@cindex elliptic integrals The functions described in this section are declared in the header file @file{gsl_sf_ellint.h}. Further information about the elliptic integrals can be found in Abramowitz & Stegun, Chapter 17. @menu * Definition of Legendre Forms:: * Definition of Carlson Forms:: * Legendre Form of Complete Elliptic Integrals:: * Legendre Form of Incomplete Elliptic Integrals:: * Carlson Forms:: @end menu @node Definition of Legendre Forms @subsection Definition of Legendre Forms @cindex Legendre forms of elliptic integrals The Legendre forms of elliptic integrals @math{F(\phi,k)}, @math{E(\phi,k)} and @math{\Pi(\phi,k,n)} are defined by, @tex \beforedisplay $$ \eqalign{ F(\phi,k) &= \int_0^\phi dt {1 \over \sqrt{(1 - k^2 \sin^2(t))}}\cr E(\phi,k) &= \int_0^\phi dt \sqrt{(1 - k^2 \sin^2(t))}\cr \Pi(\phi,k,n) &= \int_0^\phi dt {1 \over (1 + n \sin^2(t)) \sqrt{1 - k^2 \sin^2(t)}} } $$ \afterdisplay @end tex @ifinfo @example F(\phi,k) = \int_0^\phi dt 1/\sqrt((1 - k^2 \sin^2(t))) E(\phi,k) = \int_0^\phi dt \sqrt((1 - k^2 \sin^2(t))) Pi(\phi,k,n) = \int_0^\phi dt 1/((1 + n \sin^2(t))\sqrt(1 - k^2 \sin^2(t))) @end example @end ifinfo @noindent The complete Legendre forms are denoted by @math{K(k) = F(\pi/2, k)} and @math{E(k) = E(\pi/2, k)}. The notation used here is based on Carlson, @cite{Numerische Mathematik} 33 (1979) 1 and differs slightly from that used by Abramowitz & Stegun, where the functions are given in terms of the parameter @math{m = k^2} and @math{n} is replaced by @math{-n}. @node Definition of Carlson Forms @subsection Definition of Carlson Forms @cindex Carlson forms of Elliptic integrals The Carlson symmetric forms of elliptical integrals @math{RC(x,y)}, @math{RD(x,y,z)}, @math{RF(x,y,z)} and @math{RJ(x,y,z,p)} are defined by, @tex \beforedisplay $$ \eqalign{ RC(x,y) &= 1/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1}\cr RD(x,y,z) &= 3/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-3/2}\cr RF(x,y,z) &= 1/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-1/2}\cr RJ(x,y,z,p) &= 3/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-1/2} (t+p)^{-1} } $$ \afterdisplay @end tex @ifinfo @example RC(x,y) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1) RD(x,y,z) = 3/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2) RF(x,y,z) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) RJ(x,y,z,p) = 3/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1) @end example @end ifinfo @node Legendre Form of Complete Elliptic Integrals @subsection Legendre Form of Complete Elliptic Integrals @deftypefun double gsl_sf_ellint_Kcomp (double @var{k}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_Kcomp_e (double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the complete elliptic integral @math{K(k)} to the accuracy specified by the mode variable @var{mode}. Note that Abramowitz & Stegun define this function in terms of the parameter @math{m = k^2}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_Ecomp (double @var{k}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_Ecomp_e (double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the complete elliptic integral @math{E(k)} to the accuracy specified by the mode variable @var{mode}. Note that Abramowitz & Stegun define this function in terms of the parameter @math{m = k^2}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_Pcomp (double @var{k}, double @var{n}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_Pcomp_e (double @var{k}, double @var{n}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the complete elliptic integral @math{\Pi(k,n)} to the accuracy specified by the mode variable @var{mode}. Note that Abramowitz & Stegun define this function in terms of the parameters @math{m = k^2} and @math{\sin^2(\alpha) = k^2}, with the change of sign @math{n \to -n}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @node Legendre Form of Incomplete Elliptic Integrals @subsection Legendre Form of Incomplete Elliptic Integrals @deftypefun double gsl_sf_ellint_F (double @var{phi}, double @var{k}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_F_e (double @var{phi}, double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{F(\phi,k)} to the accuracy specified by the mode variable @var{mode}. Note that Abramowitz & Stegun define this function in terms of the parameter @math{m = k^2}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_E (double @var{phi}, double @var{k}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_E_e (double @var{phi}, double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{E(\phi,k)} to the accuracy specified by the mode variable @var{mode}. Note that Abramowitz & Stegun define this function in terms of the parameter @math{m = k^2}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_P (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_P_e (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{\Pi(\phi,k,n)} to the accuracy specified by the mode variable @var{mode}. Note that Abramowitz & Stegun define this function in terms of the parameters @math{m = k^2} and @math{\sin^2(\alpha) = k^2}, with the change of sign @math{n \to -n}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_D (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_D_e (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These functions compute the incomplete elliptic integral @math{D(\phi,k)} which is defined through the Carlson form @math{RD(x,y,z)} by the following relation, @tex \beforedisplay $$ D(\phi,k,n) = {1 \over 3} (\sin \phi)^3 RD (1-\sin^2(\phi), 1-k^2 \sin^2(\phi), 1). $$ \afterdisplay @end tex @ifinfo @example D(\phi,k,n) = (1/3)(\sin(\phi))^3 RD (1-\sin^2(\phi), 1-k^2 \sin^2(\phi), 1). @end example @end ifinfo The argument @var{n} is not used and will be removed in a future release. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @node Carlson Forms @subsection Carlson Forms @deftypefun double gsl_sf_ellint_RC (double @var{x}, double @var{y}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_RC_e (double @var{x}, double @var{y}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{RC(x,y)} to the accuracy specified by the mode variable @var{mode}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_RD (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_RD_e (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{RD(x,y,z)} to the accuracy specified by the mode variable @var{mode}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_RF (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_RF_e (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{RF(x,y,z)} to the accuracy specified by the mode variable @var{mode}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_RJ (double @var{x}, double @var{y}, double @var{z}, double @var{p}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_RJ_e (double @var{x}, double @var{y}, double @var{z}, double @var{p}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{RJ(x,y,z,p)} to the accuracy specified by the mode variable @var{mode}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun