@cindex minimization, multidimensional This chapter describes routines for finding minima of arbitrary multidimensional functions. The library provides low level components for a variety of iterative minimizers and convergence tests. These can be combined by the user to achieve the desired solution, while providing full access to the intermediate steps of the algorithms. Each class of methods uses the same framework, so that you can switch between minimizers at runtime without needing to recompile your program. Each instance of a minimizer keeps track of its own state, allowing the minimizers to be used in multi-threaded programs. The minimization algorithms can be used to maximize a function by inverting its sign. The header file @file{gsl_multimin.h} contains prototypes for the minimization functions and related declarations. @menu * Multimin Overview:: * Multimin Caveats:: * Initializing the Multidimensional Minimizer:: * Providing a function to minimize:: * Multimin Iteration:: * Multimin Stopping Criteria:: * Multimin Algorithms:: * Multimin Examples:: * Multimin References and Further Reading:: @end menu @node Multimin Overview @section Overview The problem of multidimensional minimization requires finding a point @math{x} such that the scalar function, @tex \beforedisplay $$ f(x_1, \dots, x_n) $$ \afterdisplay @end tex @ifinfo @example f(x_1, @dots{}, x_n) @end example @end ifinfo @noindent takes a value which is lower than at any neighboring point. For smooth functions the gradient @math{g = \nabla f} vanishes at the minimum. In general there are no bracketing methods available for the minimization of @math{n}-dimensional functions. The algorithms proceed from an initial guess using a search algorithm which attempts to move in a downhill direction. Algorithms making use of the gradient of the function perform a one-dimensional line minimisation along this direction until the lowest point is found to a suitable tolerance. The search direction is then updated with local information from the function and its derivatives, and the whole process repeated until the true @math{n}-dimensional minimum is found. The Nelder-Mead Simplex algorithm applies a different strategy. It maintains @math{n+1} trial parameter vectors as the vertices of a @math{n}-dimensional simplex. In each iteration step it tries to improve the worst vertex by a simple geometrical transformation until the size of the simplex falls below a given tolerance. Both types of algorithms use a standard framework. The user provides a high-level driver for the algorithms, and the library provides the individual functions necessary for each of the steps. There are three main phases of the iteration. The steps are, @itemize @bullet @item initialize minimizer state, @var{s}, for algorithm @var{T} @item update @var{s} using the iteration @var{T} @item test @var{s} for convergence, and repeat iteration if necessary @end itemize @noindent Each iteration step consists either of an improvement to the line-minimisation in the current direction or an update to the search direction itself. The state for the minimizers is held in a @code{gsl_multimin_fdfminimizer} struct or a @code{gsl_multimin_fminimizer} struct. @node Multimin Caveats @section Caveats @cindex Multimin, caveats Note that the minimization algorithms can only search for one local minimum at a time. When there are several local minima in the search area, the first minimum to be found will be returned; however it is difficult to predict which of the minima this will be. In most cases, no error will be reported if you try to find a local minimum in an area where there is more than one. It is also important to note that the minimization algorithms find local minima; there is no way to determine whether a minimum is a global minimum of the function in question. @node Initializing the Multidimensional Minimizer @section Initializing the Multidimensional Minimizer The following function initializes a multidimensional minimizer. The minimizer itself depends only on the dimension of the problem and the algorithm and can be reused for different problems. @deftypefun {gsl_multimin_fdfminimizer *} gsl_multimin_fdfminimizer_alloc (const gsl_multimin_fdfminimizer_type * @var{T}, size_t @var{n}) @deftypefunx {gsl_multimin_fminimizer *} gsl_multimin_fminimizer_alloc (const gsl_multimin_fminimizer_type * @var{T}, size_t @var{n}) This function returns a pointer to a newly allocated instance of a minimizer of type @var{T} for an @var{n}-dimension function. If there is insufficient memory to create the minimizer then the function returns a null pointer and the error handler is invoked with an error code of @code{GSL_ENOMEM}. @end deftypefun @deftypefun int gsl_multimin_fdfminimizer_set (gsl_multimin_fdfminimizer * @var{s}, gsl_multimin_function_fdf * @var{fdf}, const gsl_vector * @var{x}, double @var{step_size}, double @var{tol}) This function initializes the minimizer @var{s} to minimize the function @var{fdf} starting from the initial point @var{x}. The size of the first trial step is given by @var{step_size}. The accuracy of the line minimization is specified by @var{tol}. The precise meaning of this parameter depends on the method used. Typically the line minimization is considered successful if the gradient of the function @math{g} is orthogonal to the current search direction @math{p} to a relative accuracy of @var{tol}, where @c{$p\cdot g < tol |p| |g|$} @math{dot(p,g) < tol |p| |g|}. A @var{tol} value of 0.1 is suitable for most purposes, since line minimization only needs to be carried out approximately. Note that setting @var{tol} to zero will force the use of ``exact'' line-searches, which are extremely expensive. @deftypefunx int gsl_multimin_fminimizer_set (gsl_multimin_fminimizer * @var{s}, gsl_multimin_function * @var{f}, const gsl_vector * @var{x}, const gsl_vector * @var{step_size}) This function initializes the minimizer @var{s} to minimize the function @var{f}, starting from the initial point @var{x}. The size of the initial trial steps is given in vector @var{step_size}. The precise meaning of this parameter depends on the method used. @end deftypefun @deftypefun void gsl_multimin_fdfminimizer_free (gsl_multimin_fdfminimizer * @var{s}) @deftypefunx void gsl_multimin_fminimizer_free (gsl_multimin_fminimizer * @var{s}) This function frees all the memory associated with the minimizer @var{s}. @end deftypefun @deftypefun {const char *} gsl_multimin_fdfminimizer_name (const gsl_multimin_fdfminimizer * @var{s}) @deftypefunx {const char *} gsl_multimin_fminimizer_name (const gsl_multimin_fminimizer * @var{s}) This function returns a pointer to the name of the minimizer. For example, @example printf ("s is a '%s' minimizer\n", gsl_multimin_fdfminimizer_name (s)); @end example @noindent would print something like @code{s is a 'conjugate_pr' minimizer}. @end deftypefun @node Providing a function to minimize @section Providing a function to minimize You must provide a parametric function of @math{n} variables for the minimizers to operate on. You may also need to provide a routine which calculates the gradient of the function and a third routine which calculates both the function value and the gradient together. In order to allow for general parameters the functions are defined by the following data types: @deftp {Data Type} gsl_multimin_function_fdf This data type defines a general function of @math{n} variables with parameters and the corresponding gradient vector of derivatives, @table @code @item double (* f) (const gsl_vector * @var{x}, void * @var{params}) this function should return the result @c{$f(x,\hbox{\it params})$} @math{f(x,params)} for argument @var{x} and parameters @var{params}. @item void (* df) (const gsl_vector * @var{x}, void * @var{params}, gsl_vector * @var{g}) this function should store the @var{n}-dimensional gradient @c{$g_i = \partial f(x,\hbox{\it params}) / \partial x_i$} @math{g_i = d f(x,params) / d x_i} in the vector @var{g} for argument @var{x} and parameters @var{params}, returning an appropriate error code if the function cannot be computed. @item void (* fdf) (const gsl_vector * @var{x}, void * @var{params}, double * f, gsl_vector * @var{g}) This function should set the values of the @var{f} and @var{g} as above, for arguments @var{x} and parameters @var{params}. This function provides an optimization of the separate functions for @math{f(x)} and @math{g(x)}---it is always faster to compute the function and its derivative at the same time. @item size_t n the dimension of the system, i.e. the number of components of the vectors @var{x}. @item void * params a pointer to the parameters of the function. @end table @end deftp @deftp {Data Type} gsl_multimin_function This data type defines a general function of @math{n} variables with parameters, @table @code @item double (* f) (const gsl_vector * @var{x}, void * @var{params}) this function should return the result @c{$f(x,\hbox{\it params})$} @math{f(x,params)} for argument @var{x} and parameters @var{params}. @item size_t n the dimension of the system, i.e. the number of components of the vectors @var{x}. @item void * params a pointer to the parameters of the function. @end table @end deftp @noindent The following example function defines a simple paraboloid with two parameters, @example /* Paraboloid centered on (dp[0],dp[1]) */ double my_f (const gsl_vector *v, void *params) @{ double x, y; double *dp = (double *)params; x = gsl_vector_get(v, 0); y = gsl_vector_get(v, 1); return 10.0 * (x - dp[0]) * (x - dp[0]) + 20.0 * (y - dp[1]) * (y - dp[1]) + 30.0; @} /* The gradient of f, df = (df/dx, df/dy). */ void my_df (const gsl_vector *v, void *params, gsl_vector *df) @{ double x, y; double *dp = (double *)params; x = gsl_vector_get(v, 0); y = gsl_vector_get(v, 1); gsl_vector_set(df, 0, 20.0 * (x - dp[0])); gsl_vector_set(df, 1, 40.0 * (y - dp[1])); @} /* Compute both f and df together. */ void my_fdf (const gsl_vector *x, void *params, double *f, gsl_vector *df) @{ *f = my_f(x, params); my_df(x, params, df); @} @end example @noindent The function can be initialized using the following code, @example gsl_multimin_function_fdf my_func; double p[2] = @{ 1.0, 2.0 @}; /* center at (1,2) */ my_func.f = &my_f; my_func.df = &my_df; my_func.fdf = &my_fdf; my_func.n = 2; my_func.params = (void *)p; @end example @node Multimin Iteration @section Iteration The following function drives the iteration of each algorithm. The function performs one iteration to update the state of the minimizer. The same function works for all minimizers so that different methods can be substituted at runtime without modifications to the code. @deftypefun int gsl_multimin_fdfminimizer_iterate (gsl_multimin_fdfminimizer * @var{s}) @deftypefunx int gsl_multimin_fminimizer_iterate (gsl_multimin_fminimizer * @var{s}) These functions perform a single iteration of the minimizer @var{s}. If the iteration encounters an unexpected problem then an error code will be returned. @end deftypefun @noindent The minimizer maintains a current best estimate of the minimum at all times. This information can be accessed with the following auxiliary functions, @deftypefun {gsl_vector *} gsl_multimin_fdfminimizer_x (const gsl_multimin_fdfminimizer * @var{s}) @deftypefunx {gsl_vector *} gsl_multimin_fminimizer_x (const gsl_multimin_fminimizer * @var{s}) @deftypefunx double gsl_multimin_fdfminimizer_minimum (const gsl_multimin_fdfminimizer * @var{s}) @deftypefunx double gsl_multimin_fminimizer_minimum (const gsl_multimin_fminimizer * @var{s}) @deftypefunx {gsl_vector *} gsl_multimin_fdfminimizer_gradient (const gsl_multimin_fdfminimizer * @var{s}) @deftypefunx double gsl_multimin_fminimizer_size (const gsl_multimin_fminimizer * @var{s}) These functions return the current best estimate of the location of the minimum, the value of the function at that point, its gradient, and minimizer specific characteristic size for the minimizer @var{s}. @end deftypefun @deftypefun int gsl_multimin_fdfminimizer_restart (gsl_multimin_fdfminimizer * @var{s}) This function resets the minimizer @var{s} to use the current point as a new starting point. @end deftypefun @node Multimin Stopping Criteria @section Stopping Criteria A minimization procedure should stop when one of the following conditions is true: @itemize @bullet @item A minimum has been found to within the user-specified precision. @item A user-specified maximum number of iterations has been reached. @item An error has occurred. @end itemize @noindent The handling of these conditions is under user control. The functions below allow the user to test the precision of the current result. @deftypefun int gsl_multimin_test_gradient (const gsl_vector * @var{g}, double @var{epsabs}) This function tests the norm of the