routines compute the eta function @math{\eta(n)} for integer @var{n}. @comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_eta (double @var{s}) @deftypefunx int gsl_sf_eta_e (double @var{s}, gsl_sf_result * @var{result}) These routines compute the eta function @math{\eta(s)} for arbitrary @var{s}. @comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun