#include /*- * Copyright (c) 2006 Bernd Walter. All rights reserved. * Copyright (c) 2006 M. Warner Losh. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Portions of this software may have been developed with reference to * the SD Simplified Specification. The following disclaimer may apply: * * The following conditions apply to the release of the simplified * specification ("Simplified Specification") by the SD Card Association and * the SD Group. The Simplified Specification is a subset of the complete SD * Specification which is owned by the SD Card Association and the SD * Group. This Simplified Specification is provided on a non-confidential * basis subject to the disclaimers below. Any implementation of the * Simplified Specification may require a license from the SD Card * Association, SD Group, SD-3C LLC or other third parties. * * Disclaimers: * * The information contained in the Simplified Specification is presented only * as a standard specification for SD Cards and SD Host/Ancillary products and * is provided "AS-IS" without any representations or warranties of any * kind. No responsibility is assumed by the SD Group, SD-3C LLC or the SD * Card Association for any damages, any infringements of patents or other * right of the SD Group, SD-3C LLC, the SD Card Association or any third * parties, which may result from its use. No license is granted by * implication, estoppel or otherwise under any patent or other rights of the * SD Group, SD-3C LLC, the SD Card Association or any third party. Nothing * herein shall be construed as an obligation by the SD Group, the SD-3C LLC * or the SD Card Association to disclose or distribute any technical * information, know-how or other confidential information to any third party. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __rtems__ #include #include #include #include #include #endif /* __rtems__ */ #if __FreeBSD_version < 800002 #define kproc_create kthread_create #define kproc_exit kthread_exit #endif struct mmcsd_softc { device_t dev; struct mtx sc_mtx; #ifndef __rtems__ struct disk *disk; struct proc *p; struct bio_queue_head bio_queue; daddr_t eblock, eend; /* Range remaining after the last erase. */ int running; int suspend; int log_count; struct timeval log_time; #endif /* __rtems__ */ }; #ifndef __rtems__ static const char *errmsg[] = { "None", "Timeout", "Bad CRC", "Fifo", "Failed", "Invalid", "NO MEMORY" }; #endif /* __rtems__ */ #define LOG_PPS 5 /* Log no more than 5 errors per second. */ /* bus entry points */ static int mmcsd_attach(device_t dev); static int mmcsd_detach(device_t dev); static int mmcsd_probe(device_t dev); #ifndef __rtems__ /* disk routines */ static int mmcsd_close(struct disk *dp); static int mmcsd_dump(void *arg, void *virtual, vm_offset_t physical, off_t offset, size_t length); static int mmcsd_open(struct disk *dp); static void mmcsd_strategy(struct bio *bp); static void mmcsd_task(void *arg); #endif /* __rtems__ */ static int mmcsd_bus_bit_width(device_t dev); #ifndef __rtems__ static daddr_t mmcsd_delete(struct mmcsd_softc *sc, struct bio *bp); static daddr_t mmcsd_rw(struct mmcsd_softc *sc, struct bio *bp); #endif /* __rtems__ */ #define MMCSD_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx) #define MMCSD_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx) #define MMCSD_LOCK_INIT(_sc) \ mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \ "mmcsd", MTX_DEF) #define MMCSD_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx); #define MMCSD_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED); #define MMCSD_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED); static int mmcsd_probe(device_t dev) { device_quiet(dev); device_set_desc(dev, "MMC/SD Memory Card"); return (0); } #ifdef __rtems__ static rtems_status_code rtems_bsd_mmcsd_set_block_size(struct mmcsd_softc *self, uint32_t block_size) { rtems_status_code status_code = RTEMS_SUCCESSFUL; device_t dev = self->dev; struct mmc_command cmd; struct mmc_request req; memset(&req, 0, sizeof(req)); memset(&cmd, 0, sizeof(cmd)); req.cmd = &cmd; cmd.opcode = MMC_SET_BLOCKLEN; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; cmd.arg = block_size; MMCBUS_WAIT_FOR_REQUEST(device_get_parent(dev), dev, &req); if (req.cmd->error != MMC_ERR_NONE) { status_code = RTEMS_IO_ERROR; } return status_code; } static int rtems_bsd_mmcsd_disk_read_write(struct mmcsd_softc *self, rtems_blkdev_request *blkreq) { rtems_status_code status_code = RTEMS_SUCCESSFUL; device_t dev = self->dev; int shift = mmc_get_high_cap(dev) ? 0 : 9; int rca = mmc_get_rca(dev); uint32_t buffer_count = blkreq->bufnum; uint32_t transfer_bytes = blkreq->bufs[0].length; uint32_t block_count = transfer_bytes / MMC_SECTOR_SIZE; uint32_t opcode; uint32_t data_flags; uint32_t i; if (blkreq->req == RTEMS_BLKDEV_REQ_WRITE) { if (block_count > 1) { opcode = MMC_WRITE_MULTIPLE_BLOCK; } else { opcode = MMC_WRITE_BLOCK; } data_flags = MMC_DATA_WRITE; } else { BSD_ASSERT(blkreq->req == RTEMS_BLKDEV_REQ_READ); if (block_count > 1) { opcode = MMC_READ_MULTIPLE_BLOCK; } else { opcode = MMC_READ_SINGLE_BLOCK; } data_flags = MMC_DATA_READ; } MMCSD_LOCK(self); for (i = 0; i < buffer_count; ++i) { rtems_blkdev_sg_buffer *sg = &blkreq->bufs [i]; struct mmc_request req; struct mmc_command cmd; struct mmc_command stop; struct mmc_data data; rtems_interval timeout; memset(&req, 0, sizeof(req)); memset(&cmd, 0, sizeof(cmd)); memset(&stop, 0, sizeof(stop)); req.cmd = &cmd; cmd.opcode = opcode; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; cmd.data = &data; cmd.arg = sg->block << shift; if (block_count > 1) { data_flags |= MMC_DATA_MULTI; stop.opcode = MMC_STOP_TRANSMISSION; stop.flags = MMC_RSP_R1B | MMC_CMD_AC; req.stop = &stop; } data.flags = data_flags;; data.data = sg->buffer; data.mrq = &req; data.len = transfer_bytes; MMCBUS_WAIT_FOR_REQUEST(device_get_parent(dev), dev, &req); if (req.cmd->error != MMC_ERR_NONE) { status_code = RTEMS_IO_ERROR; goto error; } timeout = rtems_clock_tick_later_usec(250000); while (1) { struct mmc_request req2; struct mmc_command cmd2; uint32_t status; memset(&req2, 0, sizeof(req2)); memset(&cmd2, 0, sizeof(cmd2)); req2.cmd = &cmd2; cmd2.opcode = MMC_SEND_STATUS; cmd2.arg = rca << 16; cmd2.flags = MMC_RSP_R1 | MMC_CMD_AC; MMCBUS_WAIT_FOR_REQUEST(device_get_parent(dev), dev, &req2); if (req2.cmd->error != MMC_ERR_NONE) { status_code = RTEMS_IO_ERROR; goto error; } status = cmd2.resp[0]; if ((status & R1_READY_FOR_DATA) != 0 && R1_CURRENT_STATE(status) != R1_STATE_PRG) { break; } if (!rtems_clock_tick_before(timeout)) { status_code = RTEMS_IO_ERROR; goto error; } } } error: MMCSD_UNLOCK(self); rtems_blkdev_request_done(blkreq, status_code); return 0; } static int rtems_bsd_mmcsd_disk_ioctl(rtems_disk_device *dd, uint32_t req, void *arg) { struct mmcsd_softc *self = rtems_disk_get_driver_data(dd); if (req == RTEMS_BLKIO_REQUEST) { rtems_blkdev_request *blkreq = arg; return rtems_bsd_mmcsd_disk_read_write(self, blkreq); } else if (req == RTEMS_BLKIO_CAPABILITIES) { *(uint32_t *) arg = RTEMS_BLKDEV_CAP_MULTISECTOR_CONT; return 0; } else { return rtems_blkdev_ioctl(dd, req, arg); } } static rtems_status_code rtems_bsd_mmcsd_attach_worker(rtems_media_state state, const char *src, char **dest, void *arg) { rtems_status_code status_code = RTEMS_SUCCESSFUL; struct mmcsd_softc *self = arg; char *disk = NULL; if (state == RTEMS_MEDIA_STATE_READY) { device_t dev = self->dev; uint32_t block_count = mmc_get_media_size(dev); uint32_t block_size = MMC_SECTOR_SIZE; disk = rtems_media_create_path("/dev", src, device_get_unit(dev)); if (disk == NULL) { printf("OOPS: create path failed\n"); goto error; } MMCBUS_ACQUIRE_BUS(device_get_parent(dev), dev); status_code = rtems_bsd_mmcsd_set_block_size(self, block_size); if (status_code != RTEMS_SUCCESSFUL) { printf("OOPS: set block size failed\n"); goto error; } status_code = rtems_blkdev_create(disk, block_size, block_count, rtems_bsd_mmcsd_disk_ioctl, self); if (status_code != RTEMS_SUCCESSFUL) { goto error; } *dest = strdup(disk, M_RTEMS_HEAP); } return RTEMS_SUCCESSFUL; error: free(disk, M_RTEMS_HEAP); return RTEMS_IO_ERROR; } #endif /* __rtems__ */ static int mmcsd_attach(device_t dev) { struct mmcsd_softc *sc; #ifndef __rtems__ struct disk *d; #else /* __rtems__ */ struct { char d_ident[16]; char d_descr[64]; } x, *d = &x; #endif /* __rtems__ */ intmax_t mb; uint32_t speed; uint32_t maxblocks; char unit; sc = device_get_softc(dev); sc->dev = dev; MMCSD_LOCK_INIT(sc); #ifndef __rtems__ d = sc->disk = disk_alloc(); d->d_open = mmcsd_open; d->d_close = mmcsd_close; d->d_strategy = mmcsd_strategy; d->d_dump = mmcsd_dump; d->d_name = "mmcsd"; d->d_drv1 = sc; d->d_sectorsize = mmc_get_sector_size(dev); d->d_maxsize = mmc_get_max_data(dev) * d->d_sectorsize; d->d_mediasize = (off_t)mmc_get_media_size(dev) * d->d_sectorsize; d->d_stripesize = mmc_get_erase_sector(dev) * d->d_sectorsize; d->d_unit = device_get_unit(dev); d->d_flags = DISKFLAG_CANDELETE; d->d_delmaxsize = mmc_get_erase_sector(dev) * d->d_sectorsize; #endif /* __rtems__ */ strlcpy(d->d_ident, mmc_get_card_sn_string(dev), sizeof(d->d_ident)); strlcpy(d->d_descr, mmc_get_card_id_string(dev), sizeof(d->d_descr)); #ifndef __rtems__ /* * Display in most natural units. There's no cards < 1MB. The SD * standard goes to 2GiB due to its reliance on FAT, but the data * format supports up to 4GiB and some card makers push it up to this * limit. The SDHC standard only goes to 32GiB due to FAT32, but the * data format supports up to 2TiB however. 2048GB isn't too ugly, so * we note it in passing here and don't add the code to print * TB). Since these cards are sold in terms of MB and GB not MiB and * GiB, report them like that. We also round to the nearest unit, since * many cards are a few percent short, even of the power of 10 size. */ mb = (d->d_mediasize + 1000000 / 2 - 1) / 1000000; #else /* __rtems__ */ mb = mmc_get_media_size(dev); mb *= mmc_get_sector_size(dev); mb = (mb + 1000000 / 2 - 1) / 1000000; #endif /* __rtems__ */ unit = 'M'; if (mb >= 1000) { unit = 'G'; mb = (mb + 1000 / 2 - 1) / 1000; } /* * Report the clock speed of the underlying hardware, which might be * different than what the card reports due to hardware limitations. * Report how many blocks the hardware transfers at once. */ speed = mmcbr_get_clock(device_get_parent(dev)); maxblocks = mmc_get_max_data(dev); device_printf(dev, "%ju%cB <%s>%s at %s %d.%01dMHz/%dbit/%d-block\n", mb, unit, d->d_descr, mmc_get_read_only(dev) ? " (read-only)" : "", device_get_nameunit(device_get_parent(dev)), speed / 1000000, (speed / 100000) % 10, mmcsd_bus_bit_width(dev), maxblocks); #ifndef __rtems__ disk_create(d, DISK_VERSION); bioq_init(&sc->bio_queue); sc->running = 1; sc->suspend = 0; sc->eblock = sc->eend = 0; kproc_create(&mmcsd_task, sc, &sc->p, 0, 0, "%s: mmc/sd card", device_get_nameunit(dev)); #else /* __rtems__ */ rtems_status_code status_code = rtems_media_server_disk_attach( device_get_name(dev), rtems_bsd_mmcsd_attach_worker, sc ); BSD_ASSERT(status_code == RTEMS_SUCCESSFUL); #endif /* __rtems__ */ return (0); } static int mmcsd_detach(device_t dev) { struct mmcsd_softc *sc = device_get_softc(dev); #ifndef __rtems__ MMCSD_LOCK(sc); sc->suspend = 0; if (sc->running > 0) { /* kill thread */ sc->running = 0; wakeup(sc); /* wait for thread to finish. */ while (sc->running != -1) msleep(sc, &sc->sc_mtx, 0, "detach", 0); } MMCSD_UNLOCK(sc); /* Flush the request queue. */ bioq_flush(&sc->bio_queue, NULL, ENXIO); /* kill disk */ disk_destroy(sc->disk); #else /* __rtems__ */ BSD_PANIC("FIXME"); #endif /* __rtems__ */ MMCSD_LOCK_DESTROY(sc); return (0); } static int mmcsd_suspend(device_t dev) { #ifndef __rtems__ struct mmcsd_softc *sc = device_get_softc(dev); MMCSD_LOCK(sc); sc->suspend = 1; if (sc->running > 0) { /* kill thread */ sc->running = 0; wakeup(sc); /* wait for thread to finish. */ while (sc->running != -1) msleep(sc, &sc->sc_mtx, 0, "detach", 0); } MMCSD_UNLOCK(sc); #else /* __rtems__ */ BSD_PANIC("FIXME"); #endif /* __rtems__ */ return (0); } static int mmcsd_resume(device_t dev) { #ifndef __rtems__ struct mmcsd_softc *sc = device_get_softc(dev); MMCSD_LOCK(sc); sc->suspend = 0; if (sc->running <= 0) { sc->running = 1; MMCSD_UNLOCK(sc); kproc_create(&mmcsd_task, sc, &sc->p, 0, 0, "%s: mmc/sd card", device_get_nameunit(dev)); } else MMCSD_UNLOCK(sc); #else /* __rtems__ */ BSD_PANIC("FIXME"); #endif /* __rtems__ */ return (0); } #ifndef __rtems__ static int mmcsd_open(struct disk *dp) { return (0); } static int mmcsd_close(struct disk *dp) { return (0); } static void mmcsd_strategy(struct bio *bp) { struct mmcsd_softc *sc; sc = (struct mmcsd_softc *)bp->bio_disk->d_drv1; MMCSD_LOCK(sc); if (sc->running > 0 || sc->suspend > 0) { bioq_disksort(&sc->bio_queue, bp); MMCSD_UNLOCK(sc); wakeup(sc); } else { MMCSD_UNLOCK(sc); biofinish(bp, NULL, ENXIO); } } static const char * mmcsd_errmsg(int e) { if (e < 0 || e > MMC_ERR_MAX) return "Bad error code"; return errmsg[e]; } static daddr_t mmcsd_rw(struct mmcsd_softc *sc, struct bio *bp) { daddr_t block, end; struct mmc_command cmd; struct mmc_command stop; struct mmc_request req; struct mmc_data data; device_t dev = sc->dev; int sz = sc->disk->d_sectorsize; device_t mmcbr = device_get_parent(dev); block = bp->bio_pblkno; end = bp->bio_pblkno + (bp->bio_bcount / sz); while (block < end) { char *vaddr = bp->bio_data + (block - bp->bio_pblkno) * sz; int numblocks = min(end - block, mmc_get_max_data(dev)); memset(&req, 0, sizeof(req)); memset(&cmd, 0, sizeof(cmd)); memset(&stop, 0, sizeof(stop)); memset(&data, 0, sizeof(data)); cmd.mrq = &req; req.cmd = &cmd; cmd.data = &data; if (bp->bio_cmd == BIO_READ) { if (numblocks > 1) cmd.opcode = MMC_READ_MULTIPLE_BLOCK; else cmd.opcode = MMC_READ_SINGLE_BLOCK; } else { if (numblocks > 1) cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK; else cmd.opcode = MMC_WRITE_BLOCK; } cmd.arg = block; if (!mmc_get_high_cap(dev)) cmd.arg <<= 9; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; data.data = vaddr; data.mrq = &req; if (bp->bio_cmd == BIO_READ) data.flags = MMC_DATA_READ; else data.flags = MMC_DATA_WRITE; data.len = numblocks * sz; if (numblocks > 1) { data.flags |= MMC_DATA_MULTI; stop.opcode = MMC_STOP_TRANSMISSION; stop.arg = 0; stop.flags = MMC_RSP_R1B | MMC_CMD_AC; stop.mrq = &req; req.stop = &stop; } MMCBUS_WAIT_FOR_REQUEST(mmcbr, dev, &req); if (req.cmd->error != MMC_ERR_NONE) { if (ppsratecheck(&sc->log_time, &sc->log_count, LOG_PPS)) { device_printf(dev, "Error indicated: %d %s\n", req.cmd->error, mmcsd_errmsg(req.cmd->error)); } break; } block += numblocks; } return (block); } static daddr_t mmcsd_delete(struct mmcsd_softc *sc, struct bio *bp) { daddr_t block, end, start, stop; struct mmc_command cmd; struct mmc_request req; device_t dev = sc->dev; int sz = sc->disk->d_sectorsize; int erase_sector; device_t mmcbr = device_get_parent(dev); block = bp->bio_pblkno; end = bp->bio_pblkno + (bp->bio_bcount / sz); /* Coalesce with part remaining from previous request. */ if (block > sc->eblock && block <= sc->eend) block = sc->eblock; if (end >= sc->eblock && end < sc->eend) end = sc->eend; /* Safe round to the erase sector boundaries. */ erase_sector = mmc_get_erase_sector(dev); start = block + erase_sector - 1; /* Round up. */ start -= start % erase_sector; stop = end; /* Round down. */ stop -= end % erase_sector; /* We can't erase area smaller then sector, store it for later. */ if (start >= stop) { sc->eblock = block; sc->eend = end; return (end); } /* Set erase start position. */ memset(&req, 0, sizeof(req)); memset(&cmd, 0, sizeof(cmd)); cmd.mrq = &req; req.cmd = &cmd; if (mmc_get_card_type(dev) == mode_sd) cmd.opcode = SD_ERASE_WR_BLK_START; else cmd.opcode = MMC_ERASE_GROUP_START; cmd.arg = start; if (!mmc_get_high_cap(dev)) cmd.arg <<= 9; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; MMCBUS_WAIT_FOR_REQUEST(mmcbr, dev, &req); if (req.cmd->error != MMC_ERR_NONE) { printf("erase err1: %d\n", req.cmd->error); return (block); } /* Set erase stop position. */ memset(&req, 0, sizeof(req)); memset(&cmd, 0, sizeof(cmd)); req.cmd = &cmd; if (mmc_get_card_type(dev) == mode_sd) cmd.opcode = SD_ERASE_WR_BLK_END; else cmd.opcode = MMC_ERASE_GROUP_END; cmd.arg = stop; if (!mmc_get_high_cap(dev)) cmd.arg <<= 9; cmd.arg--; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; MMCBUS_WAIT_FOR_REQUEST(mmcbr, dev, &req); if (req.cmd->error != MMC_ERR_NONE) { printf("erase err2: %d\n", req.cmd->error); return (block); } /* Erase range. */ memset(&req, 0, sizeof(req)); memset(&cmd, 0, sizeof(cmd)); req.cmd = &cmd; cmd.opcode = MMC_ERASE; cmd.arg = 0; cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; MMCBUS_WAIT_FOR_REQUEST(mmcbr, dev, &req); if (req.cmd->error != MMC_ERR_NONE) { printf("erase err3 %d\n", req.cmd->error); return (block); } /* Store one of remaining parts for the next call. */ if (bp->bio_pblkno >= sc->eblock || block == start) { sc->eblock = stop; /* Predict next forward. */ sc->eend = end; } else { sc->eblock = block; /* Predict next backward. */ sc->eend = start; } return (end); } static int mmcsd_dump(void *arg, void *virtual, vm_offset_t physical, off_t offset, size_t length) { struct disk *disk = arg; struct mmcsd_softc *sc = (struct mmcsd_softc *)disk->d_drv1; device_t dev = sc->dev; struct bio bp; daddr_t block, end; device_t mmcbr = device_get_parent(dev); /* length zero is special and really means flush buffers to media */ if (!length) return (0); g_reset_bio(&bp); bp.bio_disk = disk; bp.bio_pblkno = offset / disk->d_sectorsize; bp.bio_bcount = length; bp.bio_data = virtual; bp.bio_cmd = BIO_WRITE; end = bp.bio_pblkno + bp.bio_bcount / sc->disk->d_sectorsize; MMCBUS_ACQUIRE_BUS(mmcbr, dev); block = mmcsd_rw(sc, &bp); MMCBUS_RELEASE_BUS(mmcbr, dev); return ((end < block) ? EIO : 0); } static void mmcsd_task(void *arg) { struct mmcsd_softc *sc = (struct mmcsd_softc*)arg; struct bio *bp; int sz; daddr_t block, end; device_t dev = sc->dev; device_t mmcbr = device_get_parent(sc->dev); while (1) { MMCSD_LOCK(sc); do { if (sc->running == 0) goto out; bp = bioq_takefirst(&sc->bio_queue); if (bp == NULL) msleep(sc, &sc->sc_mtx, PRIBIO, "jobqueue", 0); } while (bp == NULL); MMCSD_UNLOCK(sc); if (bp->bio_cmd != BIO_READ && mmc_get_read_only(dev)) { bp->bio_error = EROFS; bp->bio_resid = bp->bio_bcount; bp->bio_flags |= BIO_ERROR; biodone(bp); continue; } MMCBUS_ACQUIRE_BUS(mmcbr, dev); sz = sc->disk->d_sectorsize; block = bp->bio_pblkno; end = bp->bio_pblkno + (bp->bio_bcount / sz); if (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE) { /* Access to the remaining erase block obsoletes it. */ if (block < sc->eend && end > sc->eblock) sc->eblock = sc->eend = 0; block = mmcsd_rw(sc, bp); } else if (bp->bio_cmd == BIO_DELETE) { block = mmcsd_delete(sc, bp); } MMCBUS_RELEASE_BUS(mmcbr, dev); if (block < end) { bp->bio_error = EIO; bp->bio_resid = (end - block) * sz; bp->bio_flags |= BIO_ERROR; } biodone(bp); } out: /* tell parent we're done */ sc->running = -1; MMCSD_UNLOCK(sc); wakeup(sc); kproc_exit(0); } #endif /* __rtems__ */ static int mmcsd_bus_bit_width(device_t dev) { if (mmc_get_bus_width(dev) == bus_width_1) return (1); if (mmc_get_bus_width(dev) == bus_width_4) return (4); return (8); } static device_method_t mmcsd_methods[] = { DEVMETHOD(device_probe, mmcsd_probe), DEVMETHOD(device_attach, mmcsd_attach), DEVMETHOD(device_detach, mmcsd_detach), DEVMETHOD(device_suspend, mmcsd_suspend), DEVMETHOD(device_resume, mmcsd_resume), DEVMETHOD_END }; static driver_t mmcsd_driver = { "mmcsd", mmcsd_methods, sizeof(struct mmcsd_softc), }; static devclass_t mmcsd_devclass; DRIVER_MODULE(mmcsd, mmc, mmcsd_driver, mmcsd_devclass, NULL, NULL);