gradient @var{g} against the absolute tolerance @var{epsabs}. The gradient of a multidimensional function goes to zero at a minimum. The test returns @code{GSL_SUCCESS} if the following condition is achieved, @tex \beforedisplay $$ |g| < \hbox{\it epsabs} $$ \afterdisplay @end tex @ifinfo @example |g| < epsabs @end example @end ifinfo @noindent and returns @code{GSL_CONTINUE} otherwise. A suitable choice of @var{epsabs} can be made from the desired accuracy in the function for small variations in @math{x}. The relationship between these quantities is given by @c{$\delta{f} = g\,\delta{x}$} @math{\delta f = g \delta x}. @end deftypefun @deftypefun int gsl_multimin_test_size (const double @var{size}, double @var{epsabs}) This function tests the minimizer specific characteristic size (if applicable to the used minimizer) against absolute tolerance @var{epsabs}. The test returns @code{GSL_SUCCESS} if the size is smaller than tolerance, otherwise @code{GSL_CONTINUE} is returned. @end deftypefun @node Multimin Algorithms @section Algorithms There are several minimization methods available. The best choice of algorithm depends on the problem. All of the algorithms use the value of the function and its gradient at each evaluation point, except for the Simplex algorithm which uses function values only. @deffn {Minimizer} gsl_multimin_fdfminimizer_conjugate_fr @cindex Fletcher-Reeves conjugate gradient algorithm, minimization @cindex Conjugate gradient algorithm, minimization @cindex minimization, conjugate gradient algorithm This is the Fletcher-Reeves conjugate gradient algorithm. The conjugate gradient algorithm proceeds as a succession of line minimizations. The sequence of search directions is used to build up an approximation to the curvature of the function in the neighborhood of the minimum. An initial search direction @var{p} is chosen using the gradient, and line minimization is carried out in that direction. The accuracy of the line minimization is specified by the parameter @var{tol}. The minimum along this line occurs when the function gradient @var{g} and the search direction @var{p} are orthogonal. The line minimization terminates when @c{$p\cdot g < tol |p| |g|$} @math{dot(p,g) < tol |p| |g|}. The search direction is updated using the Fletcher-Reeves formula @math{p' = g' - \beta g} where @math{\beta=-|g'|^2/|g|^2}, and the line minimization is then repeated for the new search direction. @end deffn @deffn {Minimizer} gsl_multimin_fdfminimizer_conjugate_pr @cindex Polak-Ribiere algorithm, minimization @cindex minimization, Polak-Ribiere algorithm This is the Polak-Ribiere conjugate gradient algorithm. It is similar to the Fletcher-Reeves method, differing only in the choice of the coefficient @math{\beta}. Both methods work well when the evaluation point is close enough to the minimum of the objective function that it is well approximated by a quadratic hypersurface. @end deffn @deffn {Minimizer} gsl_multimin_fdfminimizer_vector_bfgs2 @deffnx {Minimizer} gsl_multimin_fdfminimizer_vector_bfgs @cindex BFGS algorithm, minimization @cindex minimization, BFGS algorithm These methods use the vector Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. This is a quasi-Newton method which builds up an approximation to the second derivatives of the function @math{f} using the difference between successive gradient vectors. By combining the first and second derivatives the algorithm is able to take Newton-type steps towards the function minimum, assuming quadratic behavior in that region. The @code{bfgs2} version of this minimizer is the most efficient version available, and is a faithful implementation of the line minimization scheme described in Fletcher's @cite{Practical Methods of Optimization}, Algorithms 2.6.2 and 2.6.4. It supercedes the original @code{bfgs} routine and requires substantially fewer function and gradient evaluations. The user-supplied tolerance @var{tol} corresponds to the parameter @math{\sigma} used by Fletcher. A value of 0.1 is recommended for typical use (larger values correspond to less accurate line searches). @end deffn @deffn {Minimizer} gsl_multimin_fdfminimizer_steepest_descent @cindex steepest descent algorithm, minimization @cindex minimization, steepest descent algorithm The steepest descent algorithm follows the downhill gradient of the function at each step. When a downhill step is successful the step-size is increased by a factor of two. If the downhill step leads to a higher function value then the algorithm backtracks and the step size is decreased using the parameter @var{tol}. A suitable value of @var{tol} for most applications is 0.1. The steepest descent method is inefficient and is included only for demonstration purposes. @end deffn @deffn {Minimizer} gsl_multimin_fminimizer_nmsimplex @cindex Nelder-Mead simplex algorithm for minimization @cindex simplex algorithm, minimization @cindex minimization, simplex algorithm This is the Simplex algorithm of Nelder and Mead. It constructs @math{n} vectors @math{p_i} from the starting vector @var{x} and the vector @var{step_size} as follows: @tex \beforedisplay $$ \eqalign{ p_0 & = (x_0, x_1, \cdots , x_n) \cr p_1 & = (x_0 + step\_size_0, x_1, \cdots , x_n) \cr p_2 & = (x_0, x_1 + step\_size_1, \cdots , x_n) \cr \dots &= \dots \cr p_n & = (x_0, x_1, \cdots , x_n+step\_size_n) \cr } $$ \afterdisplay @end tex @ifinfo @example p_0 = (x_0, x_1, ... , x_n) p_1 = (x_0 + step_size_0, x_1, ... , x_n) p_2 = (x_0, x_1 + step_size_1, ... , x_n) ... = ... p_n = (x_0, x_1, ... , x_n+step_size_n) @end example @end ifinfo @noindent These vectors form the @math{n+1} vertices of a simplex in @math{n} dimensions. On each iteration the algorithm tries to improve the parameter vector @math{p_i} corresponding to the highest function value by simple geometrical transformations. These are reflection, reflection followed by expansion, contraction and multiple contraction. Using these transformations the simplex moves through the parameter space towards the minimum, where it contracts itself. After each iteration, the best vertex is returned. Note, that due to the nature of the algorithm not every step improves the current best parameter vector. Usually several iterations are required. The routine calculates the minimizer specific characteristic size as the average distance from the geometrical center of the simplex to all its vertices. This size can be used as a stopping criteria, as the simplex contracts itself near the minimum. The size is returned by the function @code{gsl_multimin_fminimizer_size}. @end deffn @node Multimin Examples @section Examples This example program finds the minimum of the paraboloid function defined earlier. The location of the minimum is offset from the origin in @math{x} and @math{y}, and the function value at the minimum is non-zero. The main program is given below, it requires the example function given earlier in this chapter. @smallexample int main (void) @{ size_t iter = 0; int status; const gsl_multimin_fdfminimizer_type *T; gsl_multimin_fdfminimizer *s; /* Position of the minimum (1,2). */ double par[2] = @{ 1.0, 2.0 @}; gsl_vector *x; gsl_multimin_function_fdf my_func; my_func.f = &my_f; my_func.df = &my_df; my_func.fdf = &my_fdf; my_func.n = 2; my_func.params = ∥ /* Starting point, x = (5,7) */ x = gsl_vector_alloc (2); gsl_vector_set (x, 0, 5.0); gsl_vector_set (x, 1, 7.0); T = gsl_multimin_fdfminimizer_conjugate_fr; s = gsl_multimin_fdfminimizer_alloc (T, 2); gsl_multimin_fdfminimizer_set (s, &my_func, x, 0.01, 1e-4); do @{ iter++; status = gsl_multimin_fdfminimizer_iterate (s); if (status) break; status = gsl_multimin_test_gradient (s->gradient, 1e-3); if (status == GSL_SUCCESS) printf ("Minimum found at:\n"); printf ("%5d %.5f %.5f %10.5f\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), s->f); @} while (status == GSL_CONTINUE && iter < 100); gsl_multimin_fdfminimizer_free (s); gsl_vector_free (x); return 0; @} @end smallexample @noindent The initial step-size is chosen as 0.01, a conservative estimate in this case, and the line minimization parameter is set at 0.0001. The program terminates when the norm of the gradient has been reduced below 0.001. The output of the program is shown below, @example x y f 1 4.99629 6.99072 687.84780 2 4.98886 6.97215 683.55456 3 4.97400 6.93501 675.01278 4 4.94429 6.86073 658.10798 5 4.88487 6.71217 625.01340 6 4.76602 6.41506 561.68440 7 4.52833 5.82083 446.46694 8 4.05295 4.63238 261.79422 9 3.10219 2.25548 75.49762 10 2.85185 1.62963 67.03704 11 2.19088 1.76182 45.31640 12 0.86892 2.02622 30.18555 Minimum found at: 13 1.00000 2.00000 30.00000 @end example @noindent Note that the algorithm gradually increases the step size as it successfully moves downhill, as can be seen by plotting the successive points. @iftex @sp 1 @center @image{multimin,3.4in} @end iftex @noindent The conjugate gradient algorithm finds the minimum on its second direction because the function is purely quadratic. Additional iterations would be needed for a more complicated function. Here is another example using the Nelder-Mead Simplex algorithm to minimize the same example object function, as above. @smallexample int main(void) @{ size_t np = 2; double par[2] = @{1.0, 2.0@}; const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex; gsl_multimin_fminimizer *s = NULL; gsl_vector *ss, *x; gsl_multimin_function minex_func; size_t iter = 0, i; int status; double size; /* Initial vertex size vector */ ss = gsl_vector_alloc (np); /* Set all step sizes to 1 */ gsl_vector_set_all (ss, 1.0); /* Starting point */ x = gsl_vector_alloc (np); gsl_vector_set (x, 0, 5.0); gsl_vector_set (x, 1, 7.0); /* Initialize method and iterate */ minex_func.f = &my_f; minex_func.n = np; minex_func.params = (void *)∥ s = gsl_multimin_fminimizer_alloc (T, np); gsl_multimin_fminimizer_set (s, &minex_func, x, ss); do @{ iter++; status = gsl_multimin_fminimizer_iterate(s); if (status) break; size = gsl_multimin_fminimizer_size (s); status = gsl_multimin_test_size (size, 1e-2); if (status == GSL_SUCCESS) @{ printf ("converged to minimum at\n"); @} printf ("%5d ", iter); for (i = 0; i < np; i++) @{ printf ("%10.3e ", gsl_vector_get (s->x, i)); @} printf ("f() = %7.3f size = %.3f\n", s->fval, size); @} while (status == GSL_CONTINUE && iter < 100); gsl_vector_free(x); gsl_vector_free(ss); gsl_multimin_fminimizer_free (s); return status; @} @end smallexample @noindent The minimum search stops when the Simplex size drops to 0.01. The output is shown below. @example 1 6.500e+00 5.000e+00 f() = 512.500 size = 1.082 2 5.250e+00 4.000e+00 f() = 290.625 size = 1.372 3 5.250e+00 4.000e+00 f() = 290.625 size = 1.372 4 5.500e+00 1.000e+00 f() = 252.500 size = 1.372 5 2.625e+00 3.500e+00 f() = 101.406 size = 1.823 6 3.469e+00 1.375e+00 f() = 98.760 size = 1.526 7 1.820e+00 3.156e+00 f() = 63.467 size = 1.105 8 1.820e+00 3.156e+00 f() = 63.467 size = 1.105 9 1.016e+00 2.812e+00 f() = 43.206 size = 1.105 10 2.041e+00 2.008e+00 f() = 40.838 size = 0.645 11 1.236e+00 1.664e+00 f() = 32.816 size = 0.645 12 1.236e+00 1.664e+00 f() = 32.816 size = 0.447 13 5.225e-01 1.980e+00 f() = 32.288 size = 0.447 14 1.103e+00 2.073e+00 f() = 30.214 size = 0.345 15 1.103e+00 2.073e+00 f() = 30.214 size = 0.264 16 1.103e+00 2.073e+00 f() = 30.214 size = 0.160 17 9.864e-01 1.934e+00 f() = 30.090 size = 0.132 18 9.190e-01 1.987e+00 f() = 30.069 size = 0.092 19 1.028e+00 2.017e+00 f() = 30.013 size = 0.056 20 1.028e+00 2.017e+00 f() = 30.013 size = 0.046 21 1.028e+00 2.017e+00 f() = 30.013 size = 0.033 22 9.874e-01 1.985e+00 f() = 30.006 size = 0.028 23 9.846e-01 1.995e+00 f() = 30.003 size = 0.023 24 1.007e+00 2.003e+00 f() = 30.001 size = 0.012 converged to minimum at 25 1.007e+00 2.003e+00 f() = 30.001 size = 0.010 @end example @noindent The simplex size first increases, while the simplex moves towards the minimum. After a while the size begins to decrease as the simplex contracts around the minimum. @node Multimin References and Further Reading @section References and Further Reading The conjugate gradient and BFGS methods are described in detail in the following book, @itemize @asis @item R. Fletcher, @cite{Practical Methods of Optimization (Second Edition)} Wiley (1987), ISBN 0471915475. @end itemize A brief description of multidimensional minimization algorithms and more recent references can be found in, @itemize @asis @item C.W. Ueberhuber, @cite{Numerical Computation (Volume 2)}, Chapter 14, Section 4.4 ``Minimization Methods'', p.@: 325--335, Springer (1997), ISBN 3-540-62057-5. @end itemize @noindent The simplex algorithm is described in the following paper, @itemize @asis @item J.A. Nelder and R. Mead, @cite{A simplex method for function minimization}, Computer Journal vol.@: 7 (1965), 308--315. @end itemize @noindent