The functions described in this section are declared in the header file @file{gsl_sf_gamma.h}. @menu * Gamma Functions:: * Factorials:: * Pochhammer Symbol:: * Incomplete Gamma Functions:: * Beta Functions:: * Incomplete Beta Function:: @end menu @node Gamma Functions @subsection Gamma Functions @cindex gamma functions The Gamma function is defined by the following integral, @tex \beforedisplay $$ \Gamma(x) = \int_0^{\infty} dt \, t^{x-1} \exp(-t) $$ \afterdisplay @end tex @ifinfo @example \Gamma(x) = \int_0^\infty dt t^@{x-1@} \exp(-t) @end example @end ifinfo @noindent It is related to the factorial function by @math{\Gamma(n)=(n-1)!} for positive integer @math{n}. Further information on the Gamma function can be found in Abramowitz & Stegun, Chapter 6. The functions described in this section are declared in the header file @file{gsl_sf_gamma.h}. @deftypefun double gsl_sf_gamma (double @var{x}) @deftypefunx int gsl_sf_gamma_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the Gamma function @math{\Gamma(x)}, subject to @math{x} not being a negative integer or zero. The function is computed using the real Lanczos method. The maximum value of @math{x} such that @math{\Gamma(x)} is not considered an overflow is given by the macro @code{GSL_SF_GAMMA_XMAX} and is 171.0. @comment exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EROUND @end deftypefun @deftypefun double gsl_sf_lngamma (double @var{x}) @deftypefunx int gsl_sf_lngamma_e (double @var{x}, gsl_sf_result * @var{result}) @cindex logarithm of Gamma function These routines compute the logarithm of the Gamma function, @math{\log(\Gamma(x))}, subject to @math{x} not being a negative integer or zero. For @math{x<0} the real part of @math{\log(\Gamma(x))} is returned, which is equivalent to @math{\log(|\Gamma(x)|)}. The function is computed using the real Lanczos method. @comment exceptions: GSL_EDOM, GSL_EROUND @end deftypefun @deftypefun int gsl_sf_lngamma_sgn_e (double @var{x}, gsl_sf_result * @var{result_lg}, double * @var{sgn}) This routine computes the sign of the gamma function and the logarithm of its magnitude, subject to @math{x} not being a negative integer or zero. The function is computed using the real Lanczos method. The value of the gamma function can be reconstructed using the relation @math{\Gamma(x) = sgn * \exp(resultlg)}. @comment exceptions: GSL_EDOM, GSL_EROUND @end deftypefun @deftypefun double gsl_sf_gammastar (double @var{x}) @deftypefunx int gsl_sf_gammastar_e (double @var{x}, gsl_sf_result * @var{result}) @cindex Regulated Gamma function These routines compute the regulated Gamma Function @math{\Gamma^*(x)} for @math{x > 0}. The regulated gamma function is given by, @tex \beforedisplay $$ \eqalign{ \Gamma^*(x) &= \Gamma(x)/(\sqrt{2\pi} x^{(x-1/2)} \exp(-x))\cr &= \left(1 + {1 \over 12x} + ...\right) \quad\hbox{for~} x\to \infty\cr } $$ \afterdisplay @end tex @ifinfo @example \Gamma^*(x) = \Gamma(x)/(\sqrt@{2\pi@} x^@{(x-1/2)@} \exp(-x)) = (1 + (1/12x) + ...) for x \to \infty @end example @end ifinfo and is a useful suggestion of Temme. @comment exceptions: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_gammainv (double @var{x}) @deftypefunx int gsl_sf_gammainv_e (double @var{x}, gsl_sf_result * @var{result}) @cindex Reciprocal Gamma function These routines compute the reciprocal of the gamma function, @math{1/\Gamma(x)} using the real Lanczos method. @comment exceptions: GSL_EUNDRFLW, GSL_EROUND @end deftypefun @deftypefun int gsl_sf_lngamma_complex_e (double @var{zr}, double @var{zi}, gsl_sf_result * @var{lnr}, gsl_sf_result * @var{arg}) @cindex Complex Gamma function This routine computes @math{\log(\Gamma(z))} for complex @math{z=z_r+i z_i} and @math{z} not a negative integer or zero, using the complex Lanczos method. The returned parameters are @math{lnr = \log|\Gamma(z)|} and @math{arg = \arg(\Gamma(z))} in @math{(-\pi,\pi]}. Note that the phase part (@var{arg}) is not well-determined when @math{|z|} is very large, due to inevitable roundoff in restricting to @math{(-\pi,\pi]}. This will result in a @code{GSL_ELOSS} error when it occurs. The absolute value part (@var{lnr}), however, never suffers from loss of precision. @comment exceptions: GSL_EDOM, GSL_ELOSS @end deftypefun @node Factorials @subsection Factorials @cindex factorial Although factorials can be computed from the Gamma function, using the relation @math{n! = \Gamma(n+1)} for non-negative integer @math{n}, it is usually more efficient to call the functions in this section, particularly for small values of @math{n}, whose factorial values are maintained in hardcoded tables. @deftypefun double gsl_sf_fact (unsigned int @var{n}) @deftypefunx int gsl_sf_fact_e (unsigned int @var{n}, gsl_sf_result * @var{result}) @cindex factorial These routines compute the factorial @math{n!}. The factorial is related to the Gamma function by @math{n! = \Gamma(n+1)}. The maximum value of @math{n} such that @math{n!} is not considered an overflow is given by the macro @code{GSL_SF_FACT_NMAX} and is 170. @comment exceptions: GSL_EDOM, GSL_OVRFLW @end deftypefun @deftypefun double gsl_sf_doublefact (unsigned int @var{n}) @deftypefunx int gsl_sf_doublefact_e (unsigned int @var{n}, gsl_sf_result * @var{result}) @cindex double factorial These routines compute the double factorial @math{n!! = n(n-2)(n-4) \dots}. The maximum value of @math{n} such that @math{n!!} is not considered an overflow is given by the macro @code{GSL_SF_DOUBLEFACT_NMAX} and is 297. @comment exceptions: GSL_EDOM, GSL_OVRFLW @end deftypefun @deftypefun double gsl_sf_lnfact (unsigned int @var{n}) @deftypefunx int gsl_sf_lnfact_e (unsigned int @var{n}, gsl_sf_result * @var{result}) @cindex logarithm of factorial These routines compute the logarithm of the factorial of @var{n}, @math{\log(n!)}. The algorithm is faster than computing @math{\ln(\Gamma(n+1))} via @code{gsl_sf_lngamma} for @math{n < 170}, but defers for larger @var{n}. @comment exceptions: none @end deftypefun @deftypefun double gsl_sf_lndoublefact (unsigned int @var{n}) @deftypefunx int gsl_sf_lndoublefact_e (unsigned int @var{n}, gsl_sf_result * @var{result}) @cindex logarithm of double factorial These routines compute the logarithm of the double factorial of @var{n}, @math{\log(n!!)}. @comment exceptions: none @end deftypefun @deftypefun double gsl_sf_choose (unsigned int @var{n}, unsigned int @var{m}) @deftypefunx int gsl_sf_choose_e (unsigned int @var{n}, unsigned int @var{m}, gsl_sf_result * @var{result}) @cindex combinatorial factor C(m,n) These routines compute the combinatorial factor @code{n choose m} @math{= n!/(m!(n-m)!)} @comment exceptions: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_lnchoose (unsigned int @var{n}, unsigned int @var{m}) @deftypefunx int gsl_sf_lnchoose_e (unsigned int @var{n}, unsigned int @var{m}, gsl_sf_result * @var{result}) @cindex logarithm of combinatorial factor C(m,n) These routines compute the logarithm of @code{n choose m}. This is equivalent to the sum @math{\log(n!) - \log(m!) - \log((n-m)!)}. @comment exceptions: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_taylorcoeff (int @var{n}, double @var{x}) @deftypefunx int gsl_sf_taylorcoeff_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result}) @cindex Taylor coefficients, computation of These routines compute the Taylor coefficient @math{x^n / n!} for @c{$x \ge 0$} @math{x >= 0}, @c{$n \ge 0$} @math{n >= 0}. @comment exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @node Pochhammer Symbol @subsection Pochhammer Symbol @deftypefun double gsl_sf_poch (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_poch_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @cindex Pochhammer symbol @cindex Apell symbol, see Pochammer symbol These routines compute the Pochhammer symbol @math{(a)_x = \Gamma(a + x)/\Gamma(a)}, subject to @math{a} and @math{a+x} not being negative integers or zero. The Pochhammer symbol is also known as the Apell symbol and sometimes written as @math{(a,x)}. @comment exceptions: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_lnpoch (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_lnpoch_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @cindex logarithm of Pochhammer symbol These routines compute the logarithm of the Pochhammer symbol, @math{\log((a)_x) = \log(\Gamma(a + x)/\Gamma(a))} for @math{a > 0}, @math{a+x > 0}. @comment exceptions: GSL_EDOM @end deftypefun @deftypefun int gsl_sf_lnpoch_sgn_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}, double * @var{sgn}) These routines compute the sign of the Pochhammer symbol and the logarithm of its magnitude. The computed parameters are @math{result = \log(|(a)_x|)} and @math{sgn = \sgn((a)_x)} where @math{(a)_x = \Gamma(a + x)/\Gamma(a)}, subject to @math{a}, @math{a+x} not being negative integers or zero. @comment exceptions: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_pochrel (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_pochrel_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @cindex relative Pochhammer symbol These routines compute the relative Pochhammer symbol @math{((a)_x - 1)/x} where @math{(a)_x = \Gamma(a + x)/\Gamma(a)}. @comment exceptions: GSL_EDOM @end deftypefun @node Incomplete Gamma Functions @subsection Incomplete Gamma Functions @deftypefun double gsl_sf_gamma_inc (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_gamma_inc_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @cindex non-normalized incomplete Gamma function @cindex unnormalized incomplete Gamma function These functions compute the unnormalized incomplete Gamma Function @c{$\Gamma(a,x) = \int_x^\infty dt\, t^{(a-1)} \exp(-t)$} @math{\Gamma(a,x) = \int_x^\infty dt t^@{a-1@} \exp(-t)} for @math{a} real and @c{$x \ge 0$} @math{x >= 0}. @comment exceptions: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_gamma_inc_Q (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_gamma_inc_Q_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @cindex incomplete Gamma function These routines compute the normalized incomplete Gamma Function @c{$Q(a,x) = 1/\Gamma(a) \int_x^\infty dt\, t^{(a-1)} \exp(-t)$} @math{Q(a,x) = 1/\Gamma(a) \int_x^\infty dt t^@{a-1@} \exp(-t)} for @math{a > 0}, @c{$x \ge 0$} @math{x >= 0}. @comment exceptions: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_gamma_inc_P (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_gamma_inc_P_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @cindex complementary incomplete Gamma function These routines compute the complementary normalized incomplete Gamma Function @c{$P(a,x) = 1 - Q(a,x) = 1/\Gamma(a) \int_0^x dt\, t^{(a-1)} \exp(-t)$} @math{P(a,x) = 1 - Q(a,x) = 1/\Gamma(a) \int_0^x dt t^@{a-1@} \exp(-t)} for @math{a > 0}, @c{$x \ge 0$} @math{x >= 0}. Note that Abramowitz & Stegun call @math{P(a,x)} the incomplete gamma function (section 6.5). @comment exceptions: GSL_EDOM @end deftypefun @node Beta Functions @subsection Beta Functions @deftypefun double gsl_sf_beta (double @var{a}, double @var{b}) @deftypefunx int gsl_sf_beta_e (double @var{a}, double @var{b}, gsl_sf_result * @var{result}) @cindex Beta function These routines compute the Beta Function, @math{B(a,b) = \Gamma(a)\Gamma(b)/\Gamma(a+b)} subject to @math{a} and @math{b} not being negative integers. @comment exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_lnbeta (double @var{a}, double @var{b}) @deftypefunx int gsl_sf_lnbeta_e (double @var{a}, double @var{b}, gsl_sf_result * @var{result}) @cindex logarithm of Beta function These routines compute the logarithm of the Beta Function, @math{\log(B(a,b))} subject to @math{a} and @math{b} not being negative integers. @comment exceptions: GSL_EDOM @end deftypefun @node Incomplete Beta Function @subsection Incomplete Beta Function @deftypefun double gsl_sf_beta_inc (double @var{a}, double @var{b}, double @var{x}) @deftypefunx int gsl_sf_beta_inc_e (double @var{a}, double @var{b}, double @var{x}, gsl_sf_result * @var{result}) @cindex incomplete Beta function, normalized @cindex normalized incomplete Beta function @cindex Beta function, incomplete normalized These routines compute the normalized incomplete Beta function @math{I_x(a,b)=B_x(a,b)/B(a,b)} where @c{$B_x(a,b) = \int_0^x t^{a-1} (1-t)^{b-1} dt$} @math{B_x(a,b) = \int_0^x t^@{a-1@} (1-t)^@{b-1@} dt} for @math{a > 0}, @math{b > 0}, and @c{$0 \le x \le 1$} @math{0 <= x <= 1}. @end deftypefun