summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorJoel Sherrill <joel.sherrill@oarcorp.com>2012-03-21 17:07:52 -0500
committerJoel Sherrill <joel.sherrill@oarcorp.com>2012-03-21 17:07:52 -0500
commit7fa65cace4a793ceb5b93a66b50cb36f97cd4082 (patch)
tree379a88324e5b9751a5fbb009e1964f3f61f8dd14
parentusb01 builds but does not link (diff)
downloadrtems-libbsd-7fa65cace4a793ceb5b93a66b50cb36f97cd4082.tar.bz2
Add E1000 driver
-rw-r--r--Makefile21
-rwxr-xr-xfreebsd-to-rtems.py2
-rw-r--r--freebsd/dev/e1000/e1000_80003es2lan.c1558
-rw-r--r--freebsd/dev/e1000/e1000_80003es2lan.h104
-rw-r--r--freebsd/dev/e1000/e1000_82540.c727
-rw-r--r--freebsd/dev/e1000/e1000_82541.c1333
-rw-r--r--freebsd/dev/e1000/e1000_82541.h92
-rw-r--r--freebsd/dev/e1000/e1000_82542.c595
-rw-r--r--freebsd/dev/e1000/e1000_82543.c1608
-rw-r--r--freebsd/dev/e1000/e1000_82543.h57
-rw-r--r--freebsd/dev/e1000/e1000_82571.c2005
-rw-r--r--freebsd/dev/e1000/e1000_82571.h65
-rw-r--r--freebsd/dev/e1000/e1000_82575.c1983
-rw-r--r--freebsd/dev/e1000/e1000_82575.h475
-rw-r--r--freebsd/dev/e1000/e1000_api.c1342
-rw-r--r--freebsd/dev/e1000/e1000_api.h170
-rw-r--r--freebsd/dev/e1000/e1000_defines.h1723
-rw-r--r--freebsd/dev/e1000/e1000_hw.h968
-rw-r--r--freebsd/dev/e1000/e1000_ich8lan.c4159
-rw-r--r--freebsd/dev/e1000/e1000_ich8lan.h246
-rw-r--r--freebsd/dev/e1000/e1000_mac.c2176
-rw-r--r--freebsd/dev/e1000/e1000_mac.h98
-rw-r--r--freebsd/dev/e1000/e1000_manage.c412
-rw-r--r--freebsd/dev/e1000/e1000_manage.h88
-rw-r--r--freebsd/dev/e1000/e1000_mbx.c768
-rw-r--r--freebsd/dev/e1000/e1000_mbx.h110
-rw-r--r--freebsd/dev/e1000/e1000_nvm.c1113
-rw-r--r--freebsd/dev/e1000/e1000_nvm.h70
-rw-r--r--freebsd/dev/e1000/e1000_osdep.c101
-rw-r--r--freebsd/dev/e1000/e1000_osdep.h222
-rw-r--r--freebsd/dev/e1000/e1000_phy.c3574
-rw-r--r--freebsd/dev/e1000/e1000_phy.h265
-rw-r--r--freebsd/dev/e1000/e1000_regs.h548
-rw-r--r--freebsd/dev/e1000/e1000_vf.c580
-rw-r--r--freebsd/dev/e1000/e1000_vf.h297
-rw-r--r--freebsd/dev/e1000/if_em.c5526
-rw-r--r--freebsd/dev/e1000/if_em.h482
-rw-r--r--freebsd/dev/e1000/if_igb.c5522
-rw-r--r--freebsd/dev/e1000/if_igb.h526
-rw-r--r--freebsd/dev/e1000/if_lem.c4628
-rw-r--r--freebsd/dev/e1000/if_lem.h492
41 files changed, 46829 insertions, 2 deletions
diff --git a/Makefile b/Makefile
index ca5c8421..5ffadbac 100644
--- a/Makefile
+++ b/Makefile
@@ -309,7 +309,26 @@ C_FILES = \
freebsd/cam/scsi/scsi_all.c \
freebsd/dev/usb/storage/umass.c \
freebsd/dev/re/if_re.c \
- freebsd/dev/fxp/if_fxp.c
+ freebsd/dev/fxp/if_fxp.c \
+ freebsd/dev/e1000/e1000_80003es2lan.c \
+ freebsd/dev/e1000/e1000_82542.c \
+ freebsd/dev/e1000/e1000_82575.c \
+ freebsd/dev/e1000/e1000_mac.c \
+ freebsd/dev/e1000/e1000_nvm.c \
+ freebsd/dev/e1000/e1000_vf.c \
+ freebsd/dev/e1000/if_lem.c \
+ freebsd/dev/e1000/e1000_82540.c \
+ freebsd/dev/e1000/e1000_82543.c \
+ freebsd/dev/e1000/e1000_api.c \
+ freebsd/dev/e1000/e1000_manage.c \
+ freebsd/dev/e1000/e1000_osdep.c \
+ freebsd/dev/e1000/if_em.c \
+ freebsd/dev/e1000/e1000_82541.c \
+ freebsd/dev/e1000/e1000_82571.c \
+ freebsd/dev/e1000/e1000_ich8lan.c \
+ freebsd/dev/e1000/e1000_mbx.c \
+ freebsd/dev/e1000/e1000_phy.c \
+ freebsd/dev/e1000/if_igb.c
# RTEMS Project Owned Files
C_FILES += \
rtemsbsd/dev/usb/controller/ohci_lpc3250.c \
diff --git a/freebsd-to-rtems.py b/freebsd-to-rtems.py
index cf261b2d..e3de1dd5 100755
--- a/freebsd-to-rtems.py
+++ b/freebsd-to-rtems.py
@@ -1955,7 +1955,7 @@ mm.addModule(devPci)
mm.addModule(devNic)
mm.addModule(devNic_re)
mm.addModule(devNic_fxp)
-#mm.addModule(devNic_e1000)
+mm.addModule(devNic_e1000)
# Now add CPU Architecture Dependent Modules
mm.addModule(armDependent)
diff --git a/freebsd/dev/e1000/e1000_80003es2lan.c b/freebsd/dev/e1000/e1000_80003es2lan.c
new file mode 100644
index 00000000..7b5101d8
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_80003es2lan.c
@@ -0,0 +1,1558 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+/*
+ * 80003ES2LAN Gigabit Ethernet Controller (Copper)
+ * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
+ */
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
+static void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
+static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ u32 offset,
+ u16 *data);
+static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ u32 offset,
+ u16 data);
+static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
+static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
+static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+ u16 *data);
+static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+ u16 data);
+static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
+static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw);
+static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
+
+/*
+ * A table for the GG82563 cable length where the range is defined
+ * with a lower bound at "index" and the upper bound at
+ * "index + 5".
+ */
+static const u16 e1000_gg82563_cable_length_table[] =
+ { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
+#define GG82563_CABLE_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_gg82563_cable_length_table) / \
+ sizeof(e1000_gg82563_cable_length_table[0]))
+
+/**
+ * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_80003es2lan");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ goto out;
+ } else {
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
+ }
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
+ phy->type = e1000_phy_gg82563;
+
+ phy->ops.acquire = e1000_acquire_phy_80003es2lan;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.check_reset_block = e1000_check_reset_block_generic;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.release = e1000_release_phy_80003es2lan;
+ phy->ops.reset = e1000_phy_hw_reset_generic;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
+ phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan;
+ phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan;
+ phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan;
+
+ phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan;
+
+ /* This can only be done after all function pointers are setup. */
+ ret_val = e1000_get_phy_id(hw);
+
+ /* Verify phy id */
+ if (phy->id != GG82563_E_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
+
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->page_size = 32;
+ nvm->address_bits = 16;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->page_size = 8;
+ nvm->address_bits = 8;
+ break;
+ default:
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+ break;
+ }
+
+ nvm->type = e1000_nvm_eeprom_spi;
+
+ size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
+
+ /*
+ * Added to a constant, "size" becomes the left-shift value
+ * for setting word_size.
+ */
+ size += NVM_WORD_SIZE_BASE_SHIFT;
+
+ /* EEPROM access above 16k is unsupported */
+ if (size > 14)
+ size = 14;
+ nvm->word_size = 1 << size;
+
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_80003es2lan;
+ nvm->ops.read = e1000_read_nvm_eerd;
+ nvm->ops.release = e1000_release_nvm_80003es2lan;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.write = e1000_write_nvm_80003es2lan;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_init_mac_params_80003es2lan");
+
+ /* Set media type and media-dependent function pointers */
+ switch (hw->device_id) {
+ case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
+ mac->ops.setup_physical_interface =
+ e1000_setup_fiber_serdes_link_generic;
+ break;
+ default:
+ hw->phy.media_type = e1000_media_type_copper;
+ mac->ops.check_for_link = e1000_check_for_copper_link_generic;
+ mac->ops.setup_physical_interface =
+ e1000_setup_copper_link_80003es2lan;
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = TRUE;
+ /* FWSM register */
+ mac->has_fwsm = TRUE;
+ /* ARC supported; valid only if manageability features are enabled. */
+ mac->arc_subsystem_valid =
+ (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
+ ? TRUE : FALSE;
+ /* Adaptive IFS not supported */
+ mac->adaptive_ifs = FALSE;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_80003es2lan;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_80003es2lan;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_generic;
+ /* check management mode */
+ mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* blink LED */
+ mac->ops.blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_generic;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.led_off = e1000_led_off_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan;
+
+ /* set lan id for port to determine which phy lock to use */
+ hw->mac.ops.set_lan_id(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan;
+ hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan;
+}
+
+/**
+ * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * A wrapper to acquire access rights to the correct PHY.
+ **/
+static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_acquire_phy_80003es2lan");
+
+ mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+ return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ * e1000_release_phy_80003es2lan - Release rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * A wrapper to release access rights to the correct PHY.
+ **/
+static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_release_phy_80003es2lan");
+
+ mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+ e1000_release_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the semaphore to access the Kumeran interface.
+ *
+ **/
+static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan");
+
+ mask = E1000_SWFW_CSR_SM;
+
+ return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
+ * @hw: pointer to the HW structure
+ *
+ * Release the semaphore used to access the Kumeran interface
+ **/
+static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_release_mac_csr_80003es2lan");
+
+ mask = E1000_SWFW_CSR_SM;
+
+ e1000_release_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the semaphore to access the EEPROM.
+ **/
+static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
+
+ ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_acquire_nvm_generic(hw);
+
+ if (ret_val)
+ e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
+ * @hw: pointer to the HW structure
+ *
+ * Release the semaphore used to access the EEPROM.
+ **/
+static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_80003es2lan");
+
+ e1000_release_nvm_generic(hw);
+ e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
+ * will also specify which port we're acquiring the lock for.
+ **/
+static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+ u32 swmask = mask;
+ u32 fwmask = mask << 16;
+ s32 ret_val = E1000_SUCCESS;
+ s32 i = 0, timeout = 50;
+
+ DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
+
+ while (i < timeout) {
+ if (e1000_get_hw_semaphore_generic(hw)) {
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ if (!(swfw_sync & (fwmask | swmask)))
+ break;
+
+ /*
+ * Firmware currently using resource (fwmask)
+ * or other software thread using resource (swmask)
+ */
+ e1000_put_hw_semaphore_generic(hw);
+ msec_delay_irq(5);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync |= swmask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Release the SW/FW semaphore used to access the PHY or NVM. The mask
+ * will also specify which port we're releasing the lock for.
+ **/
+static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+
+ DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
+
+ while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
+ ; /* Empty */
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ swfw_sync &= ~mask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+}
+
+/**
+ * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: offset of the register to read
+ * @data: pointer to the data returned from the operation
+ *
+ * Read the GG82563 PHY register.
+ **/
+static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ u32 offset, u16 *data)
+{
+ s32 ret_val;
+ u32 page_select;
+ u16 temp;
+
+ DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
+
+ ret_val = e1000_acquire_phy_80003es2lan(hw);
+ if (ret_val)
+ goto out;
+
+ /* Select Configuration Page */
+ if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+ page_select = GG82563_PHY_PAGE_SELECT;
+ } else {
+ /*
+ * Use Alternative Page Select register to access
+ * registers 30 and 31
+ */
+ page_select = GG82563_PHY_PAGE_SELECT_ALT;
+ }
+
+ temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+ ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
+ if (ret_val) {
+ e1000_release_phy_80003es2lan(hw);
+ goto out;
+ }
+
+ if (hw->dev_spec._80003es2lan.mdic_wa_enable == TRUE) {
+ /*
+ * The "ready" bit in the MDIC register may be incorrectly set
+ * before the device has completed the "Page Select" MDI
+ * transaction. So we wait 200us after each MDI command...
+ */
+ usec_delay(200);
+
+ /* ...and verify the command was successful. */
+ ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
+
+ if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+ ret_val = -E1000_ERR_PHY;
+ e1000_release_phy_80003es2lan(hw);
+ goto out;
+ }
+
+ usec_delay(200);
+
+ ret_val = e1000_read_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ usec_delay(200);
+ } else {
+ ret_val = e1000_read_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+ }
+
+ e1000_release_phy_80003es2lan(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: offset of the register to read
+ * @data: value to write to the register
+ *
+ * Write to the GG82563 PHY register.
+ **/
+static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+ u32 offset, u16 data)
+{
+ s32 ret_val;
+ u32 page_select;
+ u16 temp;
+
+ DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
+
+ ret_val = e1000_acquire_phy_80003es2lan(hw);
+ if (ret_val)
+ goto out;
+
+ /* Select Configuration Page */
+ if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+ page_select = GG82563_PHY_PAGE_SELECT;
+ } else {
+ /*
+ * Use Alternative Page Select register to access
+ * registers 30 and 31
+ */
+ page_select = GG82563_PHY_PAGE_SELECT_ALT;
+ }
+
+ temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+ ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
+ if (ret_val) {
+ e1000_release_phy_80003es2lan(hw);
+ goto out;
+ }
+
+ if (hw->dev_spec._80003es2lan.mdic_wa_enable == TRUE) {
+ /*
+ * The "ready" bit in the MDIC register may be incorrectly set
+ * before the device has completed the "Page Select" MDI
+ * transaction. So we wait 200us after each MDI command...
+ */
+ usec_delay(200);
+
+ /* ...and verify the command was successful. */
+ ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
+
+ if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+ ret_val = -E1000_ERR_PHY;
+ e1000_release_phy_80003es2lan(hw);
+ goto out;
+ }
+
+ usec_delay(200);
+
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ usec_delay(200);
+ } else {
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+ }
+
+ e1000_release_phy_80003es2lan(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
+ * @hw: pointer to the HW structure
+ * @offset: offset of the register to read
+ * @words: number of words to write
+ * @data: buffer of data to write to the NVM
+ *
+ * Write "words" of data to the ESB2 NVM.
+ **/
+static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data)
+{
+ DEBUGFUNC("e1000_write_nvm_80003es2lan");
+
+ return e1000_write_nvm_spi(hw, offset, words, data);
+}
+
+/**
+ * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
+ * @hw: pointer to the HW structure
+ *
+ * Wait a specific amount of time for manageability processes to complete.
+ * This is a function pointer entry point called by the phy module.
+ **/
+static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
+{
+ s32 timeout = PHY_CFG_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+ u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+ DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
+
+ if (hw->bus.func == 1)
+ mask = E1000_NVM_CFG_DONE_PORT_1;
+
+ while (timeout) {
+ if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
+ break;
+ msec_delay(1);
+ timeout--;
+ }
+ if (!timeout) {
+ DEBUGOUT("MNG configuration cycle has not completed.\n");
+ ret_val = -E1000_ERR_RESET;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
+ * @hw: pointer to the HW structure
+ *
+ * Force the speed and duplex settings onto the PHY. This is a
+ * function pointer entry point called by the phy module.
+ **/
+static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
+
+ if (!(hw->phy.ops.read_reg))
+ goto out;
+
+ /*
+ * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
+
+ ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ /* Reset the phy to commit changes. */
+ phy_data |= MII_CR_RESET;
+
+ ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ usec_delay(1);
+
+ if (hw->phy.autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link "
+ "on GG82563 phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ /*
+ * We didn't get link.
+ * Reset the DSP and cross our fingers.
+ */
+ ret_val = e1000_phy_reset_dsp_generic(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Resetting the phy means we need to verify the TX_CLK corresponds
+ * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
+ */
+ phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
+ if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
+ phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
+ else
+ phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
+
+ /*
+ * In addition, we must re-enable CRS on Tx for both half and full
+ * duplex.
+ */
+ phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_80003es2lan - Set approximate cable length
+ * @hw: pointer to the HW structure
+ *
+ * Find the approximate cable length as measured by the GG82563 PHY.
+ * This is a function pointer entry point called by the phy module.
+ **/
+static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data, index;
+
+ DEBUGFUNC("e1000_get_cable_length_80003es2lan");
+
+ if (!(hw->phy.ops.read_reg))
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
+ if (ret_val)
+ goto out;
+
+ index = phy_data & GG82563_DSPD_CABLE_LENGTH;
+
+ if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ phy->min_cable_length = e1000_gg82563_cable_length_table[index];
+ phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_link_up_info_80003es2lan - Report speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to speed buffer
+ * @duplex: pointer to duplex buffer
+ *
+ * Retrieve the current speed and duplex configuration.
+ **/
+static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
+
+ if (hw->phy.media_type == e1000_media_type_copper) {
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw,
+ speed,
+ duplex);
+ hw->phy.ops.cfg_on_link_up(hw);
+ } else {
+ ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
+ speed,
+ duplex);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
+ * @hw: pointer to the HW structure
+ *
+ * Perform a global reset to the ESB2 controller.
+ **/
+static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
+{
+ u32 ctrl, icr;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_reset_hw_80003es2lan");
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val)
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ ret_val = e1000_acquire_phy_80003es2lan(hw);
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ e1000_release_phy_80003es2lan(hw);
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val)
+ /* We don't want to continue accessing MAC registers. */
+ goto out;
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
+ * @hw: pointer to the HW structure
+ *
+ * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
+ **/
+static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 reg_data;
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_80003es2lan");
+
+ e1000_initialize_hw_bits_80003es2lan(hw);
+
+ /* Initialize identification LED */
+ ret_val = mac->ops.id_led_init(hw);
+ if (ret_val)
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ mac->ops.clear_vfta(hw);
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ /* Set the transmit descriptor write-back policy */
+ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
+
+ /* ...for both queues. */
+ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
+
+ /* Enable retransmit on late collisions */
+ reg_data = E1000_READ_REG(hw, E1000_TCTL);
+ reg_data |= E1000_TCTL_RTLC;
+ E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
+
+ /* Configure Gigabit Carry Extend Padding */
+ reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
+ reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+ reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
+ E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
+
+ /* Configure Transmit Inter-Packet Gap */
+ reg_data = E1000_READ_REG(hw, E1000_TIPG);
+ reg_data &= ~E1000_TIPG_IPGT_MASK;
+ reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+ E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
+
+ reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
+ reg_data &= ~0x00100000;
+ E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
+
+ /* default to TRUE to enable the MDIC W/A */
+ hw->dev_spec._80003es2lan.mdic_wa_enable = TRUE;
+
+ ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET >>
+ E1000_KMRNCTRLSTA_OFFSET_SHIFT,
+ &i);
+ if (!ret_val) {
+ if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
+ E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
+ hw->dev_spec._80003es2lan.mdic_wa_enable = FALSE;
+ }
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_80003es2lan(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
+ * @hw: pointer to the HW structure
+ *
+ * Initializes required hardware-dependent bits needed for normal operation.
+ **/
+static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
+
+ /* Transmit Descriptor Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+ /* Transmit Descriptor Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+ /* Transmit Arbitration Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TARC(0));
+ reg &= ~(0xF << 27); /* 30:27 */
+ if (hw->phy.media_type != e1000_media_type_copper)
+ reg &= ~(1 << 20);
+ E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+ /* Transmit Arbitration Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TARC(1));
+ if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+ reg &= ~(1 << 28);
+ else
+ reg |= (1 << 28);
+ E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+
+ return;
+}
+
+/**
+ * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
+ * @hw: pointer to the HW structure
+ *
+ * Setup some GG82563 PHY registers for obtaining link
+ **/
+static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u32 ctrl_ext;
+ u16 data;
+
+ DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
+
+ if (phy->reset_disable)
+ goto skip_reset;
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+ /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
+ data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
+
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+
+ switch (phy->mdix) {
+ case 1:
+ data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
+ break;
+ case 2:
+ data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
+ break;
+ case 0:
+ default:
+ data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+ break;
+ }
+
+ /*
+ * Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+ if (phy->disable_polarity_correction)
+ data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data);
+ if (ret_val)
+ goto out;
+
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = hw->phy.ops.commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ goto out;
+ }
+
+skip_reset:
+ /* Bypass Rx and Tx FIFO's */
+ ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
+ E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
+ E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
+ &data);
+ if (ret_val)
+ goto out;
+ data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
+ ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
+ data);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
+ if (ret_val)
+ goto out;
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Do not init these registers when the HW is in IAMT mode, since the
+ * firmware will have already initialized them. We only initialize
+ * them if the HW is not in IAMT mode.
+ */
+ if (!(hw->mac.ops.check_mng_mode(hw))) {
+ /* Enable Electrical Idle on the PHY */
+ data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
+ data);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ data);
+ if (ret_val)
+ goto out;
+ }
+
+ /*
+ * Workaround: Disable padding in Kumeran interface in the MAC
+ * and in the PHY to avoid CRC errors.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ data |= GG82563_ICR_DIS_PADDING;
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data);
+ if (ret_val)
+ goto out;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
+ * @hw: pointer to the HW structure
+ *
+ * Essentially a wrapper for setting up all things "copper" related.
+ * This is a function pointer entry point called by the mac module.
+ **/
+static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+ u16 reg_data;
+
+ DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /*
+ * Set the mac to wait the maximum time between each
+ * iteration and increase the max iterations when
+ * polling the phy; this fixes erroneous timeouts at 10Mbps.
+ */
+ ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
+ 0xFFFF);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
+ &reg_data);
+ if (ret_val)
+ goto out;
+ reg_data |= 0x3F;
+ ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
+ reg_data);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ &reg_data);
+ if (ret_val)
+ goto out;
+ reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
+ ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+ reg_data);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
+ * @hw: pointer to the HW structure
+ * @duplex: current duplex setting
+ *
+ * Configure the KMRN interface by applying last minute quirks for
+ * 10/100 operation.
+ **/
+static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 speed;
+ u16 duplex;
+
+ DEBUGFUNC("e1000_configure_on_link_up");
+
+ if (hw->phy.media_type == e1000_media_type_copper) {
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw,
+ &speed,
+ &duplex);
+ if (ret_val)
+ goto out;
+
+ if (speed == SPEED_1000)
+ ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
+ else
+ ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
+ * @hw: pointer to the HW structure
+ * @duplex: current duplex setting
+ *
+ * Configure the KMRN interface by applying last minute quirks for
+ * 10/100 operation.
+ **/
+static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 tipg;
+ u32 i = 0;
+ u16 reg_data, reg_data2;
+
+ DEBUGFUNC("e1000_configure_kmrn_for_10_100");
+
+ reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
+ ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ reg_data);
+ if (ret_val)
+ goto out;
+
+ /* Configure Transmit Inter-Packet Gap */
+ tipg = E1000_READ_REG(hw, E1000_TIPG);
+ tipg &= ~E1000_TIPG_IPGT_MASK;
+ tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
+ E1000_WRITE_REG(hw, E1000_TIPG, tipg);
+
+ do {
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ &reg_data);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ &reg_data2);
+ if (ret_val)
+ goto out;
+ i++;
+ } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+ if (duplex == HALF_DUPLEX)
+ reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+ else
+ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
+ * @hw: pointer to the HW structure
+ *
+ * Configure the KMRN interface by applying last minute quirks for
+ * gigabit operation.
+ **/
+static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 reg_data, reg_data2;
+ u32 tipg;
+ u32 i = 0;
+
+ DEBUGFUNC("e1000_configure_kmrn_for_1000");
+
+ reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
+ ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
+ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ reg_data);
+ if (ret_val)
+ goto out;
+
+ /* Configure Transmit Inter-Packet Gap */
+ tipg = E1000_READ_REG(hw, E1000_TIPG);
+ tipg &= ~E1000_TIPG_IPGT_MASK;
+ tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+ E1000_WRITE_REG(hw, E1000_TIPG, tipg);
+
+ do {
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ &reg_data);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ &reg_data2);
+ if (ret_val)
+ goto out;
+ i++;
+ } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquire semaphore, then read the PHY register at offset
+ * using the kumeran interface. The information retrieved is stored in data.
+ * Release the semaphore before exiting.
+ **/
+static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+ u16 *data)
+{
+ u32 kmrnctrlsta;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan");
+
+ ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
+ if (ret_val)
+ goto out;
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+ usec_delay(2);
+
+ kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
+ *data = (u16)kmrnctrlsta;
+
+ e1000_release_mac_csr_80003es2lan(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquire semaphore, then write the data to PHY register
+ * at the offset using the kumeran interface. Release semaphore
+ * before exiting.
+ **/
+static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+ u16 data)
+{
+ u32 kmrnctrlsta;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan");
+
+ ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
+ if (ret_val)
+ goto out;
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | data;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+ usec_delay(2);
+
+ e1000_release_mac_csr_80003es2lan(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_mac_addr_80003es2lan - Read device MAC address
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_mac_addr_80003es2lan");
+
+ /*
+ * If there's an alternate MAC address place it in RAR0
+ * so that it will override the Si installed default perm
+ * address.
+ */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_mac_addr_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(hw->mac.ops.check_mng_mode(hw) ||
+ hw->phy.ops.check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+
+ E1000_READ_REG(hw, E1000_IAC);
+ E1000_READ_REG(hw, E1000_ICRXOC);
+
+ E1000_READ_REG(hw, E1000_ICRXPTC);
+ E1000_READ_REG(hw, E1000_ICRXATC);
+ E1000_READ_REG(hw, E1000_ICTXPTC);
+ E1000_READ_REG(hw, E1000_ICTXATC);
+ E1000_READ_REG(hw, E1000_ICTXQEC);
+ E1000_READ_REG(hw, E1000_ICTXQMTC);
+ E1000_READ_REG(hw, E1000_ICRXDMTC);
+}
diff --git a/freebsd/dev/e1000/e1000_80003es2lan.h b/freebsd/dev/e1000/e1000_80003es2lan.h
new file mode 100644
index 00000000..923d66b3
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_80003es2lan.h
@@ -0,0 +1,104 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2009, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_80003ES2LAN_HH_
+#define _E1000_80003ES2LAN_HH_
+
+#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
+#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
+#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
+#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
+
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
+#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
+
+#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
+#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
+#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
+
+#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C
+#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004
+
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
+#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
+
+#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
+#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
+
+/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
+#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disabled */
+#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
+#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
+#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
+#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
+
+/* PHY Specific Control Register 2 (Page 0, Register 26) */
+#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
+ /* 1=Reverse Auto-Negotiation */
+
+/* MAC Specific Control Register (Page 2, Register 21) */
+/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
+#define GG82563_MSCR_TX_CLK_MASK 0x0007
+#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
+#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
+#define GG82563_MSCR_TX_CLK_1000MBPS_2_5 0x0006
+#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
+
+#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
+
+/* DSP Distance Register (Page 5, Register 26) */
+/*
+ * 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-100M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define GG82563_DSPD_CABLE_LENGTH 0x0007
+
+/* Kumeran Mode Control Register (Page 193, Register 16) */
+#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
+
+/* Max number of times Kumeran read/write should be validated */
+#define GG82563_MAX_KMRN_RETRY 0x5
+
+/* Power Management Control Register (Page 193, Register 20) */
+#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
+ /* 1=Enable SERDES Electrical Idle */
+
+/* In-Band Control Register (Page 194, Register 18) */
+#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
+
+#endif
diff --git a/freebsd/dev/e1000/e1000_82540.c b/freebsd/dev/e1000/e1000_82540.c
new file mode 100644
index 00000000..1481036f
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_82540.c
@@ -0,0 +1,727 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+/*
+ * 82540EM Gigabit Ethernet Controller
+ * 82540EP Gigabit Ethernet Controller
+ * 82545EM Gigabit Ethernet Controller (Copper)
+ * 82545EM Gigabit Ethernet Controller (Fiber)
+ * 82545GM Gigabit Ethernet Controller
+ * 82546EB Gigabit Ethernet Controller (Copper)
+ * 82546EB Gigabit Ethernet Controller (Fiber)
+ * 82546GB Gigabit Ethernet Controller
+ */
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+static s32 e1000_init_phy_params_82540(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82540(struct e1000_hw *hw);
+static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw);
+static s32 e1000_init_hw_82540(struct e1000_hw *hw);
+static s32 e1000_reset_hw_82540(struct e1000_hw *hw);
+static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw);
+static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw);
+static void e1000_power_down_phy_copper_82540(struct e1000_hw *hw);
+static s32 e1000_read_mac_addr_82540(struct e1000_hw *hw);
+
+/**
+ * e1000_init_phy_params_82540 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_phy_params_82540(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 10000;
+ phy->type = e1000_phy_m88;
+
+ /* Function Pointers */
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
+ phy->ops.read_reg = e1000_read_phy_reg_m88;
+ phy->ops.reset = e1000_phy_hw_reset_generic;
+ phy->ops.write_reg = e1000_write_phy_reg_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_82540;
+
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ goto out;
+
+ /* Verify phy id */
+ switch (hw->mac.type) {
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82545_rev_3:
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ if (phy->id == M88E1011_I_PHY_ID)
+ break;
+ /* Fall Through */
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ break;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82540 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ DEBUGFUNC("e1000_init_nvm_params_82540");
+
+ nvm->type = e1000_nvm_eeprom_microwire;
+ nvm->delay_usec = 50;
+ nvm->opcode_bits = 3;
+ switch (nvm->override) {
+ case e1000_nvm_override_microwire_large:
+ nvm->address_bits = 8;
+ nvm->word_size = 256;
+ break;
+ case e1000_nvm_override_microwire_small:
+ nvm->address_bits = 6;
+ nvm->word_size = 64;
+ break;
+ default:
+ nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6;
+ nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64;
+ break;
+ }
+
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_generic;
+ nvm->ops.read = e1000_read_nvm_microwire;
+ nvm->ops.release = e1000_release_nvm_generic;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.write = e1000_write_nvm_microwire;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82540 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_82540(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_mac_params_82540");
+
+ /* Set media type */
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82545GM_FIBER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546GB_FIBER:
+ hw->phy.media_type = e1000_media_type_fiber;
+ break;
+ case E1000_DEV_ID_82545GM_SERDES:
+ case E1000_DEV_ID_82546GB_SERDES:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ break;
+ default:
+ hw->phy.media_type = e1000_media_type_copper;
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
+ /* function id */
+ mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_82540;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_82540;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_generic;
+ /* physical interface setup */
+ mac->ops.setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82540
+ : e1000_setup_fiber_serdes_link_82540;
+ /* check for link */
+ switch (hw->phy.media_type) {
+ case e1000_media_type_copper:
+ mac->ops.check_for_link = e1000_check_for_copper_link_generic;
+ break;
+ case e1000_media_type_fiber:
+ mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
+ break;
+ case e1000_media_type_internal_serdes:
+ mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
+ break;
+ default:
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ break;
+ }
+ /* link info */
+ mac->ops.get_link_up_info =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_get_speed_and_duplex_copper_generic
+ : e1000_get_speed_and_duplex_fiber_serdes_generic;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_82540;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_generic;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.led_off = e1000_led_off_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82540;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_82540 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82540(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82540");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_82540;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82540;
+ hw->phy.ops.init_params = e1000_init_phy_params_82540;
+}
+
+/**
+ * e1000_reset_hw_82540 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.
+ **/
+static s32 e1000_reset_hw_82540(struct e1000_hw *hw)
+{
+ u32 ctrl, icr, manc;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_reset_hw_82540");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ /*
+ * Delay to allow any outstanding PCI transactions to complete
+ * before resetting the device.
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n");
+ switch (hw->mac.type) {
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST);
+ break;
+ default:
+ /*
+ * These controllers can't ack the 64-bit write when
+ * issuing the reset, so we use IO-mapping as a
+ * workaround to issue the reset.
+ */
+ E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ break;
+ }
+
+ /* Wait for EEPROM reload */
+ msec_delay(5);
+
+ /* Disable HW ARPs on ASF enabled adapters */
+ manc = E1000_READ_REG(hw, E1000_MANC);
+ manc &= ~E1000_MANC_ARP_EN;
+ E1000_WRITE_REG(hw, E1000_MANC, manc);
+
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82540 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+static s32 e1000_init_hw_82540(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 txdctl, ctrl_ext;
+ s32 ret_val = E1000_SUCCESS;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_82540");
+
+ /* Initialize identification LED */
+ ret_val = mac->ops.id_led_init(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ if (mac->type < e1000_82545_rev_3)
+ E1000_WRITE_REG(hw, E1000_VET, 0);
+
+ mac->ops.clear_vfta(hw);
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+ /*
+ * Avoid back to back register writes by adding the register
+ * read (flush). This is to protect against some strange
+ * bridge configurations that may issue Memory Write Block
+ * (MWB) to our register space. The *_rev_3 hardware at
+ * least doesn't respond correctly to every other dword in an
+ * MWB to our register space.
+ */
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ if (mac->type < e1000_82545_rev_3)
+ e1000_pcix_mmrbc_workaround_generic(hw);
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82540(hw);
+
+ if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) ||
+ (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) {
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ /*
+ * Relaxed ordering must be disabled to avoid a parity
+ * error crash in a PCI slot.
+ */
+ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_82540 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex. Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called. If link is
+ * not established, we return -E1000_ERR_PHY (-2).
+ **/
+static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_setup_copper_link_82540");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ ret_val = e1000_set_phy_mode_82540(hw);
+ if (ret_val)
+ goto out;
+
+ if (hw->mac.type == e1000_82545_rev_3 ||
+ hw->mac.type == e1000_82546_rev_3) {
+ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &data);
+ if (ret_val)
+ goto out;
+ data |= 0x00000008;
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, data);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_copper_link_setup_m88(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Set the output amplitude to the value in the EEPROM and adjust the VCO
+ * speed to improve Bit Error Rate (BER) performance. Configures collision
+ * distance and flow control for fiber and serdes links. Upon successful
+ * setup, poll for link.
+ **/
+static s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_82540");
+
+ switch (mac->type) {
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ if (hw->phy.media_type == e1000_media_type_internal_serdes) {
+ /*
+ * If we're on serdes media, adjust the output
+ * amplitude to value set in the EEPROM.
+ */
+ ret_val = e1000_adjust_serdes_amplitude_82540(hw);
+ if (ret_val)
+ goto out;
+ }
+ /* Adjust VCO speed to improve BER performance */
+ ret_val = e1000_set_vco_speed_82540(hw);
+ if (ret_val)
+ goto out;
+ default:
+ break;
+ }
+
+ ret_val = e1000_setup_fiber_serdes_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Adjust the SERDES output amplitude based on the EEPROM settings.
+ **/
+static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_adjust_serdes_amplitude_82540");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data);
+ if (ret_val)
+ goto out;
+
+ if (nvm_data != NVM_RESERVED_WORD) {
+ /* Adjust serdes output amplitude only. */
+ nvm_data &= NVM_SERDES_AMPLITUDE_MASK;
+ ret_val = hw->phy.ops.write_reg(hw,
+ M88E1000_PHY_EXT_CTRL,
+ nvm_data);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_vco_speed_82540 - Set VCO speed for better performance
+ * @hw: pointer to the HW structure
+ *
+ * Set the VCO speed to improve Bit Error Rate (BER) performance.
+ **/
+static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 default_page = 0;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_set_vco_speed_82540");
+
+ /* Set PHY register 30, page 5, bit 8 to 0 */
+
+ ret_val = hw->phy.ops.read_reg(hw,
+ M88E1000_PHY_PAGE_SELECT,
+ &default_page);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /* Set PHY register 30, page 4, bit 11 to 1 */
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
+ default_page);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_phy_mode_82540 - Set PHY to class A mode
+ * @hw: pointer to the HW structure
+ *
+ * Sets the PHY to class A mode and assumes the following operations will
+ * follow to enable the new class mode:
+ * 1. Do a PHY soft reset.
+ * 2. Restart auto-negotiation or force link.
+ **/
+static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_set_phy_mode_82540");
+
+ if (hw->mac.type != e1000_82545_rev_3)
+ goto out;
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data);
+ if (ret_val) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) {
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
+ 0x000B);
+ if (ret_val) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ ret_val = hw->phy.ops.write_reg(hw,
+ M88E1000_PHY_GEN_CONTROL,
+ 0x8104);
+ if (ret_val) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ phy->reset_disable = FALSE;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_82540(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+static void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82540");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+}
+
+/**
+ * e1000_read_mac_addr_82540 - Read device MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the device MAC address from the EEPROM and stores the value.
+ * Since devices with two ports use the same EEPROM, we increment the
+ * last bit in the MAC address for the second port.
+ *
+ * This version is being used over generic because of customer issues
+ * with VmWare and Virtual Box when using generic. It seems in
+ * the emulated 82545, RAR[0] does NOT have a valid address after a
+ * reset, this older method works and using this breaks nothing for
+ * these legacy adapters.
+ **/
+s32 e1000_read_mac_addr_82540(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 offset, nvm_data, i;
+
+ DEBUGFUNC("e1000_read_mac_addr");
+
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = i >> 1;
+ ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+ hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
+ }
+
+ /* Flip last bit of mac address if we're on second port */
+ if (hw->bus.func == E1000_FUNC_1)
+ hw->mac.perm_addr[5] ^= 1;
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+out:
+ return ret_val;
+}
diff --git a/freebsd/dev/e1000/e1000_82541.c b/freebsd/dev/e1000/e1000_82541.c
new file mode 100644
index 00000000..ca730b5d
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_82541.c
@@ -0,0 +1,1333 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+/*
+ * 82541EI Gigabit Ethernet Controller
+ * 82541ER Gigabit Ethernet Controller
+ * 82541GI Gigabit Ethernet Controller
+ * 82541PI Gigabit Ethernet Controller
+ * 82547EI Gigabit Ethernet Controller
+ * 82547GI Gigabit Ethernet Controller
+ */
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+static s32 e1000_init_phy_params_82541(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82541(struct e1000_hw *hw);
+static s32 e1000_reset_hw_82541(struct e1000_hw *hw);
+static s32 e1000_init_hw_82541(struct e1000_hw *hw);
+static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw);
+static s32 e1000_check_for_link_82541(struct e1000_hw *hw);
+static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw);
+static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_setup_led_82541(struct e1000_hw *hw);
+static s32 e1000_cleanup_led_82541(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw);
+static s32 e1000_read_mac_addr_82541(struct e1000_hw *hw);
+static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
+ bool link_up);
+static s32 e1000_phy_init_script_82541(struct e1000_hw *hw);
+static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw);
+
+static const u16 e1000_igp_cable_length_table[] =
+ { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
+ 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
+ 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
+ 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
+ 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+ 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
+ 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
+#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_igp_cable_length_table) / \
+ sizeof(e1000_igp_cable_length_table[0]))
+
+/**
+ * e1000_init_phy_params_82541 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_phy_params_82541(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_82541");
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 10000;
+ phy->type = e1000_phy_igp;
+
+ /* Function Pointers */
+ phy->ops.check_polarity = e1000_check_polarity_igp;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ phy->ops.get_cable_length = e1000_get_cable_length_igp_82541;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
+ phy->ops.get_info = e1000_get_phy_info_igp;
+ phy->ops.read_reg = e1000_read_phy_reg_igp;
+ phy->ops.reset = e1000_phy_hw_reset_82541;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541;
+ phy->ops.write_reg = e1000_write_phy_reg_igp;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_82541;
+
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ goto out;
+
+ /* Verify phy id */
+ if (phy->id != IGP01E1000_I_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82541 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val = E1000_SUCCESS;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_82541");
+
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->type = e1000_nvm_eeprom_spi;
+ eecd |= E1000_EECD_ADDR_BITS;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->type = e1000_nvm_eeprom_spi;
+ eecd &= ~E1000_EECD_ADDR_BITS;
+ break;
+ case e1000_nvm_override_microwire_large:
+ nvm->type = e1000_nvm_eeprom_microwire;
+ eecd |= E1000_EECD_SIZE;
+ break;
+ case e1000_nvm_override_microwire_small:
+ nvm->type = e1000_nvm_eeprom_microwire;
+ eecd &= ~E1000_EECD_SIZE;
+ break;
+ default:
+ nvm->type = eecd & E1000_EECD_TYPE
+ ? e1000_nvm_eeprom_spi
+ : e1000_nvm_eeprom_microwire;
+ break;
+ }
+
+ if (nvm->type == e1000_nvm_eeprom_spi) {
+ nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS)
+ ? 16 : 8;
+ nvm->delay_usec = 1;
+ nvm->opcode_bits = 8;
+ nvm->page_size = (eecd & E1000_EECD_ADDR_BITS)
+ ? 32 : 8;
+
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_generic;
+ nvm->ops.read = e1000_read_nvm_spi;
+ nvm->ops.release = e1000_release_nvm_generic;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.write = e1000_write_nvm_spi;
+
+ /*
+ * nvm->word_size must be discovered after the pointers
+ * are set so we can verify the size from the nvm image
+ * itself. Temporarily set it to a dummy value so the
+ * read will work.
+ */
+ nvm->word_size = 64;
+ ret_val = nvm->ops.read(hw, NVM_CFG, 1, &size);
+ if (ret_val)
+ goto out;
+ size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT;
+ /*
+ * if size != 0, it can be added to a constant and become
+ * the left-shift value to set the word_size. Otherwise,
+ * word_size stays at 64.
+ */
+ if (size) {
+ size += NVM_WORD_SIZE_BASE_SHIFT_82541;
+ nvm->word_size = 1 << size;
+ }
+ } else {
+ nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS)
+ ? 8 : 6;
+ nvm->delay_usec = 50;
+ nvm->opcode_bits = 3;
+ nvm->word_size = (eecd & E1000_EECD_ADDR_BITS)
+ ? 256 : 64;
+
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_generic;
+ nvm->ops.read = e1000_read_nvm_microwire;
+ nvm->ops.release = e1000_release_nvm_generic;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.write = e1000_write_nvm_microwire;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mac_params_82541 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_82541(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_init_mac_params_82541");
+
+ /* Set media type */
+ hw->phy.media_type = e1000_media_type_copper;
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = TRUE;
+
+ /* Function Pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
+ /* function id */
+ mac->ops.set_lan_id = e1000_set_lan_id_single_port;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_82541;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_82541;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_generic;
+ /* physical interface link setup */
+ mac->ops.setup_physical_interface = e1000_setup_copper_link_82541;
+ /* check for link */
+ mac->ops.check_for_link = e1000_check_for_link_82541;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_link_up_info_82541;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_82541;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_82541;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_82541;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.led_off = e1000_led_off_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_82541 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82541(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82541");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_82541;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82541;
+ hw->phy.ops.init_params = e1000_init_phy_params_82541;
+}
+
+/**
+ * e1000_reset_hw_82541 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.
+ **/
+static s32 e1000_reset_hw_82541(struct e1000_hw *hw)
+{
+ u32 ledctl, ctrl, icr, manc;
+
+ DEBUGFUNC("e1000_reset_hw_82541");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ /*
+ * Delay to allow any outstanding PCI transactions to complete
+ * before resetting the device.
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Must reset the Phy before resetting the MAC */
+ if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST));
+ msec_delay(5);
+ }
+
+ DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n");
+ switch (hw->mac.type) {
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ /*
+ * These controllers can't ack the 64-bit write when
+ * issuing the reset, so we use IO-mapping as a
+ * workaround to issue the reset.
+ */
+ E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ break;
+ default:
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ break;
+ }
+
+ /* Wait for NVM reload */
+ msec_delay(20);
+
+ /* Disable HW ARPs on ASF enabled adapters */
+ manc = E1000_READ_REG(hw, E1000_MANC);
+ manc &= ~E1000_MANC_ARP_EN;
+ E1000_WRITE_REG(hw, E1000_MANC, manc);
+
+ if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+ e1000_phy_init_script_82541(hw);
+
+ /* Configure activity LED after Phy reset */
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ ledctl &= IGP_ACTIVITY_LED_MASK;
+ ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+ }
+
+ /* Once again, mask the interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+ /* Clear any pending interrupt events. */
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_hw_82541 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+static s32 e1000_init_hw_82541(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+ u32 i, txdctl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_init_hw_82541");
+
+ /* Initialize identification LED */
+ ret_val = mac->ops.id_led_init(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Storing the Speed Power Down value for later use */
+ ret_val = hw->phy.ops.read_reg(hw,
+ IGP01E1000_GMII_FIFO,
+ &dev_spec->spd_default);
+ if (ret_val)
+ goto out;
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ mac->ops.clear_vfta(hw);
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+ /*
+ * Avoid back to back register writes by adding the register
+ * read (flush). This is to protect against some strange
+ * bridge configurations that may issue Memory Write Block
+ * (MWB) to our register space.
+ */
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82541(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_link_up_info_82541 - Report speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to speed buffer
+ * @duplex: pointer to duplex buffer
+ *
+ * Retrieve the current speed and duplex configuration.
+ **/
+static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_get_link_up_info_82541");
+
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
+ if (ret_val)
+ goto out;
+
+ if (!phy->speed_downgraded)
+ goto out;
+
+ /*
+ * IGP01 PHY may advertise full duplex operation after speed
+ * downgrade even if it is operating at half duplex.
+ * Here we set the duplex settings to match the duplex in the
+ * link partner's capabilities.
+ */
+ ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_EXP, &data);
+ if (ret_val)
+ goto out;
+
+ if (!(data & NWAY_ER_LP_NWAY_CAPS)) {
+ *duplex = HALF_DUPLEX;
+ } else {
+ ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, &data);
+ if (ret_val)
+ goto out;
+
+ if (*speed == SPEED_100) {
+ if (!(data & NWAY_LPAR_100TX_FD_CAPS))
+ *duplex = HALF_DUPLEX;
+ } else if (*speed == SPEED_10) {
+ if (!(data & NWAY_LPAR_10T_FD_CAPS))
+ *duplex = HALF_DUPLEX;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_82541 - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Verify the reset block is not blocking us from resetting. Acquire
+ * semaphore (if necessary) and read/set/write the device control reset
+ * bit in the PHY. Wait the appropriate delay time for the device to
+ * reset and release the semaphore (if necessary).
+ **/
+static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u32 ledctl;
+
+ DEBUGFUNC("e1000_phy_hw_reset_82541");
+
+ ret_val = e1000_phy_hw_reset_generic(hw);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_init_script_82541(hw);
+
+ if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+ /* Configure activity LED after PHY reset */
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ ledctl &= IGP_ACTIVITY_LED_MASK;
+ ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_82541 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex. Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called. If link is
+ * not established, we return -E1000_ERR_PHY (-2).
+ **/
+static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+ s32 ret_val;
+ u32 ctrl, ledctl;
+
+ DEBUGFUNC("e1000_setup_copper_link_82541");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ hw->phy.reset_disable = FALSE;
+
+ /* Earlier revs of the IGP phy require us to force MDI. */
+ if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) {
+ dev_spec->dsp_config = e1000_dsp_config_disabled;
+ phy->mdix = 1;
+ } else {
+ dev_spec->dsp_config = e1000_dsp_config_enabled;
+ }
+
+ ret_val = e1000_copper_link_setup_igp(hw);
+ if (ret_val)
+ goto out;
+
+ if (hw->mac.autoneg) {
+ if (dev_spec->ffe_config == e1000_ffe_config_active)
+ dev_spec->ffe_config = e1000_ffe_config_enabled;
+ }
+
+ /* Configure activity LED after Phy reset */
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ ledctl &= IGP_ACTIVITY_LED_MASK;
+ ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+
+ ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_link_82541 - Check/Store link connection
+ * @hw: pointer to the HW structure
+ *
+ * This checks the link condition of the adapter and stores the
+ * results in the hw->mac structure.
+ **/
+static s32 e1000_check_for_link_82541(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_check_for_link_82541");
+
+ /*
+ * We only want to go out to the PHY registers to see if Auto-Neg
+ * has completed and/or if our link status has changed. The
+ * get_link_status flag is set upon receiving a Link Status
+ * Change or Rx Sequence Error interrupt.
+ */
+ if (!mac->get_link_status) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /*
+ * First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ ret_val = e1000_config_dsp_after_link_change_82541(hw, FALSE);
+ goto out; /* No link detected */
+ }
+
+ mac->get_link_status = FALSE;
+
+ /*
+ * Check if there was DownShift, must be checked
+ * immediately after link-up
+ */
+ e1000_check_downshift_generic(hw);
+
+ /*
+ * If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if (!mac->autoneg) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = e1000_config_dsp_after_link_change_82541(hw, TRUE);
+
+ /*
+ * Auto-Neg is enabled. Auto Speed Detection takes care
+ * of MAC speed/duplex configuration. So we only need to
+ * configure Collision Distance in the MAC.
+ */
+ e1000_config_collision_dist_generic(hw);
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_dsp_after_link_change_82541 - Config DSP after link
+ * @hw: pointer to the HW structure
+ * @link_up: boolean flag for link up status
+ *
+ * Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS
+ * at any other case.
+ *
+ * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ * gigabit link is achieved to improve link quality.
+ **/
+static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
+ bool link_up)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+ s32 ret_val;
+ u32 idle_errs = 0;
+ u16 phy_data, phy_saved_data, speed, duplex, i;
+ u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+ u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+ {IGP01E1000_PHY_AGC_PARAM_A,
+ IGP01E1000_PHY_AGC_PARAM_B,
+ IGP01E1000_PHY_AGC_PARAM_C,
+ IGP01E1000_PHY_AGC_PARAM_D};
+
+ DEBUGFUNC("e1000_config_dsp_after_link_change_82541");
+
+ if (link_up) {
+ ret_val = hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ goto out;
+ }
+
+ if (speed != SPEED_1000) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = phy->ops.get_cable_length(hw);
+ if (ret_val)
+ goto out;
+
+ if ((dev_spec->dsp_config == e1000_dsp_config_enabled) &&
+ phy->min_cable_length >= 50) {
+
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = phy->ops.read_reg(hw,
+ dsp_reg_array[i],
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+ ret_val = phy->ops.write_reg(hw,
+ dsp_reg_array[i],
+ phy_data);
+ if (ret_val)
+ goto out;
+ }
+ dev_spec->dsp_config = e1000_dsp_config_activated;
+ }
+
+ if ((dev_spec->ffe_config != e1000_ffe_config_enabled) ||
+ (phy->min_cable_length >= 50)) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /* clear previous idle error counts */
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ for (i = 0; i < ffe_idle_err_timeout; i++) {
+ usec_delay(1000);
+ ret_val = phy->ops.read_reg(hw,
+ PHY_1000T_STATUS,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
+ if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
+ dev_spec->ffe_config = e1000_ffe_config_active;
+
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_DSP_FFE,
+ IGP01E1000_PHY_DSP_FFE_CM_CP);
+ if (ret_val)
+ goto out;
+ break;
+ }
+
+ if (idle_errs)
+ ffe_idle_err_timeout =
+ FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+ }
+ } else {
+ if (dev_spec->dsp_config == e1000_dsp_config_activated) {
+ /*
+ * Save off the current value of register 0x2F5B
+ * to be restored at the end of the routines.
+ */
+ ret_val = phy->ops.read_reg(hw,
+ 0x2F5B,
+ &phy_saved_data);
+ if (ret_val)
+ goto out;
+
+ /* Disable the PHY transmitter */
+ ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
+ if (ret_val)
+ goto out;
+
+ msec_delay_irq(20);
+
+ ret_val = phy->ops.write_reg(hw,
+ 0x0000,
+ IGP01E1000_IEEE_FORCE_GIG);
+ if (ret_val)
+ goto out;
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = phy->ops.read_reg(hw,
+ dsp_reg_array[i],
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+ phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+ ret_val = phy->ops.write_reg(hw,
+ dsp_reg_array[i],
+ phy_data);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = phy->ops.write_reg(hw,
+ 0x0000,
+ IGP01E1000_IEEE_RESTART_AUTONEG);
+ if (ret_val)
+ goto out;
+
+ msec_delay_irq(20);
+
+ /* Now enable the transmitter */
+ ret_val = phy->ops.write_reg(hw,
+ 0x2F5B,
+ phy_saved_data);
+ if (ret_val)
+ goto out;
+
+ dev_spec->dsp_config = e1000_dsp_config_enabled;
+ }
+
+ if (dev_spec->ffe_config != e1000_ffe_config_active) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /*
+ * Save off the current value of register 0x2F5B
+ * to be restored at the end of the routines.
+ */
+ ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data);
+ if (ret_val)
+ goto out;
+
+ /* Disable the PHY transmitter */
+ ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
+ if (ret_val)
+ goto out;
+
+ msec_delay_irq(20);
+
+ ret_val = phy->ops.write_reg(hw,
+ 0x0000,
+ IGP01E1000_IEEE_FORCE_GIG);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_DSP_FFE,
+ IGP01E1000_PHY_DSP_FFE_DEFAULT);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.write_reg(hw,
+ 0x0000,
+ IGP01E1000_IEEE_RESTART_AUTONEG);
+ if (ret_val)
+ goto out;
+
+ msec_delay_irq(20);
+
+ /* Now enable the transmitter */
+ ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data);
+
+ if (ret_val)
+ goto out;
+
+ dev_spec->ffe_config = e1000_ffe_config_enabled;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY
+ * @hw: pointer to the HW structure
+ *
+ * The automatic gain control (agc) normalizes the amplitude of the
+ * received signal, adjusting for the attenuation produced by the
+ * cable. By reading the AGC registers, which represent the
+ * combination of coarse and fine gain value, the value can be put
+ * into a lookup table to obtain the approximate cable length
+ * for each channel.
+ **/
+static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, data;
+ u16 cur_agc_value, agc_value = 0;
+ u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+ u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+ {IGP01E1000_PHY_AGC_A,
+ IGP01E1000_PHY_AGC_B,
+ IGP01E1000_PHY_AGC_C,
+ IGP01E1000_PHY_AGC_D};
+
+ DEBUGFUNC("e1000_get_cable_length_igp_82541");
+
+ /* Read the AGC registers for all channels */
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &data);
+ if (ret_val)
+ goto out;
+
+ cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+ /* Bounds checking */
+ if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
+ (cur_agc_value == 0)) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ agc_value += cur_agc_value;
+
+ if (min_agc_value > cur_agc_value)
+ min_agc_value = cur_agc_value;
+ }
+
+ /* Remove the minimal AGC result for length < 50m */
+ if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) {
+ agc_value -= min_agc_value;
+ /* Average the three remaining channels for the length. */
+ agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+ } else {
+ /* Average the channels for the length. */
+ agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+ }
+
+ phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] >
+ IGP01E1000_AGC_RANGE)
+ ? (e1000_igp_cable_length_table[agc_value] -
+ IGP01E1000_AGC_RANGE)
+ : 0;
+ phy->max_cable_length = e1000_igp_cable_length_table[agc_value] +
+ IGP01E1000_AGC_RANGE;
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ **/
+static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_82541");
+
+ switch (hw->mac.type) {
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ break;
+ default:
+ ret_val = e1000_set_d3_lplu_state_generic(hw, active);
+ goto out;
+ break;
+ }
+
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data);
+ if (ret_val)
+ goto out;
+
+ if (!active) {
+ data &= ~IGP01E1000_GMII_FLEX_SPD;
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= IGP01E1000_GMII_FLEX_SPD;
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_led_82541 - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored.
+ **/
+static s32 e1000_setup_led_82541(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_led_82541");
+
+ ret_val = hw->phy.ops.read_reg(hw,
+ IGP01E1000_GMII_FIFO,
+ &dev_spec->spd_default);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw,
+ IGP01E1000_GMII_FIFO,
+ (u16)(dev_spec->spd_default &
+ ~IGP01E1000_GMII_SPD));
+ if (ret_val)
+ goto out;
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_cleanup_led_82541 - Set LED config to default operation
+ * @hw: pointer to the HW structure
+ *
+ * Remove the current LED configuration and set the LED configuration
+ * to the default value, saved from the EEPROM.
+ **/
+static s32 e1000_cleanup_led_82541(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_cleanup_led_82541");
+
+ ret_val = hw->phy.ops.write_reg(hw,
+ IGP01E1000_GMII_FIFO,
+ dev_spec->spd_default);
+ if (ret_val)
+ goto out;
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_init_script_82541 - Initialize GbE PHY
+ * @hw: pointer to the HW structure
+ *
+ * Initializes the IGP PHY.
+ **/
+static s32 e1000_phy_init_script_82541(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+ u32 ret_val;
+ u16 phy_saved_data;
+
+ DEBUGFUNC("e1000_phy_init_script_82541");
+
+ if (!dev_spec->phy_init_script) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /* Delay after phy reset to enable NVM configuration to load */
+ msec_delay(20);
+
+ /*
+ * Save off the current value of register 0x2F5B to be restored at
+ * the end of this routine.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, 0x2F5B, &phy_saved_data);
+
+ /* Disabled the PHY transmitter */
+ hw->phy.ops.write_reg(hw, 0x2F5B, 0x0003);
+
+ msec_delay(20);
+
+ hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
+
+ msec_delay(5);
+
+ switch (hw->mac.type) {
+ case e1000_82541:
+ case e1000_82547:
+ hw->phy.ops.write_reg(hw, 0x1F95, 0x0001);
+
+ hw->phy.ops.write_reg(hw, 0x1F71, 0xBD21);
+
+ hw->phy.ops.write_reg(hw, 0x1F79, 0x0018);
+
+ hw->phy.ops.write_reg(hw, 0x1F30, 0x1600);
+
+ hw->phy.ops.write_reg(hw, 0x1F31, 0x0014);
+
+ hw->phy.ops.write_reg(hw, 0x1F32, 0x161C);
+
+ hw->phy.ops.write_reg(hw, 0x1F94, 0x0003);
+
+ hw->phy.ops.write_reg(hw, 0x1F96, 0x003F);
+
+ hw->phy.ops.write_reg(hw, 0x2010, 0x0008);
+ break;
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ hw->phy.ops.write_reg(hw, 0x1F73, 0x0099);
+ break;
+ default:
+ break;
+ }
+
+ hw->phy.ops.write_reg(hw, 0x0000, 0x3300);
+
+ msec_delay(20);
+
+ /* Now enable the transmitter */
+ hw->phy.ops.write_reg(hw, 0x2F5B, phy_saved_data);
+
+ if (hw->mac.type == e1000_82547) {
+ u16 fused, fine, coarse;
+
+ /* Move to analog registers page */
+ hw->phy.ops.read_reg(hw,
+ IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
+ &fused);
+
+ if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+ hw->phy.ops.read_reg(hw,
+ IGP01E1000_ANALOG_FUSE_STATUS,
+ &fused);
+
+ fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+ coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+ if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+ coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+ } else if (coarse ==
+ IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+ fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+ (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+ (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+ hw->phy.ops.write_reg(hw,
+ IGP01E1000_ANALOG_FUSE_CONTROL,
+ fused);
+ hw->phy.ops.write_reg(hw,
+ IGP01E1000_ANALOG_FUSE_BYPASS,
+ IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_script_state_82541 - Enable/Disable PHY init script
+ * @hw: pointer to the HW structure
+ * @state: boolean value used to enable/disable PHY init script
+ *
+ * Allows the driver to enable/disable the PHY init script, if the PHY is an
+ * IGP PHY.
+ **/
+void e1000_init_script_state_82541(struct e1000_hw *hw, bool state)
+{
+ struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+
+ DEBUGFUNC("e1000_init_script_state_82541");
+
+ if (hw->phy.type != e1000_phy_igp) {
+ DEBUGOUT("Initialization script not necessary.\n");
+ goto out;
+ }
+
+ dev_spec->phy_init_script = state;
+
+out:
+ return;
+}
+
+/**
+ * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82541");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+}
+
+/**
+ * e1000_read_mac_addr_82541 - Read device MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the device MAC address from the EEPROM and stores the value.
+ **/
+static s32 e1000_read_mac_addr_82541(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 offset, nvm_data, i;
+
+ DEBUGFUNC("e1000_read_mac_addr");
+
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = i >> 1;
+ ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+ hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
+ }
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+out:
+ return ret_val;
+}
+
diff --git a/freebsd/dev/e1000/e1000_82541.h b/freebsd/dev/e1000/e1000_82541.h
new file mode 100644
index 00000000..f730c3a4
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_82541.h
@@ -0,0 +1,92 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2008, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_82541_HH_
+#define _E1000_82541_HH_
+
+#define NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1)
+
+#define IGP01E1000_PHY_CHANNEL_NUM 4
+
+#define IGP01E1000_PHY_AGC_A 0x1172
+#define IGP01E1000_PHY_AGC_B 0x1272
+#define IGP01E1000_PHY_AGC_C 0x1472
+#define IGP01E1000_PHY_AGC_D 0x1872
+
+#define IGP01E1000_PHY_AGC_PARAM_A 0x1171
+#define IGP01E1000_PHY_AGC_PARAM_B 0x1271
+#define IGP01E1000_PHY_AGC_PARAM_C 0x1471
+#define IGP01E1000_PHY_AGC_PARAM_D 0x1871
+
+#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000
+#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
+
+#define IGP01E1000_PHY_DSP_RESET 0x1F33
+
+#define IGP01E1000_PHY_DSP_FFE 0x1F35
+#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069
+#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A
+
+#define IGP01E1000_IEEE_FORCE_GIG 0x0140
+#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
+
+#define IGP01E1000_AGC_LENGTH_SHIFT 7
+#define IGP01E1000_AGC_RANGE 10
+
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100
+
+#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0
+#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1
+#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC
+#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE
+
+#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100
+#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80
+#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070
+#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040
+#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010
+#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080
+#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500
+#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000
+#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
+
+#define IGP01E1000_MSE_CHANNEL_D 0x000F
+#define IGP01E1000_MSE_CHANNEL_C 0x00F0
+#define IGP01E1000_MSE_CHANNEL_B 0x0F00
+#define IGP01E1000_MSE_CHANNEL_A 0xF000
+
+
+void e1000_init_script_state_82541(struct e1000_hw *hw, bool state);
+#endif
diff --git a/freebsd/dev/e1000/e1000_82542.c b/freebsd/dev/e1000/e1000_82542.c
new file mode 100644
index 00000000..7fad75bf
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_82542.c
@@ -0,0 +1,595 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+/*
+ * 82542 Gigabit Ethernet Controller
+ */
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+static s32 e1000_init_phy_params_82542(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_82542(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82542(struct e1000_hw *hw);
+static s32 e1000_get_bus_info_82542(struct e1000_hw *hw);
+static s32 e1000_reset_hw_82542(struct e1000_hw *hw);
+static s32 e1000_init_hw_82542(struct e1000_hw *hw);
+static s32 e1000_setup_link_82542(struct e1000_hw *hw);
+static s32 e1000_led_on_82542(struct e1000_hw *hw);
+static s32 e1000_led_off_82542(struct e1000_hw *hw);
+static void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index);
+static void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw);
+static s32 e1000_read_mac_addr_82542(struct e1000_hw *hw);
+
+
+/**
+ * e1000_init_phy_params_82542 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_phy_params_82542(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_82542");
+
+ phy->type = e1000_phy_none;
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82542 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_nvm_params_82542(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+
+ DEBUGFUNC("e1000_init_nvm_params_82542");
+
+ nvm->address_bits = 6;
+ nvm->delay_usec = 50;
+ nvm->opcode_bits = 3;
+ nvm->type = e1000_nvm_eeprom_microwire;
+ nvm->word_size = 64;
+
+ /* Function Pointers */
+ nvm->ops.read = e1000_read_nvm_microwire;
+ nvm->ops.release = e1000_stop_nvm;
+ nvm->ops.write = e1000_write_nvm_microwire;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82542 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_82542(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_init_mac_params_82542");
+
+ /* Set media type */
+ hw->phy.media_type = e1000_media_type_fiber;
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_82542;
+ /* function id */
+ mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_82542;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_82542;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_82542;
+ /* phy/fiber/serdes setup */
+ mac->ops.setup_physical_interface = e1000_setup_fiber_serdes_link_generic;
+ /* check for link */
+ mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_82542;
+ /* set RAR */
+ mac->ops.rar_set = e1000_rar_set_82542;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_82542;
+ mac->ops.led_off = e1000_led_off_82542;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82542;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes_generic;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_82542 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82542(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82542");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_82542;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82542;
+ hw->phy.ops.init_params = e1000_init_phy_params_82542;
+}
+
+/**
+ * e1000_get_bus_info_82542 - Obtain bus information for adapter
+ * @hw: pointer to the HW structure
+ *
+ * This will obtain information about the HW bus for which the
+ * adapter is attached and stores it in the hw structure.
+ **/
+static s32 e1000_get_bus_info_82542(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_get_bus_info_82542");
+
+ hw->bus.type = e1000_bus_type_pci;
+ hw->bus.speed = e1000_bus_speed_unknown;
+ hw->bus.width = e1000_bus_width_unknown;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_reset_hw_82542 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.
+ **/
+static s32 e1000_reset_hw_82542(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl, icr;
+
+ DEBUGFUNC("e1000_reset_hw_82542");
+
+ if (hw->revision_id == E1000_REVISION_2) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2\n");
+ e1000_pci_clear_mwi(hw);
+ }
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ /*
+ * Delay to allow any outstanding PCI transactions to complete before
+ * resetting the device
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ hw->nvm.ops.reload(hw);
+ msec_delay(2);
+
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ if (hw->revision_id == E1000_REVISION_2) {
+ if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_set_mwi(hw);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82542 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+static s32 e1000_init_hw_82542(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_dev_spec_82542 *dev_spec = &hw->dev_spec._82542;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_82542");
+
+ /* Disabling VLAN filtering */
+ E1000_WRITE_REG(hw, E1000_VET, 0);
+ mac->ops.clear_vfta(hw);
+
+ /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+ if (hw->revision_id == E1000_REVISION_2) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ e1000_pci_clear_mwi(hw);
+ E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(5);
+ }
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+ if (hw->revision_id == E1000_REVISION_2) {
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+ if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_set_mwi(hw);
+ }
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /*
+ * Set the PCI priority bit correctly in the CTRL register. This
+ * determines if the adapter gives priority to receives, or if it
+ * gives equal priority to transmits and receives.
+ */
+ if (dev_spec->dma_fairness) {
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
+ }
+
+ /* Setup link and flow control */
+ ret_val = e1000_setup_link_82542(hw);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82542(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_link_82542 - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+static s32 e1000_setup_link_82542(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_link_82542");
+
+ ret_val = e1000_set_default_fc_generic(hw);
+ if (ret_val)
+ goto out;
+
+ hw->fc.requested_mode &= ~e1000_fc_tx_pause;
+
+ if (mac->report_tx_early == 1)
+ hw->fc.requested_mode &= ~e1000_fc_rx_pause;
+
+ /*
+ * Save off the requested flow control mode for use later. Depending
+ * on the link partner's capabilities, we may or may not use this mode.
+ */
+ hw->fc.current_mode = hw->fc.requested_mode;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
+ hw->fc.current_mode);
+
+ /* Call the necessary subroutine to configure the link. */
+ ret_val = mac->ops.setup_physical_interface(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT("Initializing Flow Control address, type and timer regs\n");
+
+ E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+ E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+
+ E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+ ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_led_on_82542 - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on.
+ **/
+static s32 e1000_led_on_82542(struct e1000_hw *hw)
+{
+ u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGFUNC("e1000_led_on_82542");
+
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off_82542 - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off.
+ **/
+static s32 e1000_led_off_82542(struct e1000_hw *hw)
+{
+ u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGFUNC("e1000_led_off_82542");
+
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_rar_set_82542 - Set receive address register
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address array register at index to the address passed
+ * in by addr.
+ **/
+static void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ u32 rar_low, rar_high;
+
+ DEBUGFUNC("e1000_rar_set_82542");
+
+ /*
+ * HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((u32) addr[0] |
+ ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+ /* If MAC address zero, no need to set the AV bit */
+ if (rar_low || rar_high)
+ rar_high |= E1000_RAH_AV;
+
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
+}
+
+/**
+ * e1000_translate_register_82542 - Translate the proper register offset
+ * @reg: e1000 register to be read
+ *
+ * Registers in 82542 are located in different offsets than other adapters
+ * even though they function in the same manner. This function takes in
+ * the name of the register to read and returns the correct offset for
+ * 82542 silicon.
+ **/
+u32 e1000_translate_register_82542(u32 reg)
+{
+ /*
+ * Some of the 82542 registers are located at different
+ * offsets than they are in newer adapters.
+ * Despite the difference in location, the registers
+ * function in the same manner.
+ */
+ switch (reg) {
+ case E1000_RA:
+ reg = 0x00040;
+ break;
+ case E1000_RDTR:
+ reg = 0x00108;
+ break;
+ case E1000_RDBAL(0):
+ reg = 0x00110;
+ break;
+ case E1000_RDBAH(0):
+ reg = 0x00114;
+ break;
+ case E1000_RDLEN(0):
+ reg = 0x00118;
+ break;
+ case E1000_RDH(0):
+ reg = 0x00120;
+ break;
+ case E1000_RDT(0):
+ reg = 0x00128;
+ break;
+ case E1000_RDBAL(1):
+ reg = 0x00138;
+ break;
+ case E1000_RDBAH(1):
+ reg = 0x0013C;
+ break;
+ case E1000_RDLEN(1):
+ reg = 0x00140;
+ break;
+ case E1000_RDH(1):
+ reg = 0x00148;
+ break;
+ case E1000_RDT(1):
+ reg = 0x00150;
+ break;
+ case E1000_FCRTH:
+ reg = 0x00160;
+ break;
+ case E1000_FCRTL:
+ reg = 0x00168;
+ break;
+ case E1000_MTA:
+ reg = 0x00200;
+ break;
+ case E1000_TDBAL(0):
+ reg = 0x00420;
+ break;
+ case E1000_TDBAH(0):
+ reg = 0x00424;
+ break;
+ case E1000_TDLEN(0):
+ reg = 0x00428;
+ break;
+ case E1000_TDH(0):
+ reg = 0x00430;
+ break;
+ case E1000_TDT(0):
+ reg = 0x00438;
+ break;
+ case E1000_TIDV:
+ reg = 0x00440;
+ break;
+ case E1000_VFTA:
+ reg = 0x00600;
+ break;
+ case E1000_TDFH:
+ reg = 0x08010;
+ break;
+ case E1000_TDFT:
+ reg = 0x08018;
+ break;
+ default:
+ break;
+ }
+
+ return reg;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+static void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82542");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+}
+
+/**
+ * e1000_read_mac_addr_82542 - Read device MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the device MAC address from the EEPROM and stores the value.
+ **/
+static s32 e1000_read_mac_addr_82542(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 offset, nvm_data, i;
+
+ DEBUGFUNC("e1000_read_mac_addr");
+
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = i >> 1;
+ ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+ hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
+ }
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+out:
+ return ret_val;
+}
diff --git a/freebsd/dev/e1000/e1000_82543.c b/freebsd/dev/e1000/e1000_82543.c
new file mode 100644
index 00000000..672af0ed
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_82543.c
@@ -0,0 +1,1608 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+/*
+ * 82543GC Gigabit Ethernet Controller (Fiber)
+ * 82543GC Gigabit Ethernet Controller (Copper)
+ * 82544EI Gigabit Ethernet Controller (Copper)
+ * 82544EI Gigabit Ethernet Controller (Fiber)
+ * 82544GC Gigabit Ethernet Controller (Copper)
+ * 82544GC Gigabit Ethernet Controller (LOM)
+ */
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+static s32 e1000_init_phy_params_82543(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82543(struct e1000_hw *hw);
+static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
+ u16 *data);
+static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
+ u16 data);
+static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
+static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw);
+static s32 e1000_reset_hw_82543(struct e1000_hw *hw);
+static s32 e1000_init_hw_82543(struct e1000_hw *hw);
+static s32 e1000_setup_link_82543(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw);
+static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw);
+static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
+static s32 e1000_led_on_82543(struct e1000_hw *hw);
+static s32 e1000_led_off_82543(struct e1000_hw *hw);
+static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
+ u32 value);
+static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
+static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
+static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
+static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
+static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
+static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
+static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
+static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
+ u16 count);
+static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
+static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
+static s32 e1000_read_mac_addr_82543(struct e1000_hw *hw);
+
+
+/**
+ * e1000_init_phy_params_82543 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_82543");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ goto out;
+ } else {
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper;
+ }
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 10000;
+ phy->type = e1000_phy_m88;
+
+ /* Function Pointers */
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
+ phy->ops.read_reg = (hw->mac.type == e1000_82543)
+ ? e1000_read_phy_reg_82543
+ : e1000_read_phy_reg_m88;
+ phy->ops.reset = (hw->mac.type == e1000_82543)
+ ? e1000_phy_hw_reset_82543
+ : e1000_phy_hw_reset_generic;
+ phy->ops.write_reg = (hw->mac.type == e1000_82543)
+ ? e1000_write_phy_reg_82543
+ : e1000_write_phy_reg_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+
+ /*
+ * The external PHY of the 82543 can be in a funky state.
+ * Resetting helps us read the PHY registers for acquiring
+ * the PHY ID.
+ */
+ if (!e1000_init_phy_disabled_82543(hw)) {
+ ret_val = phy->ops.reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Resetting PHY during init failed.\n");
+ goto out;
+ }
+ msec_delay(20);
+ }
+
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ goto out;
+
+ /* Verify phy id */
+ switch (hw->mac.type) {
+ case e1000_82543:
+ if (phy->id != M88E1000_E_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ break;
+ case e1000_82544:
+ if (phy->id != M88E1000_I_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ break;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82543 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+
+ DEBUGFUNC("e1000_init_nvm_params_82543");
+
+ nvm->type = e1000_nvm_eeprom_microwire;
+ nvm->word_size = 64;
+ nvm->delay_usec = 50;
+ nvm->address_bits = 6;
+ nvm->opcode_bits = 3;
+
+ /* Function Pointers */
+ nvm->ops.read = e1000_read_nvm_microwire;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.write = e1000_write_nvm_microwire;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82543 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_init_mac_params_82543");
+
+ /* Set media type */
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ hw->phy.media_type = e1000_media_type_fiber;
+ break;
+ default:
+ hw->phy.media_type = e1000_media_type_copper;
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
+ /* function id */
+ mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_82543;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_82543;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_82543;
+ /* physical interface setup */
+ mac->ops.setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82543
+ : e1000_setup_fiber_link_82543;
+ /* check for link */
+ mac->ops.check_for_link =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_check_for_copper_link_82543
+ : e1000_check_for_fiber_link_82543;
+ /* link info */
+ mac->ops.get_link_up_info =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_get_speed_and_duplex_copper_generic
+ : e1000_get_speed_and_duplex_fiber_serdes_generic;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_82543;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_82543;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_82543;
+ mac->ops.led_off = e1000_led_off_82543;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
+
+ /* Set tbi compatibility */
+ if ((hw->mac.type != e1000_82543) ||
+ (hw->phy.media_type == e1000_media_type_fiber))
+ e1000_set_tbi_compatibility_82543(hw, FALSE);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_82543 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82543(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82543");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_82543;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
+ hw->phy.ops.init_params = e1000_init_phy_params_82543;
+}
+
+/**
+ * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
+ * @hw: pointer to the HW structure
+ *
+ * Returns the current status of 10-bit Interface (TBI) compatibility
+ * (enabled/disabled).
+ **/
+static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+ bool state = FALSE;
+
+ DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
+
+ if (hw->mac.type != e1000_82543) {
+ DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+ goto out;
+ }
+
+ state = (dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED)
+ ? TRUE : FALSE;
+
+out:
+ return state;
+}
+
+/**
+ * e1000_set_tbi_compatibility_82543 - Set TBI compatibility
+ * @hw: pointer to the HW structure
+ * @state: enable/disable TBI compatibility
+ *
+ * Enables or disabled 10-bit Interface (TBI) compatibility.
+ **/
+void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
+{
+ struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+
+ DEBUGFUNC("e1000_set_tbi_compatibility_82543");
+
+ if (hw->mac.type != e1000_82543) {
+ DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+ goto out;
+ }
+
+ if (state)
+ dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
+ else
+ dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
+
+out:
+ return;
+}
+
+/**
+ * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
+ * @hw: pointer to the HW structure
+ *
+ * Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
+ * (enabled/disabled).
+ **/
+bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+ bool state = FALSE;
+
+ DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
+
+ if (hw->mac.type != e1000_82543) {
+ DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+ goto out;
+ }
+
+ state = (dev_spec->tbi_compatibility & TBI_SBP_ENABLED)
+ ? TRUE : FALSE;
+
+out:
+ return state;
+}
+
+/**
+ * e1000_set_tbi_sbp_82543 - Set TBI SBP
+ * @hw: pointer to the HW structure
+ * @state: enable/disable TBI store bad packet
+ *
+ * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
+ **/
+static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
+{
+ struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+
+ DEBUGFUNC("e1000_set_tbi_sbp_82543");
+
+ if (state && e1000_tbi_compatibility_enabled_82543(hw))
+ dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
+ else
+ dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
+
+ return;
+}
+
+/**
+ * e1000_init_phy_disabled_82543 - Returns init PHY status
+ * @hw: pointer to the HW structure
+ *
+ * Returns the current status of whether PHY initialization is disabled.
+ * True if PHY initialization is disabled else FALSE.
+ **/
+static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+ bool ret_val;
+
+ DEBUGFUNC("e1000_init_phy_disabled_82543");
+
+ if (hw->mac.type != e1000_82543) {
+ ret_val = FALSE;
+ goto out;
+ }
+
+ ret_val = dev_spec->init_phy_disabled;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
+ * @hw: pointer to the HW structure
+ * @stats: Struct containing statistic register values
+ * @frame_len: The length of the frame in question
+ * @mac_addr: The Ethernet destination address of the frame in question
+ * @max_frame_size: The maximum frame size
+ *
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ **/
+void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
+ struct e1000_hw_stats *stats, u32 frame_len,
+ u8 *mac_addr, u32 max_frame_size)
+{
+ if (!(e1000_tbi_sbp_enabled_82543(hw)))
+ goto out;
+
+ /* First adjust the frame length. */
+ frame_len--;
+ /*
+ * We need to adjust the statistics counters, since the hardware
+ * counters overcount this packet as a CRC error and undercount
+ * the packet as a good packet
+ */
+ /* This packet should not be counted as a CRC error. */
+ stats->crcerrs--;
+ /* This packet does count as a Good Packet Received. */
+ stats->gprc++;
+
+ /* Adjust the Good Octets received counters */
+ stats->gorc += frame_len;
+
+ /*
+ * Is this a broadcast or multicast? Check broadcast first,
+ * since the test for a multicast frame will test positive on
+ * a broadcast frame.
+ */
+ if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
+ /* Broadcast packet */
+ stats->bprc++;
+ else if (*mac_addr & 0x01)
+ /* Multicast packet */
+ stats->mprc++;
+
+ /*
+ * In this case, the hardware has overcounted the number of
+ * oversize frames.
+ */
+ if ((frame_len == max_frame_size) && (stats->roc > 0))
+ stats->roc--;
+
+ /*
+ * Adjust the bin counters when the extra byte put the frame in the
+ * wrong bin. Remember that the frame_len was adjusted above.
+ */
+ if (frame_len == 64) {
+ stats->prc64++;
+ stats->prc127--;
+ } else if (frame_len == 127) {
+ stats->prc127++;
+ stats->prc255--;
+ } else if (frame_len == 255) {
+ stats->prc255++;
+ stats->prc511--;
+ } else if (frame_len == 511) {
+ stats->prc511++;
+ stats->prc1023--;
+ } else if (frame_len == 1023) {
+ stats->prc1023++;
+ stats->prc1522--;
+ } else if (frame_len == 1522) {
+ stats->prc1522++;
+ }
+
+out:
+ return;
+}
+
+/**
+ * e1000_read_phy_reg_82543 - Read PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY at offset and stores the information read to data.
+ **/
+static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ u32 mdic;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_phy_reg_82543");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ /*
+ * We must first send a preamble through the MDIO pin to signal the
+ * beginning of an MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /*
+ * Now combine the next few fields that are required for a read
+ * operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine five different times. The format
+ * of an MII read instruction consists of a shift out of 14 bits and
+ * is defined as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Offset>
+ * followed by a shift in of 18 bits. This first two bits shifted in
+ * are TurnAround bits used to avoid contention on the MDIO pin when a
+ * READ operation is performed. These two bits are thrown away
+ * followed by a shift in of 16 bits which contains the desired data.
+ */
+ mdic = (offset | (hw->phy.addr << 5) |
+ (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+ e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
+
+ /*
+ * Now that we've shifted out the read command to the MII, we need to
+ * "shift in" the 16-bit value (18 total bits) of the requested PHY
+ * register address.
+ */
+ *data = e1000_shift_in_mdi_bits_82543(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_82543 - Write PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be written
+ * @data: pointer to the data to be written at offset
+ *
+ * Writes data to the PHY at offset.
+ **/
+static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ u32 mdic;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_phy_reg_82543");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ /*
+ * We'll need to use the SW defined pins to shift the write command
+ * out to the PHY. We first send a preamble to the PHY to signal the
+ * beginning of the MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /*
+ * Now combine the remaining required fields that will indicate a
+ * write operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine for each field in the command. The
+ * format of a MII write instruction is as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+ */
+ mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
+ (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+ mdic <<= 16;
+ mdic |= (u32) data;
+
+ e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
+ * @hw: pointer to the HW structure
+ * @ctrl: pointer to the control register
+ *
+ * Raise the management data input clock by setting the MDC bit in the control
+ * register.
+ **/
+static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
+{
+ /*
+ * Raise the clock input to the Management Data Clock (by setting the
+ * MDC bit), and then delay a sufficient amount of time.
+ */
+ E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(10);
+}
+
+/**
+ * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
+ * @hw: pointer to the HW structure
+ * @ctrl: pointer to the control register
+ *
+ * Lower the management data input clock by clearing the MDC bit in the
+ * control register.
+ **/
+static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
+{
+ /*
+ * Lower the clock input to the Management Data Clock (by clearing the
+ * MDC bit), and then delay a sufficient amount of time.
+ */
+ E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(10);
+}
+
+/**
+ * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
+ * @hw: pointer to the HW structure
+ * @data: data to send to the PHY
+ * @count: number of bits to shift out
+ *
+ * We need to shift 'count' bits out to the PHY. So, the value in the
+ * "data" parameter will be shifted out to the PHY one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ **/
+static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
+ u16 count)
+{
+ u32 ctrl, mask;
+
+ /*
+ * We need to shift "count" number of bits out to the PHY. So, the
+ * value in the "data" parameter will be shifted out to the PHY one
+ * bit at a time. In order to do this, "data" must be broken down
+ * into bits.
+ */
+ mask = 0x01;
+ mask <<= (count -1);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+ while (mask) {
+ /*
+ * A "1" is shifted out to the PHY by setting the MDIO bit to
+ * "1" and then raising and lowering the Management Data Clock.
+ * A "0" is shifted out to the PHY by setting the MDIO bit to
+ * "0" and then raising and lowering the clock.
+ */
+ if (data & mask) ctrl |= E1000_CTRL_MDIO;
+ else ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(10);
+
+ e1000_raise_mdi_clk_82543(hw, &ctrl);
+ e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+ mask >>= 1;
+ }
+}
+
+/**
+ * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
+ * @hw: pointer to the HW structure
+ *
+ * In order to read a register from the PHY, we need to shift 18 bits
+ * in from the PHY. Bits are "shifted in" by raising the clock input to
+ * the PHY (setting the MDC bit), and then reading the value of the data out
+ * MDIO bit.
+ **/
+static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ u16 data = 0;
+ u8 i;
+
+ /*
+ * In order to read a register from the PHY, we need to shift in a
+ * total of 18 bits from the PHY. The first two bit (turnaround)
+ * times are used to avoid contention on the MDIO pin when a read
+ * operation is performed. These two bits are ignored by us and
+ * thrown away. Bits are "shifted in" by raising the input to the
+ * Management Data Clock (setting the MDC bit) and then reading the
+ * value of the MDIO bit.
+ */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /*
+ * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
+ * input.
+ */
+ ctrl &= ~E1000_CTRL_MDIO_DIR;
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ /*
+ * Raise and lower the clock before reading in the data. This accounts
+ * for the turnaround bits. The first clock occurred when we clocked
+ * out the last bit of the Register Address.
+ */
+ e1000_raise_mdi_clk_82543(hw, &ctrl);
+ e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+ for (data = 0, i = 0; i < 16; i++) {
+ data <<= 1;
+ e1000_raise_mdi_clk_82543(hw, &ctrl);
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ /* Check to see if we shifted in a "1". */
+ if (ctrl & E1000_CTRL_MDIO)
+ data |= 1;
+ e1000_lower_mdi_clk_82543(hw, &ctrl);
+ }
+
+ e1000_raise_mdi_clk_82543(hw, &ctrl);
+ e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+ return data;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the function to force speed and duplex for the m88 PHY, and
+ * if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
+ * then call the function for polarity reversal workaround.
+ **/
+static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
+
+ ret_val = e1000_phy_force_speed_duplex_m88(hw);
+ if (ret_val)
+ goto out;
+
+ if (!hw->mac.autoneg &&
+ (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED))
+ ret_val = e1000_polarity_reversal_workaround_82543(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
+ * @hw: pointer to the HW structure
+ *
+ * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
+ * inadvertently. To workaround the issue, we disable the transmitter on
+ * the PHY until we have established the link partner's link parameters.
+ **/
+static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 mii_status_reg;
+ u16 i;
+ bool link;
+
+ if (!(hw->phy.ops.write_reg))
+ goto out;
+
+ /* Polarity reversal workaround for forced 10F/10H links. */
+
+ /* Disable the transmitter on the PHY */
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+ if (ret_val)
+ goto out;
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+ if (ret_val)
+ goto out;
+
+ /*
+ * This loop will early-out if the NO link condition has been met.
+ * In other words, DO NOT use e1000_phy_has_link_generic() here.
+ */
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
+ /*
+ * Read the MII Status Register and wait for Link Status bit
+ * to be clear.
+ */
+
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+
+ if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
+ break;
+ msec_delay_irq(100);
+ }
+
+ /* Recommended delay time after link has been lost */
+ msec_delay_irq(1000);
+
+ /* Now we will re-enable the transmitter on the PHY */
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+ if (ret_val)
+ goto out;
+ msec_delay_irq(50);
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+ if (ret_val)
+ goto out;
+ msec_delay_irq(50);
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+ if (ret_val)
+ goto out;
+ msec_delay_irq(50);
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Read the MII Status Register and wait for Link Status bit
+ * to be set.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
+ if (ret_val)
+ goto out;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_82543 - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Sets the PHY_RESET_DIR bit in the extended device control register
+ * to put the PHY into a reset and waits for completion. Once the reset
+ * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
+ * of reset.
+ **/
+static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
+{
+ u32 ctrl_ext;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_phy_hw_reset_82543");
+
+ /*
+ * Read the Extended Device Control Register, assert the PHY_RESET_DIR
+ * bit to put the PHY into reset...
+ */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ /* ...then take it out of reset. */
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(150);
+
+ if (!(hw->phy.ops.get_cfg_done))
+ return E1000_SUCCESS;
+
+ ret_val = hw->phy.ops.get_cfg_done(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_82543 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.
+ **/
+static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
+{
+ u32 ctrl, icr;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_reset_hw_82543");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ e1000_set_tbi_sbp_82543(hw, FALSE);
+
+ /*
+ * Delay to allow any outstanding PCI transactions to complete before
+ * resetting the device
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
+ if (hw->mac.type == e1000_82543) {
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ } else {
+ /*
+ * The 82544 can't ACK the 64-bit write when issuing the
+ * reset, so use IO-mapping as a workaround.
+ */
+ E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+ }
+
+ /*
+ * After MAC reset, force reload of NVM to restore power-on
+ * settings to device.
+ */
+ hw->nvm.ops.reload(hw);
+ msec_delay(2);
+
+ /* Masking off and clearing any pending interrupts */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82543 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+static s32 e1000_init_hw_82543(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+ u32 ctrl;
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_82543");
+
+ /* Disabling VLAN filtering */
+ E1000_WRITE_REG(hw, E1000_VET, 0);
+ mac->ops.clear_vfta(hw);
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ /*
+ * Set the PCI priority bit correctly in the CTRL register. This
+ * determines if the adapter gives priority to receives, or if it
+ * gives equal priority to transmits and receives.
+ */
+ if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
+ }
+
+ e1000_pcix_mmrbc_workaround_generic(hw);
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82543(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_link_82543 - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Read the EEPROM to determine the initial polarity value and write the
+ * extended device control register with the information before calling
+ * the generic setup link function, which does the following:
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+static s32 e1000_setup_link_82543(struct e1000_hw *hw)
+{
+ u32 ctrl_ext;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_setup_link_82543");
+
+ /*
+ * Take the 4 bits from NVM word 0xF that determine the initial
+ * polarity value for the SW controlled pins, and setup the
+ * Extended Device Control reg with that info.
+ * This is needed because one of the SW controlled pins is used for
+ * signal detection. So this should be done before phy setup.
+ */
+ if (hw->mac.type == e1000_82543) {
+ ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+ ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
+ NVM_SWDPIO_EXT_SHIFT);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ }
+
+ ret_val = e1000_setup_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_82543 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Configures the link for auto-neg or forced speed and duplex. Then we check
+ * for link, once link is established calls to configure collision distance
+ * and flow control are called.
+ **/
+static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_setup_copper_link_82543");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
+ /*
+ * With 82543, we need to force speed and duplex on the MAC
+ * equal to what the PHY speed and duplex configuration is.
+ * In addition, we need to perform a hardware reset on the
+ * PHY to take it out of reset.
+ */
+ if (hw->mac.type == e1000_82543) {
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ ret_val = hw->phy.ops.reset(hw);
+ if (ret_val)
+ goto out;
+ hw->phy.reset_disable = FALSE;
+ } else {
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ }
+
+ /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
+ ret_val = e1000_copper_link_setup_m88(hw);
+ if (ret_val)
+ goto out;
+
+ if (hw->mac.autoneg) {
+ /*
+ * Setup autoneg and flow control advertisement and perform
+ * autonegotiation.
+ */
+ ret_val = e1000_copper_link_autoneg(hw);
+ if (ret_val)
+ goto out;
+ } else {
+ /*
+ * PHY will be set to 10H, 10F, 100H or 100F
+ * depending on user settings.
+ */
+ DEBUGOUT("Forcing Speed and Duplex\n");
+ ret_val = e1000_phy_force_speed_duplex_82543(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ goto out;
+ }
+ }
+
+ /*
+ * Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ ret_val = e1000_phy_has_link_generic(hw,
+ COPPER_LINK_UP_LIMIT,
+ 10,
+ &link);
+ if (ret_val)
+ goto out;
+
+
+ if (link) {
+ DEBUGOUT("Valid link established!!!\n");
+ /* Config the MAC and PHY after link is up */
+ if (hw->mac.type == e1000_82544) {
+ e1000_config_collision_dist_generic(hw);
+ } else {
+ ret_val = e1000_config_mac_to_phy_82543(hw);
+ if (ret_val)
+ goto out;
+ }
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ } else {
+ DEBUGOUT("Unable to establish link!!!\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_link_82543 - Setup link for fiber
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber links. Upon
+ * successful setup, poll for link.
+ **/
+static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_fiber_link_82543");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Take the link out of reset */
+ ctrl &= ~E1000_CTRL_LRST;
+
+ e1000_config_collision_dist_generic(hw);
+
+ ret_val = e1000_commit_fc_settings_generic(hw);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT("Auto-negotiation enabled\n");
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+
+ /*
+ * For these adapters, the SW definable pin 1 is cleared when the
+ * optics detect a signal. If we have a signal, then poll for a
+ * "Link-Up" indication.
+ */
+ if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+ ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+ } else {
+ DEBUGOUT("No signal detected\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_copper_link_82543 - Check for link (Copper)
+ * @hw: pointer to the HW structure
+ *
+ * Checks the phy for link, if link exists, do the following:
+ * - check for downshift
+ * - do polarity workaround (if necessary)
+ * - configure collision distance
+ * - configure flow control after link up
+ * - configure tbi compatibility
+ **/
+static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 icr, rctl;
+ s32 ret_val;
+ u16 speed, duplex;
+ bool link;
+
+ DEBUGFUNC("e1000_check_for_copper_link_82543");
+
+ if (!mac->get_link_status) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link)
+ goto out; /* No link detected */
+
+ mac->get_link_status = FALSE;
+
+ e1000_check_downshift_generic(hw);
+
+ /*
+ * If we are forcing speed/duplex, then we can return since
+ * we have already determined whether we have link or not.
+ */
+ if (!mac->autoneg) {
+ /*
+ * If speed and duplex are forced to 10H or 10F, then we will
+ * implement the polarity reversal workaround. We disable
+ * interrupts first, and upon returning, place the devices
+ * interrupt state to its previous value except for the link
+ * status change interrupt which will happened due to the
+ * execution of this workaround.
+ */
+ if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
+ E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+ ret_val = e1000_polarity_reversal_workaround_82543(hw);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+ E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
+ E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
+ }
+
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /*
+ * We have a M88E1000 PHY and Auto-Neg is enabled. If we
+ * have Si on board that is 82544 or newer, Auto
+ * Speed Detection takes care of MAC speed/duplex
+ * configuration. So we only need to configure Collision
+ * Distance in the MAC. Otherwise, we need to force
+ * speed/duplex on the MAC to the current PHY speed/duplex
+ * settings.
+ */
+ if (mac->type == e1000_82544)
+ e1000_config_collision_dist_generic(hw);
+ else {
+ ret_val = e1000_config_mac_to_phy_82543(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring MAC to PHY settings\n");
+ goto out;
+ }
+ }
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ }
+
+ /*
+ * At this point we know that we are on copper and we have
+ * auto-negotiated link. These are conditions for checking the link
+ * partner capability register. We use the link speed to determine if
+ * TBI compatibility needs to be turned on or off. If the link is not
+ * at gigabit speed, then TBI compatibility is not needed. If we are
+ * at gigabit speed, we turn on TBI compatibility.
+ */
+ if (e1000_tbi_compatibility_enabled_82543(hw)) {
+ ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ return ret_val;
+ }
+ if (speed != SPEED_1000) {
+ /*
+ * If link speed is not set to gigabit speed,
+ * we do not need to enable TBI compatibility.
+ */
+ if (e1000_tbi_sbp_enabled_82543(hw)) {
+ /*
+ * If we previously were in the mode,
+ * turn it off.
+ */
+ e1000_set_tbi_sbp_82543(hw, FALSE);
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl &= ~E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ }
+ } else {
+ /*
+ * If TBI compatibility is was previously off,
+ * turn it on. For compatibility with a TBI link
+ * partner, we will store bad packets. Some
+ * frames have an additional byte on the end and
+ * will look like CRC errors to to the hardware.
+ */
+ if (!e1000_tbi_sbp_enabled_82543(hw)) {
+ e1000_set_tbi_sbp_82543(hw, TRUE);
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl |= E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ }
+ }
+ }
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_fiber_link_82543 - Check for link (Fiber)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ **/
+static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw, ctrl, status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_fiber_link_82543");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ /*
+ * If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), the cable is plugged in (we have signal),
+ * and our link partner is not trying to auto-negotiate with us (we
+ * are receiving idles or data), we need to force link up. We also
+ * need to give auto-negotiation time to complete, in case the cable
+ * was just plugged in. The autoneg_failed flag does this.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
+ if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
+ (!(status & E1000_STATUS_LU)) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if (mac->autoneg_failed == 0) {
+ mac->autoneg_failed = 1;
+ ret_val = 0;
+ goto out;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ goto out;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /*
+ * If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ mac->serdes_has_link = TRUE;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
+ * @hw: pointer to the HW structure
+ *
+ * For the 82543 silicon, we need to set the MAC to match the settings
+ * of the PHY, even if the PHY is auto-negotiating.
+ **/
+static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_config_mac_to_phy_82543");
+
+ if (!(hw->phy.ops.read_reg))
+ goto out;
+
+ /* Set the bits to force speed and duplex */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+ /*
+ * Set up duplex in the Device Control and Transmit Control
+ * registers depending on negotiated values.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ ctrl &= ~E1000_CTRL_FD;
+ if (phy_data & M88E1000_PSSR_DPLX)
+ ctrl |= E1000_CTRL_FD;
+
+ e1000_config_collision_dist_generic(hw);
+
+ /*
+ * Set up speed in the Device Control register depending on
+ * negotiated values.
+ */
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ ctrl |= E1000_CTRL_SPD_1000;
+ else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ ctrl |= E1000_CTRL_SPD_100;
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_vfta_82543 - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: the 32-bit offset in which to write the value to.
+ * @value: the 32-bit value to write at location offset.
+ *
+ * This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ * table.
+ **/
+static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ u32 temp;
+
+ DEBUGFUNC("e1000_write_vfta_82543");
+
+ if ((hw->mac.type == e1000_82544) && (offset & 1)) {
+ temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
+ E1000_WRITE_FLUSH(hw);
+ } else {
+ e1000_write_vfta_generic(hw, offset, value);
+ }
+}
+
+/**
+ * e1000_led_on_82543 - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on.
+ **/
+static s32 e1000_led_on_82543(struct e1000_hw *hw)
+{
+ u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGFUNC("e1000_led_on_82543");
+
+ if (hw->mac.type == e1000_82544 &&
+ hw->phy.media_type == e1000_media_type_copper) {
+ /* Clear SW-definable Pin 0 to turn on the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else {
+ /* Fiber 82544 and all 82543 use this method */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ }
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off_82543 - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off.
+ **/
+static s32 e1000_led_off_82543(struct e1000_hw *hw)
+{
+ u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGFUNC("e1000_led_off_82543");
+
+ if (hw->mac.type == e1000_82544 &&
+ hw->phy.media_type == e1000_media_type_copper) {
+ /* Set SW-definable Pin 0 to turn off the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else {
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ }
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82543");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+}
+
+/**
+ * e1000_read_mac_addr_82543 - Read device MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the device MAC address from the EEPROM and stores the value.
+ * Since devices with two ports use the same EEPROM, we increment the
+ * last bit in the MAC address for the second port.
+ *
+ **/
+s32 e1000_read_mac_addr_82543(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 offset, nvm_data, i;
+
+ DEBUGFUNC("e1000_read_mac_addr");
+
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = i >> 1;
+ ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+ hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
+ }
+
+ /* Flip last bit of mac address if we're on second port */
+ if (hw->bus.func == E1000_FUNC_1)
+ hw->mac.perm_addr[5] ^= 1;
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+out:
+ return ret_val;
+}
diff --git a/freebsd/dev/e1000/e1000_82543.h b/freebsd/dev/e1000/e1000_82543.h
new file mode 100644
index 00000000..a95ad502
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_82543.h
@@ -0,0 +1,57 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2008, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_82543_HH_
+#define _E1000_82543_HH_
+
+#define PHY_PREAMBLE 0xFFFFFFFF
+#define PHY_PREAMBLE_SIZE 32
+#define PHY_SOF 0x1
+#define PHY_OP_READ 0x2
+#define PHY_OP_WRITE 0x1
+#define PHY_TURNAROUND 0x2
+
+#define TBI_COMPAT_ENABLED 0x1 /* Global "knob" for the workaround */
+/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */
+#define TBI_SBP_ENABLED 0x2
+
+void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
+ struct e1000_hw_stats *stats,
+ u32 frame_len, u8 *mac_addr,
+ u32 max_frame_size);
+void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw,
+ bool state);
+bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw);
+
+#endif
diff --git a/freebsd/dev/e1000/e1000_82571.c b/freebsd/dev/e1000/e1000_82571.c
new file mode 100644
index 00000000..6b969e23
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_82571.c
@@ -0,0 +1,2005 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+/*
+ * 82571EB Gigabit Ethernet Controller
+ * 82571EB Gigabit Ethernet Controller (Copper)
+ * 82571EB Gigabit Ethernet Controller (Fiber)
+ * 82571EB Dual Port Gigabit Mezzanine Adapter
+ * 82571EB Quad Port Gigabit Mezzanine Adapter
+ * 82571PT Gigabit PT Quad Port Server ExpressModule
+ * 82572EI Gigabit Ethernet Controller (Copper)
+ * 82572EI Gigabit Ethernet Controller (Fiber)
+ * 82572EI Gigabit Ethernet Controller
+ * 82573V Gigabit Ethernet Controller (Copper)
+ * 82573E Gigabit Ethernet Controller (Copper)
+ * 82573L Gigabit Ethernet Controller
+ * 82574L Gigabit Network Connection
+ * 82583V Gigabit Network Connection
+ */
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+static s32 e1000_init_phy_params_82571(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82571(struct e1000_hw *hw);
+static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw);
+static void e1000_release_nvm_82571(struct e1000_hw *hw);
+static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw);
+static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw);
+static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw);
+static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_reset_hw_82571(struct e1000_hw *hw);
+static s32 e1000_init_hw_82571(struct e1000_hw *hw);
+static void e1000_clear_vfta_82571(struct e1000_hw *hw);
+static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
+static s32 e1000_led_on_82574(struct e1000_hw *hw);
+static s32 e1000_setup_link_82571(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
+static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
+static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data);
+static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
+static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw);
+static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
+static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
+static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
+static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw);
+static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
+static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
+static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
+static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw);
+static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
+
+/**
+ * e1000_init_phy_params_82571 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_dev_spec_82571 *dev_spec = &hw->dev_spec._82571;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_82571");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ goto out;
+ }
+
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
+
+ phy->ops.check_reset_block = e1000_check_reset_block_generic;
+ phy->ops.reset = e1000_phy_hw_reset_generic;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82571;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_82571;
+
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ phy->type = e1000_phy_igp_2;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_82571;
+ phy->ops.get_info = e1000_get_phy_info_igp;
+ phy->ops.check_polarity = e1000_check_polarity_igp;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+ phy->ops.read_reg = e1000_read_phy_reg_igp;
+ phy->ops.write_reg = e1000_write_phy_reg_igp;
+ phy->ops.acquire = e1000_get_hw_semaphore_82571;
+ phy->ops.release = e1000_put_hw_semaphore_82571;
+
+ /* This uses above function pointers */
+ ret_val = e1000_get_phy_id_82571(hw);
+
+ /* Verify PHY ID */
+ if (phy->id != IGP01E1000_I_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
+ goto out;
+ }
+ break;
+ case e1000_82573:
+ phy->type = e1000_phy_m88;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.read_reg = e1000_read_phy_reg_m88;
+ phy->ops.write_reg = e1000_write_phy_reg_m88;
+ phy->ops.acquire = e1000_get_hw_semaphore_82571;
+ phy->ops.release = e1000_put_hw_semaphore_82571;
+
+ /* This uses above function pointers */
+ ret_val = e1000_get_phy_id_82571(hw);
+
+ /* Verify PHY ID */
+ if (phy->id != M88E1111_I_PHY_ID) {
+ ret_val = -E1000_ERR_PHY;
+ DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
+ goto out;
+ }
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
+
+ phy->type = e1000_phy_bm;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.read_reg = e1000_read_phy_reg_bm2;
+ phy->ops.write_reg = e1000_write_phy_reg_bm2;
+ phy->ops.acquire = e1000_get_hw_semaphore_82574;
+ phy->ops.release = e1000_put_hw_semaphore_82574;
+
+ /* This uses above function pointers */
+ ret_val = e1000_get_phy_id_82571(hw);
+ /* Verify PHY ID */
+ if (phy->id != BME1000_E_PHY_ID_R2) {
+ ret_val = -E1000_ERR_PHY;
+ DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
+ goto out;
+ }
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ break;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82571 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_82571");
+
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->page_size = 32;
+ nvm->address_bits = 16;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->page_size = 8;
+ nvm->address_bits = 8;
+ break;
+ default:
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+ break;
+ }
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ if (((eecd >> 15) & 0x3) == 0x3) {
+ nvm->type = e1000_nvm_flash_hw;
+ nvm->word_size = 2048;
+ /*
+ * Autonomous Flash update bit must be cleared due
+ * to Flash update issue.
+ */
+ eecd &= ~E1000_EECD_AUPDEN;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ break;
+ }
+ /* Fall Through */
+ default:
+ nvm->type = e1000_nvm_eeprom_spi;
+ size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
+ /*
+ * Added to a constant, "size" becomes the left-shift value
+ * for setting word_size.
+ */
+ size += NVM_WORD_SIZE_BASE_SHIFT;
+
+ /* EEPROM access above 16k is unsupported */
+ if (size > 14)
+ size = 14;
+ nvm->word_size = 1 << size;
+ break;
+ }
+
+ /* Function Pointers */
+ switch (hw->mac.type) {
+ case e1000_82574:
+ case e1000_82583:
+ nvm->ops.acquire = e1000_get_hw_semaphore_82574;
+ nvm->ops.release = e1000_put_hw_semaphore_82574;
+ break;
+ default:
+ nvm->ops.acquire = e1000_acquire_nvm_82571;
+ nvm->ops.release = e1000_release_nvm_82571;
+ break;
+ }
+ nvm->ops.read = e1000_read_nvm_eerd;
+ nvm->ops.update = e1000_update_nvm_checksum_82571;
+ nvm->ops.validate = e1000_validate_nvm_checksum_82571;
+ nvm->ops.valid_led_default = e1000_valid_led_default_82571;
+ nvm->ops.write = e1000_write_nvm_82571;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82571 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 swsm = 0;
+ u32 swsm2 = 0;
+ bool force_clear_smbi = FALSE;
+
+ DEBUGFUNC("e1000_init_mac_params_82571");
+
+ /* Set media type and media-dependent function pointers */
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82571EB_FIBER:
+ case E1000_DEV_ID_82572EI_FIBER:
+ case E1000_DEV_ID_82571EB_QUAD_FIBER:
+ hw->phy.media_type = e1000_media_type_fiber;
+ mac->ops.setup_physical_interface =
+ e1000_setup_fiber_serdes_link_82571;
+ mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
+ mac->ops.get_link_up_info =
+ e1000_get_speed_and_duplex_fiber_serdes_generic;
+ break;
+ case E1000_DEV_ID_82571EB_SERDES:
+ case E1000_DEV_ID_82571EB_SERDES_DUAL:
+ case E1000_DEV_ID_82571EB_SERDES_QUAD:
+ case E1000_DEV_ID_82572EI_SERDES:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ mac->ops.setup_physical_interface =
+ e1000_setup_fiber_serdes_link_82571;
+ mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
+ mac->ops.get_link_up_info =
+ e1000_get_speed_and_duplex_fiber_serdes_generic;
+ break;
+ default:
+ hw->phy.media_type = e1000_media_type_copper;
+ mac->ops.setup_physical_interface =
+ e1000_setup_copper_link_82571;
+ mac->ops.check_for_link = e1000_check_for_copper_link_generic;
+ mac->ops.get_link_up_info =
+ e1000_get_speed_and_duplex_copper_generic;
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = TRUE;
+ /* Adaptive IFS supported */
+ mac->adaptive_ifs = TRUE;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_82571;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_82571;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_82571;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_82571;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_82571;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* blink LED */
+ mac->ops.blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_generic;
+ /* turn off LED */
+ mac->ops.led_off = e1000_led_off_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571;
+
+ /* MAC-specific function pointers */
+ switch (hw->mac.type) {
+ case e1000_82573:
+ mac->ops.set_lan_id = e1000_set_lan_id_single_port;
+ mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
+ mac->ops.led_on = e1000_led_on_generic;
+
+ /* FWSM register */
+ mac->has_fwsm = TRUE;
+ /*
+ * ARC supported; valid only if manageability features are
+ * enabled.
+ */
+ mac->arc_subsystem_valid =
+ (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
+ ? TRUE : FALSE;
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ mac->ops.set_lan_id = e1000_set_lan_id_single_port;
+ mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
+ mac->ops.led_on = e1000_led_on_82574;
+ break;
+ default:
+ mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
+ mac->ops.led_on = e1000_led_on_generic;
+
+ /* FWSM register */
+ mac->has_fwsm = TRUE;
+ break;
+ }
+
+ /*
+ * Ensure that the inter-port SWSM.SMBI lock bit is clear before
+ * first NVM or PHY acess. This should be done for single-port
+ * devices, and for one port only on dual-port devices so that
+ * for those devices we can still use the SMBI lock to synchronize
+ * inter-port accesses to the PHY & NVM.
+ */
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ swsm2 = E1000_READ_REG(hw, E1000_SWSM2);
+
+ if (!(swsm2 & E1000_SWSM2_LOCK)) {
+ /* Only do this for the first interface on this card */
+ E1000_WRITE_REG(hw, E1000_SWSM2,
+ swsm2 | E1000_SWSM2_LOCK);
+ force_clear_smbi = TRUE;
+ } else
+ force_clear_smbi = FALSE;
+ break;
+ default:
+ force_clear_smbi = TRUE;
+ break;
+ }
+
+ if (force_clear_smbi) {
+ /* Make sure SWSM.SMBI is clear */
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ if (swsm & E1000_SWSM_SMBI) {
+ /* This bit should not be set on a first interface, and
+ * indicates that the bootagent or EFI code has
+ * improperly left this bit enabled
+ */
+ DEBUGOUT("Please update your 82571 Bootagent\n");
+ }
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI);
+ }
+
+ /*
+ * Initialze device specific counter of SMBI acquisition
+ * timeouts.
+ */
+ hw->dev_spec._82571.smb_counter = 0;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_82571 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82571");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_82571;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82571;
+ hw->phy.ops.init_params = e1000_init_phy_params_82571;
+}
+
+/**
+ * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY registers and stores the PHY ID and possibly the PHY
+ * revision in the hardware structure.
+ **/
+static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_id = 0;
+
+ DEBUGFUNC("e1000_get_phy_id_82571");
+
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ /*
+ * The 82571 firmware may still be configuring the PHY.
+ * In this case, we cannot access the PHY until the
+ * configuration is done. So we explicitly set the
+ * PHY ID.
+ */
+ phy->id = IGP01E1000_I_PHY_ID;
+ break;
+ case e1000_82573:
+ ret_val = e1000_get_phy_id(hw);
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
+ if (ret_val)
+ goto out;
+
+ phy->id = (u32)(phy_id << 16);
+ usec_delay(20);
+ ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
+ if (ret_val)
+ goto out;
+
+ phy->id |= (u32)(phy_id);
+ phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ break;
+ }
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM
+ **/
+static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
+{
+ u32 swsm;
+ s32 ret_val = E1000_SUCCESS;
+ s32 sw_timeout = hw->nvm.word_size + 1;
+ s32 fw_timeout = hw->nvm.word_size + 1;
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_get_hw_semaphore_82571");
+
+ /*
+ * If we have timedout 3 times on trying to acquire
+ * the inter-port SMBI semaphore, there is old code
+ * operating on the other port, and it is not
+ * releasing SMBI. Modify the number of times that
+ * we try for the semaphore to interwork with this
+ * older code.
+ */
+ if (hw->dev_spec._82571.smb_counter > 2)
+ sw_timeout = 1;
+
+ /* Get the SW semaphore */
+ while (i < sw_timeout) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ if (!(swsm & E1000_SWSM_SMBI))
+ break;
+
+ usec_delay(50);
+ i++;
+ }
+
+ if (i == sw_timeout) {
+ DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+ hw->dev_spec._82571.smb_counter++;
+ }
+ /* Get the FW semaphore. */
+ for (i = 0; i < fw_timeout; i++) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+ /* Semaphore acquired if bit latched */
+ if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+ break;
+
+ usec_delay(50);
+ }
+
+ if (i == fw_timeout) {
+ /* Release semaphores */
+ e1000_put_hw_semaphore_82571(hw);
+ DEBUGOUT("Driver can't access the NVM\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_put_hw_semaphore_82571 - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used to access the PHY or NVM
+ **/
+static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
+{
+ u32 swsm;
+
+ DEBUGFUNC("e1000_put_hw_semaphore_generic");
+
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+ swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/**
+ * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore during reset.
+ *
+ **/
+static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
+{
+ u32 extcnf_ctrl;
+ s32 ret_val = E1000_SUCCESS;
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_get_hw_semaphore_82573");
+
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+ do {
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+ break;
+
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+ msec_delay(2);
+ i++;
+ } while (i < MDIO_OWNERSHIP_TIMEOUT);
+
+ if (i == MDIO_OWNERSHIP_TIMEOUT) {
+ /* Release semaphores */
+ e1000_put_hw_semaphore_82573(hw);
+ DEBUGOUT("Driver can't access the PHY\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_put_hw_semaphore_82573 - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used during reset.
+ *
+ **/
+static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
+{
+ u32 extcnf_ctrl;
+
+ DEBUGFUNC("e1000_put_hw_semaphore_82573");
+
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+}
+
+/**
+ * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM.
+ *
+ **/
+static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_hw_semaphore_82574");
+
+ E1000_MUTEX_LOCK(&hw->dev_spec._82571.swflag_mutex);
+ ret_val = e1000_get_hw_semaphore_82573(hw);
+ if (ret_val)
+ E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
+ return ret_val;
+}
+
+/**
+ * e1000_put_hw_semaphore_82574 - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used to access the PHY or NVM
+ *
+ **/
+static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_put_hw_semaphore_82574");
+
+ e1000_put_hw_semaphore_82573(hw);
+ E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
+}
+
+/**
+ * e1000_acquire_nvm_82571 - Request for access to the EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * To gain access to the EEPROM, first we must obtain a hardware semaphore.
+ * Then for non-82573 hardware, set the EEPROM access request bit and wait
+ * for EEPROM access grant bit. If the access grant bit is not set, release
+ * hardware semaphore.
+ **/
+static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_acquire_nvm_82571");
+
+ ret_val = e1000_get_hw_semaphore_82571(hw);
+ if (ret_val)
+ goto out;
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+ break;
+ default:
+ ret_val = e1000_acquire_nvm_generic(hw);
+ break;
+ }
+
+ if (ret_val)
+ e1000_put_hw_semaphore_82571(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_nvm_82571 - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+static void e1000_release_nvm_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_82571");
+
+ e1000_release_nvm_generic(hw);
+ e1000_put_hw_semaphore_82571(hw);
+}
+
+/**
+ * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function, the
+ * EEPROM will most likely contain an invalid checksum.
+ **/
+static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_nvm_82571");
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
+ break;
+ case e1000_82571:
+ case e1000_82572:
+ ret_val = e1000_write_nvm_spi(hw, offset, words, data);
+ break;
+ default:
+ ret_val = -E1000_ERR_NVM;
+ break;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ **/
+static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+{
+ u32 eecd;
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_82571");
+
+ ret_val = e1000_update_nvm_checksum_generic(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * If our nvm is an EEPROM, then we're done
+ * otherwise, commit the checksum to the flash NVM.
+ */
+ if (hw->nvm.type != e1000_nvm_flash_hw)
+ goto out;
+
+ /* Check for pending operations. */
+ for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+ msec_delay(1);
+ if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0)
+ break;
+ }
+
+ if (i == E1000_FLASH_UPDATES) {
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ /* Reset the firmware if using STM opcode. */
+ if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) {
+ /*
+ * The enabling of and the actual reset must be done
+ * in two write cycles.
+ */
+ E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET);
+ }
+
+ /* Commit the write to flash */
+ eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+
+ for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+ msec_delay(1);
+ if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0)
+ break;
+ }
+
+ if (i == E1000_FLASH_UPDATES) {
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_validate_nvm_checksum_82571");
+
+ if (hw->nvm.type == e1000_nvm_flash_hw)
+ e1000_fix_nvm_checksum_82571(hw);
+
+ return e1000_validate_nvm_checksum_generic(hw);
+}
+
+/**
+ * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * After checking for invalid values, poll the EEPROM to ensure the previous
+ * command has completed before trying to write the next word. After write
+ * poll for completion.
+ *
+ * If e1000_update_nvm_checksum is not called after this function, the
+ * EEPROM will most likely contain an invalid checksum.
+ **/
+static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i, eewr = 0;
+ s32 ret_val = 0;
+
+ DEBUGFUNC("e1000_write_nvm_eewr_82571");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ for (i = 0; i < words; i++) {
+ eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
+ ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
+ E1000_NVM_RW_REG_START;
+
+ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+ if (ret_val)
+ break;
+
+ E1000_WRITE_REG(hw, E1000_EEWR, eewr);
+
+ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+ if (ret_val)
+ break;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cfg_done_82571 - Poll for configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Reads the management control register for the config done bit to be set.
+ **/
+static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
+{
+ s32 timeout = PHY_CFG_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_get_cfg_done_82571");
+
+ while (timeout) {
+ if (E1000_READ_REG(hw, E1000_EEMNGCTL) &
+ E1000_NVM_CFG_DONE_PORT_0)
+ break;
+ msec_delay(1);
+ timeout--;
+ }
+ if (!timeout) {
+ DEBUGOUT("MNG configuration cycle has not completed.\n");
+ ret_val = -E1000_ERR_RESET;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When activating LPLU
+ * this function also disables smart speed and vice versa. LPLU will not be
+ * activated unless the device autonegotiation advertisement meets standards
+ * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
+ * pointer entry point only called by PHY setup routines.
+ **/
+static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_82571");
+
+ if (!(phy->ops.read_reg))
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ goto out;
+
+ if (active) {
+ data |= IGP02E1000_PM_D0_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else {
+ data &= ~IGP02E1000_PM_D0_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_82571 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.
+ **/
+static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
+{
+ u32 ctrl, ctrl_ext, icr;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_reset_hw_82571");
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val)
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ /*
+ * Must acquire the MDIO ownership before MAC reset.
+ * Ownership defaults to firmware after a reset.
+ */
+ switch (hw->mac.type) {
+ case e1000_82573:
+ ret_val = e1000_get_hw_semaphore_82573(hw);
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ ret_val = e1000_get_hw_semaphore_82574(hw);
+ break;
+ default:
+ break;
+ }
+ if (ret_val)
+ DEBUGOUT("Cannot acquire MDIO ownership\n");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ /* Must release MDIO ownership and mutex after MAC reset. */
+ switch (hw->mac.type) {
+ case e1000_82574:
+ case e1000_82583:
+ e1000_put_hw_semaphore_82574(hw);
+ break;
+ default:
+ break;
+ }
+
+ if (hw->nvm.type == e1000_nvm_flash_hw) {
+ usec_delay(10);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val)
+ /* We don't want to continue accessing MAC registers. */
+ goto out;
+
+ /*
+ * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
+ * Need to wait for Phy configuration completion before accessing
+ * NVM and Phy.
+ */
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ msec_delay(25);
+ break;
+ default:
+ break;
+ }
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ if (hw->mac.type == e1000_82571) {
+ /* Install any alternate MAC address into RAR0 */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+ if (ret_val)
+ goto out;
+
+ e1000_set_laa_state_82571(hw, TRUE);
+ }
+
+ /* Reinitialize the 82571 serdes link state machine */
+ if (hw->phy.media_type == e1000_media_type_internal_serdes)
+ hw->mac.serdes_link_state = e1000_serdes_link_down;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82571 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+static s32 e1000_init_hw_82571(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 reg_data;
+ s32 ret_val;
+ u16 i, rar_count = mac->rar_entry_count;
+
+ DEBUGFUNC("e1000_init_hw_82571");
+
+ e1000_initialize_hw_bits_82571(hw);
+
+ /* Initialize identification LED */
+ ret_val = mac->ops.id_led_init(hw);
+ if (ret_val)
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ mac->ops.clear_vfta(hw);
+
+ /* Setup the receive address. */
+ /*
+ * If, however, a locally administered address was assigned to the
+ * 82571, we must reserve a RAR for it to work around an issue where
+ * resetting one port will reload the MAC on the other port.
+ */
+ if (e1000_get_laa_state_82571(hw))
+ rar_count--;
+ e1000_init_rx_addrs_generic(hw, rar_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ /* Set the transmit descriptor write-back policy */
+ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB |
+ E1000_TXDCTL_COUNT_DESC;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
+
+ /* ...for both queues. */
+ switch (mac->type) {
+ case e1000_82573:
+ e1000_enable_tx_pkt_filtering_generic(hw);
+ /* fall through */
+ case e1000_82574:
+ case e1000_82583:
+ reg_data = E1000_READ_REG(hw, E1000_GCR);
+ reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+ E1000_WRITE_REG(hw, E1000_GCR, reg_data);
+ break;
+ default:
+ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB |
+ E1000_TXDCTL_COUNT_DESC;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
+ break;
+ }
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82571(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
+ * @hw: pointer to the HW structure
+ *
+ * Initializes required hardware-dependent bits needed for normal operation.
+ **/
+static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_initialize_hw_bits_82571");
+
+ /* Transmit Descriptor Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+ /* Transmit Descriptor Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+ /* Transmit Arbitration Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TARC(0));
+ reg &= ~(0xF << 27); /* 30:27 */
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
+ break;
+ default:
+ break;
+ }
+ E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+ /* Transmit Arbitration Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TARC(1));
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ reg &= ~((1 << 29) | (1 << 30));
+ reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
+ if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+ reg &= ~(1 << 28);
+ else
+ reg |= (1 << 28);
+ E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+ break;
+ default:
+ break;
+ }
+
+ /* Device Control */
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg &= ~(1 << 29);
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+ break;
+ default:
+ break;
+ }
+
+ /* Extended Device Control */
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg &= ~(1 << 23);
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+ break;
+ default:
+ break;
+ }
+
+ if (hw->mac.type == e1000_82571) {
+ reg = E1000_READ_REG(hw, E1000_PBA_ECC);
+ reg |= E1000_PBA_ECC_CORR_EN;
+ E1000_WRITE_REG(hw, E1000_PBA_ECC, reg);
+ }
+
+ /*
+ * Workaround for hardware errata.
+ * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
+ */
+ if ((hw->mac.type == e1000_82571) ||
+ (hw->mac.type == e1000_82572)) {
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+ }
+
+ /* PCI-Ex Control Registers */
+ switch (hw->mac.type) {
+ case e1000_82574:
+ case e1000_82583:
+ reg = E1000_READ_REG(hw, E1000_GCR);
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_GCR, reg);
+
+ /*
+ * Workaround for hardware errata.
+ * apply workaround for hardware errata documented in errata
+ * docs Fixes issue where some error prone or unreliable PCIe
+ * completions are occurring, particularly with ASPM enabled.
+ * Without fix, issue can cause tx timeouts.
+ */
+ reg = E1000_READ_REG(hw, E1000_GCR2);
+ reg |= 1;
+ E1000_WRITE_REG(hw, E1000_GCR2, reg);
+ break;
+ default:
+ break;
+ }
+
+ return;
+}
+
+/**
+ * e1000_clear_vfta_82571 - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * Clears the register array which contains the VLAN filter table by
+ * setting all the values to 0.
+ **/
+static void e1000_clear_vfta_82571(struct e1000_hw *hw)
+{
+ u32 offset;
+ u32 vfta_value = 0;
+ u32 vfta_offset = 0;
+ u32 vfta_bit_in_reg = 0;
+
+ DEBUGFUNC("e1000_clear_vfta_82571");
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ if (hw->mng_cookie.vlan_id != 0) {
+ /*
+ * The VFTA is a 4096b bit-field, each identifying
+ * a single VLAN ID. The following operations
+ * determine which 32b entry (i.e. offset) into the
+ * array we want to set the VLAN ID (i.e. bit) of
+ * the manageability unit.
+ */
+ vfta_offset = (hw->mng_cookie.vlan_id >>
+ E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
+ vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
+ E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
+ }
+ break;
+ default:
+ break;
+ }
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ /*
+ * If the offset we want to clear is the same offset of the
+ * manageability VLAN ID, then clear all bits except that of
+ * the manageability unit.
+ */
+ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
+ E1000_WRITE_FLUSH(hw);
+ }
+}
+
+/**
+ * e1000_check_mng_mode_82574 - Check manageability is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Reads the NVM Initialization Control Word 2 and returns TRUE
+ * (>0) if any manageability is enabled, else FALSE (0).
+ **/
+static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
+{
+ u16 data;
+
+ DEBUGFUNC("e1000_check_mng_mode_82574");
+
+ hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+ return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
+}
+
+/**
+ * e1000_led_on_82574 - Turn LED on
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED on.
+ **/
+static s32 e1000_led_on_82574(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ u32 i;
+
+ DEBUGFUNC("e1000_led_on_82574");
+
+ ctrl = hw->mac.ledctl_mode2;
+ if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) {
+ /*
+ * If no link, then turn LED on by setting the invert bit
+ * for each LED that's "on" (0x0E) in ledctl_mode2.
+ */
+ for (i = 0; i < 4; i++)
+ if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+ E1000_LEDCTL_MODE_LED_ON)
+ ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
+ }
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_phy_82574 - check 82574 phy hung state
+ * @hw: pointer to the HW structure
+ *
+ * Returns whether phy is hung or not
+ **/
+bool e1000_check_phy_82574(struct e1000_hw *hw)
+{
+ u16 status_1kbt = 0;
+ u16 receive_errors = 0;
+ bool phy_hung = FALSE;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_phy_82574");
+
+ /*
+ * Read PHY Receive Error counter first, if its is max - all F's then
+ * read the Base1000T status register If both are max then PHY is hung.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, E1000_RECEIVE_ERROR_COUNTER,
+ &receive_errors);
+ if (ret_val)
+ goto out;
+ if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
+ ret_val = hw->phy.ops.read_reg(hw, E1000_BASE1000T_STATUS,
+ &status_1kbt);
+ if (ret_val)
+ goto out;
+ if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
+ E1000_IDLE_ERROR_COUNT_MASK)
+ phy_hung = TRUE;
+ }
+out:
+ return phy_hung;
+}
+
+
+/**
+ * e1000_setup_link_82571 - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+static s32 e1000_setup_link_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_setup_link_82571");
+
+ /*
+ * 82573 does not have a word in the NVM to determine
+ * the default flow control setting, so we explicitly
+ * set it to full.
+ */
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ if (hw->fc.requested_mode == e1000_fc_default)
+ hw->fc.requested_mode = e1000_fc_full;
+ break;
+ default:
+ break;
+ }
+ return e1000_setup_link_generic(hw);
+}
+
+/**
+ * e1000_setup_copper_link_82571 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Configures the link for auto-neg or forced speed and duplex. Then we check
+ * for link, once link is established calls to configure collision distance
+ * and flow control are called.
+ **/
+static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_copper_link_82571");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ switch (hw->phy.type) {
+ case e1000_phy_m88:
+ case e1000_phy_bm:
+ ret_val = e1000_copper_link_setup_m88(hw);
+ break;
+ case e1000_phy_igp_2:
+ ret_val = e1000_copper_link_setup_igp(hw);
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ break;
+ }
+
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber and serdes links.
+ * Upon successful setup, poll for link.
+ **/
+static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_82571");
+
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ /*
+ * If SerDes loopback mode is entered, there is no form
+ * of reset to take the adapter out of that mode. So we
+ * have to explicitly take the adapter out of loopback
+ * mode. This prevents drivers from twiddling their thumbs
+ * if another tool failed to take it out of loopback mode.
+ */
+ E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+ break;
+ default:
+ break;
+ }
+
+ return e1000_setup_fiber_serdes_link_generic(hw);
+}
+
+/**
+ * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
+ * @hw: pointer to the HW structure
+ *
+ * Reports the link state as up or down.
+ *
+ * If autonegotiation is supported by the link partner, the link state is
+ * determined by the result of autonegotiation. This is the most likely case.
+ * If autonegotiation is not supported by the link partner, and the link
+ * has a valid signal, force the link up.
+ *
+ * The link state is represented internally here by 4 states:
+ *
+ * 1) down
+ * 2) autoneg_progress
+ * 3) autoneg_complete (the link sucessfully autonegotiated)
+ * 4) forced_up (the link has been forced up, it did not autonegotiate)
+ *
+ **/
+static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw;
+ u32 ctrl;
+ u32 status;
+ u32 txcw;
+ u32 i;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_serdes_link_82571");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
+
+ /* Receiver is synchronized with no invalid bits. */
+ switch (mac->serdes_link_state) {
+ case e1000_serdes_link_autoneg_complete:
+ if (!(status & E1000_STATUS_LU)) {
+ /*
+ * We have lost link, retry autoneg before
+ * reporting link failure
+ */
+ mac->serdes_link_state =
+ e1000_serdes_link_autoneg_progress;
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("AN_UP -> AN_PROG\n");
+ } else {
+ mac->serdes_has_link = TRUE;
+ }
+ break;
+
+ case e1000_serdes_link_forced_up:
+ /*
+ * If we are receiving /C/ ordered sets, re-enable
+ * auto-negotiation in the TXCW register and disable
+ * forced link in the Device Control register in an
+ * attempt to auto-negotiate with our link partner.
+ * If the partner code word is null, stop forcing
+ * and restart auto negotiation.
+ */
+ if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) {
+ /* Enable autoneg, and unforce link up */
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL,
+ (ctrl & ~E1000_CTRL_SLU));
+ mac->serdes_link_state =
+ e1000_serdes_link_autoneg_progress;
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("FORCED_UP -> AN_PROG\n");
+ } else {
+ mac->serdes_has_link = TRUE;
+ }
+ break;
+
+ case e1000_serdes_link_autoneg_progress:
+ if (rxcw & E1000_RXCW_C) {
+ /*
+ * We received /C/ ordered sets, meaning the
+ * link partner has autonegotiated, and we can
+ * trust the Link Up (LU) status bit.
+ */
+ if (status & E1000_STATUS_LU) {
+ mac->serdes_link_state =
+ e1000_serdes_link_autoneg_complete;
+ DEBUGOUT("AN_PROG -> AN_UP\n");
+ mac->serdes_has_link = TRUE;
+ } else {
+ /* Autoneg completed, but failed. */
+ mac->serdes_link_state =
+ e1000_serdes_link_down;
+ DEBUGOUT("AN_PROG -> DOWN\n");
+ }
+ } else {
+ /*
+ * The link partner did not autoneg.
+ * Force link up and full duplex, and change
+ * state to forced.
+ */
+ E1000_WRITE_REG(hw, E1000_TXCW,
+ (mac->txcw & ~E1000_TXCW_ANE));
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after link up. */
+ ret_val =
+ e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error config flow control\n");
+ break;
+ }
+ mac->serdes_link_state =
+ e1000_serdes_link_forced_up;
+ mac->serdes_has_link = TRUE;
+ DEBUGOUT("AN_PROG -> FORCED_UP\n");
+ }
+ break;
+
+ case e1000_serdes_link_down:
+ default:
+ /*
+ * The link was down but the receiver has now gained
+ * valid sync, so lets see if we can bring the link
+ * up.
+ */
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL,
+ (ctrl & ~E1000_CTRL_SLU));
+ mac->serdes_link_state =
+ e1000_serdes_link_autoneg_progress;
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("DOWN -> AN_PROG\n");
+ break;
+ }
+ } else {
+ if (!(rxcw & E1000_RXCW_SYNCH)) {
+ mac->serdes_has_link = FALSE;
+ mac->serdes_link_state = e1000_serdes_link_down;
+ DEBUGOUT("ANYSTATE -> DOWN\n");
+ } else {
+ /*
+ * Check several times, if Sync and Config
+ * both are consistently 1 then simply ignore
+ * the Invalid bit and restart Autoneg
+ */
+ for (i = 0; i < AN_RETRY_COUNT; i++) {
+ usec_delay(10);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+ if ((rxcw & E1000_RXCW_IV) &&
+ !((rxcw & E1000_RXCW_SYNCH) &&
+ (rxcw & E1000_RXCW_C))) {
+ mac->serdes_has_link = FALSE;
+ mac->serdes_link_state =
+ e1000_serdes_link_down;
+ DEBUGOUT("ANYSTATE -> DOWN\n");
+ break;
+ }
+ }
+
+ if (i == AN_RETRY_COUNT) {
+ txcw = E1000_READ_REG(hw, E1000_TXCW);
+ txcw |= E1000_TXCW_ANE;
+ E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+ mac->serdes_link_state =
+ e1000_serdes_link_autoneg_progress;
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("ANYSTATE -> AN_PROG\n");
+ }
+ }
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_valid_led_default_82571 - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration. If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ **/
+static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_82571");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ switch (hw->mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ if (*data == ID_LED_RESERVED_F746)
+ *data = ID_LED_DEFAULT_82573;
+ break;
+ default:
+ if (*data == ID_LED_RESERVED_0000 ||
+ *data == ID_LED_RESERVED_FFFF)
+ *data = ID_LED_DEFAULT;
+ break;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_laa_state_82571 - Get locally administered address state
+ * @hw: pointer to the HW structure
+ *
+ * Retrieve and return the current locally administered address state.
+ **/
+bool e1000_get_laa_state_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_get_laa_state_82571");
+
+ if (hw->mac.type != e1000_82571)
+ return FALSE;
+
+ return hw->dev_spec._82571.laa_is_present;
+}
+
+/**
+ * e1000_set_laa_state_82571 - Set locally administered address state
+ * @hw: pointer to the HW structure
+ * @state: enable/disable locally administered address
+ *
+ * Enable/Disable the current locally administered address state.
+ **/
+void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
+{
+ DEBUGFUNC("e1000_set_laa_state_82571");
+
+ if (hw->mac.type != e1000_82571)
+ return;
+
+ hw->dev_spec._82571.laa_is_present = state;
+
+ /* If workaround is activated... */
+ if (state)
+ /*
+ * Hold a copy of the LAA in RAR[14] This is done so that
+ * between the time RAR[0] gets clobbered and the time it
+ * gets fixed, the actual LAA is in one of the RARs and no
+ * incoming packets directed to this port are dropped.
+ * Eventually the LAA will be in RAR[0] and RAR[14].
+ */
+ e1000_rar_set_generic(hw, hw->mac.addr,
+ hw->mac.rar_entry_count - 1);
+ return;
+}
+
+/**
+ * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Verifies that the EEPROM has completed the update. After updating the
+ * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
+ * the checksum fix is not implemented, we need to set the bit and update
+ * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
+ * we need to return bad checksum.
+ **/
+static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_fix_nvm_checksum_82571");
+
+ if (nvm->type != e1000_nvm_flash_hw)
+ goto out;
+
+ /*
+ * Check bit 4 of word 10h. If it is 0, firmware is done updating
+ * 10h-12h. Checksum may need to be fixed.
+ */
+ ret_val = nvm->ops.read(hw, 0x10, 1, &data);
+ if (ret_val)
+ goto out;
+
+ if (!(data & 0x10)) {
+ /*
+ * Read 0x23 and check bit 15. This bit is a 1
+ * when the checksum has already been fixed. If
+ * the checksum is still wrong and this bit is a
+ * 1, we need to return bad checksum. Otherwise,
+ * we need to set this bit to a 1 and update the
+ * checksum.
+ */
+ ret_val = nvm->ops.read(hw, 0x23, 1, &data);
+ if (ret_val)
+ goto out;
+
+ if (!(data & 0x8000)) {
+ data |= 0x8000;
+ ret_val = nvm->ops.write(hw, 0x23, 1, &data);
+ if (ret_val)
+ goto out;
+ ret_val = nvm->ops.update(hw);
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+
+/**
+ * e1000_read_mac_addr_82571 - Read device MAC address
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_mac_addr_82571");
+
+ if (hw->mac.type == e1000_82571) {
+ /*
+ * If there's an alternate MAC address place it in RAR0
+ * so that it will override the Si installed default perm
+ * address.
+ */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_read_mac_addr_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_mac_info *mac = &hw->mac;
+
+ if (!(phy->ops.check_reset_block))
+ return;
+
+ /* If the management interface is not enabled, then power down */
+ if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82571");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+
+ E1000_READ_REG(hw, E1000_IAC);
+ E1000_READ_REG(hw, E1000_ICRXOC);
+
+ E1000_READ_REG(hw, E1000_ICRXPTC);
+ E1000_READ_REG(hw, E1000_ICRXATC);
+ E1000_READ_REG(hw, E1000_ICTXPTC);
+ E1000_READ_REG(hw, E1000_ICTXATC);
+ E1000_READ_REG(hw, E1000_ICTXQEC);
+ E1000_READ_REG(hw, E1000_ICTXQMTC);
+ E1000_READ_REG(hw, E1000_ICRXDMTC);
+}
diff --git a/freebsd/dev/e1000/e1000_82571.h b/freebsd/dev/e1000/e1000_82571.h
new file mode 100644
index 00000000..afccbf04
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_82571.h
@@ -0,0 +1,65 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_82571_HH_
+#define _E1000_82571_HH_
+
+#define ID_LED_RESERVED_F746 0xF746
+#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
+ (ID_LED_OFF1_ON2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+
+#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
+#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
+
+/* Intr Throttling - RW */
+#define E1000_EITR_82574(_n) (0x000E8 + (0x4 * (_n)))
+
+#define E1000_EIAC_82574 0x000DC /* Ext. Interrupt Auto Clear - RW */
+#define E1000_EIAC_MASK_82574 0x01F00000
+
+#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
+
+#define E1000_RXCFGL 0x0B634 /* TimeSync Rx EtherType & Msg Type Reg - RW */
+
+#define E1000_BASE1000T_STATUS 10
+#define E1000_IDLE_ERROR_COUNT_MASK 0xFF
+#define E1000_RECEIVE_ERROR_COUNTER 21
+#define E1000_RECEIVE_ERROR_MAX 0xFFFF
+bool e1000_check_phy_82574(struct e1000_hw *hw);
+bool e1000_get_laa_state_82571(struct e1000_hw *hw);
+void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state);
+
+#endif
diff --git a/freebsd/dev/e1000/e1000_82575.c b/freebsd/dev/e1000/e1000_82575.c
new file mode 100644
index 00000000..2311377a
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_82575.c
@@ -0,0 +1,1983 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+/*
+ * 82575EB Gigabit Network Connection
+ * 82575EB Gigabit Backplane Connection
+ * 82575GB Gigabit Network Connection
+ * 82575GB Gigabit Network Connection
+ * 82576 Gigabit Network Connection
+ * 82576 Quad Port Gigabit Mezzanine Adapter
+ */
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+static s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
+static s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
+static void e1000_release_phy_82575(struct e1000_hw *hw);
+static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
+static void e1000_release_nvm_82575(struct e1000_hw *hw);
+static s32 e1000_check_for_link_82575(struct e1000_hw *hw);
+static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
+static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+static s32 e1000_init_hw_82575(struct e1000_hw *hw);
+static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
+static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 *data);
+static s32 e1000_reset_hw_82575(struct e1000_hw *hw);
+static s32 e1000_reset_hw_82580(struct e1000_hw *hw);
+static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw,
+ u32 offset, u16 *data);
+static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw,
+ u32 offset, u16 data);
+static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
+static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw);
+static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
+static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
+ u32 offset, u16 data);
+static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
+static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+static s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
+static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
+static s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
+static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
+static void e1000_config_collision_dist_82575(struct e1000_hw *hw);
+static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
+static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
+static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
+static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
+static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
+
+static const u16 e1000_82580_rxpbs_table[] =
+ { 36, 72, 144, 1, 2, 4, 8, 16,
+ 35, 70, 140 };
+#define E1000_82580_RXPBS_TABLE_SIZE \
+ (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
+
+
+/**
+ * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
+ * @hw: pointer to the HW structure
+ *
+ * Called to determine if the I2C pins are being used for I2C or as an
+ * external MDIO interface since the two options are mutually exclusive.
+ **/
+static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
+{
+ u32 reg = 0;
+ bool ext_mdio = FALSE;
+
+ DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
+
+ switch (hw->mac.type) {
+ case e1000_82575:
+ case e1000_82576:
+ reg = E1000_READ_REG(hw, E1000_MDIC);
+ ext_mdio = !!(reg & E1000_MDIC_DEST);
+ break;
+ case e1000_82580:
+ reg = E1000_READ_REG(hw, E1000_MDICNFG);
+ ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
+ break;
+ default:
+ break;
+ }
+ return ext_mdio;
+}
+
+/**
+ * e1000_init_phy_params_82575 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl_ext;
+
+ DEBUGFUNC("e1000_init_phy_params_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ goto out;
+ }
+
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_82575;
+
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
+
+ phy->ops.acquire = e1000_acquire_phy_82575;
+ phy->ops.check_reset_block = e1000_check_reset_block_generic;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
+ phy->ops.release = e1000_release_phy_82575;
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+
+ if (e1000_sgmii_active_82575(hw)) {
+ phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
+ ctrl_ext |= E1000_CTRL_I2C_ENA;
+ } else {
+ phy->ops.reset = e1000_phy_hw_reset_generic;
+ ctrl_ext &= ~E1000_CTRL_I2C_ENA;
+ }
+
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ e1000_reset_mdicnfg_82580(hw);
+
+ if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
+ phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
+ phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
+ } else if (hw->mac.type >= e1000_82580) {
+ phy->ops.read_reg = e1000_read_phy_reg_82580;
+ phy->ops.write_reg = e1000_write_phy_reg_82580;
+ } else {
+ phy->ops.read_reg = e1000_read_phy_reg_igp;
+ phy->ops.write_reg = e1000_write_phy_reg_igp;
+ }
+
+ /* Set phy->phy_addr and phy->id. */
+ ret_val = e1000_get_phy_id_82575(hw);
+
+ /* Verify phy id and set remaining function pointers */
+ switch (phy->id) {
+ case M88E1111_I_PHY_ID:
+ phy->type = e1000_phy_m88;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ break;
+ case IGP03E1000_E_PHY_ID:
+ case IGP04E1000_E_PHY_ID:
+ phy->type = e1000_phy_igp_3;
+ phy->ops.check_polarity = e1000_check_polarity_igp;
+ phy->ops.get_info = e1000_get_phy_info_igp;
+ phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+ break;
+ case I82580_I_PHY_ID:
+ phy->type = e1000_phy_82580;
+ phy->ops.check_polarity = e1000_check_polarity_82577;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82577;
+ phy->ops.get_cable_length = e1000_get_cable_length_82577;
+ phy->ops.get_info = e1000_get_phy_info_82577;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82575 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_82575");
+
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->page_size = 32;
+ nvm->address_bits = 16;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->page_size = 8;
+ nvm->address_bits = 8;
+ break;
+ default:
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+ break;
+ }
+
+ nvm->type = e1000_nvm_eeprom_spi;
+
+ size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
+
+ /*
+ * Added to a constant, "size" becomes the left-shift value
+ * for setting word_size.
+ */
+ size += NVM_WORD_SIZE_BASE_SHIFT;
+
+ /* EEPROM access above 16k is unsupported */
+ if (size > 14)
+ size = 14;
+ nvm->word_size = 1 << size;
+
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_82575;
+ nvm->ops.read = e1000_read_nvm_eerd;
+ nvm->ops.release = e1000_release_nvm_82575;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_82575;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.write = e1000_write_nvm_spi;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82575 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+ u32 ctrl_ext = 0;
+
+ DEBUGFUNC("e1000_init_mac_params_82575");
+
+ /* Set media type */
+ /*
+ * The 82575 uses bits 22:23 for link mode. The mode can be changed
+ * based on the EEPROM. We cannot rely upon device ID. There
+ * is no distinguishable difference between fiber and internal
+ * SerDes mode on the 82575. There can be an external PHY attached
+ * on the SGMII interface. For this, we'll set sgmii_active to TRUE.
+ */
+ hw->phy.media_type = e1000_media_type_copper;
+ dev_spec->sgmii_active = FALSE;
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
+ case E1000_CTRL_EXT_LINK_MODE_SGMII:
+ dev_spec->sgmii_active = TRUE;
+ break;
+ case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
+ case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ break;
+ default:
+ break;
+ }
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set uta register count */
+ mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
+ if (mac->type == e1000_82576)
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
+ if (mac->type == e1000_82580)
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = TRUE;
+ /* FWSM register */
+ mac->has_fwsm = TRUE;
+ /* ARC supported; valid only if manageability features are enabled. */
+ mac->arc_subsystem_valid =
+ (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
+ ? TRUE : FALSE;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
+ /* reset */
+ if (mac->type >= e1000_82580)
+ mac->ops.reset_hw = e1000_reset_hw_82580;
+ else
+ mac->ops.reset_hw = e1000_reset_hw_82575;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_82575;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_generic;
+ /* physical interface link setup */
+ mac->ops.setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82575
+ : e1000_setup_serdes_link_82575;
+ /* physical interface shutdown */
+ mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
+ /* physical interface power up */
+ mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
+ /* check for link */
+ mac->ops.check_for_link = e1000_check_for_link_82575;
+ /* receive address register setting */
+ mac->ops.rar_set = e1000_rar_set_generic;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
+ /* configure collision distance */
+ mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* blink LED */
+ mac->ops.blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_generic;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.led_off = e1000_led_off_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
+
+ /* set lan id for port to determine which phy lock to use */
+ hw->mac.ops.set_lan_id(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_82575 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82575");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_82575;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
+ hw->phy.ops.init_params = e1000_init_phy_params_82575;
+ hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
+}
+
+/**
+ * e1000_acquire_phy_82575 - Acquire rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * Acquire access rights to the correct PHY.
+ **/
+static s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
+{
+ u16 mask = E1000_SWFW_PHY0_SM;
+
+ DEBUGFUNC("e1000_acquire_phy_82575");
+
+ if (hw->bus.func == E1000_FUNC_1)
+ mask = E1000_SWFW_PHY1_SM;
+ else if (hw->bus.func == E1000_FUNC_2)
+ mask = E1000_SWFW_PHY2_SM;
+ else if (hw->bus.func == E1000_FUNC_3)
+ mask = E1000_SWFW_PHY3_SM;
+
+ return e1000_acquire_swfw_sync_82575(hw, mask);
+}
+
+/**
+ * e1000_release_phy_82575 - Release rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * A wrapper to release access rights to the correct PHY.
+ **/
+static void e1000_release_phy_82575(struct e1000_hw *hw)
+{
+ u16 mask = E1000_SWFW_PHY0_SM;
+
+ DEBUGFUNC("e1000_release_phy_82575");
+
+ if (hw->bus.func == E1000_FUNC_1)
+ mask = E1000_SWFW_PHY1_SM;
+ else if (hw->bus.func == E1000_FUNC_2)
+ mask = E1000_SWFW_PHY2_SM;
+ else if (hw->bus.func == E1000_FUNC_3)
+ mask = E1000_SWFW_PHY3_SM;
+
+ e1000_release_swfw_sync_82575(hw, mask);
+}
+
+/**
+ * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset using the serial gigabit media independent
+ * interface and stores the retrieved information in data.
+ **/
+static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 *data)
+{
+ s32 ret_val = -E1000_ERR_PARAM;
+
+ DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
+
+ if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+ DEBUGOUT1("PHY Address %u is out of range\n", offset);
+ goto out;
+ }
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset using the serial gigabit
+ * media independent interface.
+ **/
+static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 data)
+{
+ s32 ret_val = -E1000_ERR_PARAM;
+
+ DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
+
+ if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ goto out;
+ }
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_id_82575 - Retrieve PHY addr and id
+ * @hw: pointer to the HW structure
+ *
+ * Retrieves the PHY address and ID for both PHY's which do and do not use
+ * sgmi interface.
+ **/
+static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_id;
+ u32 ctrl_ext;
+ u32 mdic;
+
+ DEBUGFUNC("e1000_get_phy_id_82575");
+
+ /*
+ * For SGMII PHYs, we try the list of possible addresses until
+ * we find one that works. For non-SGMII PHYs
+ * (e.g. integrated copper PHYs), an address of 1 should
+ * work. The result of this function should mean phy->phy_addr
+ * and phy->id are set correctly.
+ */
+ if (!e1000_sgmii_active_82575(hw)) {
+ phy->addr = 1;
+ ret_val = e1000_get_phy_id(hw);
+ goto out;
+ }
+
+ if (e1000_sgmii_uses_mdio_82575(hw)) {
+ switch (hw->mac.type) {
+ case e1000_82575:
+ case e1000_82576:
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
+ mdic &= E1000_MDIC_PHY_MASK;
+ phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
+ break;
+ case e1000_82580:
+ mdic = E1000_READ_REG(hw, E1000_MDICNFG);
+ mdic &= E1000_MDICNFG_PHY_MASK;
+ phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ break;
+ }
+ ret_val = e1000_get_phy_id(hw);
+ goto out;
+ }
+
+ /* Power on sgmii phy if it is disabled */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+ ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(300);
+
+ /*
+ * The address field in the I2CCMD register is 3 bits and 0 is invalid.
+ * Therefore, we need to test 1-7
+ */
+ for (phy->addr = 1; phy->addr < 8; phy->addr++) {
+ ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
+ if (ret_val == E1000_SUCCESS) {
+ DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
+ phy_id,
+ phy->addr);
+ /*
+ * At the time of this writing, The M88 part is
+ * the only supported SGMII PHY product.
+ */
+ if (phy_id == M88_VENDOR)
+ break;
+ } else {
+ DEBUGOUT1("PHY address %u was unreadable\n",
+ phy->addr);
+ }
+ }
+
+ /* A valid PHY type couldn't be found. */
+ if (phy->addr == 8) {
+ phy->addr = 0;
+ ret_val = -E1000_ERR_PHY;
+ } else {
+ ret_val = e1000_get_phy_id(hw);
+ }
+
+ /* restore previous sfp cage power state */
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Resets the PHY using the serial gigabit media independent interface.
+ **/
+static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
+
+ /*
+ * This isn't a TRUE "hard" reset, but is the only reset
+ * available to us at this time.
+ */
+
+ DEBUGOUT("Soft resetting SGMII attached PHY...\n");
+
+ if (!(hw->phy.ops.write_reg))
+ goto out;
+
+ /*
+ * SFP documentation requires the following to configure the SPF module
+ * to work on SGMII. No further documentation is given.
+ */
+ ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.commit(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_82575");
+
+ if (!(hw->phy.ops.read_reg))
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ goto out;
+
+ if (active) {
+ data |= IGP02E1000_PM_D0_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else {
+ data &= ~IGP02E1000_PM_D0_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_acquire_nvm_82575 - Request for access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the necessary semaphores for exclusive access to the EEPROM.
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_acquire_nvm_82575");
+
+ ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_acquire_nvm_generic(hw);
+
+ if (ret_val)
+ e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_nvm_82575 - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit,
+ * then release the semaphores acquired.
+ **/
+static void e1000_release_nvm_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_82575");
+
+ e1000_release_nvm_generic(hw);
+ e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
+ * will also specify which port we're acquiring the lock for.
+ **/
+static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+ u32 swmask = mask;
+ u32 fwmask = mask << 16;
+ s32 ret_val = E1000_SUCCESS;
+ s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
+
+ DEBUGFUNC("e1000_acquire_swfw_sync_82575");
+
+ while (i < timeout) {
+ if (e1000_get_hw_semaphore_generic(hw)) {
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ if (!(swfw_sync & (fwmask | swmask)))
+ break;
+
+ /*
+ * Firmware currently using resource (fwmask)
+ * or other software thread using resource (swmask)
+ */
+ e1000_put_hw_semaphore_generic(hw);
+ msec_delay_irq(5);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync |= swmask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Release the SW/FW semaphore used to access the PHY or NVM. The mask
+ * will also specify which port we're releasing the lock for.
+ **/
+static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+
+ DEBUGFUNC("e1000_release_swfw_sync_82575");
+
+ while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS);
+ /* Empty */
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ swfw_sync &= ~mask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+}
+
+/**
+ * e1000_get_cfg_done_82575 - Read config done bit
+ * @hw: pointer to the HW structure
+ *
+ * Read the management control register for the config done bit for
+ * completion status. NOTE: silicon which is EEPROM-less will fail trying
+ * to read the config done bit, so an error is *ONLY* logged and returns
+ * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
+ * would not be able to be reset or change link.
+ **/
+static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
+{
+ s32 timeout = PHY_CFG_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+ u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+ DEBUGFUNC("e1000_get_cfg_done_82575");
+
+ if (hw->bus.func == E1000_FUNC_1)
+ mask = E1000_NVM_CFG_DONE_PORT_1;
+ else if (hw->bus.func == E1000_FUNC_2)
+ mask = E1000_NVM_CFG_DONE_PORT_2;
+ else if (hw->bus.func == E1000_FUNC_3)
+ mask = E1000_NVM_CFG_DONE_PORT_3;
+ while (timeout) {
+ if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
+ break;
+ msec_delay(1);
+ timeout--;
+ }
+ if (!timeout)
+ DEBUGOUT("MNG configuration cycle has not completed.\n");
+
+ /* If EEPROM is not marked present, init the PHY manually */
+ if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
+ (hw->phy.type == e1000_phy_igp_3))
+ e1000_phy_init_script_igp3(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_link_up_info_82575 - Get link speed/duplex info
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * This is a wrapper function, if using the serial gigabit media independent
+ * interface, use PCS to retrieve the link speed and duplex information.
+ * Otherwise, use the generic function to get the link speed and duplex info.
+ **/
+static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_link_up_info_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper)
+ ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
+ duplex);
+ else
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
+ duplex);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_link_82575 - Check for link
+ * @hw: pointer to the HW structure
+ *
+ * If sgmii is enabled, then use the pcs register to determine link, otherwise
+ * use the generic interface for determining link.
+ **/
+static s32 e1000_check_for_link_82575(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 speed, duplex;
+
+ DEBUGFUNC("e1000_check_for_link_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
+ &duplex);
+ /*
+ * Use this flag to determine if link needs to be checked or
+ * not. If we have link clear the flag so that we do not
+ * continue to check for link.
+ */
+ hw->mac.get_link_status = !hw->mac.serdes_has_link;
+ } else {
+ ret_val = e1000_check_for_copper_link_generic(hw);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
+ * @hw: pointer to the HW structure
+ **/
+static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_power_up_serdes_link_82575");
+
+ if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
+ !e1000_sgmii_active_82575(hw))
+ return;
+
+ /* Enable PCS to turn on link */
+ reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
+ reg |= E1000_PCS_CFG_PCS_EN;
+ E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
+
+ /* Power up the laser */
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg &= ~E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+ /* flush the write to verify completion */
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+}
+
+/**
+ * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Using the physical coding sub-layer (PCS), retrieve the current speed and
+ * duplex, then store the values in the pointers provided.
+ **/
+static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 pcs;
+
+ DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
+
+ /* Set up defaults for the return values of this function */
+ mac->serdes_has_link = FALSE;
+ *speed = 0;
+ *duplex = 0;
+
+ /*
+ * Read the PCS Status register for link state. For non-copper mode,
+ * the status register is not accurate. The PCS status register is
+ * used instead.
+ */
+ pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
+
+ /*
+ * The link up bit determines when link is up on autoneg. The sync ok
+ * gets set once both sides sync up and agree upon link. Stable link
+ * can be determined by checking for both link up and link sync ok
+ */
+ if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
+ mac->serdes_has_link = TRUE;
+
+ /* Detect and store PCS speed */
+ if (pcs & E1000_PCS_LSTS_SPEED_1000) {
+ *speed = SPEED_1000;
+ } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
+ *speed = SPEED_100;
+ } else {
+ *speed = SPEED_10;
+ }
+
+ /* Detect and store PCS duplex */
+ if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
+ *duplex = FULL_DUPLEX;
+ } else {
+ *duplex = HALF_DUPLEX;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_shutdown_serdes_link_82575 - Remove link during power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of serdes shut down sfp and PCS on driver unload
+ * when management pass thru is not enabled.
+ **/
+void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_shutdown_serdes_link_82575");
+
+ if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
+ !e1000_sgmii_active_82575(hw))
+ return;
+
+ if (!e1000_enable_mng_pass_thru(hw)) {
+ /* Disable PCS to turn off link */
+ reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
+ reg &= ~E1000_PCS_CFG_PCS_EN;
+ E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
+
+ /* shutdown the laser */
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg |= E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+ /* flush the write to verify completion */
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+ }
+
+ return;
+}
+
+/**
+ * e1000_reset_hw_82575 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state.
+ **/
+static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
+{
+ u32 ctrl, icr;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_reset_hw_82575");
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+ }
+
+ /* set the completion timeout for interface */
+ ret_val = e1000_set_pcie_completion_timeout(hw);
+ if (ret_val) {
+ DEBUGOUT("PCI-E Set completion timeout has failed.\n");
+ }
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val) {
+ /*
+ * When auto config read does not complete, do not
+ * return with an error. This can happen in situations
+ * where there is no eeprom and prevents getting link.
+ */
+ DEBUGOUT("Auto Read Done did not complete\n");
+ }
+
+ /* If EEPROM is not present, run manual init scripts */
+ if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
+ e1000_reset_init_script_82575(hw);
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ /* Install any alternate MAC address into RAR0 */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_82575 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ **/
+static s32 e1000_init_hw_82575(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ u16 i, rar_count = mac->rar_entry_count;
+
+ DEBUGFUNC("e1000_init_hw_82575");
+
+ /* Initialize identification LED */
+ ret_val = mac->ops.id_led_init(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ mac->ops.clear_vfta(hw);
+
+ /* Setup the receive address */
+ e1000_init_rx_addrs_generic(hw, rar_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /* Zero out the Unicast HASH table */
+ DEBUGOUT("Zeroing the UTA\n");
+ for (i = 0; i < mac->uta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82575(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_82575 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Configures the link for auto-neg or forced speed and duplex. Then we check
+ * for link, once link is established calls to configure collision distance
+ * and flow control are called.
+ **/
+static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_copper_link_82575");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ ret_val = e1000_setup_serdes_link_82575(hw);
+ if (ret_val)
+ goto out;
+
+ if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
+ /* allow time for SFP cage time to power up phy */
+ msec_delay(300);
+
+ ret_val = hw->phy.ops.reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error resetting the PHY.\n");
+ goto out;
+ }
+ }
+ switch (hw->phy.type) {
+ case e1000_phy_m88:
+ ret_val = e1000_copper_link_setup_m88(hw);
+ break;
+ case e1000_phy_igp_3:
+ ret_val = e1000_copper_link_setup_igp(hw);
+ break;
+ case e1000_phy_82580:
+ ret_val = e1000_copper_link_setup_82577(hw);
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ break;
+ }
+
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_setup_copper_link_generic(hw);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_serdes_link_82575 - Setup link for serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configure the physical coding sub-layer (PCS) link. The PCS link is
+ * used on copper connections where the serialized gigabit media independent
+ * interface (sgmii), or serdes fiber is being used. Configures the link
+ * for auto-negotiation or forces speed/duplex.
+ **/
+static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
+{
+ u32 ctrl_ext, ctrl_reg, reg;
+ bool pcs_autoneg;
+
+ DEBUGFUNC("e1000_setup_serdes_link_82575");
+
+ if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
+ !e1000_sgmii_active_82575(hw))
+ return E1000_SUCCESS;
+
+ /*
+ * On the 82575, SerDes loopback mode persists until it is
+ * explicitly turned off or a power cycle is performed. A read to
+ * the register does not indicate its status. Therefore, we ensure
+ * loopback mode is disabled during initialization.
+ */
+ E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+
+ /* power on the sfp cage if present */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl_reg |= E1000_CTRL_SLU;
+
+ /* set both sw defined pins on 82575/82576*/
+ if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
+ ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
+
+ reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+
+ /* default pcs_autoneg to the same setting as mac autoneg */
+ pcs_autoneg = hw->mac.autoneg;
+
+ switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
+ case E1000_CTRL_EXT_LINK_MODE_SGMII:
+ /* sgmii mode lets the phy handle forcing speed/duplex */
+ pcs_autoneg = TRUE;
+ /* autoneg time out should be disabled for SGMII mode */
+ reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
+ break;
+ case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
+ /* disable PCS autoneg and support parallel detect only */
+ pcs_autoneg = FALSE;
+ /* fall through to default case */
+ default:
+ /*
+ * non-SGMII modes only supports a speed of 1000/Full for the
+ * link so it is best to just force the MAC and let the pcs
+ * link either autoneg or be forced to 1000/Full
+ */
+ ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
+ E1000_CTRL_FD | E1000_CTRL_FRCDPX;
+
+ /* set speed of 1000/Full if speed/duplex is forced */
+ reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
+ break;
+ }
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
+
+ /*
+ * New SerDes mode allows for forcing speed or autonegotiating speed
+ * at 1gb. Autoneg should be default set by most drivers. This is the
+ * mode that will be compatible with older link partners and switches.
+ * However, both are supported by the hardware and some drivers/tools.
+ */
+ reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
+ E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
+
+ /*
+ * We force flow control to prevent the CTRL register values from being
+ * overwritten by the autonegotiated flow control values
+ */
+ reg |= E1000_PCS_LCTL_FORCE_FCTRL;
+
+ if (pcs_autoneg) {
+ /* Set PCS register for autoneg */
+ reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
+ E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
+ DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
+ } else {
+ /* Set PCS register for forced link */
+ reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
+ DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
+ }
+
+ E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
+
+ if (!e1000_sgmii_active_82575(hw))
+ e1000_force_mac_fc_generic(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_valid_led_default_82575 - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration. If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ **/
+static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_82575");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
+ switch(hw->phy.media_type) {
+ case e1000_media_type_internal_serdes:
+ *data = ID_LED_DEFAULT_82575_SERDES;
+ break;
+ case e1000_media_type_copper:
+ default:
+ *data = ID_LED_DEFAULT;
+ break;
+ }
+ }
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_sgmii_active_82575 - Return sgmii state
+ * @hw: pointer to the HW structure
+ *
+ * 82575 silicon has a serialized gigabit media independent interface (sgmii)
+ * which can be enabled for use in the embedded applications. Simply
+ * return the current state of the sgmii interface.
+ **/
+static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+ return dev_spec->sgmii_active;
+}
+
+/**
+ * e1000_reset_init_script_82575 - Inits HW defaults after reset
+ * @hw: pointer to the HW structure
+ *
+ * Inits recommended HW defaults after a reset when there is no EEPROM
+ * detected. This is only for the 82575.
+ **/
+static s32 e1000_reset_init_script_82575(struct e1000_hw* hw)
+{
+ DEBUGFUNC("e1000_reset_init_script_82575");
+
+ if (hw->mac.type == e1000_82575) {
+ DEBUGOUT("Running reset init script for 82575\n");
+ /* SerDes configuration via SERDESCTRL */
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
+
+ /* CCM configuration via CCMCTL register */
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
+
+ /* PCIe lanes configuration */
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
+
+ /* PCIe PLL Configuration */
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
+ e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr_82575 - Read device MAC address
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_mac_addr_82575");
+
+ /*
+ * If there's an alternate MAC address place it in RAR0
+ * so that it will override the Si installed default perm
+ * address.
+ */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_mac_addr_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_collision_dist_82575 - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ **/
+static void e1000_config_collision_dist_82575(struct e1000_hw *hw)
+{
+ u32 tctl_ext;
+
+ DEBUGFUNC("e1000_config_collision_dist_82575");
+
+ tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
+
+ tctl_ext &= ~E1000_TCTL_EXT_COLD;
+ tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+
+ if (!(phy->ops.check_reset_block))
+ return;
+
+ /* If the management interface is not enabled, then power down */
+ if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ **/
+static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82575");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_PRC64);
+ E1000_READ_REG(hw, E1000_PRC127);
+ E1000_READ_REG(hw, E1000_PRC255);
+ E1000_READ_REG(hw, E1000_PRC511);
+ E1000_READ_REG(hw, E1000_PRC1023);
+ E1000_READ_REG(hw, E1000_PRC1522);
+ E1000_READ_REG(hw, E1000_PTC64);
+ E1000_READ_REG(hw, E1000_PTC127);
+ E1000_READ_REG(hw, E1000_PTC255);
+ E1000_READ_REG(hw, E1000_PTC511);
+ E1000_READ_REG(hw, E1000_PTC1023);
+ E1000_READ_REG(hw, E1000_PTC1522);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+
+ E1000_READ_REG(hw, E1000_IAC);
+ E1000_READ_REG(hw, E1000_ICRXOC);
+
+ E1000_READ_REG(hw, E1000_ICRXPTC);
+ E1000_READ_REG(hw, E1000_ICRXATC);
+ E1000_READ_REG(hw, E1000_ICTXPTC);
+ E1000_READ_REG(hw, E1000_ICTXATC);
+ E1000_READ_REG(hw, E1000_ICTXQEC);
+ E1000_READ_REG(hw, E1000_ICTXQMTC);
+ E1000_READ_REG(hw, E1000_ICRXDMTC);
+
+ E1000_READ_REG(hw, E1000_CBTMPC);
+ E1000_READ_REG(hw, E1000_HTDPMC);
+ E1000_READ_REG(hw, E1000_CBRMPC);
+ E1000_READ_REG(hw, E1000_RPTHC);
+ E1000_READ_REG(hw, E1000_HGPTC);
+ E1000_READ_REG(hw, E1000_HTCBDPC);
+ E1000_READ_REG(hw, E1000_HGORCL);
+ E1000_READ_REG(hw, E1000_HGORCH);
+ E1000_READ_REG(hw, E1000_HGOTCL);
+ E1000_READ_REG(hw, E1000_HGOTCH);
+ E1000_READ_REG(hw, E1000_LENERRS);
+
+ /* This register should not be read in copper configurations */
+ if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
+ e1000_sgmii_active_82575(hw))
+ E1000_READ_REG(hw, E1000_SCVPC);
+}
+
+/**
+ * e1000_rx_fifo_flush_82575 - Clean rx fifo after RX enable
+ * @hw: pointer to the HW structure
+ *
+ * After rx enable if managability is enabled then there is likely some
+ * bad data at the start of the fifo and possibly in the DMA fifo. This
+ * function clears the fifos and flushes any packets that came in as rx was
+ * being enabled.
+ **/
+void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
+{
+ u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
+ int i, ms_wait;
+
+ DEBUGFUNC("e1000_rx_fifo_workaround_82575");
+ if (hw->mac.type != e1000_82575 ||
+ !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
+ return;
+
+ /* Disable all RX queues */
+ for (i = 0; i < 4; i++) {
+ rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i),
+ rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
+ }
+ /* Poll all queues to verify they have shut down */
+ for (ms_wait = 0; ms_wait < 10; ms_wait++) {
+ msec_delay(1);
+ rx_enabled = 0;
+ for (i = 0; i < 4; i++)
+ rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
+ if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
+ break;
+ }
+
+ if (ms_wait == 10)
+ DEBUGOUT("Queue disable timed out after 10ms\n");
+
+ /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
+ * incoming packets are rejected. Set enable and wait 2ms so that
+ * any packet that was coming in as RCTL.EN was set is flushed
+ */
+ rfctl = E1000_READ_REG(hw, E1000_RFCTL);
+ E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
+
+ rlpml = E1000_READ_REG(hw, E1000_RLPML);
+ E1000_WRITE_REG(hw, E1000_RLPML, 0);
+
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
+ temp_rctl |= E1000_RCTL_LPE;
+
+ E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
+ E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(2);
+
+ /* Enable RX queues that were previously enabled and restore our
+ * previous state
+ */
+ for (i = 0; i < 4; i++)
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+ E1000_WRITE_FLUSH(hw);
+
+ E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
+ E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
+
+ /* Flush receive errors generated by workaround */
+ E1000_READ_REG(hw, E1000_ROC);
+ E1000_READ_REG(hw, E1000_RNBC);
+ E1000_READ_REG(hw, E1000_MPC);
+}
+
+/**
+ * e1000_set_pcie_completion_timeout - set pci-e completion timeout
+ * @hw: pointer to the HW structure
+ *
+ * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
+ * however the hardware default for these parts is 500us to 1ms which is less
+ * than the 10ms recommended by the pci-e spec. To address this we need to
+ * increase the value to either 10ms to 200ms for capability version 1 config,
+ * or 16ms to 55ms for version 2.
+ **/
+static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
+{
+ u32 gcr = E1000_READ_REG(hw, E1000_GCR);
+ s32 ret_val = E1000_SUCCESS;
+ u16 pcie_devctl2;
+
+ /* only take action if timeout value is defaulted to 0 */
+ if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
+ goto out;
+
+ /*
+ * if capababilities version is type 1 we can write the
+ * timeout of 10ms to 200ms through the GCR register
+ */
+ if (!(gcr & E1000_GCR_CAP_VER2)) {
+ gcr |= E1000_GCR_CMPL_TMOUT_10ms;
+ goto out;
+ }
+
+ /*
+ * for version 2 capabilities we need to write the config space
+ * directly in order to set the completion timeout value for
+ * 16ms to 55ms
+ */
+ ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
+ &pcie_devctl2);
+ if (ret_val)
+ goto out;
+
+ pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
+
+ ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
+ &pcie_devctl2);
+out:
+ /* disable completion timeout resend */
+ gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
+
+ E1000_WRITE_REG(hw, E1000_GCR, gcr);
+ return ret_val;
+}
+
+
+/**
+ * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
+ * @hw: pointer to the hardware struct
+ * @enable: state to enter, either enabled or disabled
+ * @pf: Physical Function pool - do not set anti-spoofing for the PF
+ *
+ * enables/disables L2 switch anti-spoofing functionality.
+ **/
+void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
+{
+ u32 dtxswc;
+
+ switch (hw->mac.type) {
+ case e1000_82576:
+ dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
+ if (enable) {
+ dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
+ E1000_DTXSWC_VLAN_SPOOF_MASK);
+ /* The PF can spoof - it has to in order to
+ * support emulation mode NICs */
+ dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
+ } else {
+ dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
+ E1000_DTXSWC_VLAN_SPOOF_MASK);
+ }
+ E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
+ break;
+ default:
+ break;
+ }
+}
+
+/**
+ * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
+ * @hw: pointer to the hardware struct
+ * @enable: state to enter, either enabled or disabled
+ *
+ * enables/disables L2 switch loopback functionality.
+ **/
+void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
+{
+ u32 dtxswc;
+
+ switch (hw->mac.type) {
+ case e1000_82576:
+ dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
+ if (enable)
+ dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ else
+ dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
+ break;
+ default:
+ /* Currently no other hardware supports loopback */
+ break;
+ }
+
+
+}
+
+/**
+ * e1000_vmdq_set_replication_pf - enable or disable vmdq replication
+ * @hw: pointer to the hardware struct
+ * @enable: state to enter, either enabled or disabled
+ *
+ * enables/disables replication of packets across multiple pools.
+ **/
+void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
+{
+ u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
+
+ if (enable)
+ vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
+ else
+ vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
+
+ E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
+}
+
+/**
+ * e1000_read_phy_reg_82580 - Read 82580 MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the MDI control register in the PHY at offset and stores the
+ * information read to data.
+ **/
+static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_phy_reg_82580");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_82580 - Write 82580 MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write to register at offset
+ *
+ * Writes data to MDI control register in the PHY at offset.
+ **/
+static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_write_phy_reg_82580");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
+ * @hw: pointer to the HW structure
+ *
+ * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
+ * the values found in the EEPROM. This addresses an issue in which these
+ * bits are not restored from EEPROM after reset.
+ **/
+static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 mdicnfg;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_reset_mdicnfg_82580");
+
+ if (hw->mac.type != e1000_82580)
+ goto out;
+ if (!e1000_sgmii_active_82575(hw))
+ goto out;
+
+ ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
+ NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
+ &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
+ if (nvm_data & NVM_WORD24_EXT_MDIO)
+ mdicnfg |= E1000_MDICNFG_EXT_MDIO;
+ if (nvm_data & NVM_WORD24_COM_MDIO)
+ mdicnfg |= E1000_MDICNFG_COM_MDIO;
+ E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_82580 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets function or entire device (all ports, etc.)
+ * to a known state.
+ **/
+static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ /* BH SW mailbox bit in SW_FW_SYNC */
+ u16 swmbsw_mask = E1000_SW_SYNCH_MB;
+ u32 ctrl, icr;
+ bool global_device_reset = hw->dev_spec._82575.global_device_reset;
+
+ DEBUGFUNC("e1000_reset_hw_82580");
+
+ hw->dev_spec._82575.global_device_reset = FALSE;
+
+ /* Get current control state. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val)
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ /* Determine whether or not a global dev reset is requested */
+ if (global_device_reset &&
+ e1000_acquire_swfw_sync_82575(hw, swmbsw_mask))
+ global_device_reset = FALSE;
+
+ if (global_device_reset &&
+ !(E1000_READ_REG(hw, E1000_STATUS) & E1000_STAT_DEV_RST_SET))
+ ctrl |= E1000_CTRL_DEV_RST;
+ else
+ ctrl |= E1000_CTRL_RST;
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Add delay to insure DEV_RST has time to complete */
+ if (global_device_reset)
+ msec_delay(5);
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val) {
+ /*
+ * When auto config read does not complete, do not
+ * return with an error. This can happen in situations
+ * where there is no eeprom and prevents getting link.
+ */
+ DEBUGOUT("Auto Read Done did not complete\n");
+ }
+
+ /* If EEPROM is not present, run manual init scripts */
+ if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
+ e1000_reset_init_script_82575(hw);
+
+ /* clear global device reset status bit */
+ E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ ret_val = e1000_reset_mdicnfg_82580(hw);
+ if (ret_val)
+ DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
+
+ /* Install any alternate MAC address into RAR0 */
+ ret_val = e1000_check_alt_mac_addr_generic(hw);
+
+ /* Release semaphore */
+ if (global_device_reset)
+ e1000_release_swfw_sync_82575(hw, swmbsw_mask);
+
+ return ret_val;
+}
+
+/**
+ * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
+ * @data: data received by reading RXPBS register
+ *
+ * The 82580 uses a table based approach for packet buffer allocation sizes.
+ * This function converts the retrieved value into the correct table value
+ * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
+ * 0x0 36 72 144 1 2 4 8 16
+ * 0x8 35 70 140 rsv rsv rsv rsv rsv
+ */
+u16 e1000_rxpbs_adjust_82580(u32 data)
+{
+ u16 ret_val = 0;
+
+ if (data < E1000_82580_RXPBS_TABLE_SIZE)
+ ret_val = e1000_82580_rxpbs_table[data];
+
+ return ret_val;
+}
diff --git a/freebsd/dev/e1000/e1000_82575.h b/freebsd/dev/e1000/e1000_82575.h
new file mode 100644
index 00000000..11a27b9b
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_82575.h
@@ -0,0 +1,475 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_82575_HH_
+#define _E1000_82575_HH_
+
+#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \
+ (ID_LED_DEF1_DEF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_OFF1_ON2))
+/*
+ * Receive Address Register Count
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * These entries are also used for MAC-based filtering.
+ */
+/*
+ * For 82576, there are an additional set of RARs that begin at an offset
+ * separate from the first set of RARs.
+ */
+#define E1000_RAR_ENTRIES_82575 16
+#define E1000_RAR_ENTRIES_82576 24
+#define E1000_RAR_ENTRIES_82580 24
+#define E1000_SW_SYNCH_MB 0x00000100
+#define E1000_STAT_DEV_RST_SET 0x00100000
+#define E1000_CTRL_DEV_RST 0x20000000
+
+#ifdef E1000_BIT_FIELDS
+struct e1000_adv_data_desc {
+ __le64 buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ u32 data;
+ struct {
+ u32 datalen :16; /* Data buffer length */
+ u32 rsvd :4;
+ u32 dtyp :4; /* Descriptor type */
+ u32 dcmd :8; /* Descriptor command */
+ } config;
+ } lower;
+ union {
+ u32 data;
+ struct {
+ u32 status :4; /* Descriptor status */
+ u32 idx :4;
+ u32 popts :6; /* Packet Options */
+ u32 paylen :18; /* Payload length */
+ } options;
+ } upper;
+};
+
+#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */
+#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */
+#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */
+#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */
+#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */
+#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */
+#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */
+#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */
+#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADV_DCMD_RS 0x8 /* Report Status */
+#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */
+#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */
+/* Extended Device Control */
+#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */
+
+struct e1000_adv_context_desc {
+ union {
+ u32 ip_config;
+ struct {
+ u32 iplen :9;
+ u32 maclen :7;
+ u32 vlan_tag :16;
+ } fields;
+ } ip_setup;
+ u32 seq_num;
+ union {
+ u64 l4_config;
+ struct {
+ u32 mkrloc :9;
+ u32 tucmd :11;
+ u32 dtyp :4;
+ u32 adv :8;
+ u32 rsvd :4;
+ u32 idx :4;
+ u32 l4len :8;
+ u32 mss :16;
+ } fields;
+ } l4_setup;
+};
+#endif
+
+/* SRRCTL bit definitions */
+#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
+#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
+#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
+#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
+#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
+#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
+#define E1000_SRRCTL_TIMESTAMP 0x40000000
+#define E1000_SRRCTL_DROP_EN 0x80000000
+
+#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
+#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
+
+#define E1000_TX_HEAD_WB_ENABLE 0x1
+#define E1000_TX_SEQNUM_WB_ENABLE 0x2
+
+#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002
+#define E1000_MRQC_ENABLE_VMDQ 0x00000003
+#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005
+#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000
+#define E1000_MRQC_ENABLE_RSS_8Q 0x00000002
+
+#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8
+#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << E1000_VMRCTL_MIRROR_PORT_SHIFT)
+#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0)
+#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1)
+#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2)
+
+#define E1000_EICR_TX_QUEUE ( \
+ E1000_EICR_TX_QUEUE0 | \
+ E1000_EICR_TX_QUEUE1 | \
+ E1000_EICR_TX_QUEUE2 | \
+ E1000_EICR_TX_QUEUE3)
+
+#define E1000_EICR_RX_QUEUE ( \
+ E1000_EICR_RX_QUEUE0 | \
+ E1000_EICR_RX_QUEUE1 | \
+ E1000_EICR_RX_QUEUE2 | \
+ E1000_EICR_RX_QUEUE3)
+
+#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE
+#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE
+
+#define EIMS_ENABLE_MASK ( \
+ E1000_EIMS_RX_QUEUE | \
+ E1000_EIMS_TX_QUEUE | \
+ E1000_EIMS_TCP_TIMER | \
+ E1000_EIMS_OTHER)
+
+/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */
+#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */
+#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */
+#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */
+#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */
+#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */
+#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */
+#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */
+#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */
+#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */
+#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */
+
+/* Receive Descriptor - Advanced */
+union e1000_adv_rx_desc {
+ struct {
+ __le64 pkt_addr; /* Packet buffer address */
+ __le64 hdr_addr; /* Header buffer address */
+ } read;
+ struct {
+ struct {
+ union {
+ __le32 data;
+ struct {
+ __le16 pkt_info; /*RSS type, Pkt type*/
+ __le16 hdr_info; /* Split Header,
+ * header buffer len*/
+ } hs_rss;
+ } lo_dword;
+ union {
+ __le32 rss; /* RSS Hash */
+ struct {
+ __le16 ip_id; /* IP id */
+ __le16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ __le32 status_error; /* ext status/error */
+ __le16 length; /* Packet length */
+ __le16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define E1000_RXDADV_RSSTYPE_MASK 0x0000000F
+#define E1000_RXDADV_RSSTYPE_SHIFT 12
+#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
+#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
+#define E1000_RXDADV_SPLITHEADER_EN 0x00001000
+#define E1000_RXDADV_SPH 0x8000
+#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */
+#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */
+#define E1000_RXDADV_ERR_HBO 0x00800000
+
+/* RSS Hash results */
+#define E1000_RXDADV_RSSTYPE_NONE 0x00000000
+#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001
+#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003
+#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004
+#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006
+#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009
+
+/* RSS Packet Types as indicated in the receive descriptor */
+#define E1000_RXDADV_PKTTYPE_NONE 0x00000000
+#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */
+#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */
+#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */
+#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */
+
+#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */
+#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */
+#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */
+#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */
+#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */
+#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */
+
+/* LinkSec results */
+/* Security Processing bit Indication */
+#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000
+#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000
+#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000
+#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000
+#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000
+
+#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000
+#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000
+#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000
+#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000
+#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000
+
+/* Transmit Descriptor - Advanced */
+union e1000_adv_tx_desc {
+ struct {
+ __le64 buffer_addr; /* Address of descriptor's data buf */
+ __le32 cmd_type_len;
+ __le32 olinfo_status;
+ } read;
+ struct {
+ __le64 rsvd; /* Reserved */
+ __le32 nxtseq_seed;
+ __le32 status;
+ } wb;
+};
+
+/* Adv Transmit Descriptor Config Masks */
+#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
+#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
+#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
+#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
+#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */
+#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
+#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
+#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
+#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on packet */
+#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp packet */
+#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED present in WB */
+#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */
+#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 /* 1st&Last TSO-full iSCSI PDU*/
+#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */
+#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
+
+/* Context descriptors */
+struct e1000_adv_tx_context_desc {
+ __le32 vlan_macip_lens;
+ __le32 seqnum_seed;
+ __le32 type_tucmd_mlhl;
+ __le32 mss_l4len_idx;
+};
+
+#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
+#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */
+#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */
+#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */
+#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
+#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */
+#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */
+/* IPSec Encrypt Enable for ESP */
+#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000
+#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000 /* Req requires Markers and CRC */
+#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
+#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
+/* Adv ctxt IPSec SA IDX mask */
+#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF
+/* Adv ctxt IPSec ESP len mask */
+#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF
+
+/* Additional Transmit Descriptor Control definitions */
+#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */
+#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. write-back flushing */
+/* Tx Queue Arbitration Priority 0=low, 1=high */
+#define E1000_TXDCTL_PRIORITY 0x08000000
+
+/* Additional Receive Descriptor Control definitions */
+#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */
+#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. write-back flushing */
+
+/* Direct Cache Access (DCA) definitions */
+#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */
+#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */
+
+#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */
+#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */
+
+#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */
+#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */
+#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header enable */
+#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload enable */
+
+#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */
+#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */
+#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */
+
+#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */
+#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */
+#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */
+#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */
+
+/* Additional interrupt register bit definitions */
+#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */
+#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
+#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
+
+/* ETQF register bit definitions */
+#define E1000_ETQF_FILTER_ENABLE (1 << 26)
+#define E1000_ETQF_IMM_INT (1 << 29)
+#define E1000_ETQF_1588 (1 << 30)
+#define E1000_ETQF_QUEUE_ENABLE (1 << 31)
+/*
+ * ETQF filter list: one static filter per filter consumer. This is
+ * to avoid filter collisions later. Add new filters
+ * here!!
+ *
+ * Current filters:
+ * EAPOL 802.1x (0x888e): Filter 0
+ */
+#define E1000_ETQF_FILTER_EAPOL 0
+
+#define E1000_FTQF_VF_BP 0x00008000
+#define E1000_FTQF_1588_TIME_STAMP 0x08000000
+#define E1000_FTQF_MASK 0xF0000000
+#define E1000_FTQF_MASK_PROTO_BP 0x10000000
+#define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000
+#define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000
+#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000
+
+#define E1000_NVM_APME_82575 0x0400
+#define MAX_NUM_VFS 8
+
+#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof control */
+#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof control */
+#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */
+#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8
+#define E1000_DTXSWC_LLE_SHIFT 16
+#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */
+
+/* Easy defines for setting default pool, would normally be left a zero */
+#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7
+#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT)
+
+/* Other useful VMD_CTL register defines */
+#define E1000_VT_CTL_IGNORE_MAC (1 << 28)
+#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29)
+#define E1000_VT_CTL_VM_REPL_EN (1 << 30)
+
+/* Per VM Offload register setup */
+#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */
+#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */
+#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */
+#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */
+#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */
+#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */
+#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */
+#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */
+#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */
+#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */
+
+
+#define E1000_VLVF_ARRAY_SIZE 32
+#define E1000_VLVF_VLANID_MASK 0x00000FFF
+#define E1000_VLVF_POOLSEL_SHIFT 12
+#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT)
+#define E1000_VLVF_LVLAN 0x00100000
+#define E1000_VLVF_VLANID_ENABLE 0x80000000
+
+#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */
+#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */
+
+#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */
+
+#define E1000_IOVCTL 0x05BBC
+#define E1000_IOVCTL_REUSE_VFQ 0x00000001
+
+#define E1000_RPLOLR_STRVLAN 0x40000000
+#define E1000_RPLOLR_STRCRC 0x80000000
+
+#define E1000_TCTL_EXT_COLD 0x000FFC00
+#define E1000_TCTL_EXT_COLD_SHIFT 10
+
+#define E1000_DTXCTL_8023LL 0x0004
+#define E1000_DTXCTL_VLAN_ADDED 0x0008
+#define E1000_DTXCTL_OOS_ENABLE 0x0010
+#define E1000_DTXCTL_MDP_EN 0x0020
+#define E1000_DTXCTL_SPOOF_INT 0x0040
+
+#define ALL_QUEUES 0xFFFF
+
+/* RX packet buffer size defines */
+#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F
+void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable);
+void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf);
+void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable);
+enum e1000_promisc_type {
+ e1000_promisc_disabled = 0, /* all promisc modes disabled */
+ e1000_promisc_unicast = 1, /* unicast promiscuous enabled */
+ e1000_promisc_multicast = 2, /* multicast promiscuous enabled */
+ e1000_promisc_enabled = 3, /* both uni and multicast promisc */
+ e1000_num_promisc_types
+};
+
+void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
+void e1000_rlpml_set_vf(struct e1000_hw *, u16);
+s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type type);
+u16 e1000_rxpbs_adjust_82580(u32 data);
+#endif /* _E1000_82575_HH_ */
diff --git a/freebsd/dev/e1000/e1000_api.c b/freebsd/dev/e1000/e1000_api.c
new file mode 100644
index 00000000..d5b0faea
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_api.c
@@ -0,0 +1,1342 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+/**
+ * e1000_init_mac_params - Initialize MAC function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the MAC
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_mac_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->mac.ops.init_params) {
+ ret_val = hw->mac.ops.init_params(hw);
+ if (ret_val) {
+ DEBUGOUT("MAC Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("mac.init_mac_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params - Initialize NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the NVM
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_nvm_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->nvm.ops.init_params) {
+ ret_val = hw->nvm.ops.init_params(hw);
+ if (ret_val) {
+ DEBUGOUT("NVM Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("nvm.init_nvm_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_phy_params - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the PHY
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_phy_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->phy.ops.init_params) {
+ ret_val = hw->phy.ops.init_params(hw);
+ if (ret_val) {
+ DEBUGOUT("PHY Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("phy.init_phy_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mbx_params - Initialize mailbox function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the PHY
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_mbx_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->mbx.ops.init_params) {
+ ret_val = hw->mbx.ops.init_params(hw);
+ if (ret_val) {
+ DEBUGOUT("Mailbox Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("mbx.init_mbx_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_mac_type - Sets MAC type
+ * @hw: pointer to the HW structure
+ *
+ * This function sets the mac type of the adapter based on the
+ * device ID stored in the hw structure.
+ * MUST BE FIRST FUNCTION CALLED (explicitly or through
+ * e1000_setup_init_funcs()).
+ **/
+s32 e1000_set_mac_type(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_set_mac_type");
+
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82542:
+ mac->type = e1000_82542;
+ break;
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ mac->type = e1000_82543;
+ break;
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ mac->type = e1000_82544;
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82540EP:
+ case E1000_DEV_ID_82540EP_LOM:
+ case E1000_DEV_ID_82540EP_LP:
+ mac->type = e1000_82540;
+ break;
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82545EM_FIBER:
+ mac->type = e1000_82545;
+ break;
+ case E1000_DEV_ID_82545GM_COPPER:
+ case E1000_DEV_ID_82545GM_FIBER:
+ case E1000_DEV_ID_82545GM_SERDES:
+ mac->type = e1000_82545_rev_3;
+ break;
+ case E1000_DEV_ID_82546EB_COPPER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546EB_QUAD_COPPER:
+ mac->type = e1000_82546;
+ break;
+ case E1000_DEV_ID_82546GB_COPPER:
+ case E1000_DEV_ID_82546GB_FIBER:
+ case E1000_DEV_ID_82546GB_SERDES:
+ case E1000_DEV_ID_82546GB_PCIE:
+ case E1000_DEV_ID_82546GB_QUAD_COPPER:
+ case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+ mac->type = e1000_82546_rev_3;
+ break;
+ case E1000_DEV_ID_82541EI:
+ case E1000_DEV_ID_82541EI_MOBILE:
+ case E1000_DEV_ID_82541ER_LOM:
+ mac->type = e1000_82541;
+ break;
+ case E1000_DEV_ID_82541ER:
+ case E1000_DEV_ID_82541GI:
+ case E1000_DEV_ID_82541GI_LF:
+ case E1000_DEV_ID_82541GI_MOBILE:
+ mac->type = e1000_82541_rev_2;
+ break;
+ case E1000_DEV_ID_82547EI:
+ case E1000_DEV_ID_82547EI_MOBILE:
+ mac->type = e1000_82547;
+ break;
+ case E1000_DEV_ID_82547GI:
+ mac->type = e1000_82547_rev_2;
+ break;
+ case E1000_DEV_ID_82571EB_COPPER:
+ case E1000_DEV_ID_82571EB_FIBER:
+ case E1000_DEV_ID_82571EB_SERDES:
+ case E1000_DEV_ID_82571EB_SERDES_DUAL:
+ case E1000_DEV_ID_82571EB_SERDES_QUAD:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER:
+ case E1000_DEV_ID_82571PT_QUAD_COPPER:
+ case E1000_DEV_ID_82571EB_QUAD_FIBER:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
+ mac->type = e1000_82571;
+ break;
+ case E1000_DEV_ID_82572EI:
+ case E1000_DEV_ID_82572EI_COPPER:
+ case E1000_DEV_ID_82572EI_FIBER:
+ case E1000_DEV_ID_82572EI_SERDES:
+ mac->type = e1000_82572;
+ break;
+ case E1000_DEV_ID_82573E:
+ case E1000_DEV_ID_82573E_IAMT:
+ case E1000_DEV_ID_82573L:
+ mac->type = e1000_82573;
+ break;
+ case E1000_DEV_ID_82574L:
+ case E1000_DEV_ID_82574LA:
+ mac->type = e1000_82574;
+ break;
+ case E1000_DEV_ID_82583V:
+ mac->type = e1000_82583;
+ break;
+ case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
+ case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+ case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+ case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
+ mac->type = e1000_80003es2lan;
+ break;
+ case E1000_DEV_ID_ICH8_IFE:
+ case E1000_DEV_ID_ICH8_IFE_GT:
+ case E1000_DEV_ID_ICH8_IFE_G:
+ case E1000_DEV_ID_ICH8_IGP_M:
+ case E1000_DEV_ID_ICH8_IGP_M_AMT:
+ case E1000_DEV_ID_ICH8_IGP_AMT:
+ case E1000_DEV_ID_ICH8_IGP_C:
+ case E1000_DEV_ID_ICH8_82567V_3:
+ mac->type = e1000_ich8lan;
+ break;
+ case E1000_DEV_ID_ICH9_IFE:
+ case E1000_DEV_ID_ICH9_IFE_GT:
+ case E1000_DEV_ID_ICH9_IFE_G:
+ case E1000_DEV_ID_ICH9_IGP_M:
+ case E1000_DEV_ID_ICH9_IGP_M_AMT:
+ case E1000_DEV_ID_ICH9_IGP_M_V:
+ case E1000_DEV_ID_ICH9_IGP_AMT:
+ case E1000_DEV_ID_ICH9_BM:
+ case E1000_DEV_ID_ICH9_IGP_C:
+ case E1000_DEV_ID_ICH10_R_BM_LM:
+ case E1000_DEV_ID_ICH10_R_BM_LF:
+ case E1000_DEV_ID_ICH10_R_BM_V:
+ mac->type = e1000_ich9lan;
+ break;
+ case E1000_DEV_ID_ICH10_D_BM_LM:
+ case E1000_DEV_ID_ICH10_D_BM_LF:
+ case E1000_DEV_ID_ICH10_D_BM_V:
+ case E1000_DEV_ID_ICH10_HANKSVILLE:
+ mac->type = e1000_ich10lan;
+ break;
+ case E1000_DEV_ID_PCH_D_HV_DM:
+ case E1000_DEV_ID_PCH_D_HV_DC:
+ case E1000_DEV_ID_PCH_M_HV_LM:
+ case E1000_DEV_ID_PCH_M_HV_LC:
+ mac->type = e1000_pchlan;
+ break;
+ case E1000_DEV_ID_PCH2_LV_LM:
+ case E1000_DEV_ID_PCH2_LV_V:
+ mac->type = e1000_pch2lan;
+ break;
+ case E1000_DEV_ID_82575EB_COPPER:
+ case E1000_DEV_ID_82575EB_FIBER_SERDES:
+ case E1000_DEV_ID_82575GB_QUAD_COPPER:
+ case E1000_DEV_ID_82575GB_QUAD_COPPER_PM:
+ mac->type = e1000_82575;
+ break;
+ case E1000_DEV_ID_82576:
+ case E1000_DEV_ID_82576_FIBER:
+ case E1000_DEV_ID_82576_SERDES:
+ case E1000_DEV_ID_82576_QUAD_COPPER:
+ case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
+ case E1000_DEV_ID_82576_NS:
+ case E1000_DEV_ID_82576_NS_SERDES:
+ case E1000_DEV_ID_82576_SERDES_QUAD:
+ mac->type = e1000_82576;
+ break;
+ case E1000_DEV_ID_82580_COPPER:
+ case E1000_DEV_ID_82580_FIBER:
+ case E1000_DEV_ID_82580_SERDES:
+ case E1000_DEV_ID_82580_SGMII:
+ case E1000_DEV_ID_82580_COPPER_DUAL:
+ case E1000_DEV_ID_82580_QUAD_FIBER:
+ case E1000_DEV_ID_DH89XXCC_SGMII:
+ case E1000_DEV_ID_DH89XXCC_SERDES:
+ mac->type = e1000_82580;
+ break;
+ case E1000_DEV_ID_82576_VF:
+ mac->type = e1000_vfadapt;
+ break;
+ default:
+ /* Should never have loaded on this device */
+ ret_val = -E1000_ERR_MAC_INIT;
+ break;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_setup_init_funcs - Initializes function pointers
+ * @hw: pointer to the HW structure
+ * @init_device: TRUE will initialize the rest of the function pointers
+ * getting the device ready for use. FALSE will only set
+ * MAC type and the function pointers for the other init
+ * functions. Passing FALSE will not generate any hardware
+ * reads or writes.
+ *
+ * This function must be called by a driver in order to use the rest
+ * of the 'shared' code files. Called by drivers only.
+ **/
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
+{
+ s32 ret_val;
+
+ /* Can't do much good without knowing the MAC type. */
+ ret_val = e1000_set_mac_type(hw);
+ if (ret_val) {
+ DEBUGOUT("ERROR: MAC type could not be set properly.\n");
+ goto out;
+ }
+
+ if (!hw->hw_addr) {
+ DEBUGOUT("ERROR: Registers not mapped\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /*
+ * Init function pointers to generic implementations. We do this first
+ * allowing a driver module to override it afterward.
+ */
+ e1000_init_mac_ops_generic(hw);
+ e1000_init_phy_ops_generic(hw);
+ e1000_init_nvm_ops_generic(hw);
+ e1000_init_mbx_ops_generic(hw);
+
+ /*
+ * Set up the init function pointers. These are functions within the
+ * adapter family file that sets up function pointers for the rest of
+ * the functions in that family.
+ */
+ switch (hw->mac.type) {
+ case e1000_82542:
+ e1000_init_function_pointers_82542(hw);
+ break;
+ case e1000_82543:
+ case e1000_82544:
+ e1000_init_function_pointers_82543(hw);
+ break;
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82545_rev_3:
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ e1000_init_function_pointers_82540(hw);
+ break;
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ e1000_init_function_pointers_82541(hw);
+ break;
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ e1000_init_function_pointers_82571(hw);
+ break;
+ case e1000_80003es2lan:
+ e1000_init_function_pointers_80003es2lan(hw);
+ break;
+ case e1000_ich8lan:
+ case e1000_ich9lan:
+ case e1000_ich10lan:
+ case e1000_pchlan:
+ case e1000_pch2lan:
+ e1000_init_function_pointers_ich8lan(hw);
+ break;
+ case e1000_82575:
+ case e1000_82576:
+ case e1000_82580:
+ e1000_init_function_pointers_82575(hw);
+ break;
+ case e1000_vfadapt:
+ e1000_init_function_pointers_vf(hw);
+ break;
+ default:
+ DEBUGOUT("Hardware not supported\n");
+ ret_val = -E1000_ERR_CONFIG;
+ break;
+ }
+
+ /*
+ * Initialize the rest of the function pointers. These require some
+ * register reads/writes in some cases.
+ */
+ if (!(ret_val) && init_device) {
+ ret_val = e1000_init_mac_params(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_init_nvm_params(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_init_phy_params(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_init_mbx_params(hw);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_bus_info - Obtain bus information for adapter
+ * @hw: pointer to the HW structure
+ *
+ * This will obtain information about the HW bus for which the
+ * adapter is attached and stores it in the hw structure. This is a
+ * function pointer entry point called by drivers.
+ **/
+s32 e1000_get_bus_info(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.get_bus_info)
+ return hw->mac.ops.get_bus_info(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clear_vfta - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * This clears the VLAN filter table on the adapter. This is a function
+ * pointer entry point called by drivers.
+ **/
+void e1000_clear_vfta(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.clear_vfta)
+ hw->mac.ops.clear_vfta(hw);
+}
+
+/**
+ * e1000_write_vfta - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: the 32-bit offset in which to write the value to.
+ * @value: the 32-bit value to write at location offset.
+ *
+ * This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ * table. This is a function pointer entry point called by drivers.
+ **/
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ if (hw->mac.ops.write_vfta)
+ hw->mac.ops.write_vfta(hw, offset, value);
+}
+
+/**
+ * e1000_update_mc_addr_list - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ *
+ * Updates the Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
+ u32 mc_addr_count)
+{
+ if (hw->mac.ops.update_mc_addr_list)
+ hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
+ mc_addr_count);
+}
+
+/**
+ * e1000_force_mac_fc - Force MAC flow control
+ * @hw: pointer to the HW structure
+ *
+ * Force the MAC's flow control settings. Currently no func pointer exists
+ * and all implementations are handled in the generic version of this
+ * function.
+ **/
+s32 e1000_force_mac_fc(struct e1000_hw *hw)
+{
+ return e1000_force_mac_fc_generic(hw);
+}
+
+/**
+ * e1000_check_for_link - Check/Store link connection
+ * @hw: pointer to the HW structure
+ *
+ * This checks the link condition of the adapter and stores the
+ * results in the hw->mac structure. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_check_for_link(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.check_for_link)
+ return hw->mac.ops.check_for_link(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_check_mng_mode - Check management mode
+ * @hw: pointer to the HW structure
+ *
+ * This checks if the adapter has manageability enabled.
+ * This is a function pointer entry point called by drivers.
+ **/
+bool e1000_check_mng_mode(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.check_mng_mode)
+ return hw->mac.ops.check_mng_mode(hw);
+
+ return FALSE;
+}
+
+/**
+ * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface
+ * @length: size of the buffer
+ *
+ * Writes the DHCP information to the host interface.
+ **/
+s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
+{
+ return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
+}
+
+/**
+ * e1000_reset_hw - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state. This is a function pointer
+ * entry point called by drivers.
+ **/
+s32 e1000_reset_hw(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.reset_hw)
+ return hw->mac.ops.reset_hw(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_init_hw - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation. This is a function
+ * pointer entry point called by drivers.
+ **/
+s32 e1000_init_hw(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.init_hw)
+ return hw->mac.ops.init_hw(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_setup_link - Configures link and flow control
+ * @hw: pointer to the HW structure
+ *
+ * This configures link and flow control settings for the adapter. This
+ * is a function pointer entry point called by drivers. While modules can
+ * also call this, they probably call their own version of this function.
+ **/
+s32 e1000_setup_link(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.setup_link)
+ return hw->mac.ops.setup_link(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_get_speed_and_duplex - Returns current speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to a 16-bit value to store the speed
+ * @duplex: pointer to a 16-bit value to store the duplex.
+ *
+ * This returns the speed and duplex of the adapter in the two 'out'
+ * variables passed in. This is a function pointer entry point called
+ * by drivers.
+ **/
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+ if (hw->mac.ops.get_link_up_info)
+ return hw->mac.ops.get_link_up_info(hw, speed, duplex);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_setup_led - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_setup_led(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.setup_led)
+ return hw->mac.ops.setup_led(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_cleanup_led - Restores SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This restores the SW controllable LED to the value saved off by
+ * e1000_setup_led. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_cleanup_led(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.cleanup_led)
+ return hw->mac.ops.cleanup_led(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_blink_led - Blink SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This starts the adapter LED blinking. Request the LED to be setup first
+ * and cleaned up after. This is a function pointer entry point called by
+ * drivers.
+ **/
+s32 e1000_blink_led(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.blink_led)
+ return hw->mac.ops.blink_led(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_id_led_init - store LED configurations in SW
+ * @hw: pointer to the HW structure
+ *
+ * Initializes the LED config in SW. This is a function pointer entry point
+ * called by drivers.
+ **/
+s32 e1000_id_led_init(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.id_led_init)
+ return hw->mac.ops.id_led_init(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on. This is a function pointer entry point
+ * called by drivers.
+ **/
+s32 e1000_led_on(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.led_on)
+ return hw->mac.ops.led_on(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off. This is a function pointer entry point
+ * called by drivers.
+ **/
+s32 e1000_led_off(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.led_off)
+ return hw->mac.ops.led_off(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_reset_adaptive - Reset adaptive IFS
+ * @hw: pointer to the HW structure
+ *
+ * Resets the adaptive IFS. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+void e1000_reset_adaptive(struct e1000_hw *hw)
+{
+ e1000_reset_adaptive_generic(hw);
+}
+
+/**
+ * e1000_update_adaptive - Update adaptive IFS
+ * @hw: pointer to the HW structure
+ *
+ * Updates adapter IFS. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+void e1000_update_adaptive(struct e1000_hw *hw)
+{
+ e1000_update_adaptive_generic(hw);
+}
+
+/**
+ * e1000_disable_pcie_master - Disable PCI-Express master access
+ * @hw: pointer to the HW structure
+ *
+ * Disables PCI-Express master access and verifies there are no pending
+ * requests. Currently no func pointer exists and all implementations are
+ * handled in the generic version of this function.
+ **/
+s32 e1000_disable_pcie_master(struct e1000_hw *hw)
+{
+ return e1000_disable_pcie_master_generic(hw);
+}
+
+/**
+ * e1000_config_collision_dist - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ **/
+void e1000_config_collision_dist(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.config_collision_dist)
+ hw->mac.ops.config_collision_dist(hw);
+}
+
+/**
+ * e1000_rar_set - Sets a receive address register
+ * @hw: pointer to the HW structure
+ * @addr: address to set the RAR to
+ * @index: the RAR to set
+ *
+ * Sets a Receive Address Register (RAR) to the specified address.
+ **/
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ if (hw->mac.ops.rar_set)
+ hw->mac.ops.rar_set(hw, addr, index);
+}
+
+/**
+ * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
+ * @hw: pointer to the HW structure
+ *
+ * Ensures that the MDI/MDIX SW state is valid.
+ **/
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.validate_mdi_setting)
+ return hw->mac.ops.validate_mdi_setting(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_hash_mc_addr - Determines address location in multicast table
+ * @hw: pointer to the HW structure
+ * @mc_addr: Multicast address to hash.
+ *
+ * This hashes an address to determine its location in the multicast
+ * table. Currently no func pointer exists and all implementations
+ * are handled in the generic version of this function.
+ **/
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+ return e1000_hash_mc_addr_generic(hw, mc_addr);
+}
+
+/**
+ * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
+ * @hw: pointer to the HW structure
+ *
+ * Enables packet filtering on transmit packets if manageability is enabled
+ * and host interface is enabled.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+{
+ return e1000_enable_tx_pkt_filtering_generic(hw);
+}
+
+/**
+ * e1000_mng_host_if_write - Writes to the manageability host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface buffer
+ * @length: size of the buffer
+ * @offset: location in the buffer to write to
+ * @sum: sum of the data (not checksum)
+ *
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient
+ * way. Also fills up the sum of the buffer in *buffer parameter.
+ **/
+s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
+ u16 offset, u8 *sum)
+{
+ if (hw->mac.ops.mng_host_if_write)
+ return hw->mac.ops.mng_host_if_write(hw, buffer, length,
+ offset, sum);
+
+ return E1000_NOT_IMPLEMENTED;
+}
+
+/**
+ * e1000_mng_write_cmd_header - Writes manageability command header
+ * @hw: pointer to the HW structure
+ * @hdr: pointer to the host interface command header
+ *
+ * Writes the command header after does the checksum calculation.
+ **/
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr)
+{
+ if (hw->mac.ops.mng_write_cmd_header)
+ return hw->mac.ops.mng_write_cmd_header(hw, hdr);
+
+ return E1000_NOT_IMPLEMENTED;
+}
+
+/**
+ * e1000_mng_enable_host_if - Checks host interface is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ * This function checks whether the HOST IF is enabled for command operation
+ * and also checks whether the previous command is completed. It busy waits
+ * in case of previous command is not completed.
+ **/
+s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
+{
+ if (hw->mac.ops.mng_enable_host_if)
+ return hw->mac.ops.mng_enable_host_if(hw);
+
+ return E1000_NOT_IMPLEMENTED;
+}
+
+/**
+ * e1000_wait_autoneg - Waits for autonegotiation completion
+ * @hw: pointer to the HW structure
+ *
+ * Waits for autoneg to complete. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.wait_autoneg)
+ return hw->mac.ops.wait_autoneg(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_reset_block - Verifies PHY can be reset
+ * @hw: pointer to the HW structure
+ *
+ * Checks if the PHY is in a state that can be reset or if manageability
+ * has it tied up. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_check_reset_block(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.check_reset_block)
+ return hw->phy.ops.check_reset_block(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_phy_reg - Reads PHY register
+ * @hw: pointer to the HW structure
+ * @offset: the register to read
+ * @data: the buffer to store the 16-bit read.
+ *
+ * Reads the PHY register and returns the value in data.
+ * This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ if (hw->phy.ops.read_reg)
+ return hw->phy.ops.read_reg(hw, offset, data);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg - Writes PHY register
+ * @hw: pointer to the HW structure
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes the PHY register at offset with the value in data.
+ * This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ if (hw->phy.ops.write_reg)
+ return hw->phy.ops.write_reg(hw, offset, data);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_release_phy - Generic release PHY
+ * @hw: pointer to the HW structure
+ *
+ * Return if silicon family does not require a semaphore when accessing the
+ * PHY.
+ **/
+void e1000_release_phy(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.release)
+ hw->phy.ops.release(hw);
+}
+
+/**
+ * e1000_acquire_phy - Generic acquire PHY
+ * @hw: pointer to the HW structure
+ *
+ * Return success if silicon family does not require a semaphore when
+ * accessing the PHY.
+ **/
+s32 e1000_acquire_phy(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.acquire)
+ return hw->phy.ops.acquire(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_cfg_on_link_up - Configure PHY upon link up
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.cfg_on_link_up)
+ return hw->phy.ops.cfg_on_link_up(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_kmrn_reg - Reads register using Kumeran interface
+ * @hw: pointer to the HW structure
+ * @offset: the register to read
+ * @data: the location to store the 16-bit value read.
+ *
+ * Reads a register out of the Kumeran interface. Currently no func pointer
+ * exists and all implementations are handled in the generic version of
+ * this function.
+ **/
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return e1000_read_kmrn_reg_generic(hw, offset, data);
+}
+
+/**
+ * e1000_write_kmrn_reg - Writes register using Kumeran interface
+ * @hw: pointer to the HW structure
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes a register to the Kumeran interface. Currently no func pointer
+ * exists and all implementations are handled in the generic version of
+ * this function.
+ **/
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return e1000_write_kmrn_reg_generic(hw, offset, data);
+}
+
+/**
+ * e1000_get_cable_length - Retrieves cable length estimation
+ * @hw: pointer to the HW structure
+ *
+ * This function estimates the cable length and stores them in
+ * hw->phy.min_length and hw->phy.max_length. This is a function pointer
+ * entry point called by drivers.
+ **/
+s32 e1000_get_cable_length(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.get_cable_length)
+ return hw->phy.ops.get_cable_length(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_info - Retrieves PHY information from registers
+ * @hw: pointer to the HW structure
+ *
+ * This function gets some information from various PHY registers and
+ * populates hw->phy values with it. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_get_phy_info(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.get_info)
+ return hw->phy.ops.get_info(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_hw_reset - Hard PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Performs a hard PHY reset. This is a function pointer entry point called
+ * by drivers.
+ **/
+s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.reset)
+ return hw->phy.ops.reset(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_commit - Soft PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Performs a soft PHY reset on those that apply. This is a function pointer
+ * entry point called by drivers.
+ **/
+s32 e1000_phy_commit(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.commit)
+ return hw->phy.ops.commit(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d0_lplu_state - Sets low power link up state for D0
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D0
+ * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+{
+ if (hw->phy.ops.set_d0_lplu_state)
+ return hw->phy.ops.set_d0_lplu_state(hw, active);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d3_lplu_state - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+ if (hw->phy.ops.set_d3_lplu_state)
+ return hw->phy.ops.set_d3_lplu_state(hw, active);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr - Reads MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the MAC address out of the adapter and stores it in the HW structure.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+s32 e1000_read_mac_addr(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.read_mac_addr)
+ return hw->mac.ops.read_mac_addr(hw);
+
+ return e1000_read_mac_addr_generic(hw);
+}
+
+/**
+ * e1000_read_pba_string - Read device part number string
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ * @pba_num_size: size of part number buffer
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
+{
+ return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
+}
+
+/**
+ * e1000_read_pba_length - Read device part number string length
+ * @hw: pointer to the HW structure
+ * @pba_num_size: size of part number buffer
+ *
+ * Reads the product board assembly (PBA) number length from the EEPROM and
+ * stores the value in pba_num.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
+{
+ return e1000_read_pba_length_generic(hw, pba_num_size);
+}
+
+/**
+ * e1000_read_pba_num - Read device part number
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ **/
+s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
+{
+ return e1000_read_pba_num_generic(hw, pba_num);
+}
+
+/**
+ * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
+ * @hw: pointer to the HW structure
+ *
+ * Validates the NVM checksum is correct. This is a function pointer entry
+ * point called by drivers.
+ **/
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
+{
+ if (hw->nvm.ops.validate)
+ return hw->nvm.ops.validate(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the NVM checksum. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ **/
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
+{
+ if (hw->nvm.ops.update)
+ return hw->nvm.ops.update(hw);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_reload_nvm - Reloads EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ * extended control register.
+ **/
+void e1000_reload_nvm(struct e1000_hw *hw)
+{
+ if (hw->nvm.ops.reload)
+ hw->nvm.ops.reload(hw);
+}
+
+/**
+ * e1000_read_nvm - Reads NVM (EEPROM)
+ * @hw: pointer to the HW structure
+ * @offset: the word offset to read
+ * @words: number of 16-bit words to read
+ * @data: pointer to the properly sized buffer for the data.
+ *
+ * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
+ * pointer entry point called by drivers.
+ **/
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ if (hw->nvm.ops.read)
+ return hw->nvm.ops.read(hw, offset, words, data);
+
+ return -E1000_ERR_CONFIG;
+}
+
+/**
+ * e1000_write_nvm - Writes to NVM (EEPROM)
+ * @hw: pointer to the HW structure
+ * @offset: the word offset to read
+ * @words: number of 16-bit words to write
+ * @data: pointer to the properly sized buffer for the data.
+ *
+ * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
+ * pointer entry point called by drivers.
+ **/
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ if (hw->nvm.ops.write)
+ return hw->nvm.ops.write(hw, offset, words, data);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
+ * @hw: pointer to the HW structure
+ * @reg: 32bit register offset
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes the PHY register at offset with the value in data.
+ * This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
+ u8 data)
+{
+ return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
+}
+
+/**
+ * e1000_power_up_phy - Restores link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ **/
+void e1000_power_up_phy(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.power_up)
+ hw->phy.ops.power_up(hw);
+
+ e1000_setup_link(hw);
+}
+
+/**
+ * e1000_power_down_phy - Power down PHY
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ **/
+void e1000_power_down_phy(struct e1000_hw *hw)
+{
+ if (hw->phy.ops.power_down)
+ hw->phy.ops.power_down(hw);
+}
+
+/**
+ * e1000_power_up_fiber_serdes_link - Power up serdes link
+ * @hw: pointer to the HW structure
+ *
+ * Power on the optics and PCS.
+ **/
+void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.power_up_serdes)
+ hw->mac.ops.power_up_serdes(hw);
+}
+
+/**
+ * e1000_shutdown_fiber_serdes_link - Remove link during power down
+ * @hw: pointer to the HW structure
+ *
+ * Shutdown the optics and PCS on driver unload.
+ **/
+void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
+{
+ if (hw->mac.ops.shutdown_serdes)
+ hw->mac.ops.shutdown_serdes(hw);
+}
+
diff --git a/freebsd/dev/e1000/e1000_api.h b/freebsd/dev/e1000/e1000_api.h
new file mode 100644
index 00000000..88b2702e
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_api.h
@@ -0,0 +1,170 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_API_HH_
+#define _E1000_API_HH_
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_hw.h>
+#else
+#include <freebsd/dev/e1000/e1000_hw.h>
+#endif
+
+extern void e1000_init_function_pointers_82542(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82543(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82540(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82571(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82541(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82575(struct e1000_hw *hw);
+extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_vf(struct e1000_hw *hw);
+extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw);
+extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw);
+
+s32 e1000_set_mac_type(struct e1000_hw *hw);
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device);
+s32 e1000_init_mac_params(struct e1000_hw *hw);
+s32 e1000_init_nvm_params(struct e1000_hw *hw);
+s32 e1000_init_phy_params(struct e1000_hw *hw);
+s32 e1000_init_mbx_params(struct e1000_hw *hw);
+s32 e1000_get_bus_info(struct e1000_hw *hw);
+void e1000_clear_vfta(struct e1000_hw *hw);
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
+s32 e1000_force_mac_fc(struct e1000_hw *hw);
+s32 e1000_check_for_link(struct e1000_hw *hw);
+s32 e1000_reset_hw(struct e1000_hw *hw);
+s32 e1000_init_hw(struct e1000_hw *hw);
+s32 e1000_setup_link(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+s32 e1000_disable_pcie_master(struct e1000_hw *hw);
+void e1000_config_collision_dist(struct e1000_hw *hw);
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
+void e1000_update_mc_addr_list(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count);
+s32 e1000_setup_led(struct e1000_hw *hw);
+s32 e1000_cleanup_led(struct e1000_hw *hw);
+s32 e1000_check_reset_block(struct e1000_hw *hw);
+s32 e1000_blink_led(struct e1000_hw *hw);
+s32 e1000_led_on(struct e1000_hw *hw);
+s32 e1000_led_off(struct e1000_hw *hw);
+s32 e1000_id_led_init(struct e1000_hw *hw);
+void e1000_reset_adaptive(struct e1000_hw *hw);
+void e1000_update_adaptive(struct e1000_hw *hw);
+s32 e1000_get_cable_length(struct e1000_hw *hw);
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data);
+s32 e1000_get_phy_info(struct e1000_hw *hw);
+void e1000_release_phy(struct e1000_hw *hw);
+s32 e1000_acquire_phy(struct e1000_hw *hw);
+s32 e1000_cfg_on_link_up(struct e1000_hw *hw);
+s32 e1000_phy_hw_reset(struct e1000_hw *hw);
+s32 e1000_phy_commit(struct e1000_hw *hw);
+void e1000_power_up_phy(struct e1000_hw *hw);
+void e1000_power_down_phy(struct e1000_hw *hw);
+s32 e1000_read_mac_addr(struct e1000_hw *hw);
+s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num);
+s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num,
+ u32 pba_num_size);
+s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size);
+void e1000_reload_nvm(struct e1000_hw *hw);
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
+s32 e1000_wait_autoneg(struct e1000_hw *hw);
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
+bool e1000_check_mng_mode(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
+s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write(struct e1000_hw *hw,
+ u8 *buffer, u16 length, u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info(struct e1000_hw * hw,
+ u8 *buffer, u16 length);
+u32 e1000_translate_register_82542(u32 reg);
+
+/*
+ * TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ * adapter = a pointer to struct e1000_hw
+ * status = the 8 bit status field of the Rx descriptor with EOP set
+ * error = the 8 bit error field of the Rx descriptor with EOP set
+ * length = the sum of all the length fields of the Rx descriptors that
+ * make up the current frame
+ * last_byte = the last byte of the frame DMAed by the hardware
+ * max_frame_length = the maximum frame length we want to accept.
+ * min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ * ...
+ * if (TBI_ACCEPT) {
+ * accept_frame = TRUE;
+ * e1000_tbi_adjust_stats(adapter, MacAddress);
+ * frame_length--;
+ * } else {
+ * accept_frame = FALSE;
+ * }
+ * ...
+ */
+
+/* The carrier extension symbol, as received by the NIC. */
+#define CARRIER_EXTENSION 0x0F
+
+#define TBI_ACCEPT(a, status, errors, length, last_byte, min_frame_size, max_frame_size) \
+ (e1000_tbi_sbp_enabled_82543(a) && \
+ (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+ ((last_byte) == CARRIER_EXTENSION) && \
+ (((status) & E1000_RXD_STAT_VP) ? \
+ (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \
+ ((length) <= (max_frame_size + 1))) : \
+ (((length) > min_frame_size) && \
+ ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+#endif
diff --git a/freebsd/dev/e1000/e1000_defines.h b/freebsd/dev/e1000/e1000_defines.h
new file mode 100644
index 00000000..142903f9
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_defines.h
@@ -0,0 +1,1723 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_DEFINES_HH_
+#define _E1000_DEFINES_HH_
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE 8
+#define REQ_RX_DESCRIPTOR_MULTIPLE 8
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME 0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
+#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
+#define E1000_WUC_LSCWE 0x00000010 /* Link Status wake up enable */
+#define E1000_WUC_LSCWO 0x00000020 /* Link Status wake up override */
+#define E1000_WUC_SPM 0x80000000 /* Enable SPM */
+#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */
+#define E1000_WUC_FLX6_PHY 0x4000 /* Flexible Filter 6 Enable */
+#define E1000_WUC_FLX7_PHY 0x8000 /* Flexible Filter 7 Enable */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_IGNORE_TCO_PHY 0x00000800 /* Ignore WakeOn TCO packets */
+#define E1000_WUFC_FLX0_PHY 0x00001000 /* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1_PHY 0x00002000 /* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2_PHY 0x00004000 /* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3_PHY 0x00008000 /* Flexible Filter 3 Enable */
+#define E1000_WUFC_FLX4_PHY 0x00000200 /* Flexible Filter 4 Enable */
+#define E1000_WUFC_FLX5_PHY 0x00000400 /* Flexible Filter 5 Enable */
+#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */
+#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
+#define E1000_WUFC_FLX4 0x00100000 /* Flexible Filter 4 Enable */
+#define E1000_WUFC_FLX5 0x00200000 /* Flexible Filter 5 Enable */
+#define E1000_WUFC_FLX6 0x00400000 /* Flexible Filter 6 Enable */
+#define E1000_WUFC_FLX7 0x00800000 /* Flexible Filter 7 Enable */
+#define E1000_WUFC_ALL_FILTERS_PHY_4 0x0000F0FF /*Mask for all wakeup filters*/
+#define E1000_WUFC_FLX_OFFSET_PHY 12 /* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS_PHY_4 0x0000F000 /*Mask for 4 flexible filters*/
+#define E1000_WUFC_ALL_FILTERS_PHY_6 0x0000F6FF /*Mask for 6 wakeup filters */
+#define E1000_WUFC_FLX_FILTERS_PHY_6 0x0000F600 /*Mask for 6 flexible filters*/
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
+#define E1000_WUFC_ALL_FILTERS_6 0x003F00FF /* Mask for all 6 wakeup filters*/
+#define E1000_WUFC_ALL_FILTERS_8 0x00FF00FF /* Mask for all 8 wakeup filters*/
+#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000 /*Mask for the 4 flexible filters */
+#define E1000_WUFC_FLX_FILTERS_6 0x003F0000 /* Mask for 6 flexible filters */
+#define E1000_WUFC_FLX_FILTERS_8 0x00FF0000 /* Mask for 8 flexible filters */
+/*
+ * For 82576 to utilize Extended filter masks in addition to
+ * existing (filter) masks
+ */
+#define E1000_WUFC_EXT_FLX_FILTERS 0x00300000 /* Ext. FLX filter mask */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC E1000_WUFC_LNKC
+#define E1000_WUS_MAG E1000_WUFC_MAG
+#define E1000_WUS_EX E1000_WUFC_EX
+#define E1000_WUS_MC E1000_WUFC_MC
+#define E1000_WUS_BC E1000_WUFC_BC
+#define E1000_WUS_ARP E1000_WUFC_ARP
+#define E1000_WUS_IPV4 E1000_WUFC_IPV4
+#define E1000_WUS_IPV6 E1000_WUFC_IPV6
+#define E1000_WUS_FLX0_PHY E1000_WUFC_FLX0_PHY
+#define E1000_WUS_FLX1_PHY E1000_WUFC_FLX1_PHY
+#define E1000_WUS_FLX2_PHY E1000_WUFC_FLX2_PHY
+#define E1000_WUS_FLX3_PHY E1000_WUFC_FLX3_PHY
+#define E1000_WUS_FLX_FILTERS_PHY_4 E1000_WUFC_FLX_FILTERS_PHY_4
+#define E1000_WUS_FLX0 E1000_WUFC_FLX0
+#define E1000_WUS_FLX1 E1000_WUFC_FLX1
+#define E1000_WUS_FLX2 E1000_WUFC_FLX2
+#define E1000_WUS_FLX3 E1000_WUFC_FLX3
+#define E1000_WUS_FLX4 E1000_WUFC_FLX4
+#define E1000_WUS_FLX5 E1000_WUFC_FLX5
+#define E1000_WUS_FLX6 E1000_WUFC_FLX6
+#define E1000_WUS_FLX7 E1000_WUFC_FLX7
+#define E1000_WUS_FLX4_PHY E1000_WUFC_FLX4_PHY
+#define E1000_WUS_FLX5_PHY E1000_WUFC_FLX5_PHY
+#define E1000_WUS_FLX6_PHY 0x0400
+#define E1000_WUS_FLX7_PHY 0x0800
+#define E1000_WUS_FLX_FILTERS E1000_WUFC_FLX_FILTERS
+#define E1000_WUS_FLX_FILTERS_6 E1000_WUFC_FLX_FILTERS_6
+#define E1000_WUS_FLX_FILTERS_8 E1000_WUFC_FLX_FILTERS_8
+#define E1000_WUS_FLX_FILTERS_PHY_6 E1000_WUFC_FLX_FILTERS_PHY_6
+
+/* Wake Up Packet Length */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
+
+/* Four Flexible Filters are supported */
+#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
+/* Six Flexible Filters are supported */
+#define E1000_FLEXIBLE_FILTER_COUNT_MAX_6 6
+/* Eight Flexible Filters are supported */
+#define E1000_FLEXIBLE_FILTER_COUNT_MAX_8 8
+/* Two Extended Flexible Filters are supported (82576) */
+#define E1000_EXT_FLEXIBLE_FILTER_COUNT_MAX 2
+#define E1000_FHFT_LENGTH_OFFSET 0xFC /* Length byte in FHFT */
+#define E1000_FHFT_LENGTH_MASK 0x0FF /* Length in lower byte */
+
+/* Each Flexible Filter is at most 128 (0x80) bytes in length */
+#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128
+
+#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
+#define E1000_FFLT_SIZE_6 E1000_FLEXIBLE_FILTER_COUNT_MAX_6
+#define E1000_FFLT_SIZE_8 E1000_FLEXIBLE_FILTER_COUNT_MAX_8
+#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
+/* Reserved (bits 4,5) in >= 82575 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Definable Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Definable Pin 5 */
+#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Definable Pin 6 */
+#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Definable Pin 3 */
+/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */
+#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */
+#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
+/* Physical Func Reset Done Indication */
+#define E1000_CTRL_EXT_PFRSTD 0x00004000
+#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clock Gating */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_82580_MASK 0x01C00000 /*82580 bit 24:22*/
+#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_PCIX_SERDES 0x00800000
+#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000
+#define E1000_CTRL_EXT_EIAME 0x01000000
+#define E1000_CTRL_EXT_IRCA 0x00000001
+#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
+#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
+#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
+#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
+#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
+#define E1000_CTRL_EXT_CANC 0x04000000 /* Int delay cancellation */
+#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
+/* IAME enable bit (27) was removed in >= 82575 */
+#define E1000_CTRL_EXT_IAME 0x08000000 /* Int acknowledge Auto-mask */
+#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error
+ * detection enabled */
+#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity
+ * error detection enable */
+#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000
+#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */
+#define E1000_CTRL_EXT_LSECCK 0x00001000
+#define E1000_CTRL_EXT_PHYPDEN 0x00100000
+#define E1000_I2CCMD_REG_ADDR_SHIFT 16
+#define E1000_I2CCMD_REG_ADDR 0x00FF0000
+#define E1000_I2CCMD_PHY_ADDR_SHIFT 24
+#define E1000_I2CCMD_PHY_ADDR 0x07000000
+#define E1000_I2CCMD_OPCODE_READ 0x08000000
+#define E1000_I2CCMD_OPCODE_WRITE 0x00000000
+#define E1000_I2CCMD_RESET 0x10000000
+#define E1000_I2CCMD_READY 0x20000000
+#define E1000_I2CCMD_INTERRUPT_ENA 0x40000000
+#define E1000_I2CCMD_ERROR 0x80000000
+#define E1000_MAX_SGMII_PHY_REG_ADDR 255
+#define E1000_I2CCMD_PHY_TIMEOUT 200
+#define E1000_IVAR_VALID 0x80
+#define E1000_GPIE_NSICR 0x00000001
+#define E1000_GPIE_MSIX_MODE 0x00000010
+#define E1000_GPIE_EIAME 0x40000000
+#define E1000_GPIE_PBA 0x80000000
+
+/* Receive Descriptor bit definitions */
+#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
+#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
+#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
+#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
+#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
+#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
+#define E1000_RXD_STAT_CRCV 0x100 /* Speculative CRC Valid */
+#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
+#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
+#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */
+#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */
+#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
+#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
+#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
+#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
+#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
+#define E1000_RXD_SPC_PRI_SHIFT 13
+#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 12
+
+#define E1000_RXDEXT_STATERR_CE 0x01000000
+#define E1000_RXDEXT_STATERR_SE 0x02000000
+#define E1000_RXDEXT_STATERR_SEQ 0x04000000
+#define E1000_RXDEXT_STATERR_CXE 0x10000000
+#define E1000_RXDEXT_STATERR_TCPE 0x20000000
+#define E1000_RXDEXT_STATERR_IPE 0x40000000
+#define E1000_RXDEXT_STATERR_RXE 0x80000000
+
+#define E1000_RXDEXT_LSECH 0x01000000
+#define E1000_RXDEXT_LSECE_MASK 0x60000000
+#define E1000_RXDEXT_LSECE_NO_ERROR 0x00000000
+#define E1000_RXDEXT_LSECE_NO_SA_MATCH 0x20000000
+#define E1000_RXDEXT_LSECE_REPLAY_DETECT 0x40000000
+#define E1000_RXDEXT_LSECE_BAD_SIG 0x60000000
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+ E1000_RXD_ERR_CE | \
+ E1000_RXD_ERR_SE | \
+ E1000_RXD_ERR_SEQ | \
+ E1000_RXD_ERR_CXE | \
+ E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+ E1000_RXDEXT_STATERR_CE | \
+ E1000_RXDEXT_STATERR_SE | \
+ E1000_RXDEXT_STATERR_SEQ | \
+ E1000_RXDEXT_STATERR_CXE | \
+ E1000_RXDEXT_STATERR_RXE)
+
+#define E1000_MRQC_ENABLE_MASK 0x00000007
+#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001
+#define E1000_MRQC_ENABLE_RSS_INT 0x00000004
+#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
+#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
+#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
+#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
+
+#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
+#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
+#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
+#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
+/* Enable Neighbor Discovery Filtering */
+#define E1000_MANC_NEIGHBOR_EN 0x00004000
+#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */
+#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
+#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
+/* Enable MAC address filtering */
+#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
+/* Enable MNG packets to host memory */
+#define E1000_MANC_EN_MNG2HOST 0x00200000
+/* Enable IP address filtering */
+#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000
+#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */
+#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
+#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
+#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
+
+#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */
+#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */
+#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */
+#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */
+
+/* Receive Control */
+#define E1000_RCTL_RST 0x00000001 /* Software reset */
+#define E1000_RCTL_EN 0x00000002 /* enable */
+#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
+#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */
+#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */
+#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
+#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
+#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
+#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
+#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min thresh size */
+#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min thresh size */
+#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min thresh size */
+#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
+#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
+#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
+#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
+#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
+#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
+#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
+#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
+#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
+#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
+#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
+#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
+#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
+#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
+#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
+#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
+#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */
+#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */
+
+/*
+ * Use byte values for the following shift parameters
+ * Usage:
+ * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ * E1000_PSRCTL_BSIZE0_MASK) |
+ * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ * E1000_PSRCTL_BSIZE1_MASK) |
+ * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ * E1000_PSRCTL_BSIZE2_MASK) |
+ * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ * E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256], default=256
+ * value1 = [1024..64512], default=4096
+ * value2 = [0..64512], default=4096
+ * value3 = [0..64512], default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
+
+/* SWFW_SYNC Definitions */
+#define E1000_SWFW_EEP_SM 0x01
+#define E1000_SWFW_PHY0_SM 0x02
+#define E1000_SWFW_PHY1_SM 0x04
+#define E1000_SWFW_CSR_SM 0x08
+#define E1000_SWFW_PHY2_SM 0x20
+#define E1000_SWFW_PHY3_SM 0x40
+
+/* FACTPS Definitions */
+#define E1000_FACTPS_LFS 0x40000000 /* LAN Function Select */
+/* Device Control */
+#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */
+#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
+#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
+#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
+#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
+#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
+#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
+#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */
+#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock
+ * indication in SDP[0] */
+#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through
+ * PHYRST_N pin */
+#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external
+ * LINK_0 and LINK_1 pins */
+#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */
+#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */
+#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
+#define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */
+#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
+#define E1000_CTRL_RST 0x04000000 /* Global reset */
+#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
+#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
+#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
+#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to ME */
+#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */
+
+/*
+ * Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
+#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
+#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
+#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
+#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
+
+#define E1000_CONNSW_ENRGSRC 0x4
+#define E1000_PCS_CFG_PCS_EN 8
+#define E1000_PCS_LCTL_FLV_LINK_UP 1
+#define E1000_PCS_LCTL_FSV_10 0
+#define E1000_PCS_LCTL_FSV_100 2
+#define E1000_PCS_LCTL_FSV_1000 4
+#define E1000_PCS_LCTL_FDV_FULL 8
+#define E1000_PCS_LCTL_FSD 0x10
+#define E1000_PCS_LCTL_FORCE_LINK 0x20
+#define E1000_PCS_LCTL_LOW_LINK_LATCH 0x40
+#define E1000_PCS_LCTL_FORCE_FCTRL 0x80
+#define E1000_PCS_LCTL_AN_ENABLE 0x10000
+#define E1000_PCS_LCTL_AN_RESTART 0x20000
+#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000
+#define E1000_PCS_LCTL_AN_SGMII_BYPASS 0x80000
+#define E1000_PCS_LCTL_AN_SGMII_TRIGGER 0x100000
+#define E1000_PCS_LCTL_FAST_LINK_TIMER 0x1000000
+#define E1000_PCS_LCTL_LINK_OK_FIX 0x2000000
+#define E1000_PCS_LCTL_CRS_ON_NI 0x4000000
+#define E1000_ENABLE_SERDES_LOOPBACK 0x0410
+
+#define E1000_PCS_LSTS_LINK_OK 1
+#define E1000_PCS_LSTS_SPEED_10 0
+#define E1000_PCS_LSTS_SPEED_100 2
+#define E1000_PCS_LSTS_SPEED_1000 4
+#define E1000_PCS_LSTS_DUPLEX_FULL 8
+#define E1000_PCS_LSTS_SYNK_OK 0x10
+#define E1000_PCS_LSTS_AN_COMPLETE 0x10000
+#define E1000_PCS_LSTS_AN_PAGE_RX 0x20000
+#define E1000_PCS_LSTS_AN_TIMED_OUT 0x40000
+#define E1000_PCS_LSTS_AN_REMOTE_FAULT 0x80000
+#define E1000_PCS_LSTS_AN_ERROR_RWS 0x100000
+
+/* Device Status */
+#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
+#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
+#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
+#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
+#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */
+#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
+#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */
+#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state.
+ * Clear on write '0'. */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */
+#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
+#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
+#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
+#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */
+#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */
+#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */
+#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */
+#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution
+ * disabled */
+#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */
+#define E1000_STATUS_FUSE_8 0x04000000
+#define E1000_STATUS_FUSE_9 0x08000000
+#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */
+#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */
+
+/* Constants used to interpret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /*PCI-X bus speed 100-133 MHz*/
+
+#define SPEED_10 10
+#define SPEED_100 100
+#define SPEED_1000 1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+#define PHY_FORCE_TIME 20
+
+#define ADVERTISE_10_HALF 0x0001
+#define ADVERTISE_10_FULL 0x0002
+#define ADVERTISE_100_HALF 0x0004
+#define ADVERTISE_100_FULL 0x0008
+#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
+#define ADVERTISE_1000_FULL 0x0020
+
+/* 1000/H is not supported, nor spec-compliant. */
+#define E1000_ALL_SPEED_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+#define E1000_ALL_NOT_GIG (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | ADVERTISE_100_FULL)
+#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
+#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
+#define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
+
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
+
+/* LED Control */
+#define E1000_PHY_LED0_MODE_MASK 0x00000007
+#define E1000_PHY_LED0_IVRT 0x00000008
+#define E1000_PHY_LED0_BLINK 0x00000010
+#define E1000_PHY_LED0_MASK 0x0000001F
+
+#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT 0
+#define E1000_LEDCTL_LED0_BLINK_RATE 0x00000020
+#define E1000_LEDCTL_LED0_IVRT 0x00000040
+#define E1000_LEDCTL_LED0_BLINK 0x00000080
+#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
+#define E1000_LEDCTL_LED1_MODE_SHIFT 8
+#define E1000_LEDCTL_LED1_BLINK_RATE 0x00002000
+#define E1000_LEDCTL_LED1_IVRT 0x00004000
+#define E1000_LEDCTL_LED1_BLINK 0x00008000
+#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
+#define E1000_LEDCTL_LED2_MODE_SHIFT 16
+#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000
+#define E1000_LEDCTL_LED2_IVRT 0x00400000
+#define E1000_LEDCTL_LED2_BLINK 0x00800000
+#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
+#define E1000_LEDCTL_LED3_MODE_SHIFT 24
+#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000
+#define E1000_LEDCTL_LED3_IVRT 0x40000000
+#define E1000_LEDCTL_LED3_BLINK 0x80000000
+
+#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
+#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
+#define E1000_LEDCTL_MODE_LINK_UP 0x2
+#define E1000_LEDCTL_MODE_ACTIVITY 0x3
+#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
+#define E1000_LEDCTL_MODE_LINK_10 0x5
+#define E1000_LEDCTL_MODE_LINK_100 0x6
+#define E1000_LEDCTL_MODE_LINK_1000 0x7
+#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
+#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
+#define E1000_LEDCTL_MODE_COLLISION 0xA
+#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
+#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
+#define E1000_LEDCTL_MODE_PAUSED 0xD
+#define E1000_LEDCTL_MODE_LED_ON 0xE
+#define E1000_LEDCTL_MODE_LED_OFF 0xF
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
+#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
+#define E1000_TXD_POPTS_SHIFT 8 /* POPTS shift */
+#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
+/* Extended desc bits for Linksec and timesync */
+#define E1000_TXD_CMD_LINKSEC 0x10000000 /* Apply LinkSec on packet */
+#define E1000_TXD_EXTCMD_TSTAMP 0x00000010 /* IEEE1588 Timestamp packet */
+
+/* Transmit Control */
+#define E1000_TCTL_RST 0x00000001 /* software reset */
+#define E1000_TCTL_EN 0x00000002 /* enable tx */
+#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
+#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
+#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
+#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
+#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
+#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
+#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
+#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
+
+/* Transmit Arbitration Count */
+#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */
+
+/* SerDes Control */
+#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
+#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */
+#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
+
+/* Header split receive */
+#define E1000_RFCTL_ISCSI_DIS 0x00000001
+#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E
+#define E1000_RFCTL_ISCSI_DWC_SHIFT 1
+#define E1000_RFCTL_NFSW_DIS 0x00000040
+#define E1000_RFCTL_NFSR_DIS 0x00000080
+#define E1000_RFCTL_NFS_VER_MASK 0x00000300
+#define E1000_RFCTL_NFS_VER_SHIFT 8
+#define E1000_RFCTL_IPV6_DIS 0x00000400
+#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800
+#define E1000_RFCTL_ACK_DIS 0x00001000
+#define E1000_RFCTL_ACKD_DIS 0x00002000
+#define E1000_RFCTL_IPFRSP_DIS 0x00004000
+#define E1000_RFCTL_EXTEN 0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
+#define E1000_RFCTL_LEF 0x00040000
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD 15
+#define E1000_CT_SHIFT 4
+#define E1000_COLLISION_DISTANCE 63
+#define E1000_COLD_SHIFT 12
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82542_TIPG_IPGT 10
+#define DEFAULT_82543_TIPG_IPGT_FIBER 9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK 0x000003FF
+#define E1000_TIPG_IPGR1_MASK 0x000FFC00
+#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+
+#define DEFAULT_82542_TIPG_IPGR1 2
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT 10
+
+#define DEFAULT_82542_TIPG_IPGR2 10
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
+#define E1000_TIPG_IPGR2_SHIFT 20
+
+/* Ethertype field values */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
+
+#define ETHERNET_FCS_SIZE 4
+#define MAX_JUMBO_FRAME_SIZE 0x3F00
+
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
+#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008
+#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
+#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
+
+#define E1000_PHY_CTRL_SPD_EN 0x00000001
+#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
+
+#define E1000_KABGTXD_BGSQLBIAS 0x00050000
+
+/* PBA constants */
+#define E1000_PBA_6K 0x0006 /* 6KB */
+#define E1000_PBA_8K 0x0008 /* 8KB */
+#define E1000_PBA_10K 0x000A /* 10KB */
+#define E1000_PBA_12K 0x000C /* 12KB */
+#define E1000_PBA_14K 0x000E /* 14KB */
+#define E1000_PBA_16K 0x0010 /* 16KB */
+#define E1000_PBA_18K 0x0012
+#define E1000_PBA_20K 0x0014
+#define E1000_PBA_22K 0x0016
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_26K 0x001A
+#define E1000_PBA_30K 0x001E
+#define E1000_PBA_32K 0x0020
+#define E1000_PBA_34K 0x0022
+#define E1000_PBA_35K 0x0023
+#define E1000_PBA_38K 0x0026
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030 /* 48KB */
+#define E1000_PBA_64K 0x0040 /* 64KB */
+
+#define E1000_PBS_16K E1000_PBA_16K
+#define E1000_PBS_24K E1000_PBA_24K
+
+#define IFS_MAX 80
+#define IFS_MIN 40
+#define IFS_RATIO 4
+#define IFS_STEP 10
+#define MIN_NUM_XMITS 1000
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
+#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
+
+#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
+#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
+#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
+#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
+#define E1000_ICR_RXO 0x00000040 /* rx overrun */
+#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
+#define E1000_ICR_VMMB 0x00000100 /* VM MB event */
+#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
+#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */
+#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
+#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
+#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
+#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
+#define E1000_ICR_TXD_LOW 0x00008000
+#define E1000_ICR_SRPD 0x00010000
+#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */
+#define E1000_ICR_MNG 0x00040000 /* Manageability event */
+#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */
+#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */
+#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver
+ * should claim the interrupt */
+#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* Q0 Rx desc FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* Q0 Tx desc FIFO parity error */
+#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity err */
+#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */
+#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* Q1 Rx desc FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* Q1 Tx desc FIFO parity error */
+#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
+#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW
+ * bit in the FWSM */
+#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates
+ * an interrupt */
+#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */
+#define E1000_ICR_EPRST 0x00100000 /* ME hardware reset occurs */
+#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */
+#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */
+#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */
+#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */
+#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */
+#define E1000_ICR_FER 0x00400000 /* Fatal Error */
+
+/* PBA ECC Register */
+#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */
+#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */
+#define E1000_PBA_ECC_CORR_EN 0x00000001 /* Enable ECC error correction */
+#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */
+#define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 on ECC error */
+
+/* Extended Interrupt Cause Read */
+#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */
+#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */
+#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */
+#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */
+#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */
+#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */
+#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */
+#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */
+#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */
+#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */
+/* TCP Timer */
+#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */
+#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */
+#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */
+#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register. Each bit is documented below:
+ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ * o RXSEQ = Receive Sequence Error
+ */
+#define POLL_IMS_ENABLE_MASK ( \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ)
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register. Each bit is documented below:
+ * o RXT0 = Receiver Timer Interrupt (ring 0)
+ * o TXDW = Transmit Descriptor Written Back
+ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ * o RXSEQ = Receive Sequence Error
+ * o LSC = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+ E1000_IMS_RXT0 | \
+ E1000_IMS_TXDW | \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ | \
+ E1000_IMS_LSC)
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */
+#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */
+#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */
+#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMS_SRPD E1000_ICR_SRPD
+#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */
+#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */
+#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* Q0 Rx desc FIFO
+ * parity error */
+#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* Q0 Tx desc FIFO
+ * parity error */
+#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer
+ * parity error */
+#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity
+ * error */
+#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* Q1 Rx desc FIFO
+ * parity error */
+#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* Q1 Tx desc FIFO
+ * parity error */
+#define E1000_IMS_DSW E1000_ICR_DSW
+#define E1000_IMS_PHYINT E1000_ICR_PHYINT
+#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */
+#define E1000_IMS_EPRST E1000_ICR_EPRST
+#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */
+#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */
+#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */
+#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */
+#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */
+#define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */
+
+/* Extended Interrupt Mask Set */
+#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
+
+/* Interrupt Cause Set */
+#define E1000_ICS_TXDW E1000_ICR_TXDW /* Tx desc written back */
+#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */
+#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_ICS_SRPD E1000_ICR_SRPD
+#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */
+#define E1000_ICS_DRSTA E1000_ICR_DRSTA /* Device Reset Aserted */
+#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* Q0 Rx desc FIFO
+ * parity error */
+#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* Q0 Tx desc FIFO
+ * parity error */
+#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer
+ * parity error */
+#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity
+ * error */
+#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* Q1 Rx desc FIFO
+ * parity error */
+#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* Q1 Tx desc FIFO
+ * parity error */
+#define E1000_ICS_DSW E1000_ICR_DSW
+#define E1000_ICS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */
+#define E1000_ICS_PHYINT E1000_ICR_PHYINT
+#define E1000_ICS_EPRST E1000_ICR_EPRST
+
+/* Extended Interrupt Cause Set */
+#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
+
+#define E1000_EITR_ITR_INT_MASK 0x0000FFFF
+/* E1000_EITR_CNT_IGNR is only for 82576 and newer */
+#define E1000_EITR_CNT_IGNR 0x80000000 /* Don't reset counters on write */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
+/* Enable the counting of descriptors still to be processed. */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE 0x8808
+
+/* 802.1q VLAN Packet Size */
+#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
+
+/* Receive Address */
+/*
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * Technically, we have 16 spots. However, we reserve one of these spots
+ * (RAR[15]) for our directed address used by controllers with
+ * manageability enabled, allowing us room for 15 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES 15
+#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
+#define E1000_RAL_MAC_ADDR_LEN 4
+#define E1000_RAH_MAC_ADDR_LEN 2
+#define E1000_RAH_POOL_MASK 0x03FC0000
+#define E1000_RAH_POOL_1 0x00040000
+
+/* Error Codes */
+#define E1000_SUCCESS 0
+#define E1000_ERR_NVM 1
+#define E1000_ERR_PHY 2
+#define E1000_ERR_CONFIG 3
+#define E1000_ERR_PARAM 4
+#define E1000_ERR_MAC_INIT 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET 9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET 12
+#define E1000_ERR_SWFW_SYNC 13
+#define E1000_NOT_IMPLEMENTED 14
+#define E1000_ERR_MBX 15
+#define E1000_ERR_INVALID_ARGUMENT 16
+#define E1000_ERR_NO_SPACE 17
+#define E1000_ERR_NVM_PBA_SECTION 18
+
+/* Loop limit on how long we wait for auto-negotiation to complete */
+#define FIBER_LINK_UP_LIMIT 50
+#define COPPER_LINK_UP_LIMIT 10
+#define PHY_AUTO_NEG_LIMIT 45
+#define PHY_FORCE_LIMIT 20
+/* Number of 100 microseconds we wait for PCI Express master disable */
+#define MASTER_DISABLE_TIMEOUT 800
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT 100
+/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
+#define MDIO_OWNERSHIP_TIMEOUT 10
+/* Number of milliseconds for NVM auto read done after MAC reset. */
+#define AUTO_READ_DONE_TIMEOUT 10
+
+/* Flow Control */
+#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
+#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
+
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
+#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
+#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
+#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
+#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
+#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
+#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
+#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
+#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
+#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
+#define E1000_RXCW_CC 0x10000000 /* Receive config change */
+#define E1000_RXCW_C 0x20000000 /* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
+#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
+
+#define E1000_TSYNCTXCTL_VALID 0x00000001 /* tx timestamp valid */
+#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable tx timestampping */
+
+#define E1000_TSYNCRXCTL_VALID 0x00000001 /* rx timestamp valid */
+#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* rx type mask */
+#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00
+#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02
+#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04
+#define E1000_TSYNCRXCTL_TYPE_ALL 0x08
+#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A
+#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable rx timestampping */
+
+#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF
+#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00
+#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01
+#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02
+#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03
+#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04
+
+#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00
+#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000
+#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300
+#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800
+#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00
+#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00
+#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00
+#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00
+
+#define E1000_TIMINCA_16NS_SHIFT 24
+/* TUPLE Filtering Configuration */
+#define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */
+#define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */
+#define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */
+/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */
+#define E1000_TTQF_PROTOCOL_TCP 0x0
+/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
+#define E1000_TTQF_PROTOCOL_UDP 0x1
+/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
+#define E1000_TTQF_PROTOCOL_SCTP 0x2
+#define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */
+#define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */
+#define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */
+#define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */
+#define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */
+#define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */
+#define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */
+#define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */
+
+#define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */
+#define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */
+#define E1000_MDICNFG_PHY_MASK 0x03E00000
+#define E1000_MDICNFG_PHY_SHIFT 21
+
+/* PCI Express Control */
+#define E1000_GCR_RXD_NO_SNOOP 0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
+#define E1000_GCR_TXD_NO_SNOOP 0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
+#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000
+#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000
+#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000
+#define E1000_GCR_CAP_VER2 0x00040000
+
+#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
+ E1000_GCR_RXDSCW_NO_SNOOP | \
+ E1000_GCR_RXDSCR_NO_SNOOP | \
+ E1000_GCR_TXD_NO_SNOOP | \
+ E1000_GCR_TXDSCW_NO_SNOOP | \
+ E1000_GCR_TXDSCR_NO_SNOOP)
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
+#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
+#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN 0x0800 /* Power down */
+#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
+#define MII_CR_SPEED_1000 0x0040
+#define MII_CR_SPEED_100 0x2000
+#define MII_CR_SPEED_10 0x0000
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
+#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
+#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
+#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
+#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
+#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
+#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
+ /* 0=DTE device */
+#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
+ /* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
+ /* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
+#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
+
+#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CONTROL 0x00 /* Control Register */
+#define PHY_STATUS 0x01 /* Status Register */
+#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */
+#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
+#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
+
+#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */
+
+/* NVM Control */
+#define E1000_EECD_SK 0x00000001 /* NVM Clock */
+#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
+#define E1000_EECD_DI 0x00000004 /* NVM Data In */
+#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
+#define E1000_EECD_FWE_MASK 0x00000030
+#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
+#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
+#define E1000_EECD_FWE_SHIFT 4
+#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
+#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
+#define E1000_EECD_PRES 0x00000100 /* NVM Present */
+#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
+/* NVM Addressing bits based on type 0=small, 1=large */
+#define E1000_EECD_ADDR_BITS 0x00000400
+#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_NVM_GRANT_ATTEMPTS
+#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
+#endif
+#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
+#define E1000_EECD_SIZE_EX_SHIFT 11
+#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
+#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
+#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
+#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
+#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
+#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
+#define E1000_EECD_SECVAL_SHIFT 22
+#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES)
+
+#define E1000_NVM_SWDPIN0 0x0001 /* SWDPIN 0 NVM Value */
+#define E1000_NVM_LED_LOGIC 0x0020 /* Led Logic Word */
+#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */
+#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
+#define E1000_NVM_RW_REG_START 1 /* Start operation */
+#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
+#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
+#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
+#define E1000_FLASH_UPDATES 2000
+
+/* NVM Word Offsets */
+#define NVM_COMPAT 0x0003
+#define NVM_ID_LED_SETTINGS 0x0004
+#define NVM_VERSION 0x0005
+#define NVM_SERDES_AMPLITUDE 0x0006 /* SERDES output amplitude */
+#define NVM_PHY_CLASS_WORD 0x0007
+#define NVM_INIT_CONTROL1_REG 0x000A
+#define NVM_INIT_CONTROL2_REG 0x000F
+#define NVM_SWDEF_PINS_CTRL_PORT_1 0x0010
+#define NVM_INIT_CONTROL3_PORT_B 0x0014
+#define NVM_INIT_3GIO_3 0x001A
+#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020
+#define NVM_INIT_CONTROL3_PORT_A 0x0024
+#define NVM_CFG 0x0012
+#define NVM_FLASH_VERSION 0x0032
+#define NVM_ALT_MAC_ADDR_PTR 0x0037
+#define NVM_CHECKSUM_REG 0x003F
+
+#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */
+#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */
+#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */
+#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */
+
+#define NVM_82580_LAN_FUNC_OFFSET(a) (a ? (0x40 + (0x40 * a)) : 0)
+
+/* Mask bits for fields in Word 0x24 of the NVM */
+#define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */
+#define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed external */
+
+/* Mask bits for fields in Word 0x0f of the NVM */
+#define NVM_WORD0F_PAUSE_MASK 0x3000
+#define NVM_WORD0F_PAUSE 0x1000
+#define NVM_WORD0F_ASM_DIR 0x2000
+#define NVM_WORD0F_ANE 0x0800
+#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0
+#define NVM_WORD0F_LPLU 0x0001
+
+/* Mask bits for fields in Word 0x1a of the NVM */
+#define NVM_WORD1A_ASPM_MASK 0x000C
+
+/* Mask bits for fields in Word 0x03 of the EEPROM */
+#define NVM_COMPAT_LOM 0x0800
+
+/* length of string needed to store PBA number */
+#define E1000_PBANUM_LENGTH 11
+
+/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
+#define NVM_SUM 0xBABA
+
+#define NVM_MAC_ADDR_OFFSET 0
+#define NVM_PBA_OFFSET_0 8
+#define NVM_PBA_OFFSET_1 9
+#define NVM_PBA_PTR_GUARD 0xFAFA
+#define NVM_RESERVED_WORD 0xFFFF
+#define NVM_PHY_CLASS_A 0x8000
+#define NVM_SERDES_AMPLITUDE_MASK 0x000F
+#define NVM_SIZE_MASK 0x1C00
+#define NVM_SIZE_SHIFT 10
+#define NVM_WORD_SIZE_BASE_SHIFT 6
+#define NVM_SWDPIO_EXT_SHIFT 4
+
+/* NVM Commands - Microwire */
+#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */
+#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */
+#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */
+#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */
+
+/* NVM Commands - SPI */
+#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
+#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
+#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
+#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
+#define NVM_WRDI_OPCODE_SPI 0x04 /* NVM reset Write Enable latch */
+#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
+#define NVM_WRSR_OPCODE_SPI 0x01 /* NVM write Status register */
+
+/* SPI NVM Status Register */
+#define NVM_STATUS_RDY_SPI 0x01
+#define NVM_STATUS_WEN_SPI 0x02
+#define NVM_STATUS_BP0_SPI 0x04
+#define NVM_STATUS_BP1_SPI 0x08
+#define NVM_STATUS_WPEN_SPI 0x80
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
+ (ID_LED_OFF1_OFF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2 0x1
+#define ID_LED_DEF1_ON2 0x2
+#define ID_LED_DEF1_OFF2 0x3
+#define ID_LED_ON1_DEF2 0x4
+#define ID_LED_ON1_ON2 0x5
+#define ID_LED_ON1_OFF2 0x6
+#define ID_LED_OFF1_DEF2 0x7
+#define ID_LED_OFF1_ON2 0x8
+#define ID_LED_OFF1_OFF2 0x9
+
+#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE 0x07000000
+
+/* PCI/PCI-X/PCI-EX Config space */
+#define PCIX_COMMAND_REGISTER 0xE6
+#define PCIX_STATUS_REGISTER_LO 0xE8
+#define PCIX_STATUS_REGISTER_HI 0xEA
+#define PCI_HEADER_TYPE_REGISTER 0x0E
+#define PCIE_LINK_STATUS 0x12
+#define PCIE_DEVICE_CONTROL2 0x28
+
+#define PCIX_COMMAND_MMRBC_MASK 0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT 0x2
+#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
+#define PCIX_STATUS_HI_MMRBC_4K 0x3
+#define PCIX_STATUS_HI_MMRBC_2K 0x2
+#define PCIX_STATUS_LO_FUNC_MASK 0x7
+#define PCI_HEADER_TYPE_MULTIFUNC 0x80
+#define PCIE_LINK_WIDTH_MASK 0x3F0
+#define PCIE_LINK_WIDTH_SHIFT 4
+#define PCIE_LINK_SPEED_MASK 0x0F
+#define PCIE_LINK_SPEED_2500 0x01
+#define PCIE_LINK_SPEED_5000 0x02
+#define PCIE_DEVICE_CONTROL2_16ms 0x0005
+
+#ifndef ETH_ADDR_LEN
+#define ETH_ADDR_LEN 6
+#endif
+
+#define PHY_REVISION_MASK 0xFFFFFFF0
+#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG 0xF
+
+/* Bit definitions for valid PHY IDs. */
+/*
+ * I = Integrated
+ * E = External
+ */
+#define M88E1000_E_PHY_ID 0x01410C50
+#define M88E1000_I_PHY_ID 0x01410C30
+#define M88E1011_I_PHY_ID 0x01410C20
+#define IGP01E1000_I_PHY_ID 0x02A80380
+#define M88E1011_I_REV_4 0x04
+#define M88E1111_I_PHY_ID 0x01410CC0
+#define GG82563_E_PHY_ID 0x01410CA0
+#define IGP03E1000_E_PHY_ID 0x02A80390
+#define IFE_E_PHY_ID 0x02A80330
+#define IFE_PLUS_E_PHY_ID 0x02A80320
+#define IFE_C_E_PHY_ID 0x02A80310
+#define BME1000_E_PHY_ID 0x01410CB0
+#define BME1000_E_PHY_ID_R2 0x01410CB1
+#define I82577_E_PHY_ID 0x01540050
+#define I82578_E_PHY_ID 0x004DD040
+#define I82579_E_PHY_ID 0x01540090
+#define I82580_I_PHY_ID 0x015403A0
+#define IGP04E1000_E_PHY_ID 0x02A80391
+#define M88_VENDOR 0x0141
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
+#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */
+#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
+/* 1=CLK125 low, 0=CLK125 toggling */
+#define M88E1000_PSCR_CLK125_DISABLE 0x0010
+#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
+ /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
+/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
+#define M88E1000_PSCR_AUTO_X_1000T 0x0040
+/* Auto crossover enabled all speeds */
+#define M88E1000_PSCR_AUTO_X_MODE 0x0060
+/*
+ * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold
+ * 0=Normal 10BASE-T Rx Threshold
+ */
+#define M88E1000_PSCR_EN_10BT_EXT_DIST 0x0080
+/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
+#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
+#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
+/*
+ * 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-110M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define M88E1000_PSSR_CABLE_LENGTH 0x0380
+#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
+#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
+#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
+
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
+/*
+ * 1 = Lost lock detect enabled.
+ * Will assert lost lock and bring
+ * link down if idle not seen
+ * within 1ms in 1000BASE-T
+ */
+#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave
+ */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
+#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
+
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00
+
+#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020
+#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C
+
+/* BME1000 PHY Specific Control Register */
+#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */
+
+/*
+ * Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define GG82563_PAGE_SHIFT 5
+#define GG82563_REG(page, reg) \
+ (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+#define GG82563_MIN_ALT_REG 30
+
+/* GG82563 Specific Registers */
+#define GG82563_PHY_SPEC_CTRL \
+ GG82563_REG(0, 16) /* PHY Specific Control */
+#define GG82563_PHY_SPEC_STATUS \
+ GG82563_REG(0, 17) /* PHY Specific Status */
+#define GG82563_PHY_INT_ENABLE \
+ GG82563_REG(0, 18) /* Interrupt Enable */
+#define GG82563_PHY_SPEC_STATUS_2 \
+ GG82563_REG(0, 19) /* PHY Specific Status 2 */
+#define GG82563_PHY_RX_ERR_CNTR \
+ GG82563_REG(0, 21) /* Receive Error Counter */
+#define GG82563_PHY_PAGE_SELECT \
+ GG82563_REG(0, 22) /* Page Select */
+#define GG82563_PHY_SPEC_CTRL_2 \
+ GG82563_REG(0, 26) /* PHY Specific Control 2 */
+#define GG82563_PHY_PAGE_SELECT_ALT \
+ GG82563_REG(0, 29) /* Alternate Page Select */
+#define GG82563_PHY_TEST_CLK_CTRL \
+ GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
+
+#define GG82563_PHY_MAC_SPEC_CTRL \
+ GG82563_REG(2, 21) /* MAC Specific Control Register */
+#define GG82563_PHY_MAC_SPEC_CTRL_2 \
+ GG82563_REG(2, 26) /* MAC Specific Control 2 */
+
+#define GG82563_PHY_DSP_DISTANCE \
+ GG82563_REG(5, 26) /* DSP Distance */
+
+/* Page 193 - Port Control Registers */
+#define GG82563_PHY_KMRN_MODE_CTRL \
+ GG82563_REG(193, 16) /* Kumeran Mode Control */
+#define GG82563_PHY_PORT_RESET \
+ GG82563_REG(193, 17) /* Port Reset */
+#define GG82563_PHY_REVISION_ID \
+ GG82563_REG(193, 18) /* Revision ID */
+#define GG82563_PHY_DEVICE_ID \
+ GG82563_REG(193, 19) /* Device ID */
+#define GG82563_PHY_PWR_MGMT_CTRL \
+ GG82563_REG(193, 20) /* Power Management Control */
+#define GG82563_PHY_RATE_ADAPT_CTRL \
+ GG82563_REG(193, 25) /* Rate Adaptation Control */
+
+/* Page 194 - KMRN Registers */
+#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
+ GG82563_REG(194, 16) /* FIFO's Control/Status */
+#define GG82563_PHY_KMRN_CTRL \
+ GG82563_REG(194, 17) /* Control */
+#define GG82563_PHY_INBAND_CTRL \
+ GG82563_REG(194, 18) /* Inband Control */
+#define GG82563_PHY_KMRN_DIAGNOSTIC \
+ GG82563_REG(194, 19) /* Diagnostic */
+#define GG82563_PHY_ACK_TIMEOUTS \
+ GG82563_REG(194, 20) /* Acknowledge Timeouts */
+#define GG82563_PHY_ADV_ABILITY \
+ GG82563_REG(194, 21) /* Advertised Ability */
+#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
+ GG82563_REG(194, 23) /* Link Partner Advertised Ability */
+#define GG82563_PHY_ADV_NEXT_PAGE \
+ GG82563_REG(194, 24) /* Advertised Next Page */
+#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
+ GG82563_REG(194, 25) /* Link Partner Advertised Next page */
+#define GG82563_PHY_KMRN_MISC \
+ GG82563_REG(194, 26) /* Misc. */
+
+/* MDI Control */
+#define E1000_MDIC_DATA_MASK 0x0000FFFF
+#define E1000_MDIC_REG_MASK 0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK 0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE 0x04000000
+#define E1000_MDIC_OP_READ 0x08000000
+#define E1000_MDIC_READY 0x10000000
+#define E1000_MDIC_INT_EN 0x20000000
+#define E1000_MDIC_ERROR 0x40000000
+#define E1000_MDIC_DEST 0x80000000
+
+/* SerDes Control */
+#define E1000_GEN_CTL_READY 0x80000000
+#define E1000_GEN_CTL_ADDRESS_SHIFT 8
+#define E1000_GEN_POLL_TIMEOUT 640
+
+/* LinkSec register fields */
+#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000
+#define E1000_LSECTXCAP_SUM_SHIFT 16
+#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000
+#define E1000_LSECRXCAP_SUM_SHIFT 16
+
+#define E1000_LSECTXCTRL_EN_MASK 0x00000003
+#define E1000_LSECTXCTRL_DISABLE 0x0
+#define E1000_LSECTXCTRL_AUTH 0x1
+#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2
+#define E1000_LSECTXCTRL_AISCI 0x00000020
+#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00
+#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8
+
+#define E1000_LSECRXCTRL_EN_MASK 0x0000000C
+#define E1000_LSECRXCTRL_EN_SHIFT 2
+#define E1000_LSECRXCTRL_DISABLE 0x0
+#define E1000_LSECRXCTRL_CHECK 0x1
+#define E1000_LSECRXCTRL_STRICT 0x2
+#define E1000_LSECRXCTRL_DROP 0x3
+#define E1000_LSECRXCTRL_PLSH 0x00000040
+#define E1000_LSECRXCTRL_RP 0x00000080
+#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33
+
+
+/* DMA Coalescing register fields */
+#define E1000_DMACR_DMACWT_MASK 0x00003FFF /* DMA Coalescing
+ * Watchdog Timer */
+#define E1000_DMACR_DMACTHR_MASK 0x00FF0000 /* DMA Coalescing Receive
+ * Threshold */
+#define E1000_DMACR_DMACTHR_SHIFT 16
+#define E1000_DMACR_DMAC_LX_MASK 0x30000000 /* Lx when no PCIe
+ * transactions */
+#define E1000_DMACR_DMAC_LX_SHIFT 28
+#define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */
+
+#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF /* DMA Coalescing Transmit
+ * Threshold */
+
+#define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */
+
+#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF /* Receive Traffic Rate
+ * Threshold */
+#define E1000_DMCRTRH_LRPRCW 0x80000000 /* Rcv packet rate in
+ * current window */
+
+#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF /* DMA Coal Rcv Traffic
+ * Current Cnt */
+
+#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0 /* Flow ctrl Rcv Threshold
+ * High val */
+#define E1000_FCRTC_RTH_COAL_SHIFT 4
+#define E1000_PCIEMISC_LX_DECISION 0x00000080 /* Lx power decision based
+ on DMA coal */
+
+
+#endif /* _E1000_DEFINES_HH_ */
diff --git a/freebsd/dev/e1000/e1000_hw.h b/freebsd/dev/e1000/e1000_hw.h
new file mode 100644
index 00000000..64001902
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_hw.h
@@ -0,0 +1,968 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_HW_HH_
+#define _E1000_HW_HH_
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_osdep.h>
+#include <freebsd/local/e1000_regs.h>
+#include <freebsd/local/e1000_defines.h>
+#else
+#include <freebsd/dev/e1000/e1000_osdep.h>
+#include <freebsd/dev/e1000/e1000_regs.h>
+#include <freebsd/dev/e1000/e1000_defines.h>
+#endif
+
+struct e1000_hw;
+
+#define E1000_DEV_ID_82542 0x1000
+#define E1000_DEV_ID_82543GC_FIBER 0x1001
+#define E1000_DEV_ID_82543GC_COPPER 0x1004
+#define E1000_DEV_ID_82544EI_COPPER 0x1008
+#define E1000_DEV_ID_82544EI_FIBER 0x1009
+#define E1000_DEV_ID_82544GC_COPPER 0x100C
+#define E1000_DEV_ID_82544GC_LOM 0x100D
+#define E1000_DEV_ID_82540EM 0x100E
+#define E1000_DEV_ID_82540EM_LOM 0x1015
+#define E1000_DEV_ID_82540EP_LOM 0x1016
+#define E1000_DEV_ID_82540EP 0x1017
+#define E1000_DEV_ID_82540EP_LP 0x101E
+#define E1000_DEV_ID_82545EM_COPPER 0x100F
+#define E1000_DEV_ID_82545EM_FIBER 0x1011
+#define E1000_DEV_ID_82545GM_COPPER 0x1026
+#define E1000_DEV_ID_82545GM_FIBER 0x1027
+#define E1000_DEV_ID_82545GM_SERDES 0x1028
+#define E1000_DEV_ID_82546EB_COPPER 0x1010
+#define E1000_DEV_ID_82546EB_FIBER 0x1012
+#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
+#define E1000_DEV_ID_82546GB_COPPER 0x1079
+#define E1000_DEV_ID_82546GB_FIBER 0x107A
+#define E1000_DEV_ID_82546GB_SERDES 0x107B
+#define E1000_DEV_ID_82546GB_PCIE 0x108A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
+#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
+#define E1000_DEV_ID_82541EI 0x1013
+#define E1000_DEV_ID_82541EI_MOBILE 0x1018
+#define E1000_DEV_ID_82541ER_LOM 0x1014
+#define E1000_DEV_ID_82541ER 0x1078
+#define E1000_DEV_ID_82541GI 0x1076
+#define E1000_DEV_ID_82541GI_LF 0x107C
+#define E1000_DEV_ID_82541GI_MOBILE 0x1077
+#define E1000_DEV_ID_82547EI 0x1019
+#define E1000_DEV_ID_82547EI_MOBILE 0x101A
+#define E1000_DEV_ID_82547GI 0x1075
+#define E1000_DEV_ID_82571EB_COPPER 0x105E
+#define E1000_DEV_ID_82571EB_FIBER 0x105F
+#define E1000_DEV_ID_82571EB_SERDES 0x1060
+#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9
+#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA
+#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
+#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
+#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
+#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC
+#define E1000_DEV_ID_82572EI_COPPER 0x107D
+#define E1000_DEV_ID_82572EI_FIBER 0x107E
+#define E1000_DEV_ID_82572EI_SERDES 0x107F
+#define E1000_DEV_ID_82572EI 0x10B9
+#define E1000_DEV_ID_82573E 0x108B
+#define E1000_DEV_ID_82573E_IAMT 0x108C
+#define E1000_DEV_ID_82573L 0x109A
+#define E1000_DEV_ID_82574L 0x10D3
+#define E1000_DEV_ID_82574LA 0x10F6
+#define E1000_DEV_ID_82583V 0x150C
+#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
+#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
+#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
+#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
+#define E1000_DEV_ID_ICH8_82567V_3 0x1501
+#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
+#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
+#define E1000_DEV_ID_ICH8_IGP_C 0x104B
+#define E1000_DEV_ID_ICH8_IFE 0x104C
+#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
+#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
+#define E1000_DEV_ID_ICH8_IGP_M 0x104D
+#define E1000_DEV_ID_ICH9_IGP_M 0x10BF
+#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5
+#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB
+#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD
+#define E1000_DEV_ID_ICH9_BM 0x10E5
+#define E1000_DEV_ID_ICH9_IGP_C 0x294C
+#define E1000_DEV_ID_ICH9_IFE 0x10C0
+#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3
+#define E1000_DEV_ID_ICH9_IFE_G 0x10C2
+#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC
+#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD
+#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE
+#define E1000_DEV_ID_ICH10_HANKSVILLE 0xF0FE
+#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE
+#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF
+#define E1000_DEV_ID_ICH10_D_BM_V 0x1525
+
+#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA
+#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB
+#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF
+#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0
+#define E1000_DEV_ID_PCH2_LV_LM 0x1502
+#define E1000_DEV_ID_PCH2_LV_V 0x1503
+#define E1000_DEV_ID_82576 0x10C9
+#define E1000_DEV_ID_82576_FIBER 0x10E6
+#define E1000_DEV_ID_82576_SERDES 0x10E7
+#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8
+#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526
+#define E1000_DEV_ID_82576_NS 0x150A
+#define E1000_DEV_ID_82576_NS_SERDES 0x1518
+#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D
+#define E1000_DEV_ID_82576_VF 0x10CA
+#define E1000_DEV_ID_82575EB_COPPER 0x10A7
+#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9
+#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6
+#define E1000_DEV_ID_82575GB_QUAD_COPPER_PM 0x10E2
+#define E1000_DEV_ID_82580_COPPER 0x150E
+#define E1000_DEV_ID_82580_FIBER 0x150F
+#define E1000_DEV_ID_82580_SERDES 0x1510
+#define E1000_DEV_ID_82580_SGMII 0x1511
+#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516
+#define E1000_DEV_ID_82580_QUAD_FIBER 0x1527
+#define E1000_DEV_ID_DH89XXCC_SGMII 0x0436
+#define E1000_DEV_ID_DH89XXCC_SERDES 0x0438
+#define E1000_REVISION_0 0
+#define E1000_REVISION_1 1
+#define E1000_REVISION_2 2
+#define E1000_REVISION_3 3
+#define E1000_REVISION_4 4
+
+#define E1000_FUNC_0 0
+#define E1000_FUNC_1 1
+#define E1000_FUNC_2 2
+#define E1000_FUNC_3 3
+
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9
+
+enum e1000_mac_type {
+ e1000_undefined = 0,
+ e1000_82542,
+ e1000_82543,
+ e1000_82544,
+ e1000_82540,
+ e1000_82545,
+ e1000_82545_rev_3,
+ e1000_82546,
+ e1000_82546_rev_3,
+ e1000_82541,
+ e1000_82541_rev_2,
+ e1000_82547,
+ e1000_82547_rev_2,
+ e1000_82571,
+ e1000_82572,
+ e1000_82573,
+ e1000_82574,
+ e1000_82583,
+ e1000_80003es2lan,
+ e1000_ich8lan,
+ e1000_ich9lan,
+ e1000_ich10lan,
+ e1000_pchlan,
+ e1000_pch2lan,
+ e1000_82575,
+ e1000_82576,
+ e1000_82580,
+ e1000_vfadapt,
+ e1000_num_macs /* List is 1-based, so subtract 1 for TRUE count. */
+};
+
+enum e1000_media_type {
+ e1000_media_type_unknown = 0,
+ e1000_media_type_copper = 1,
+ e1000_media_type_fiber = 2,
+ e1000_media_type_internal_serdes = 3,
+ e1000_num_media_types
+};
+
+enum e1000_nvm_type {
+ e1000_nvm_unknown = 0,
+ e1000_nvm_none,
+ e1000_nvm_eeprom_spi,
+ e1000_nvm_eeprom_microwire,
+ e1000_nvm_flash_hw,
+ e1000_nvm_flash_sw
+};
+
+enum e1000_nvm_override {
+ e1000_nvm_override_none = 0,
+ e1000_nvm_override_spi_small,
+ e1000_nvm_override_spi_large,
+ e1000_nvm_override_microwire_small,
+ e1000_nvm_override_microwire_large
+};
+
+enum e1000_phy_type {
+ e1000_phy_unknown = 0,
+ e1000_phy_none,
+ e1000_phy_m88,
+ e1000_phy_igp,
+ e1000_phy_igp_2,
+ e1000_phy_gg82563,
+ e1000_phy_igp_3,
+ e1000_phy_ife,
+ e1000_phy_bm,
+ e1000_phy_82578,
+ e1000_phy_82577,
+ e1000_phy_82579,
+ e1000_phy_82580,
+ e1000_phy_vf,
+};
+
+enum e1000_bus_type {
+ e1000_bus_type_unknown = 0,
+ e1000_bus_type_pci,
+ e1000_bus_type_pcix,
+ e1000_bus_type_pci_express,
+ e1000_bus_type_reserved
+};
+
+enum e1000_bus_speed {
+ e1000_bus_speed_unknown = 0,
+ e1000_bus_speed_33,
+ e1000_bus_speed_66,
+ e1000_bus_speed_100,
+ e1000_bus_speed_120,
+ e1000_bus_speed_133,
+ e1000_bus_speed_2500,
+ e1000_bus_speed_5000,
+ e1000_bus_speed_reserved
+};
+
+enum e1000_bus_width {
+ e1000_bus_width_unknown = 0,
+ e1000_bus_width_pcie_x1,
+ e1000_bus_width_pcie_x2,
+ e1000_bus_width_pcie_x4 = 4,
+ e1000_bus_width_pcie_x8 = 8,
+ e1000_bus_width_32,
+ e1000_bus_width_64,
+ e1000_bus_width_reserved
+};
+
+enum e1000_1000t_rx_status {
+ e1000_1000t_rx_status_not_ok = 0,
+ e1000_1000t_rx_status_ok,
+ e1000_1000t_rx_status_undefined = 0xFF
+};
+
+enum e1000_rev_polarity {
+ e1000_rev_polarity_normal = 0,
+ e1000_rev_polarity_reversed,
+ e1000_rev_polarity_undefined = 0xFF
+};
+
+enum e1000_fc_mode {
+ e1000_fc_none = 0,
+ e1000_fc_rx_pause,
+ e1000_fc_tx_pause,
+ e1000_fc_full,
+ e1000_fc_default = 0xFF
+};
+
+enum e1000_ffe_config {
+ e1000_ffe_config_enabled = 0,
+ e1000_ffe_config_active,
+ e1000_ffe_config_blocked
+};
+
+enum e1000_dsp_config {
+ e1000_dsp_config_disabled = 0,
+ e1000_dsp_config_enabled,
+ e1000_dsp_config_activated,
+ e1000_dsp_config_undefined = 0xFF
+};
+
+enum e1000_ms_type {
+ e1000_ms_hw_default = 0,
+ e1000_ms_force_master,
+ e1000_ms_force_slave,
+ e1000_ms_auto
+};
+
+enum e1000_smart_speed {
+ e1000_smart_speed_default = 0,
+ e1000_smart_speed_on,
+ e1000_smart_speed_off
+};
+
+enum e1000_serdes_link_state {
+ e1000_serdes_link_down = 0,
+ e1000_serdes_link_autoneg_progress,
+ e1000_serdes_link_autoneg_complete,
+ e1000_serdes_link_forced_up
+};
+
+#define __le16 u16
+#define __le32 u32
+#define __le64 u64
+/* Receive Descriptor */
+struct e1000_rx_desc {
+ __le64 buffer_addr; /* Address of the descriptor's data buffer */
+ __le16 length; /* Length of data DMAed into data buffer */
+ __le16 csum; /* Packet checksum */
+ u8 status; /* Descriptor status */
+ u8 errors; /* Descriptor Errors */
+ __le16 special;
+};
+
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+ struct {
+ __le64 buffer_addr;
+ __le64 reserved;
+ } read;
+ struct {
+ struct {
+ __le32 mrq; /* Multiple Rx Queues */
+ union {
+ __le32 rss; /* RSS Hash */
+ struct {
+ __le16 ip_id; /* IP id */
+ __le16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ __le32 status_error; /* ext status/error */
+ __le16 length;
+ __le16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+ struct {
+ /* one buffer for protocol header(s), three data buffers */
+ __le64 buffer_addr[MAX_PS_BUFFERS];
+ } read;
+ struct {
+ struct {
+ __le32 mrq; /* Multiple Rx Queues */
+ union {
+ __le32 rss; /* RSS Hash */
+ struct {
+ __le16 ip_id; /* IP id */
+ __le16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ __le32 status_error; /* ext status/error */
+ __le16 length0; /* length of buffer 0 */
+ __le16 vlan; /* VLAN tag */
+ } middle;
+ struct {
+ __le16 header_status;
+ __le16 length[3]; /* length of buffers 1-3 */
+ } upper;
+ __le64 reserved;
+ } wb; /* writeback */
+};
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+ __le64 buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ __le32 data;
+ struct {
+ __le16 length; /* Data buffer length */
+ u8 cso; /* Checksum offset */
+ u8 cmd; /* Descriptor control */
+ } flags;
+ } lower;
+ union {
+ __le32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 css; /* Checksum start */
+ __le16 special;
+ } fields;
+ } upper;
+};
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+ union {
+ __le32 ip_config;
+ struct {
+ u8 ipcss; /* IP checksum start */
+ u8 ipcso; /* IP checksum offset */
+ __le16 ipcse; /* IP checksum end */
+ } ip_fields;
+ } lower_setup;
+ union {
+ __le32 tcp_config;
+ struct {
+ u8 tucss; /* TCP checksum start */
+ u8 tucso; /* TCP checksum offset */
+ __le16 tucse; /* TCP checksum end */
+ } tcp_fields;
+ } upper_setup;
+ __le32 cmd_and_length;
+ union {
+ __le32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 hdr_len; /* Header length */
+ __le16 mss; /* Maximum segment size */
+ } fields;
+ } tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+ __le64 buffer_addr; /* Address of the descriptor's buffer address */
+ union {
+ __le32 data;
+ struct {
+ __le16 length; /* Data buffer length */
+ u8 typ_len_ext;
+ u8 cmd;
+ } flags;
+ } lower;
+ union {
+ __le32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 popts; /* Packet Options */
+ __le16 special;
+ } fields;
+ } upper;
+};
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+ u64 crcerrs;
+ u64 algnerrc;
+ u64 symerrs;
+ u64 rxerrc;
+ u64 mpc;
+ u64 scc;
+ u64 ecol;
+ u64 mcc;
+ u64 latecol;
+ u64 colc;
+ u64 dc;
+ u64 tncrs;
+ u64 sec;
+ u64 cexterr;
+ u64 rlec;
+ u64 xonrxc;
+ u64 xontxc;
+ u64 xoffrxc;
+ u64 xofftxc;
+ u64 fcruc;
+ u64 prc64;
+ u64 prc127;
+ u64 prc255;
+ u64 prc511;
+ u64 prc1023;
+ u64 prc1522;
+ u64 gprc;
+ u64 bprc;
+ u64 mprc;
+ u64 gptc;
+ u64 gorc;
+ u64 gotc;
+ u64 rnbc;
+ u64 ruc;
+ u64 rfc;
+ u64 roc;
+ u64 rjc;
+ u64 mgprc;
+ u64 mgpdc;
+ u64 mgptc;
+ u64 tor;
+ u64 tot;
+ u64 tpr;
+ u64 tpt;
+ u64 ptc64;
+ u64 ptc127;
+ u64 ptc255;
+ u64 ptc511;
+ u64 ptc1023;
+ u64 ptc1522;
+ u64 mptc;
+ u64 bptc;
+ u64 tsctc;
+ u64 tsctfc;
+ u64 iac;
+ u64 icrxptc;
+ u64 icrxatc;
+ u64 ictxptc;
+ u64 ictxatc;
+ u64 ictxqec;
+ u64 ictxqmtc;
+ u64 icrxdmtc;
+ u64 icrxoc;
+ u64 cbtmpc;
+ u64 htdpmc;
+ u64 cbrdpc;
+ u64 cbrmpc;
+ u64 rpthc;
+ u64 hgptc;
+ u64 htcbdpc;
+ u64 hgorc;
+ u64 hgotc;
+ u64 lenerrs;
+ u64 scvpc;
+ u64 hrmpc;
+ u64 doosync;
+};
+
+struct e1000_vf_stats {
+ u64 base_gprc;
+ u64 base_gptc;
+ u64 base_gorc;
+ u64 base_gotc;
+ u64 base_mprc;
+ u64 base_gotlbc;
+ u64 base_gptlbc;
+ u64 base_gorlbc;
+ u64 base_gprlbc;
+
+ u32 last_gprc;
+ u32 last_gptc;
+ u32 last_gorc;
+ u32 last_gotc;
+ u32 last_mprc;
+ u32 last_gotlbc;
+ u32 last_gptlbc;
+ u32 last_gorlbc;
+ u32 last_gprlbc;
+
+ u64 gprc;
+ u64 gptc;
+ u64 gorc;
+ u64 gotc;
+ u64 mprc;
+ u64 gotlbc;
+ u64 gptlbc;
+ u64 gorlbc;
+ u64 gprlbc;
+};
+
+struct e1000_phy_stats {
+ u32 idle_errors;
+ u32 receive_errors;
+};
+
+struct e1000_host_mng_dhcp_cookie {
+ u32 signature;
+ u8 status;
+ u8 reserved0;
+ u16 vlan_id;
+ u32 reserved1;
+ u16 reserved2;
+ u8 reserved3;
+ u8 checksum;
+};
+
+/* Host Interface "Rev 1" */
+struct e1000_host_command_header {
+ u8 command_id;
+ u8 command_length;
+ u8 command_options;
+ u8 checksum;
+};
+
+#define E1000_HI_MAX_DATA_LENGTH 252
+struct e1000_host_command_info {
+ struct e1000_host_command_header command_header;
+ u8 command_data[E1000_HI_MAX_DATA_LENGTH];
+};
+
+/* Host Interface "Rev 2" */
+struct e1000_host_mng_command_header {
+ u8 command_id;
+ u8 checksum;
+ u16 reserved1;
+ u16 reserved2;
+ u16 command_length;
+};
+
+#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
+struct e1000_host_mng_command_info {
+ struct e1000_host_mng_command_header command_header;
+ u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
+};
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_mac.h>
+#include <freebsd/local/e1000_phy.h>
+#include <freebsd/local/e1000_nvm.h>
+#include <freebsd/local/e1000_manage.h>
+#include <freebsd/local/e1000_mbx.h>
+#else
+#include <freebsd/dev/e1000/e1000_mac.h>
+#include <freebsd/dev/e1000/e1000_phy.h>
+#include <freebsd/dev/e1000/e1000_nvm.h>
+#include <freebsd/dev/e1000/e1000_manage.h>
+#include <freebsd/dev/e1000/e1000_mbx.h>
+#endif
+
+struct e1000_mac_operations {
+ /* Function pointers for the MAC. */
+ s32 (*init_params)(struct e1000_hw *);
+ s32 (*id_led_init)(struct e1000_hw *);
+ s32 (*blink_led)(struct e1000_hw *);
+ s32 (*check_for_link)(struct e1000_hw *);
+ bool (*check_mng_mode)(struct e1000_hw *hw);
+ s32 (*cleanup_led)(struct e1000_hw *);
+ void (*clear_hw_cntrs)(struct e1000_hw *);
+ void (*clear_vfta)(struct e1000_hw *);
+ s32 (*get_bus_info)(struct e1000_hw *);
+ void (*set_lan_id)(struct e1000_hw *);
+ s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+ s32 (*led_on)(struct e1000_hw *);
+ s32 (*led_off)(struct e1000_hw *);
+ void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
+ s32 (*reset_hw)(struct e1000_hw *);
+ s32 (*init_hw)(struct e1000_hw *);
+ void (*shutdown_serdes)(struct e1000_hw *);
+ void (*power_up_serdes)(struct e1000_hw *);
+ s32 (*setup_link)(struct e1000_hw *);
+ s32 (*setup_physical_interface)(struct e1000_hw *);
+ s32 (*setup_led)(struct e1000_hw *);
+ void (*write_vfta)(struct e1000_hw *, u32, u32);
+ void (*config_collision_dist)(struct e1000_hw *);
+ void (*rar_set)(struct e1000_hw *, u8*, u32);
+ s32 (*read_mac_addr)(struct e1000_hw *);
+ s32 (*validate_mdi_setting)(struct e1000_hw *);
+ s32 (*mng_host_if_write)(struct e1000_hw *, u8*, u16, u16, u8*);
+ s32 (*mng_write_cmd_header)(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header*);
+ s32 (*mng_enable_host_if)(struct e1000_hw *);
+ s32 (*wait_autoneg)(struct e1000_hw *);
+};
+
+struct e1000_phy_operations {
+ s32 (*init_params)(struct e1000_hw *);
+ s32 (*acquire)(struct e1000_hw *);
+ s32 (*cfg_on_link_up)(struct e1000_hw *);
+ s32 (*check_polarity)(struct e1000_hw *);
+ s32 (*check_reset_block)(struct e1000_hw *);
+ s32 (*commit)(struct e1000_hw *);
+ s32 (*force_speed_duplex)(struct e1000_hw *);
+ s32 (*get_cfg_done)(struct e1000_hw *hw);
+ s32 (*get_cable_length)(struct e1000_hw *);
+ s32 (*get_info)(struct e1000_hw *);
+ s32 (*read_reg)(struct e1000_hw *, u32, u16 *);
+ s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *);
+ void (*release)(struct e1000_hw *);
+ s32 (*reset)(struct e1000_hw *);
+ s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
+ s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
+ s32 (*write_reg)(struct e1000_hw *, u32, u16);
+ s32 (*write_reg_locked)(struct e1000_hw *, u32, u16);
+ void (*power_up)(struct e1000_hw *);
+ void (*power_down)(struct e1000_hw *);
+};
+
+struct e1000_nvm_operations {
+ s32 (*init_params)(struct e1000_hw *);
+ s32 (*acquire)(struct e1000_hw *);
+ s32 (*read)(struct e1000_hw *, u16, u16, u16 *);
+ void (*release)(struct e1000_hw *);
+ void (*reload)(struct e1000_hw *);
+ s32 (*update)(struct e1000_hw *);
+ s32 (*valid_led_default)(struct e1000_hw *, u16 *);
+ s32 (*validate)(struct e1000_hw *);
+ s32 (*write)(struct e1000_hw *, u16, u16, u16 *);
+};
+
+struct e1000_mac_info {
+ struct e1000_mac_operations ops;
+ u8 addr[6];
+ u8 perm_addr[6];
+
+ enum e1000_mac_type type;
+
+ u32 collision_delta;
+ u32 ledctl_default;
+ u32 ledctl_mode1;
+ u32 ledctl_mode2;
+ u32 mc_filter_type;
+ u32 tx_packet_delta;
+ u32 txcw;
+
+ u16 current_ifs_val;
+ u16 ifs_max_val;
+ u16 ifs_min_val;
+ u16 ifs_ratio;
+ u16 ifs_step_size;
+ u16 mta_reg_count;
+ u16 uta_reg_count;
+
+ /* Maximum size of the MTA register table in all supported adapters */
+ #define MAX_MTA_REG 128
+ u32 mta_shadow[MAX_MTA_REG];
+ u16 rar_entry_count;
+
+ u8 forced_speed_duplex;
+
+ bool adaptive_ifs;
+ bool has_fwsm;
+ bool arc_subsystem_valid;
+ bool asf_firmware_present;
+ bool autoneg;
+ bool autoneg_failed;
+ bool get_link_status;
+ bool in_ifs_mode;
+ bool report_tx_early;
+ enum e1000_serdes_link_state serdes_link_state;
+ bool serdes_has_link;
+ bool tx_pkt_filtering;
+};
+
+struct e1000_phy_info {
+ struct e1000_phy_operations ops;
+ enum e1000_phy_type type;
+
+ enum e1000_1000t_rx_status local_rx;
+ enum e1000_1000t_rx_status remote_rx;
+ enum e1000_ms_type ms_type;
+ enum e1000_ms_type original_ms_type;
+ enum e1000_rev_polarity cable_polarity;
+ enum e1000_smart_speed smart_speed;
+
+ u32 addr;
+ u32 id;
+ u32 reset_delay_us; /* in usec */
+ u32 revision;
+
+ enum e1000_media_type media_type;
+
+ u16 autoneg_advertised;
+ u16 autoneg_mask;
+ u16 cable_length;
+ u16 max_cable_length;
+ u16 min_cable_length;
+
+ u8 mdix;
+
+ bool disable_polarity_correction;
+ bool is_mdix;
+ bool polarity_correction;
+ bool reset_disable;
+ bool speed_downgraded;
+ bool autoneg_wait_to_complete;
+};
+
+struct e1000_nvm_info {
+ struct e1000_nvm_operations ops;
+ enum e1000_nvm_type type;
+ enum e1000_nvm_override override;
+
+ u32 flash_bank_size;
+ u32 flash_base_addr;
+
+ u16 word_size;
+ u16 delay_usec;
+ u16 address_bits;
+ u16 opcode_bits;
+ u16 page_size;
+};
+
+struct e1000_bus_info {
+ enum e1000_bus_type type;
+ enum e1000_bus_speed speed;
+ enum e1000_bus_width width;
+
+ u16 func;
+ u16 pci_cmd_word;
+};
+
+struct e1000_fc_info {
+ u32 high_water; /* Flow control high-water mark */
+ u32 low_water; /* Flow control low-water mark */
+ u16 pause_time; /* Flow control pause timer */
+ u16 refresh_time; /* Flow control refresh timer */
+ bool send_xon; /* Flow control send XON */
+ bool strict_ieee; /* Strict IEEE mode */
+ enum e1000_fc_mode current_mode; /* FC mode in effect */
+ enum e1000_fc_mode requested_mode; /* FC mode requested by caller */
+};
+
+struct e1000_mbx_operations {
+ s32 (*init_params)(struct e1000_hw *hw);
+ s32 (*read)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*check_for_msg)(struct e1000_hw *, u16);
+ s32 (*check_for_ack)(struct e1000_hw *, u16);
+ s32 (*check_for_rst)(struct e1000_hw *, u16);
+};
+
+struct e1000_mbx_stats {
+ u32 msgs_tx;
+ u32 msgs_rx;
+
+ u32 acks;
+ u32 reqs;
+ u32 rsts;
+};
+
+struct e1000_mbx_info {
+ struct e1000_mbx_operations ops;
+ struct e1000_mbx_stats stats;
+ u32 timeout;
+ u32 usec_delay;
+ u16 size;
+};
+
+struct e1000_dev_spec_82541 {
+ enum e1000_dsp_config dsp_config;
+ enum e1000_ffe_config ffe_config;
+ u16 spd_default;
+ bool phy_init_script;
+};
+
+struct e1000_dev_spec_82542 {
+ bool dma_fairness;
+};
+
+struct e1000_dev_spec_82543 {
+ u32 tbi_compatibility;
+ bool dma_fairness;
+ bool init_phy_disabled;
+};
+
+struct e1000_dev_spec_82571 {
+ bool laa_is_present;
+ u32 smb_counter;
+ E1000_MUTEX swflag_mutex;
+};
+
+struct e1000_dev_spec_80003es2lan {
+ bool mdic_wa_enable;
+};
+
+struct e1000_shadow_ram {
+ u16 value;
+ bool modified;
+};
+
+#define E1000_SHADOW_RAM_WORDS 2048
+
+struct e1000_dev_spec_ich8lan {
+ bool kmrn_lock_loss_workaround_enabled;
+ struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS];
+ E1000_MUTEX nvm_mutex;
+ E1000_MUTEX swflag_mutex;
+ bool nvm_k1_enabled;
+ bool eee_disable;
+};
+
+struct e1000_dev_spec_82575 {
+ bool sgmii_active;
+ bool global_device_reset;
+};
+
+struct e1000_dev_spec_vf {
+ u32 vf_number;
+ u32 v2p_mailbox;
+};
+
+struct e1000_hw {
+ void *back;
+
+ u8 *hw_addr;
+ u8 *flash_address;
+ unsigned long io_base;
+
+ struct e1000_mac_info mac;
+ struct e1000_fc_info fc;
+ struct e1000_phy_info phy;
+ struct e1000_nvm_info nvm;
+ struct e1000_bus_info bus;
+ struct e1000_mbx_info mbx;
+ struct e1000_host_mng_dhcp_cookie mng_cookie;
+
+ union {
+ struct e1000_dev_spec_82541 _82541;
+ struct e1000_dev_spec_82542 _82542;
+ struct e1000_dev_spec_82543 _82543;
+ struct e1000_dev_spec_82571 _82571;
+ struct e1000_dev_spec_80003es2lan _80003es2lan;
+ struct e1000_dev_spec_ich8lan ich8lan;
+ struct e1000_dev_spec_82575 _82575;
+ struct e1000_dev_spec_vf vf;
+ } dev_spec;
+
+ u16 device_id;
+ u16 subsystem_vendor_id;
+ u16 subsystem_device_id;
+ u16 vendor_id;
+
+ u8 revision_id;
+};
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_82541.h>
+#include <freebsd/local/e1000_82543.h>
+#include <freebsd/local/e1000_82571.h>
+#include <freebsd/local/e1000_80003es2lan.h>
+#include <freebsd/local/e1000_ich8lan.h>
+#include <freebsd/local/e1000_82575.h>
+#else
+#include <freebsd/dev/e1000/e1000_82541.h>
+#include <freebsd/dev/e1000/e1000_82543.h>
+#include <freebsd/dev/e1000/e1000_82571.h>
+#include <freebsd/dev/e1000/e1000_80003es2lan.h>
+#include <freebsd/dev/e1000/e1000_ich8lan.h>
+#include <freebsd/dev/e1000/e1000_82575.h>
+#endif
+
+/* These functions must be implemented by drivers */
+void e1000_pci_clear_mwi(struct e1000_hw *hw);
+void e1000_pci_set_mwi(struct e1000_hw *hw);
+s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+
+#endif
diff --git a/freebsd/dev/e1000/e1000_ich8lan.c b/freebsd/dev/e1000/e1000_ich8lan.c
new file mode 100644
index 00000000..41c118ee
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_ich8lan.c
@@ -0,0 +1,4159 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+/*
+ * 82562G 10/100 Network Connection
+ * 82562G-2 10/100 Network Connection
+ * 82562GT 10/100 Network Connection
+ * 82562GT-2 10/100 Network Connection
+ * 82562V 10/100 Network Connection
+ * 82562V-2 10/100 Network Connection
+ * 82566DC-2 Gigabit Network Connection
+ * 82566DC Gigabit Network Connection
+ * 82566DM-2 Gigabit Network Connection
+ * 82566DM Gigabit Network Connection
+ * 82566MC Gigabit Network Connection
+ * 82566MM Gigabit Network Connection
+ * 82567LM Gigabit Network Connection
+ * 82567LF Gigabit Network Connection
+ * 82567V Gigabit Network Connection
+ * 82567LM-2 Gigabit Network Connection
+ * 82567LF-2 Gigabit Network Connection
+ * 82567V-2 Gigabit Network Connection
+ * 82567LF-3 Gigabit Network Connection
+ * 82567LM-3 Gigabit Network Connection
+ * 82567LM-4 Gigabit Network Connection
+ * 82577LM Gigabit Network Connection
+ * 82577LC Gigabit Network Connection
+ * 82578DM Gigabit Network Connection
+ * 82578DC Gigabit Network Connection
+ * 82579LM Gigabit Network Connection
+ * 82579V Gigabit Network Connection
+ */
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw);
+static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw);
+static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
+static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
+static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
+static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
+static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
+static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
+static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
+static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
+static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
+static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
+static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
+static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
+static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
+ u16 *data);
+static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
+static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
+static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw);
+static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw);
+static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
+static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
+static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
+static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
+static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
+static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
+static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
+static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
+static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
+static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
+static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
+static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout);
+static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw);
+static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
+static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
+static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
+ u32 offset, u8 *data);
+static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 size, u16 *data);
+static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
+ u32 offset, u16 *data);
+static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+ u32 offset, u8 byte);
+static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw,
+ u32 offset, u8 data);
+static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 size, u16 data);
+static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
+static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
+static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
+static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
+static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
+static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
+static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
+static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
+
+/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
+/* Offset 04h HSFSTS */
+union ich8_hws_flash_status {
+ struct ich8_hsfsts {
+ u16 flcdone :1; /* bit 0 Flash Cycle Done */
+ u16 flcerr :1; /* bit 1 Flash Cycle Error */
+ u16 dael :1; /* bit 2 Direct Access error Log */
+ u16 berasesz :2; /* bit 4:3 Sector Erase Size */
+ u16 flcinprog :1; /* bit 5 flash cycle in Progress */
+ u16 reserved1 :2; /* bit 13:6 Reserved */
+ u16 reserved2 :6; /* bit 13:6 Reserved */
+ u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
+ u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
+ } hsf_status;
+ u16 regval;
+};
+
+/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
+/* Offset 06h FLCTL */
+union ich8_hws_flash_ctrl {
+ struct ich8_hsflctl {
+ u16 flcgo :1; /* 0 Flash Cycle Go */
+ u16 flcycle :2; /* 2:1 Flash Cycle */
+ u16 reserved :5; /* 7:3 Reserved */
+ u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
+ u16 flockdn :6; /* 15:10 Reserved */
+ } hsf_ctrl;
+ u16 regval;
+};
+
+/* ICH Flash Region Access Permissions */
+union ich8_hws_flash_regacc {
+ struct ich8_flracc {
+ u32 grra :8; /* 0:7 GbE region Read Access */
+ u32 grwa :8; /* 8:15 GbE region Write Access */
+ u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
+ u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
+ } hsf_flregacc;
+ u16 regval;
+};
+
+/**
+ * e1000_init_phy_params_pchlan - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific PHY parameters and function pointers.
+ **/
+static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 ctrl, fwsm;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_pchlan");
+
+ phy->addr = 1;
+ phy->reset_delay_us = 100;
+
+ phy->ops.acquire = e1000_acquire_swflag_ich8lan;
+ phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
+ phy->ops.read_reg = e1000_read_phy_reg_hv;
+ phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
+ phy->ops.release = e1000_release_swflag_ich8lan;
+ phy->ops.reset = e1000_phy_hw_reset_ich8lan;
+ phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
+ phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
+ phy->ops.write_reg = e1000_write_phy_reg_hv;
+ phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ /*
+ * The MAC-PHY interconnect may still be in SMBus mode
+ * after Sx->S0. If the manageability engine (ME) is
+ * disabled, then toggle the LANPHYPC Value bit to force
+ * the interconnect to PCIe mode.
+ */
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+ if (!(fwsm & E1000_ICH_FWSM_FW_VALID)) {
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
+ ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ usec_delay(10);
+ ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ msec_delay(50);
+
+ /*
+ * Gate automatic PHY configuration by hardware on
+ * non-managed 82579
+ */
+ if (hw->mac.type == e1000_pch2lan)
+ e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
+ }
+
+ /*
+ * Reset the PHY before any acccess to it. Doing so, ensures that
+ * the PHY is in a known good state before we read/write PHY registers.
+ * The generic reset is sufficient here, because we haven't determined
+ * the PHY type yet.
+ */
+ ret_val = e1000_phy_hw_reset_generic(hw);
+ if (ret_val)
+ goto out;
+
+ /* Ungate automatic PHY configuration on non-managed 82579 */
+ if ((hw->mac.type == e1000_pch2lan) &&
+ !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
+ msec_delay(10);
+ e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
+ }
+
+ phy->id = e1000_phy_unknown;
+ switch (hw->mac.type) {
+ default:
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ goto out;
+ if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
+ break;
+ /* fall-through */
+ case e1000_pch2lan:
+ /*
+ * In case the PHY needs to be in mdio slow mode,
+ * set slow mode and try to get the PHY id again.
+ */
+ ret_val = e1000_set_mdio_slow_mode_hv(hw);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ goto out;
+ break;
+ }
+ phy->type = e1000_get_phy_type_from_id(phy->id);
+
+ switch (phy->type) {
+ case e1000_phy_82577:
+ case e1000_phy_82579:
+ phy->ops.check_polarity = e1000_check_polarity_82577;
+ phy->ops.force_speed_duplex =
+ e1000_phy_force_speed_duplex_82577;
+ phy->ops.get_cable_length = e1000_get_cable_length_82577;
+ phy->ops.get_info = e1000_get_phy_info_82577;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ break;
+ case e1000_phy_82578:
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ break;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific PHY parameters and function pointers.
+ **/
+static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 i = 0;
+
+ DEBUGFUNC("e1000_init_phy_params_ich8lan");
+
+ phy->addr = 1;
+ phy->reset_delay_us = 100;
+
+ phy->ops.acquire = e1000_acquire_swflag_ich8lan;
+ phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
+ phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
+ phy->ops.read_reg = e1000_read_phy_reg_igp;
+ phy->ops.release = e1000_release_swflag_ich8lan;
+ phy->ops.reset = e1000_phy_hw_reset_ich8lan;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
+ phy->ops.write_reg = e1000_write_phy_reg_igp;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
+
+ /*
+ * We may need to do this twice - once for IGP and if that fails,
+ * we'll set BM func pointers and try again
+ */
+ ret_val = e1000_determine_phy_address(hw);
+ if (ret_val) {
+ phy->ops.write_reg = e1000_write_phy_reg_bm;
+ phy->ops.read_reg = e1000_read_phy_reg_bm;
+ ret_val = e1000_determine_phy_address(hw);
+ if (ret_val) {
+ DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
+ goto out;
+ }
+ }
+
+ phy->id = 0;
+ while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
+ (i++ < 100)) {
+ msec_delay(1);
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Verify phy id */
+ switch (phy->id) {
+ case IGP03E1000_E_PHY_ID:
+ phy->type = e1000_phy_igp_3;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
+ phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
+ phy->ops.get_info = e1000_get_phy_info_igp;
+ phy->ops.check_polarity = e1000_check_polarity_igp;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ break;
+ case IFE_E_PHY_ID:
+ case IFE_PLUS_E_PHY_ID:
+ case IFE_C_E_PHY_ID:
+ phy->type = e1000_phy_ife;
+ phy->autoneg_mask = E1000_ALL_NOT_GIG;
+ phy->ops.get_info = e1000_get_phy_info_ife;
+ phy->ops.check_polarity = e1000_check_polarity_ife;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
+ break;
+ case BME1000_E_PHY_ID:
+ phy->type = e1000_phy_bm;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->ops.read_reg = e1000_read_phy_reg_bm;
+ phy->ops.write_reg = e1000_write_phy_reg_bm;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific NVM parameters and function
+ * pointers.
+ **/
+static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ u32 gfpreg, sector_base_addr, sector_end_addr;
+ s32 ret_val = E1000_SUCCESS;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_nvm_params_ich8lan");
+
+ /* Can't read flash registers if the register set isn't mapped. */
+ if (!hw->flash_address) {
+ DEBUGOUT("ERROR: Flash registers not mapped\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ nvm->type = e1000_nvm_flash_sw;
+
+ gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
+
+ /*
+ * sector_X_addr is a "sector"-aligned address (4096 bytes)
+ * Add 1 to sector_end_addr since this sector is included in
+ * the overall size.
+ */
+ sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
+ sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
+
+ /* flash_base_addr is byte-aligned */
+ nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
+
+ /*
+ * find total size of the NVM, then cut in half since the total
+ * size represents two separate NVM banks.
+ */
+ nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
+ << FLASH_SECTOR_ADDR_SHIFT;
+ nvm->flash_bank_size /= 2;
+ /* Adjust to word count */
+ nvm->flash_bank_size /= sizeof(u16);
+
+ nvm->word_size = E1000_SHADOW_RAM_WORDS;
+
+ /* Clear shadow ram */
+ for (i = 0; i < nvm->word_size; i++) {
+ dev_spec->shadow_ram[i].modified = FALSE;
+ dev_spec->shadow_ram[i].value = 0xFFFF;
+ }
+
+ E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
+ E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
+
+ /* Function Pointers */
+ nvm->ops.acquire = e1000_acquire_nvm_ich8lan;
+ nvm->ops.release = e1000_release_nvm_ich8lan;
+ nvm->ops.read = e1000_read_nvm_ich8lan;
+ nvm->ops.update = e1000_update_nvm_checksum_ich8lan;
+ nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
+ nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan;
+ nvm->ops.write = e1000_write_nvm_ich8lan;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific MAC parameters and function
+ * pointers.
+ **/
+static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u16 pci_cfg;
+
+ DEBUGFUNC("e1000_init_mac_params_ich8lan");
+
+ /* Set media type function pointer */
+ hw->phy.media_type = e1000_media_type_copper;
+
+ /* Set mta register count */
+ mac->mta_reg_count = 32;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
+ if (mac->type == e1000_ich8lan)
+ mac->rar_entry_count--;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = TRUE;
+ /* FWSM register */
+ mac->has_fwsm = TRUE;
+ /* ARC subsystem not supported */
+ mac->arc_subsystem_valid = FALSE;
+ /* Adaptive IFS supported */
+ mac->adaptive_ifs = TRUE;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
+ /* function id */
+ mac->ops.set_lan_id = e1000_set_lan_id_single_port;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_ich8lan;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_ich8lan;
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_ich8lan;
+ /* physical interface setup */
+ mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
+ /* check for link */
+ mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* clear hardware counters */
+ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
+
+ /* LED operations */
+ switch (mac->type) {
+ case e1000_ich8lan:
+ case e1000_ich9lan:
+ case e1000_ich10lan:
+ /* check management mode */
+ mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_generic;
+ /* blink LED */
+ mac->ops.blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_ich8lan;
+ mac->ops.led_off = e1000_led_off_ich8lan;
+ break;
+ case e1000_pch2lan:
+ mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
+ mac->ops.rar_set = e1000_rar_set_pch2lan;
+ /* fall-through */
+ case e1000_pchlan:
+ /* save PCH revision_id */
+ e1000_read_pci_cfg(hw, 0x2, &pci_cfg);
+ hw->revision_id = (u8)(pci_cfg &= 0x000F);
+ /* check management mode */
+ mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
+ /* ID LED init */
+ mac->ops.id_led_init = e1000_id_led_init_pchlan;
+ /* setup LED */
+ mac->ops.setup_led = e1000_setup_led_pchlan;
+ /* cleanup LED */
+ mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
+ /* turn on/off LED */
+ mac->ops.led_on = e1000_led_on_pchlan;
+ mac->ops.led_off = e1000_led_off_pchlan;
+ break;
+ default:
+ break;
+ }
+
+ /* Enable PCS Lock-loss workaround for ICH8 */
+ if (mac->type == e1000_ich8lan)
+ e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
+
+ /* Gate automatic PHY configuration by hardware on managed 82579 */
+ if ((mac->type == e1000_pch2lan) &&
+ (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
+ e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_eee_pchlan - Enable/disable EEE support
+ * @hw: pointer to the HW structure
+ *
+ * Enable/disable EEE based on setting in dev_spec structure. The bits in
+ * the LPI Control register will remain set only if/when link is up.
+ **/
+static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_reg;
+
+ DEBUGFUNC("e1000_set_eee_pchlan");
+
+ if (hw->phy.type != e1000_phy_82579)
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, I82579_LPI_CTRL, &phy_reg);
+ if (ret_val)
+ goto out;
+
+ if (hw->dev_spec.ich8lan.eee_disable)
+ phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
+ else
+ phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
+
+ ret_val = hw->phy.ops.write_reg(hw, I82579_LPI_CTRL, phy_reg);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
+ * @hw: pointer to the HW structure
+ *
+ * Checks to see of the link status of the hardware has changed. If a
+ * change in link status has been detected, then we read the PHY registers
+ * to get the current speed/duplex if link exists.
+ **/
+static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
+
+ /*
+ * We only want to go out to the PHY registers to see if Auto-Neg
+ * has completed and/or if our link status has changed. The
+ * get_link_status flag is set upon receiving a Link Status
+ * Change or Rx Sequence Error interrupt.
+ */
+ if (!mac->get_link_status) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /*
+ * First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (hw->mac.type == e1000_pchlan) {
+ ret_val = e1000_k1_gig_workaround_hv(hw, link);
+ if (ret_val)
+ goto out;
+ }
+
+ if (!link)
+ goto out; /* No link detected */
+
+ mac->get_link_status = FALSE;
+
+ if (hw->phy.type == e1000_phy_82578) {
+ ret_val = e1000_link_stall_workaround_hv(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ if (hw->mac.type == e1000_pch2lan) {
+ ret_val = e1000_k1_workaround_lv(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /*
+ * Check if there was DownShift, must be checked
+ * immediately after link-up
+ */
+ e1000_check_downshift_generic(hw);
+
+ /* Enable/Disable EEE after link up */
+ ret_val = e1000_set_eee_pchlan(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if (!mac->autoneg) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /*
+ * Auto-Neg is enabled. Auto Speed Detection takes care
+ * of MAC speed/duplex configuration. So we only need to
+ * configure Collision Distance in the MAC.
+ */
+ e1000_config_collision_dist_generic(hw);
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val)
+ DEBUGOUT("Error configuring flow control\n");
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific function pointers for PHY, MAC, and NVM.
+ **/
+void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_ich8lan");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
+ switch (hw->mac.type) {
+ case e1000_ich8lan:
+ case e1000_ich9lan:
+ case e1000_ich10lan:
+ hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
+ break;
+ case e1000_pchlan:
+ case e1000_pch2lan:
+ hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
+ break;
+ default:
+ break;
+ }
+}
+
+/**
+ * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
+ * @hw: pointer to the HW structure
+ *
+ * Acquires the mutex for performing NVM operations.
+ **/
+static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_acquire_nvm_ich8lan");
+
+ E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_release_nvm_ich8lan - Release NVM mutex
+ * @hw: pointer to the HW structure
+ *
+ * Releases the mutex used while performing NVM operations.
+ **/
+static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_ich8lan");
+
+ E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
+
+ return;
+}
+
+/**
+ * e1000_acquire_swflag_ich8lan - Acquire software control flag
+ * @hw: pointer to the HW structure
+ *
+ * Acquires the software control flag for performing PHY and select
+ * MAC CSR accesses.
+ **/
+static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
+{
+ u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_acquire_swflag_ich8lan");
+
+ E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
+
+ while (timeout) {
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
+ break;
+
+ msec_delay_irq(1);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("SW/FW/HW has locked the resource for too long.\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ timeout = SW_FLAG_TIMEOUT;
+
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+
+ while (timeout) {
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
+ break;
+
+ msec_delay_irq(1);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("Failed to acquire the semaphore.\n");
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+out:
+ if (ret_val)
+ E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
+
+ return ret_val;
+}
+
+/**
+ * e1000_release_swflag_ich8lan - Release software control flag
+ * @hw: pointer to the HW structure
+ *
+ * Releases the software control flag for performing PHY and select
+ * MAC CSR accesses.
+ **/
+static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
+{
+ u32 extcnf_ctrl;
+
+ DEBUGFUNC("e1000_release_swflag_ich8lan");
+
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+
+ E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
+
+ return;
+}
+
+/**
+ * e1000_check_mng_mode_ich8lan - Checks management mode
+ * @hw: pointer to the HW structure
+ *
+ * This checks if the adapter has any manageability enabled.
+ * This is a function pointer entry point only called by read/write
+ * routines for the PHY and NVM parts.
+ **/
+static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
+{
+ u32 fwsm;
+
+ DEBUGFUNC("e1000_check_mng_mode_ich8lan");
+
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+ return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
+ ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+}
+
+/**
+ * e1000_check_mng_mode_pchlan - Checks management mode
+ * @hw: pointer to the HW structure
+ *
+ * This checks if the adapter has iAMT enabled.
+ * This is a function pointer entry point only called by read/write
+ * routines for the PHY and NVM parts.
+ **/
+static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
+{
+ u32 fwsm;
+
+ DEBUGFUNC("e1000_check_mng_mode_pchlan");
+
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+ return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
+ (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+}
+
+/**
+ * e1000_rar_set_pch2lan - Set receive address register
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address array register at index to the address passed
+ * in by addr. For 82579, RAR[0] is the base address register that is to
+ * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
+ * Use SHRA[0-3] in place of those reserved for ME.
+ **/
+static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ u32 rar_low, rar_high;
+
+ DEBUGFUNC("e1000_rar_set_pch2lan");
+
+ /*
+ * HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((u32) addr[0] |
+ ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+ /* If MAC address zero, no need to set the AV bit */
+ if (rar_low || rar_high)
+ rar_high |= E1000_RAH_AV;
+
+ if (index == 0) {
+ E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
+ E1000_WRITE_FLUSH(hw);
+ return;
+ }
+
+ if (index < hw->mac.rar_entry_count) {
+ E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
+ E1000_WRITE_FLUSH(hw);
+
+ /* verify the register updates */
+ if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
+ (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
+ return;
+
+ DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
+ (index - 1), E1000_READ_REG(hw, E1000_FWSM));
+ }
+
+ DEBUGOUT1("Failed to write receive address at index %d\n", index);
+}
+
+/**
+ * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
+ * @hw: pointer to the HW structure
+ *
+ * Checks if firmware is blocking the reset of the PHY.
+ * This is a function pointer entry point only called by
+ * reset routines.
+ **/
+static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
+{
+ u32 fwsm;
+
+ DEBUGFUNC("e1000_check_reset_block_ich8lan");
+
+ if (hw->phy.reset_disable)
+ return E1000_BLK_PHY_RESET;
+
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+ return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? E1000_SUCCESS
+ : E1000_BLK_PHY_RESET;
+}
+
+/**
+ * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
+ * @hw: pointer to the HW structure
+ *
+ * Assumes semaphore already acquired.
+ *
+ **/
+static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
+{
+ u16 phy_data;
+ u32 strap = E1000_READ_REG(hw, E1000_STRAP);
+ s32 ret_val = E1000_SUCCESS;
+
+ strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
+
+ ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~HV_SMB_ADDR_MASK;
+ phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
+ phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
+ ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
+ * @hw: pointer to the HW structure
+ *
+ * SW should configure the LCD from the NVM extended configuration region
+ * as a workaround for certain parts.
+ **/
+static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
+ s32 ret_val = E1000_SUCCESS;
+ u16 word_addr, reg_data, reg_addr, phy_page = 0;
+
+ DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
+
+ /*
+ * Initialize the PHY from the NVM on ICH platforms. This
+ * is needed due to an issue where the NVM configuration is
+ * not properly autoloaded after power transitions.
+ * Therefore, after each PHY reset, we will load the
+ * configuration data out of the NVM manually.
+ */
+ switch (hw->mac.type) {
+ case e1000_ich8lan:
+ if (phy->type != e1000_phy_igp_3)
+ return ret_val;
+
+ if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
+ (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
+ sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
+ break;
+ }
+ /* Fall-thru */
+ case e1000_pchlan:
+ case e1000_pch2lan:
+ sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
+ break;
+ default:
+ return ret_val;
+ }
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ data = E1000_READ_REG(hw, E1000_FEXTNVM);
+ if (!(data & sw_cfg_mask))
+ goto out;
+
+ /*
+ * Make sure HW does not configure LCD from PHY
+ * extended configuration before SW configuration
+ */
+ data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ if (!(hw->mac.type == e1000_pch2lan)) {
+ if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
+ goto out;
+ }
+
+ cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
+ cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
+ cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
+ if (!cnf_size)
+ goto out;
+
+ cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
+ cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
+
+ if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
+ (hw->mac.type == e1000_pchlan)) ||
+ (hw->mac.type == e1000_pch2lan)) {
+ /*
+ * HW configures the SMBus address and LEDs when the
+ * OEM and LCD Write Enable bits are set in the NVM.
+ * When both NVM bits are cleared, SW will configure
+ * them instead.
+ */
+ ret_val = e1000_write_smbus_addr(hw);
+ if (ret_val)
+ goto out;
+
+ data = E1000_READ_REG(hw, E1000_LEDCTL);
+ ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
+ (u16)data);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Configure LCD from extended configuration region. */
+
+ /* cnf_base_addr is in DWORD */
+ word_addr = (u16)(cnf_base_addr << 1);
+
+ for (i = 0; i < cnf_size; i++) {
+ ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
+ &reg_data);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
+ 1, &reg_addr);
+ if (ret_val)
+ goto out;
+
+ /* Save off the PHY page for future writes. */
+ if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
+ phy_page = reg_data;
+ continue;
+ }
+
+ reg_addr &= PHY_REG_MASK;
+ reg_addr |= phy_page;
+
+ ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
+ reg_data);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000_k1_gig_workaround_hv - K1 Si workaround
+ * @hw: pointer to the HW structure
+ * @link: link up bool flag
+ *
+ * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
+ * from a lower speed. This workaround disables K1 whenever link is at 1Gig
+ * If link is down, the function will restore the default K1 setting located
+ * in the NVM.
+ **/
+static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 status_reg = 0;
+ bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
+
+ DEBUGFUNC("e1000_k1_gig_workaround_hv");
+
+ if (hw->mac.type != e1000_pchlan)
+ goto out;
+
+ /* Wrap the whole flow with the sw flag */
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
+ if (link) {
+ if (hw->phy.type == e1000_phy_82578) {
+ ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
+ &status_reg);
+ if (ret_val)
+ goto release;
+
+ status_reg &= BM_CS_STATUS_LINK_UP |
+ BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_MASK;
+
+ if (status_reg == (BM_CS_STATUS_LINK_UP |
+ BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_1000))
+ k1_enable = FALSE;
+ }
+
+ if (hw->phy.type == e1000_phy_82577) {
+ ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
+ &status_reg);
+ if (ret_val)
+ goto release;
+
+ status_reg &= HV_M_STATUS_LINK_UP |
+ HV_M_STATUS_AUTONEG_COMPLETE |
+ HV_M_STATUS_SPEED_MASK;
+
+ if (status_reg == (HV_M_STATUS_LINK_UP |
+ HV_M_STATUS_AUTONEG_COMPLETE |
+ HV_M_STATUS_SPEED_1000))
+ k1_enable = FALSE;
+ }
+
+ /* Link stall fix for link up */
+ ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
+ 0x0100);
+ if (ret_val)
+ goto release;
+
+ } else {
+ /* Link stall fix for link down */
+ ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
+ 0x4100);
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
+
+release:
+ hw->phy.ops.release(hw);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_configure_k1_ich8lan - Configure K1 power state
+ * @hw: pointer to the HW structure
+ * @enable: K1 state to configure
+ *
+ * Configure the K1 power state based on the provided parameter.
+ * Assumes semaphore already acquired.
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ **/
+s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl_reg = 0;
+ u32 ctrl_ext = 0;
+ u32 reg = 0;
+ u16 kmrn_reg = 0;
+
+ DEBUGFUNC("e1000_configure_k1_ich8lan");
+
+ ret_val = e1000_read_kmrn_reg_locked(hw,
+ E1000_KMRNCTRLSTA_K1_CONFIG,
+ &kmrn_reg);
+ if (ret_val)
+ goto out;
+
+ if (k1_enable)
+ kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
+ else
+ kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
+
+ ret_val = e1000_write_kmrn_reg_locked(hw,
+ E1000_KMRNCTRLSTA_K1_CONFIG,
+ kmrn_reg);
+ if (ret_val)
+ goto out;
+
+ usec_delay(20);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
+
+ reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+ reg |= E1000_CTRL_FRCSPD;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
+ usec_delay(20);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ usec_delay(20);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
+ * @hw: pointer to the HW structure
+ * @d0_state: boolean if entering d0 or d3 device state
+ *
+ * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
+ * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
+ * in NVM determines whether HW should configure LPLU and Gbe Disable.
+ **/
+s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
+{
+ s32 ret_val = 0;
+ u32 mac_reg;
+ u16 oem_reg;
+
+ DEBUGFUNC("e1000_oem_bits_config_ich8lan");
+
+ if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
+ return ret_val;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ if (!(hw->mac.type == e1000_pch2lan)) {
+ mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+ if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
+ goto out;
+ }
+
+ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
+ if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
+ goto out;
+
+ mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+ ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
+ if (ret_val)
+ goto out;
+
+ oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
+
+ if (d0_state) {
+ if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
+ oem_reg |= HV_OEM_BITS_GBE_DIS;
+
+ if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
+ oem_reg |= HV_OEM_BITS_LPLU;
+ } else {
+ if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
+ oem_reg |= HV_OEM_BITS_GBE_DIS;
+
+ if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
+ oem_reg |= HV_OEM_BITS_LPLU;
+ }
+ /* Restart auto-neg to activate the bits */
+ if (!hw->phy.ops.check_reset_block(hw))
+ oem_reg |= HV_OEM_BITS_RESTART_AN;
+ ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
+
+out:
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+
+/**
+ * e1000_hv_phy_powerdown_workaround_ich8lan - Power down workaround on Sx
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_hv_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_hv_phy_powerdown_workaround_ich8lan");
+
+ if ((hw->phy.type != e1000_phy_82577) || (hw->revision_id > 2))
+ return E1000_SUCCESS;
+
+ return hw->phy.ops.write_reg(hw, PHY_REG(768, 25), 0x0444);
+}
+
+/**
+ * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
+
+ ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
+ if (ret_val)
+ return ret_val;
+
+ data |= HV_KMRN_MDIO_SLOW;
+
+ ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
+
+ return ret_val;
+}
+
+/**
+ * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
+ * done after every PHY reset.
+ **/
+static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
+
+ if (hw->mac.type != e1000_pchlan)
+ goto out;
+
+ /* Set MDIO slow mode before any other MDIO access */
+ if (hw->phy.type == e1000_phy_82577) {
+ ret_val = e1000_set_mdio_slow_mode_hv(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Hanksville M Phy init for IEEE. */
+ if ((hw->revision_id == 2) &&
+ (hw->phy.type == e1000_phy_82577) &&
+ ((hw->phy.revision == 2) || (hw->phy.revision == 3))) {
+ hw->phy.ops.write_reg(hw, 0x10, 0x8823);
+ hw->phy.ops.write_reg(hw, 0x11, 0x0018);
+ hw->phy.ops.write_reg(hw, 0x10, 0x8824);
+ hw->phy.ops.write_reg(hw, 0x11, 0x0016);
+ hw->phy.ops.write_reg(hw, 0x10, 0x8825);
+ hw->phy.ops.write_reg(hw, 0x11, 0x001A);
+ hw->phy.ops.write_reg(hw, 0x10, 0x888C);
+ hw->phy.ops.write_reg(hw, 0x11, 0x0007);
+ hw->phy.ops.write_reg(hw, 0x10, 0x888D);
+ hw->phy.ops.write_reg(hw, 0x11, 0x0007);
+ hw->phy.ops.write_reg(hw, 0x10, 0x888E);
+ hw->phy.ops.write_reg(hw, 0x11, 0x0007);
+ hw->phy.ops.write_reg(hw, 0x10, 0x8827);
+ hw->phy.ops.write_reg(hw, 0x11, 0x0001);
+ hw->phy.ops.write_reg(hw, 0x10, 0x8835);
+ hw->phy.ops.write_reg(hw, 0x11, 0x0001);
+ hw->phy.ops.write_reg(hw, 0x10, 0x8834);
+ hw->phy.ops.write_reg(hw, 0x11, 0x0001);
+ hw->phy.ops.write_reg(hw, 0x10, 0x8833);
+ hw->phy.ops.write_reg(hw, 0x11, 0x0002);
+ }
+
+ if (((hw->phy.type == e1000_phy_82577) &&
+ ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
+ ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
+ /* Disable generation of early preamble */
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
+ if (ret_val)
+ goto out;
+
+ /* Preamble tuning for SSC */
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(770, 16), 0xA204);
+ if (ret_val)
+ goto out;
+ }
+
+ if (hw->phy.type == e1000_phy_82578) {
+ if (hw->revision_id < 3) {
+ /* PHY config */
+ ret_val = hw->phy.ops.write_reg(hw, (1 << 6) | 0x29,
+ 0x66C0);
+ if (ret_val)
+ goto out;
+
+ /* PHY config */
+ ret_val = hw->phy.ops.write_reg(hw, (1 << 6) | 0x1E,
+ 0xFFFF);
+ if (ret_val)
+ goto out;
+ }
+
+ /*
+ * Return registers to default by doing a soft reset then
+ * writing 0x3140 to the control register.
+ */
+ if (hw->phy.revision < 2) {
+ e1000_phy_sw_reset_generic(hw);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
+ 0x3140);
+ }
+ }
+
+ if ((hw->revision_id == 2) &&
+ (hw->phy.type == e1000_phy_82577) &&
+ ((hw->phy.revision == 2) || (hw->phy.revision == 3))) {
+ /*
+ * Workaround for OEM (GbE) not operating after reset -
+ * restart AN (twice)
+ */
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(768, 25), 0x0400);
+ if (ret_val)
+ goto out;
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(768, 25), 0x0400);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Select page 0 */
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ hw->phy.addr = 1;
+ ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
+ hw->phy.ops.release(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Configure the K1 Si workaround during phy reset assuming there is
+ * link so that it disables K1 if link is in 1Gbps.
+ */
+ ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
+ if (ret_val)
+ goto out;
+
+ /* Workaround for link disconnects on a busy hub in half duplex */
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+ ret_val = hw->phy.ops.read_reg_locked(hw,
+ PHY_REG(BM_PORT_CTRL_PAGE, 17),
+ &phy_data);
+ if (ret_val)
+ goto release;
+ ret_val = hw->phy.ops.write_reg_locked(hw,
+ PHY_REG(BM_PORT_CTRL_PAGE, 17),
+ phy_data & 0x00FF);
+release:
+ hw->phy.ops.release(hw);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
+ * @hw: pointer to the HW structure
+ **/
+void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
+{
+ u32 mac_reg;
+ u16 i;
+
+ DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
+
+ /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
+ for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
+ mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
+ hw->phy.ops.write_reg(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
+ hw->phy.ops.write_reg(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
+ mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
+ hw->phy.ops.write_reg(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
+ hw->phy.ops.write_reg(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0x8000));
+ }
+}
+
+static u32 e1000_calc_rx_da_crc(u8 mac[])
+{
+ u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */
+ u32 i, j, mask, crc;
+
+ DEBUGFUNC("e1000_calc_rx_da_crc");
+
+ crc = 0xffffffff;
+ for (i = 0; i < 6; i++) {
+ crc = crc ^ mac[i];
+ for (j = 8; j > 0; j--) {
+ mask = (crc & 1) * (-1);
+ crc = (crc >> 1) ^ (poly & mask);
+ }
+ }
+ return ~crc;
+}
+
+/**
+ * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
+ * with 82579 PHY
+ * @hw: pointer to the HW structure
+ * @enable: flag to enable/disable workaround when enabling/disabling jumbos
+ **/
+s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_reg, data;
+ u32 mac_reg;
+ u16 i;
+
+ DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
+
+ if (hw->mac.type != e1000_pch2lan)
+ goto out;
+
+ /* disable Rx path while enabling/disabling workaround */
+ hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
+ if (ret_val)
+ goto out;
+
+ if (enable) {
+ /*
+ * Write Rx addresses (rar_entry_count for RAL/H, +4 for
+ * SHRAL/H) and initial CRC values to the MAC
+ */
+ for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
+ u8 mac_addr[ETH_ADDR_LEN] = {0};
+ u32 addr_high, addr_low;
+
+ addr_high = E1000_READ_REG(hw, E1000_RAH(i));
+ if (!(addr_high & E1000_RAH_AV))
+ continue;
+ addr_low = E1000_READ_REG(hw, E1000_RAL(i));
+ mac_addr[0] = (addr_low & 0xFF);
+ mac_addr[1] = ((addr_low >> 8) & 0xFF);
+ mac_addr[2] = ((addr_low >> 16) & 0xFF);
+ mac_addr[3] = ((addr_low >> 24) & 0xFF);
+ mac_addr[4] = (addr_high & 0xFF);
+ mac_addr[5] = ((addr_high >> 8) & 0xFF);
+
+ E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
+ e1000_calc_rx_da_crc(mac_addr));
+ }
+
+ /* Write Rx addresses to the PHY */
+ e1000_copy_rx_addrs_to_phy_ich8lan(hw);
+
+ /* Enable jumbo frame workaround in the MAC */
+ mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
+ mac_reg &= ~(1 << 14);
+ mac_reg |= (7 << 15);
+ E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
+
+ mac_reg = E1000_READ_REG(hw, E1000_RCTL);
+ mac_reg |= E1000_RCTL_SECRC;
+ E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
+
+ ret_val = e1000_read_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_CTRL_OFFSET,
+ &data);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_write_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_CTRL_OFFSET,
+ data | (1 << 0));
+ if (ret_val)
+ goto out;
+ ret_val = e1000_read_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_HD_CTRL,
+ &data);
+ if (ret_val)
+ goto out;
+ data &= ~(0xF << 8);
+ data |= (0xB << 8);
+ ret_val = e1000_write_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_HD_CTRL,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* Enable jumbo frame workaround in the PHY */
+ hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
+ data &= ~(0x7F << 5);
+ data |= (0x37 << 5);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
+ if (ret_val)
+ goto out;
+ hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
+ data &= ~(1 << 13);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
+ if (ret_val)
+ goto out;
+ hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
+ data &= ~(0x3FF << 2);
+ data |= (0x1A << 2);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
+ if (ret_val)
+ goto out;
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xFE00);
+ if (ret_val)
+ goto out;
+ hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
+ ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data | (1 << 10));
+ if (ret_val)
+ goto out;
+ } else {
+ /* Write MAC register values back to h/w defaults */
+ mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
+ mac_reg &= ~(0xF << 14);
+ E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
+
+ mac_reg = E1000_READ_REG(hw, E1000_RCTL);
+ mac_reg &= ~E1000_RCTL_SECRC;
+ E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
+
+ ret_val = e1000_read_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_CTRL_OFFSET,
+ &data);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_write_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_CTRL_OFFSET,
+ data & ~(1 << 0));
+ if (ret_val)
+ goto out;
+ ret_val = e1000_read_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_HD_CTRL,
+ &data);
+ if (ret_val)
+ goto out;
+ data &= ~(0xF << 8);
+ data |= (0xB << 8);
+ ret_val = e1000_write_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_HD_CTRL,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* Write PHY register values back to h/w defaults */
+ hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
+ data &= ~(0x7F << 5);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
+ if (ret_val)
+ goto out;
+ hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
+ data |= (1 << 13);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
+ if (ret_val)
+ goto out;
+ hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
+ data &= ~(0x3FF << 2);
+ data |= (0x8 << 2);
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
+ if (ret_val)
+ goto out;
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
+ if (ret_val)
+ goto out;
+ hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
+ ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data & ~(1 << 10));
+ if (ret_val)
+ goto out;
+ }
+
+ /* re-enable Rx path after enabling/disabling workaround */
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
+ * done after every PHY reset.
+ **/
+static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
+
+ if (hw->mac.type != e1000_pch2lan)
+ goto out;
+
+ /* Set MDIO slow mode before any other MDIO access */
+ ret_val = e1000_set_mdio_slow_mode_hv(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_k1_gig_workaround_lv - K1 Si workaround
+ * @hw: pointer to the HW structure
+ *
+ * Workaround to set the K1 beacon duration for 82579 parts
+ **/
+static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 status_reg = 0;
+ u32 mac_reg;
+
+ DEBUGFUNC("e1000_k1_workaround_lv");
+
+ if (hw->mac.type != e1000_pch2lan)
+ goto out;
+
+ /* Set K1 beacon duration based on 1Gbps speed or otherwise */
+ ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
+ if (ret_val)
+ goto out;
+
+ if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
+ == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
+ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
+ mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
+
+ if (status_reg & HV_M_STATUS_SPEED_1000)
+ mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
+ else
+ mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
+
+ E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
+ * @hw: pointer to the HW structure
+ * @gate: boolean set to TRUE to gate, FALSE to un-gate
+ *
+ * Gate/ungate the automatic PHY configuration via hardware; perform
+ * the configuration via software instead.
+ **/
+static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
+{
+ u32 extcnf_ctrl;
+
+ DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
+
+ if (hw->mac.type != e1000_pch2lan)
+ return;
+
+ extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+
+ if (gate)
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
+ else
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
+
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+ return;
+}
+
+/**
+ * e1000_hv_phy_tuning_workaround_ich8lan - This is a Phy tuning work around
+ * needed for Nahum3 + Hanksville testing, requested by HW team
+ **/
+static s32 e1000_hv_phy_tuning_workaround_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_hv_phy_tuning_workaround_ich8lan");
+
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(770, 16), 0xA204);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, (1 << 6) | 0x29, 0x66C0);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, (1 << 6) | 0x1E, 0xFFFF);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_lan_init_done_ich8lan - Check for PHY config completion
+ * @hw: pointer to the HW structure
+ *
+ * Check the appropriate indication the MAC has finished configuring the
+ * PHY after a software reset.
+ **/
+static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
+{
+ u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
+
+ DEBUGFUNC("e1000_lan_init_done_ich8lan");
+
+ /* Wait for basic configuration completes before proceeding */
+ do {
+ data = E1000_READ_REG(hw, E1000_STATUS);
+ data &= E1000_STATUS_LAN_INIT_DONE;
+ usec_delay(100);
+ } while ((!data) && --loop);
+
+ /*
+ * If basic configuration is incomplete before the above loop
+ * count reaches 0, loading the configuration from NVM will
+ * leave the PHY in a bad state possibly resulting in no link.
+ */
+ if (loop == 0)
+ DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
+
+ /* Clear the Init Done bit for the next init event */
+ data = E1000_READ_REG(hw, E1000_STATUS);
+ data &= ~E1000_STATUS_LAN_INIT_DONE;
+ E1000_WRITE_REG(hw, E1000_STATUS, data);
+}
+
+/**
+ * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 reg;
+
+ DEBUGFUNC("e1000_post_phy_reset_ich8lan");
+
+ if (hw->phy.ops.check_reset_block(hw))
+ goto out;
+
+ /* Allow time for h/w to get to quiescent state after reset */
+ msec_delay(10);
+
+ /* Perform any necessary post-reset workarounds */
+ switch (hw->mac.type) {
+ case e1000_pchlan:
+ ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
+ if (ret_val)
+ goto out;
+ break;
+ case e1000_pch2lan:
+ ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
+ if (ret_val)
+ goto out;
+ break;
+ default:
+ break;
+ }
+
+ if (hw->device_id == E1000_DEV_ID_ICH10_HANKSVILLE) {
+ ret_val = e1000_hv_phy_tuning_workaround_ich8lan(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Dummy read to clear the phy wakeup bit after lcd reset */
+ if (hw->mac.type >= e1000_pchlan)
+ hw->phy.ops.read_reg(hw, BM_WUC, &reg);
+
+ /* Configure the LCD with the extended configuration region in NVM */
+ ret_val = e1000_sw_lcd_config_ich8lan(hw);
+ if (ret_val)
+ goto out;
+
+ /* Configure the LCD with the OEM bits in NVM */
+ ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
+
+ /* Ungate automatic PHY configuration on non-managed 82579 */
+ if ((hw->mac.type == e1000_pch2lan) &&
+ !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) {
+ msec_delay(10);
+ e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Resets the PHY
+ * This is a function pointer entry point called by drivers
+ * or other shared routines.
+ **/
+static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
+
+ /* Gate automatic PHY configuration by hardware on non-managed 82579 */
+ if ((hw->mac.type == e1000_pch2lan) &&
+ !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
+ e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
+
+ ret_val = e1000_phy_hw_reset_generic(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_post_phy_reset_ich8lan(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU state according to the active flag. For PCH, if OEM write
+ * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
+ * the phy speed. This function will manually set the LPLU bit and restart
+ * auto-neg as hw would do. D3 and D0 LPLU will call the same function
+ * since it configures the same bit.
+ **/
+static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 oem_reg;
+
+ DEBUGFUNC("e1000_set_lplu_state_pchlan");
+
+ ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
+ if (ret_val)
+ goto out;
+
+ if (active)
+ oem_reg |= HV_OEM_BITS_LPLU;
+ else
+ oem_reg &= ~HV_OEM_BITS_LPLU;
+
+ oem_reg |= HV_OEM_BITS_RESTART_AN;
+ ret_val = hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 phy_ctrl;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
+
+ if (phy->type == e1000_phy_ife)
+ goto out;
+
+ phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+ if (active) {
+ phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ if (phy->type != e1000_phy_igp_3)
+ goto out;
+
+ /*
+ * Call gig speed drop workaround on LPLU before accessing
+ * any PHY registers
+ */
+ if (hw->mac.type == e1000_ich8lan)
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else {
+ phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ if (phy->type != e1000_phy_igp_3)
+ goto out;
+
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D3 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 phy_ctrl;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
+
+ phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+ if (!active) {
+ phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ if (phy->type != e1000_phy_igp_3)
+ goto out;
+
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ if (phy->type != e1000_phy_igp_3)
+ goto out;
+
+ /*
+ * Call gig speed drop workaround on LPLU before accessing
+ * any PHY registers
+ */
+ if (hw->mac.type == e1000_ich8lan)
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
+ * @hw: pointer to the HW structure
+ * @bank: pointer to the variable that returns the active bank
+ *
+ * Reads signature byte from the NVM using the flash access registers.
+ * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
+ **/
+static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
+{
+ u32 eecd;
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
+ u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
+ u8 sig_byte = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
+
+ switch (hw->mac.type) {
+ case e1000_ich8lan:
+ case e1000_ich9lan:
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
+ E1000_EECD_SEC1VAL_VALID_MASK) {
+ if (eecd & E1000_EECD_SEC1VAL)
+ *bank = 1;
+ else
+ *bank = 0;
+
+ goto out;
+ }
+ DEBUGOUT("Unable to determine valid NVM bank via EEC - "
+ "reading flash signature\n");
+ /* fall-thru */
+ default:
+ /* set bank to 0 in case flash read fails */
+ *bank = 0;
+
+ /* Check bank 0 */
+ ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
+ &sig_byte);
+ if (ret_val)
+ goto out;
+ if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
+ E1000_ICH_NVM_SIG_VALUE) {
+ *bank = 0;
+ goto out;
+ }
+
+ /* Check bank 1 */
+ ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
+ bank1_offset,
+ &sig_byte);
+ if (ret_val)
+ goto out;
+ if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
+ E1000_ICH_NVM_SIG_VALUE) {
+ *bank = 1;
+ goto out;
+ }
+
+ DEBUGOUT("ERROR: No valid NVM bank present\n");
+ ret_val = -E1000_ERR_NVM;
+ break;
+ }
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_ich8lan - Read word(s) from the NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the word(s) to read.
+ * @words: Size of data to read in words
+ * @data: Pointer to the word(s) to read at offset.
+ *
+ * Reads a word(s) from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ u32 act_offset;
+ s32 ret_val = E1000_SUCCESS;
+ u32 bank = 0;
+ u16 i, word;
+
+ DEBUGFUNC("e1000_read_nvm_ich8lan");
+
+ if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ nvm->ops.acquire(hw);
+
+ ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+ if (ret_val != E1000_SUCCESS) {
+ DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
+ bank = 0;
+ }
+
+ act_offset = (bank) ? nvm->flash_bank_size : 0;
+ act_offset += offset;
+
+ ret_val = E1000_SUCCESS;
+ for (i = 0; i < words; i++) {
+ if ((dev_spec->shadow_ram) &&
+ (dev_spec->shadow_ram[offset+i].modified)) {
+ data[i] = dev_spec->shadow_ram[offset+i].value;
+ } else {
+ ret_val = e1000_read_flash_word_ich8lan(hw,
+ act_offset + i,
+ &word);
+ if (ret_val)
+ break;
+ data[i] = word;
+ }
+ }
+
+ nvm->ops.release(hw);
+
+out:
+ if (ret_val)
+ DEBUGOUT1("NVM read error: %d\n", ret_val);
+
+ return ret_val;
+}
+
+/**
+ * e1000_flash_cycle_init_ich8lan - Initialize flash
+ * @hw: pointer to the HW structure
+ *
+ * This function does initial flash setup so that a new read/write/erase cycle
+ * can be started.
+ **/
+static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
+{
+ union ich8_hws_flash_status hsfsts;
+ s32 ret_val = -E1000_ERR_NVM;
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
+
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+ /* Check if the flash descriptor is valid */
+ if (hsfsts.hsf_status.fldesvalid == 0) {
+ DEBUGOUT("Flash descriptor invalid. "
+ "SW Sequencing must be used.");
+ goto out;
+ }
+
+ /* Clear FCERR and DAEL in hw status by writing 1 */
+ hsfsts.hsf_status.flcerr = 1;
+ hsfsts.hsf_status.dael = 1;
+
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+
+ /*
+ * Either we should have a hardware SPI cycle in progress
+ * bit to check against, in order to start a new cycle or
+ * FDONE bit should be changed in the hardware so that it
+ * is 1 after hardware reset, which can then be used as an
+ * indication whether a cycle is in progress or has been
+ * completed.
+ */
+
+ if (hsfsts.hsf_status.flcinprog == 0) {
+ /*
+ * There is no cycle running at present,
+ * so we can start a cycle.
+ * Begin by setting Flash Cycle Done.
+ */
+ hsfsts.hsf_status.flcdone = 1;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+ ret_val = E1000_SUCCESS;
+ } else {
+ /*
+ * Otherwise poll for sometime so the current
+ * cycle has a chance to end before giving up.
+ */
+ for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcinprog == 0) {
+ ret_val = E1000_SUCCESS;
+ break;
+ }
+ usec_delay(1);
+ }
+ if (ret_val == E1000_SUCCESS) {
+ /*
+ * Successful in waiting for previous cycle to timeout,
+ * now set the Flash Cycle Done.
+ */
+ hsfsts.hsf_status.flcdone = 1;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
+ hsfsts.regval);
+ } else {
+ DEBUGOUT("Flash controller busy, cannot get access");
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
+ * @hw: pointer to the HW structure
+ * @timeout: maximum time to wait for completion
+ *
+ * This function starts a flash cycle and waits for its completion.
+ **/
+static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
+{
+ union ich8_hws_flash_ctrl hsflctl;
+ union ich8_hws_flash_status hsfsts;
+ s32 ret_val = -E1000_ERR_NVM;
+ u32 i = 0;
+
+ DEBUGFUNC("e1000_flash_cycle_ich8lan");
+
+ /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
+ hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+ hsflctl.hsf_ctrl.flcgo = 1;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+ /* wait till FDONE bit is set to 1 */
+ do {
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcdone == 1)
+ break;
+ usec_delay(1);
+ } while (i++ < timeout);
+
+ if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
+ ret_val = E1000_SUCCESS;
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_flash_word_ich8lan - Read word from flash
+ * @hw: pointer to the HW structure
+ * @offset: offset to data location
+ * @data: pointer to the location for storing the data
+ *
+ * Reads the flash word at offset into data. Offset is converted
+ * to bytes before read.
+ **/
+static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
+ u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_flash_word_ich8lan");
+
+ if (!data) {
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ /* Must convert offset into bytes. */
+ offset <<= 1;
+
+ ret_val = e1000_read_flash_data_ich8lan(hw, offset, 2, data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_flash_byte_ich8lan - Read byte from flash
+ * @hw: pointer to the HW structure
+ * @offset: The offset of the byte to read.
+ * @data: Pointer to a byte to store the value read.
+ *
+ * Reads a single byte from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 *data)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 word = 0;
+
+ ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
+ if (ret_val)
+ goto out;
+
+ *data = (u8)word;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_flash_data_ich8lan - Read byte or word from NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the byte or word to read.
+ * @size: Size of data to read, 1=byte 2=word
+ * @data: Pointer to the word to store the value read.
+ *
+ * Reads a byte or word from the NVM using the flash access registers.
+ **/
+static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 size, u16 *data)
+{
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ u32 flash_linear_addr;
+ u32 flash_data = 0;
+ s32 ret_val = -E1000_ERR_NVM;
+ u8 count = 0;
+
+ DEBUGFUNC("e1000_read_flash_data_ich8lan");
+
+ if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
+ goto out;
+
+ flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+ hw->nvm.flash_base_addr;
+
+ do {
+ usec_delay(1);
+ /* Steps */
+ ret_val = e1000_flash_cycle_init_ich8lan(hw);
+ if (ret_val != E1000_SUCCESS)
+ break;
+
+ hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+ hsflctl.hsf_ctrl.fldbcount = size - 1;
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+ E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
+
+ ret_val = e1000_flash_cycle_ich8lan(hw,
+ ICH_FLASH_READ_COMMAND_TIMEOUT);
+
+ /*
+ * Check if FCERR is set to 1, if set to 1, clear it
+ * and try the whole sequence a few more times, else
+ * read in (shift in) the Flash Data0, the order is
+ * least significant byte first msb to lsb
+ */
+ if (ret_val == E1000_SUCCESS) {
+ flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
+ if (size == 1)
+ *data = (u8)(flash_data & 0x000000FF);
+ else if (size == 2)
+ *data = (u16)(flash_data & 0x0000FFFF);
+ break;
+ } else {
+ /*
+ * If we've gotten here, then things are probably
+ * completely hosed, but if the error condition is
+ * detected, it won't hurt to give it another try...
+ * ICH_FLASH_CYCLE_REPEAT_COUNT times.
+ */
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr == 1) {
+ /* Repeat for some time before giving up. */
+ continue;
+ } else if (hsfsts.hsf_status.flcdone == 0) {
+ DEBUGOUT("Timeout error - flash cycle "
+ "did not complete.");
+ break;
+ }
+ }
+ } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_ich8lan - Write word(s) to the NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the word(s) to write.
+ * @words: Size of data to write in words
+ * @data: Pointer to the word(s) to write at offset.
+ *
+ * Writes a byte or word to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ s32 ret_val = E1000_SUCCESS;
+ u16 i;
+
+ DEBUGFUNC("e1000_write_nvm_ich8lan");
+
+ if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ nvm->ops.acquire(hw);
+
+ for (i = 0; i < words; i++) {
+ dev_spec->shadow_ram[offset+i].modified = TRUE;
+ dev_spec->shadow_ram[offset+i].value = data[i];
+ }
+
+ nvm->ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
+ * @hw: pointer to the HW structure
+ *
+ * The NVM checksum is updated by calling the generic update_nvm_checksum,
+ * which writes the checksum to the shadow ram. The changes in the shadow
+ * ram are then committed to the EEPROM by processing each bank at a time
+ * checking for the modified bit and writing only the pending changes.
+ * After a successful commit, the shadow ram is cleared and is ready for
+ * future writes.
+ **/
+static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
+
+ ret_val = e1000_update_nvm_checksum_generic(hw);
+ if (ret_val)
+ goto out;
+
+ if (nvm->type != e1000_nvm_flash_sw)
+ goto out;
+
+ nvm->ops.acquire(hw);
+
+ /*
+ * We're writing to the opposite bank so if we're on bank 1,
+ * write to bank 0 etc. We also need to erase the segment that
+ * is going to be written
+ */
+ ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+ if (ret_val != E1000_SUCCESS) {
+ DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
+ bank = 0;
+ }
+
+ if (bank == 0) {
+ new_bank_offset = nvm->flash_bank_size;
+ old_bank_offset = 0;
+ ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
+ if (ret_val)
+ goto release;
+ } else {
+ old_bank_offset = nvm->flash_bank_size;
+ new_bank_offset = 0;
+ ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
+ if (ret_val)
+ goto release;
+ }
+
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+ /*
+ * Determine whether to write the value stored
+ * in the other NVM bank or a modified value stored
+ * in the shadow RAM
+ */
+ if (dev_spec->shadow_ram[i].modified) {
+ data = dev_spec->shadow_ram[i].value;
+ } else {
+ ret_val = e1000_read_flash_word_ich8lan(hw, i +
+ old_bank_offset,
+ &data);
+ if (ret_val)
+ break;
+ }
+
+ /*
+ * If the word is 0x13, then make sure the signature bits
+ * (15:14) are 11b until the commit has completed.
+ * This will allow us to write 10b which indicates the
+ * signature is valid. We want to do this after the write
+ * has completed so that we don't mark the segment valid
+ * while the write is still in progress
+ */
+ if (i == E1000_ICH_NVM_SIG_WORD)
+ data |= E1000_ICH_NVM_SIG_MASK;
+
+ /* Convert offset to bytes. */
+ act_offset = (i + new_bank_offset) << 1;
+
+ usec_delay(100);
+ /* Write the bytes to the new bank. */
+ ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+ act_offset,
+ (u8)data);
+ if (ret_val)
+ break;
+
+ usec_delay(100);
+ ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+ act_offset + 1,
+ (u8)(data >> 8));
+ if (ret_val)
+ break;
+ }
+
+ /*
+ * Don't bother writing the segment valid bits if sector
+ * programming failed.
+ */
+ if (ret_val) {
+ DEBUGOUT("Flash commit failed.\n");
+ goto release;
+ }
+
+ /*
+ * Finally validate the new segment by setting bit 15:14
+ * to 10b in word 0x13 , this can be done without an
+ * erase as well since these bits are 11 to start with
+ * and we need to change bit 14 to 0b
+ */
+ act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
+ ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
+ if (ret_val)
+ goto release;
+
+ data &= 0xBFFF;
+ ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+ act_offset * 2 + 1,
+ (u8)(data >> 8));
+ if (ret_val)
+ goto release;
+
+ /*
+ * And invalidate the previously valid segment by setting
+ * its signature word (0x13) high_byte to 0b. This can be
+ * done without an erase because flash erase sets all bits
+ * to 1's. We can write 1's to 0's without an erase
+ */
+ act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
+ ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
+ if (ret_val)
+ goto release;
+
+ /* Great! Everything worked, we can now clear the cached entries. */
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+ dev_spec->shadow_ram[i].modified = FALSE;
+ dev_spec->shadow_ram[i].value = 0xFFFF;
+ }
+
+release:
+ nvm->ops.release(hw);
+
+ /*
+ * Reload the EEPROM, or else modifications will not appear
+ * until after the next adapter reset.
+ */
+ if (!ret_val) {
+ nvm->ops.reload(hw);
+ msec_delay(10);
+ }
+
+out:
+ if (ret_val)
+ DEBUGOUT1("NVM update error: %d\n", ret_val);
+
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
+ * If the bit is 0, that the EEPROM had been modified, but the checksum was not
+ * calculated, in which case we need to calculate the checksum and set bit 6.
+ **/
+static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
+
+ /*
+ * Read 0x19 and check bit 6. If this bit is 0, the checksum
+ * needs to be fixed. This bit is an indication that the NVM
+ * was prepared by OEM software and did not calculate the
+ * checksum...a likely scenario.
+ */
+ ret_val = hw->nvm.ops.read(hw, 0x19, 1, &data);
+ if (ret_val)
+ goto out;
+
+ if ((data & 0x40) == 0) {
+ data |= 0x40;
+ ret_val = hw->nvm.ops.write(hw, 0x19, 1, &data);
+ if (ret_val)
+ goto out;
+ ret_val = hw->nvm.ops.update(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_validate_nvm_checksum_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset (in bytes) of the byte/word to read.
+ * @size: Size of data to read, 1=byte 2=word
+ * @data: The byte(s) to write to the NVM.
+ *
+ * Writes one/two bytes to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 size, u16 data)
+{
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ u32 flash_linear_addr;
+ u32 flash_data = 0;
+ s32 ret_val = -E1000_ERR_NVM;
+ u8 count = 0;
+
+ DEBUGFUNC("e1000_write_ich8_data");
+
+ if (size < 1 || size > 2 || data > size * 0xff ||
+ offset > ICH_FLASH_LINEAR_ADDR_MASK)
+ goto out;
+
+ flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+ hw->nvm.flash_base_addr;
+
+ do {
+ usec_delay(1);
+ /* Steps */
+ ret_val = e1000_flash_cycle_init_ich8lan(hw);
+ if (ret_val != E1000_SUCCESS)
+ break;
+
+ hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+ hsflctl.hsf_ctrl.fldbcount = size - 1;
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+ E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
+
+ if (size == 1)
+ flash_data = (u32)data & 0x00FF;
+ else
+ flash_data = (u32)data;
+
+ E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
+
+ /*
+ * check if FCERR is set to 1 , if set to 1, clear it
+ * and try the whole sequence a few more times else done
+ */
+ ret_val = e1000_flash_cycle_ich8lan(hw,
+ ICH_FLASH_WRITE_COMMAND_TIMEOUT);
+ if (ret_val == E1000_SUCCESS)
+ break;
+
+ /*
+ * If we're here, then things are most likely
+ * completely hosed, but if the error condition
+ * is detected, it won't hurt to give it another
+ * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+ */
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr == 1)
+ /* Repeat for some time before giving up. */
+ continue;
+ if (hsfsts.hsf_status.flcdone == 0) {
+ DEBUGOUT("Timeout error - flash cycle "
+ "did not complete.");
+ break;
+ }
+ } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
+ * @hw: pointer to the HW structure
+ * @offset: The index of the byte to read.
+ * @data: The byte to write to the NVM.
+ *
+ * Writes a single byte to the NVM using the flash access registers.
+ **/
+static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+ u8 data)
+{
+ u16 word = (u16)data;
+
+ DEBUGFUNC("e1000_write_flash_byte_ich8lan");
+
+ return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
+}
+
+/**
+ * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
+ * @hw: pointer to the HW structure
+ * @offset: The offset of the byte to write.
+ * @byte: The byte to write to the NVM.
+ *
+ * Writes a single byte to the NVM using the flash access registers.
+ * Goes through a retry algorithm before giving up.
+ **/
+static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+ u32 offset, u8 byte)
+{
+ s32 ret_val;
+ u16 program_retries;
+
+ DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
+
+ ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+ if (ret_val == E1000_SUCCESS)
+ goto out;
+
+ for (program_retries = 0; program_retries < 100; program_retries++) {
+ DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
+ usec_delay(100);
+ ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+ if (ret_val == E1000_SUCCESS)
+ break;
+ }
+ if (program_retries == 100) {
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
+ * @hw: pointer to the HW structure
+ * @bank: 0 for first bank, 1 for second bank, etc.
+ *
+ * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
+ * bank N is 4096 * N + flash_reg_addr.
+ **/
+static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ union ich8_hws_flash_status hsfsts;
+ union ich8_hws_flash_ctrl hsflctl;
+ u32 flash_linear_addr;
+ /* bank size is in 16bit words - adjust to bytes */
+ u32 flash_bank_size = nvm->flash_bank_size * 2;
+ s32 ret_val = E1000_SUCCESS;
+ s32 count = 0;
+ s32 j, iteration, sector_size;
+
+ DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
+
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+ /*
+ * Determine HW Sector size: Read BERASE bits of hw flash status
+ * register
+ * 00: The Hw sector is 256 bytes, hence we need to erase 16
+ * consecutive sectors. The start index for the nth Hw sector
+ * can be calculated as = bank * 4096 + n * 256
+ * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
+ * The start index for the nth Hw sector can be calculated
+ * as = bank * 4096
+ * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
+ * (ich9 only, otherwise error condition)
+ * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
+ */
+ switch (hsfsts.hsf_status.berasesz) {
+ case 0:
+ /* Hw sector size 256 */
+ sector_size = ICH_FLASH_SEG_SIZE_256;
+ iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
+ break;
+ case 1:
+ sector_size = ICH_FLASH_SEG_SIZE_4K;
+ iteration = 1;
+ break;
+ case 2:
+ sector_size = ICH_FLASH_SEG_SIZE_8K;
+ iteration = 1;
+ break;
+ case 3:
+ sector_size = ICH_FLASH_SEG_SIZE_64K;
+ iteration = 1;
+ break;
+ default:
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ /* Start with the base address, then add the sector offset. */
+ flash_linear_addr = hw->nvm.flash_base_addr;
+ flash_linear_addr += (bank) ? flash_bank_size : 0;
+
+ for (j = 0; j < iteration ; j++) {
+ do {
+ /* Steps */
+ ret_val = e1000_flash_cycle_init_ich8lan(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Write a value 11 (block Erase) in Flash
+ * Cycle field in hw flash control
+ */
+ hsflctl.regval = E1000_READ_FLASH_REG16(hw,
+ ICH_FLASH_HSFCTL);
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
+ E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
+ hsflctl.regval);
+
+ /*
+ * Write the last 24 bits of an index within the
+ * block into Flash Linear address field in Flash
+ * Address.
+ */
+ flash_linear_addr += (j * sector_size);
+ E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
+ flash_linear_addr);
+
+ ret_val = e1000_flash_cycle_ich8lan(hw,
+ ICH_FLASH_ERASE_COMMAND_TIMEOUT);
+ if (ret_val == E1000_SUCCESS)
+ break;
+
+ /*
+ * Check if FCERR is set to 1. If 1,
+ * clear it and try the whole sequence
+ * a few more times else Done
+ */
+ hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr == 1)
+ /* repeat for some time before giving up */
+ continue;
+ else if (hsfsts.hsf_status.flcdone == 0)
+ goto out;
+ } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_valid_led_default_ich8lan - Set the default LED settings
+ * @hw: pointer to the HW structure
+ * @data: Pointer to the LED settings
+ *
+ * Reads the LED default settings from the NVM to data. If the NVM LED
+ * settings is all 0's or F's, set the LED default to a valid LED default
+ * setting.
+ **/
+static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_ich8lan");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (*data == ID_LED_RESERVED_0000 ||
+ *data == ID_LED_RESERVED_FFFF)
+ *data = ID_LED_DEFAULT_ICH8LAN;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_id_led_init_pchlan - store LED configurations
+ * @hw: pointer to the HW structure
+ *
+ * PCH does not control LEDs via the LEDCTL register, rather it uses
+ * the PHY LED configuration register.
+ *
+ * PCH also does not have an "always on" or "always off" mode which
+ * complicates the ID feature. Instead of using the "on" mode to indicate
+ * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
+ * use "link_up" mode. The LEDs will still ID on request if there is no
+ * link based on logic in e1000_led_[on|off]_pchlan().
+ **/
+static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
+ const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
+ u16 data, i, temp, shift;
+
+ DEBUGFUNC("e1000_id_led_init_pchlan");
+
+ /* Get default ID LED modes */
+ ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+ if (ret_val)
+ goto out;
+
+ mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
+ mac->ledctl_mode1 = mac->ledctl_default;
+ mac->ledctl_mode2 = mac->ledctl_default;
+
+ for (i = 0; i < 4; i++) {
+ temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
+ shift = (i * 5);
+ switch (temp) {
+ case ID_LED_ON1_DEF2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_ON1_OFF2:
+ mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
+ mac->ledctl_mode1 |= (ledctl_on << shift);
+ break;
+ case ID_LED_OFF1_DEF2:
+ case ID_LED_OFF1_ON2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
+ mac->ledctl_mode1 |= (ledctl_off << shift);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ switch (temp) {
+ case ID_LED_DEF1_ON2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_OFF1_ON2:
+ mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
+ mac->ledctl_mode2 |= (ledctl_on << shift);
+ break;
+ case ID_LED_DEF1_OFF2:
+ case ID_LED_ON1_OFF2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
+ mac->ledctl_mode2 |= (ledctl_off << shift);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
+ * @hw: pointer to the HW structure
+ *
+ * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
+ * register, so the the bus width is hard coded.
+ **/
+static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_bus_info_ich8lan");
+
+ ret_val = e1000_get_bus_info_pcie_generic(hw);
+
+ /*
+ * ICH devices are "PCI Express"-ish. They have
+ * a configuration space, but do not contain
+ * PCI Express Capability registers, so bus width
+ * must be hardcoded.
+ */
+ if (bus->width == e1000_bus_width_unknown)
+ bus->width = e1000_bus_width_pcie_x1;
+
+ return ret_val;
+}
+
+/**
+ * e1000_reset_hw_ich8lan - Reset the hardware
+ * @hw: pointer to the HW structure
+ *
+ * Does a full reset of the hardware which includes a reset of the PHY and
+ * MAC.
+ **/
+static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ u16 reg;
+ u32 ctrl, icr, kab;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_reset_hw_ich8lan");
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val)
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ /*
+ * Disable the Transmit and Receive units. Then delay to allow
+ * any pending transactions to complete before we hit the MAC
+ * with the global reset.
+ */
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ /* Workaround for ICH8 bit corruption issue in FIFO memory */
+ if (hw->mac.type == e1000_ich8lan) {
+ /* Set Tx and Rx buffer allocation to 8k apiece. */
+ E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
+ /* Set Packet Buffer Size to 16k. */
+ E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
+ }
+
+ if (hw->mac.type == e1000_pchlan) {
+ /* Save the NVM K1 bit setting*/
+ ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
+ if (ret_val)
+ return ret_val;
+
+ if (reg & E1000_NVM_K1_ENABLE)
+ dev_spec->nvm_k1_enabled = TRUE;
+ else
+ dev_spec->nvm_k1_enabled = FALSE;
+ }
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ if (!hw->phy.ops.check_reset_block(hw)) {
+ /*
+ * Full-chip reset requires MAC and PHY reset at the same
+ * time to make sure the interface between MAC and the
+ * external PHY is reset.
+ */
+ ctrl |= E1000_CTRL_PHY_RST;
+
+ /*
+ * Gate automatic PHY configuration by hardware on
+ * non-managed 82579
+ */
+ if ((hw->mac.type == e1000_pch2lan) &&
+ !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
+ e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
+ }
+ ret_val = e1000_acquire_swflag_ich8lan(hw);
+ DEBUGOUT("Issuing a global reset to ich8lan\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
+ msec_delay(20);
+
+ if (!ret_val)
+ e1000_release_swflag_ich8lan(hw);
+
+ if (ctrl & E1000_CTRL_PHY_RST) {
+ ret_val = hw->phy.ops.get_cfg_done(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_post_phy_reset_ich8lan(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /*
+ * For PCH, this write will make sure that any noise
+ * will be detected as a CRC error and be dropped rather than show up
+ * as a bad packet to the DMA engine.
+ */
+ if (hw->mac.type == e1000_pchlan)
+ E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
+
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ icr = E1000_READ_REG(hw, E1000_ICR);
+
+ kab = E1000_READ_REG(hw, E1000_KABGTXD);
+ kab |= E1000_KABGTXD_BGSQLBIAS;
+ E1000_WRITE_REG(hw, E1000_KABGTXD, kab);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_ich8lan - Initialize the hardware
+ * @hw: pointer to the HW structure
+ *
+ * Prepares the hardware for transmit and receive by doing the following:
+ * - initialize hardware bits
+ * - initialize LED identification
+ * - setup receive address registers
+ * - setup flow control
+ * - setup transmit descriptors
+ * - clear statistics
+ **/
+static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 ctrl_ext, txdctl, snoop;
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_init_hw_ich8lan");
+
+ e1000_initialize_hw_bits_ich8lan(hw);
+
+ /* Initialize identification LED */
+ ret_val = mac->ops.id_led_init(hw);
+ if (ret_val)
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+
+ /* Setup the receive address. */
+ e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /*
+ * The 82578 Rx buffer will stall if wakeup is enabled in host and
+ * the ME. Reading the BM_WUC register will clear the host wakeup bit.
+ * Reset the phy after disabling host wakeup to reset the Rx buffer.
+ */
+ if (hw->phy.type == e1000_phy_82578) {
+ hw->phy.ops.read_reg(hw, BM_WUC, &i);
+ ret_val = e1000_phy_hw_reset_ich8lan(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Setup link and flow control */
+ ret_val = mac->ops.setup_link(hw);
+
+ /* Set the transmit descriptor write-back policy for both queues */
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+ E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
+ E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
+
+ /*
+ * ICH8 has opposite polarity of no_snoop bits.
+ * By default, we should use snoop behavior.
+ */
+ if (mac->type == e1000_ich8lan)
+ snoop = PCIE_ICH8_SNOOP_ALL;
+ else
+ snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
+ e1000_set_pcie_no_snoop_generic(hw, snoop);
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_ich8lan(hw);
+
+ return ret_val;
+}
+/**
+ * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
+ * @hw: pointer to the HW structure
+ *
+ * Sets/Clears required hardware bits necessary for correctly setting up the
+ * hardware for transmit and receive.
+ **/
+static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
+
+ /* Extended Device Control */
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg |= (1 << 22);
+ /* Enable PHY low-power state when MAC is at D3 w/o WoL */
+ if (hw->mac.type >= e1000_pchlan)
+ reg |= E1000_CTRL_EXT_PHYPDEN;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+ /* Transmit Descriptor Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+ /* Transmit Descriptor Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+ reg |= (1 << 22);
+ E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+ /* Transmit Arbitration Control 0 */
+ reg = E1000_READ_REG(hw, E1000_TARC(0));
+ if (hw->mac.type == e1000_ich8lan)
+ reg |= (1 << 28) | (1 << 29);
+ reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
+ E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+ /* Transmit Arbitration Control 1 */
+ reg = E1000_READ_REG(hw, E1000_TARC(1));
+ if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+ reg &= ~(1 << 28);
+ else
+ reg |= (1 << 28);
+ reg |= (1 << 24) | (1 << 26) | (1 << 30);
+ E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+
+ /* Device Status */
+ if (hw->mac.type == e1000_ich8lan) {
+ reg = E1000_READ_REG(hw, E1000_STATUS);
+ reg &= ~(1 << 31);
+ E1000_WRITE_REG(hw, E1000_STATUS, reg);
+ }
+
+ /*
+ * work-around descriptor data corruption issue during nfs v2 udp
+ * traffic, just disable the nfs filtering capability
+ */
+ reg = E1000_READ_REG(hw, E1000_RFCTL);
+ reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
+ E1000_WRITE_REG(hw, E1000_RFCTL, reg);
+
+ return;
+}
+
+/**
+ * e1000_setup_link_ich8lan - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_link_ich8lan");
+
+ if (hw->phy.ops.check_reset_block(hw))
+ goto out;
+
+ /*
+ * ICH parts do not have a word in the NVM to determine
+ * the default flow control setting, so we explicitly
+ * set it to full.
+ */
+ if (hw->fc.requested_mode == e1000_fc_default)
+ hw->fc.requested_mode = e1000_fc_full;
+
+ /*
+ * Save off the requested flow control mode for use later. Depending
+ * on the link partner's capabilities, we may or may not use this mode.
+ */
+ hw->fc.current_mode = hw->fc.requested_mode;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
+ hw->fc.current_mode);
+
+ /* Continue to configure the copper link. */
+ ret_val = hw->mac.ops.setup_physical_interface(hw);
+ if (ret_val)
+ goto out;
+
+ E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+ if ((hw->phy.type == e1000_phy_82578) ||
+ (hw->phy.type == e1000_phy_82579) ||
+ (hw->phy.type == e1000_phy_82577)) {
+ E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
+
+ ret_val = hw->phy.ops.write_reg(hw,
+ PHY_REG(BM_PORT_CTRL_PAGE, 27),
+ hw->fc.pause_time);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
+ * @hw: pointer to the HW structure
+ *
+ * Configures the kumeran interface to the PHY to wait the appropriate time
+ * when polling the PHY, then call the generic setup_copper_link to finish
+ * configuring the copper link.
+ **/
+static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+ u16 reg_data;
+
+ DEBUGFUNC("e1000_setup_copper_link_ich8lan");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /*
+ * Set the mac to wait the maximum time between each iteration
+ * and increase the max iterations when polling the phy;
+ * this fixes erroneous timeouts at 10Mbps.
+ */
+ ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
+ 0xFFFF);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_read_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_INBAND_PARAM,
+ &reg_data);
+ if (ret_val)
+ goto out;
+ reg_data |= 0x3F;
+ ret_val = e1000_write_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_INBAND_PARAM,
+ reg_data);
+ if (ret_val)
+ goto out;
+
+ switch (hw->phy.type) {
+ case e1000_phy_igp_3:
+ ret_val = e1000_copper_link_setup_igp(hw);
+ if (ret_val)
+ goto out;
+ break;
+ case e1000_phy_bm:
+ case e1000_phy_82578:
+ ret_val = e1000_copper_link_setup_m88(hw);
+ if (ret_val)
+ goto out;
+ break;
+ case e1000_phy_82577:
+ case e1000_phy_82579:
+ ret_val = e1000_copper_link_setup_82577(hw);
+ if (ret_val)
+ goto out;
+ break;
+ case e1000_phy_ife:
+ ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
+ &reg_data);
+ if (ret_val)
+ goto out;
+
+ reg_data &= ~IFE_PMC_AUTO_MDIX;
+
+ switch (hw->phy.mdix) {
+ case 1:
+ reg_data &= ~IFE_PMC_FORCE_MDIX;
+ break;
+ case 2:
+ reg_data |= IFE_PMC_FORCE_MDIX;
+ break;
+ case 0:
+ default:
+ reg_data |= IFE_PMC_AUTO_MDIX;
+ break;
+ }
+ ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
+ reg_data);
+ if (ret_val)
+ goto out;
+ break;
+ default:
+ break;
+ }
+ ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to store current link speed
+ * @duplex: pointer to store the current link duplex
+ *
+ * Calls the generic get_speed_and_duplex to retrieve the current link
+ * information and then calls the Kumeran lock loss workaround for links at
+ * gigabit speeds.
+ **/
+static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_link_up_info_ich8lan");
+
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
+ if (ret_val)
+ goto out;
+
+ if ((hw->mac.type == e1000_ich8lan) &&
+ (hw->phy.type == e1000_phy_igp_3) &&
+ (*speed == SPEED_1000)) {
+ ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
+ * @hw: pointer to the HW structure
+ *
+ * Work-around for 82566 Kumeran PCS lock loss:
+ * On link status change (i.e. PCI reset, speed change) and link is up and
+ * speed is gigabit-
+ * 0) if workaround is optionally disabled do nothing
+ * 1) wait 1ms for Kumeran link to come up
+ * 2) check Kumeran Diagnostic register PCS lock loss bit
+ * 3) if not set the link is locked (all is good), otherwise...
+ * 4) reset the PHY
+ * 5) repeat up to 10 times
+ * Note: this is only called for IGP3 copper when speed is 1gb.
+ **/
+static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ u32 phy_ctrl;
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, data;
+ bool link;
+
+ DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
+
+ if (!(dev_spec->kmrn_lock_loss_workaround_enabled))
+ goto out;
+
+ /*
+ * Make sure link is up before proceeding. If not just return.
+ * Attempting this while link is negotiating fouled up link
+ * stability
+ */
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (!link) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ for (i = 0; i < 10; i++) {
+ /* read once to clear */
+ ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
+ if (ret_val)
+ goto out;
+ /* and again to get new status */
+ ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
+ if (ret_val)
+ goto out;
+
+ /* check for PCS lock */
+ if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /* Issue PHY reset */
+ hw->phy.ops.reset(hw);
+ msec_delay_irq(5);
+ }
+ /* Disable GigE link negotiation */
+ phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+ phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ /*
+ * Call gig speed drop workaround on Gig disable before accessing
+ * any PHY registers
+ */
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
+ /* unable to acquire PCS lock */
+ ret_val = -E1000_ERR_PHY;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
+ * @hw: pointer to the HW structure
+ * @state: boolean value used to set the current Kumeran workaround state
+ *
+ * If ICH8, set the current Kumeran workaround state (enabled - TRUE
+ * /disabled - FALSE).
+ **/
+void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+ bool state)
+{
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+
+ DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
+
+ if (hw->mac.type != e1000_ich8lan) {
+ DEBUGOUT("Workaround applies to ICH8 only.\n");
+ return;
+ }
+
+ dev_spec->kmrn_lock_loss_workaround_enabled = state;
+
+ return;
+}
+
+/**
+ * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
+ * @hw: pointer to the HW structure
+ *
+ * Workaround for 82566 power-down on D3 entry:
+ * 1) disable gigabit link
+ * 2) write VR power-down enable
+ * 3) read it back
+ * Continue if successful, else issue LCD reset and repeat
+ **/
+void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+{
+ u32 reg;
+ u16 data;
+ u8 retry = 0;
+
+ DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
+
+ if (hw->phy.type != e1000_phy_igp_3)
+ goto out;
+
+ /* Try the workaround twice (if needed) */
+ do {
+ /* Disable link */
+ reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
+ reg |= (E1000_PHY_CTRL_GBE_DISABLE |
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
+
+ /*
+ * Call gig speed drop workaround on Gig disable before
+ * accessing any PHY registers
+ */
+ if (hw->mac.type == e1000_ich8lan)
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
+ /* Write VR power-down enable */
+ hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
+ data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+ hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
+ data | IGP3_VR_CTRL_MODE_SHUTDOWN);
+
+ /* Read it back and test */
+ hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
+ data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+ if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
+ break;
+
+ /* Issue PHY reset and repeat at most one more time */
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
+ retry++;
+ } while (retry);
+
+out:
+ return;
+}
+
+/**
+ * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
+ * @hw: pointer to the HW structure
+ *
+ * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
+ * LPLU, Gig disable, MDIC PHY reset):
+ * 1) Set Kumeran Near-end loopback
+ * 2) Clear Kumeran Near-end loopback
+ * Should only be called for ICH8[m] devices with IGP_3 Phy.
+ **/
+void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 reg_data;
+
+ DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
+
+ if ((hw->mac.type != e1000_ich8lan) ||
+ (hw->phy.type != e1000_phy_igp_3))
+ goto out;
+
+ ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ &reg_data);
+ if (ret_val)
+ goto out;
+ reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
+ ret_val = e1000_write_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ reg_data);
+ if (ret_val)
+ goto out;
+ reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
+ ret_val = e1000_write_kmrn_reg_generic(hw,
+ E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ reg_data);
+out:
+ return;
+}
+
+/**
+ * e1000_disable_gig_wol_ich8lan - disable gig during WoL
+ * @hw: pointer to the HW structure
+ *
+ * During S0 to Sx transition, it is possible the link remains at gig
+ * instead of negotiating to a lower speed. Before going to Sx, set
+ * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
+ * to a lower speed.
+ *
+ * Should only be called for applicable parts.
+ **/
+void e1000_disable_gig_wol_ich8lan(struct e1000_hw *hw)
+{
+ u32 phy_ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_disable_gig_wol_ich8lan");
+
+ phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+ phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
+ E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+ if (hw->mac.type >= e1000_pchlan) {
+ e1000_oem_bits_config_ich8lan(hw, FALSE);
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return;
+ e1000_write_smbus_addr(hw);
+ hw->phy.ops.release(hw);
+ }
+
+ return;
+}
+
+/**
+ * e1000_cleanup_led_ich8lan - Restore the default LED operation
+ * @hw: pointer to the HW structure
+ *
+ * Return the LED back to the default configuration.
+ **/
+static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_cleanup_led_ich8lan");
+
+ if (hw->phy.type == e1000_phy_ife)
+ return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+ 0);
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on_ich8lan - Turn LEDs on
+ * @hw: pointer to the HW structure
+ *
+ * Turn on the LEDs.
+ **/
+static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_led_on_ich8lan");
+
+ if (hw->phy.type == e1000_phy_ife)
+ return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off_ich8lan - Turn LEDs off
+ * @hw: pointer to the HW structure
+ *
+ * Turn off the LEDs.
+ **/
+static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_led_off_ich8lan");
+
+ if (hw->phy.type == e1000_phy_ife)
+ return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_setup_led_pchlan - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use.
+ **/
+static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_setup_led_pchlan");
+
+ return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
+ (u16)hw->mac.ledctl_mode1);
+}
+
+/**
+ * e1000_cleanup_led_pchlan - Restore the default LED operation
+ * @hw: pointer to the HW structure
+ *
+ * Return the LED back to the default configuration.
+ **/
+static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_cleanup_led_pchlan");
+
+ return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
+ (u16)hw->mac.ledctl_default);
+}
+
+/**
+ * e1000_led_on_pchlan - Turn LEDs on
+ * @hw: pointer to the HW structure
+ *
+ * Turn on the LEDs.
+ **/
+static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
+{
+ u16 data = (u16)hw->mac.ledctl_mode2;
+ u32 i, led;
+
+ DEBUGFUNC("e1000_led_on_pchlan");
+
+ /*
+ * If no link, then turn LED on by setting the invert bit
+ * for each LED that's mode is "link_up" in ledctl_mode2.
+ */
+ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+ for (i = 0; i < 3; i++) {
+ led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
+ if ((led & E1000_PHY_LED0_MODE_MASK) !=
+ E1000_LEDCTL_MODE_LINK_UP)
+ continue;
+ if (led & E1000_PHY_LED0_IVRT)
+ data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
+ else
+ data |= (E1000_PHY_LED0_IVRT << (i * 5));
+ }
+ }
+
+ return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
+}
+
+/**
+ * e1000_led_off_pchlan - Turn LEDs off
+ * @hw: pointer to the HW structure
+ *
+ * Turn off the LEDs.
+ **/
+static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
+{
+ u16 data = (u16)hw->mac.ledctl_mode1;
+ u32 i, led;
+
+ DEBUGFUNC("e1000_led_off_pchlan");
+
+ /*
+ * If no link, then turn LED off by clearing the invert bit
+ * for each LED that's mode is "link_up" in ledctl_mode1.
+ */
+ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+ for (i = 0; i < 3; i++) {
+ led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
+ if ((led & E1000_PHY_LED0_MODE_MASK) !=
+ E1000_LEDCTL_MODE_LINK_UP)
+ continue;
+ if (led & E1000_PHY_LED0_IVRT)
+ data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
+ else
+ data |= (E1000_PHY_LED0_IVRT << (i * 5));
+ }
+ }
+
+ return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
+}
+
+/**
+ * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Read appropriate register for the config done bit for completion status
+ * and configure the PHY through s/w for EEPROM-less parts.
+ *
+ * NOTE: some silicon which is EEPROM-less will fail trying to read the
+ * config done bit, so only an error is logged and continues. If we were
+ * to return with error, EEPROM-less silicon would not be able to be reset
+ * or change link.
+ **/
+static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 bank = 0;
+ u32 status;
+
+ DEBUGFUNC("e1000_get_cfg_done_ich8lan");
+
+ e1000_get_cfg_done_generic(hw);
+
+ /* Wait for indication from h/w that it has completed basic config */
+ if (hw->mac.type >= e1000_ich10lan) {
+ e1000_lan_init_done_ich8lan(hw);
+ } else {
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val) {
+ /*
+ * When auto config read does not complete, do not
+ * return with an error. This can happen in situations
+ * where there is no eeprom and prevents getting link.
+ */
+ DEBUGOUT("Auto Read Done did not complete\n");
+ ret_val = E1000_SUCCESS;
+ }
+ }
+
+ /* Clear PHY Reset Asserted bit */
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_PHYRA)
+ E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
+ else
+ DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
+
+ /* If EEPROM is not marked present, init the IGP 3 PHY manually */
+ if (hw->mac.type <= e1000_ich9lan) {
+ if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
+ (hw->phy.type == e1000_phy_igp_3)) {
+ e1000_phy_init_script_igp3(hw);
+ }
+ } else {
+ if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
+ /* Maybe we should do a basic PHY config */
+ DEBUGOUT("EEPROM not present\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(hw->mac.ops.check_mng_mode(hw) ||
+ hw->phy.ops.check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+
+ return;
+}
+
+/**
+ * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears hardware counters specific to the silicon family and calls
+ * clear_hw_cntrs_generic to clear all general purpose counters.
+ **/
+static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
+{
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ E1000_READ_REG(hw, E1000_RXERRC);
+ E1000_READ_REG(hw, E1000_TNCRS);
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ E1000_READ_REG(hw, E1000_TSCTC);
+ E1000_READ_REG(hw, E1000_TSCTFC);
+
+ E1000_READ_REG(hw, E1000_MGTPRC);
+ E1000_READ_REG(hw, E1000_MGTPDC);
+ E1000_READ_REG(hw, E1000_MGTPTC);
+
+ E1000_READ_REG(hw, E1000_IAC);
+ E1000_READ_REG(hw, E1000_ICRXOC);
+
+ /* Clear PHY statistics registers */
+ if ((hw->phy.type == e1000_phy_82578) ||
+ (hw->phy.type == e1000_phy_82579) ||
+ (hw->phy.type == e1000_phy_82577)) {
+ hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
+ hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
+ hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
+ hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
+ hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
+ hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
+ hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
+ hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
+ hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
+ hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
+ hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
+ hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
+ hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
+ hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
+ }
+}
+
diff --git a/freebsd/dev/e1000/e1000_ich8lan.h b/freebsd/dev/e1000/e1000_ich8lan.h
new file mode 100644
index 00000000..9e87f4d5
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_ich8lan.h
@@ -0,0 +1,246 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_ICH8LAN_HH_
+#define _E1000_ICH8LAN_HH_
+
+#define ICH_FLASH_GFPREG 0x0000
+#define ICH_FLASH_HSFSTS 0x0004
+#define ICH_FLASH_HSFCTL 0x0006
+#define ICH_FLASH_FADDR 0x0008
+#define ICH_FLASH_FDATA0 0x0010
+
+/* Requires up to 10 seconds when MNG might be accessing part. */
+#define ICH_FLASH_READ_COMMAND_TIMEOUT 10000000
+#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 10000000
+#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 10000000
+#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
+#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
+
+#define ICH_CYCLE_READ 0
+#define ICH_CYCLE_WRITE 2
+#define ICH_CYCLE_ERASE 3
+
+#define FLASH_GFPREG_BASE_MASK 0x1FFF
+#define FLASH_SECTOR_ADDR_SHIFT 12
+
+#define ICH_FLASH_SEG_SIZE_256 256
+#define ICH_FLASH_SEG_SIZE_4K 4096
+#define ICH_FLASH_SEG_SIZE_8K 8192
+#define ICH_FLASH_SEG_SIZE_64K 65536
+#define ICH_FLASH_SECTOR_SIZE 4096
+
+#define ICH_FLASH_REG_MAPSIZE 0x00A0
+
+#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
+#define E1000_ICH_FWSM_DISSW 0x10000000 /* FW Disables SW Writes */
+/* FW established a valid mode */
+#define E1000_ICH_FWSM_FW_VALID 0x00008000
+
+#define E1000_ICH_MNG_IAMT_MODE 0x2
+
+#define E1000_FWSM_PROXY_MODE 0x00000008 /* FW is in proxy mode */
+
+/* Shared Receive Address Registers */
+#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8))
+#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8))
+#define E1000_SHRAH_AV 0x80000000 /* Addr Valid bit */
+#define E1000_SHRAH_MAV 0x40000000 /* Multicast Addr Valid bit */
+
+#define E1000_H2ME 0x05B50 /* Host to ME */
+#define E1000_H2ME_LSECREQ 0x00000001 /* Linksec Request */
+#define E1000_H2ME_LSECA 0x00000002 /* Linksec Active */
+#define E1000_H2ME_LSECSF 0x00000004 /* Linksec Failed */
+#define E1000_H2ME_LSECD 0x00000008 /* Linksec Disabled */
+#define E1000_H2ME_SLCAPD 0x00000010 /* Start LCAPD */
+#define E1000_H2ME_IPV4_ARP_EN 0x00000020 /* Arp Offload enable bit */
+#define E1000_H2ME_IPV6_NS_EN 0x00000040 /* NS Offload enable bit */
+
+#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
+ (ID_LED_OFF1_OFF2 << 8) | \
+ (ID_LED_OFF1_ON2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+
+#define E1000_ICH_NVM_SIG_WORD 0x13
+#define E1000_ICH_NVM_SIG_MASK 0xC000
+#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
+#define E1000_ICH_NVM_SIG_VALUE 0x80
+
+#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
+
+#define E1000_FEXTNVM_SW_CONFIG 1
+#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M */
+
+#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
+#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
+#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
+
+#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
+
+#define E1000_ICH_RAR_ENTRIES 7
+#define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */
+
+#define PHY_PAGE_SHIFT 5
+#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
+ ((reg) & MAX_PHY_REG_ADDRESS))
+#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
+#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
+#define IGP3_CAPABILITY PHY_REG(776, 19) /* Capability */
+#define IGP3_PM_CTRL PHY_REG(769, 20) /* Power Management Control */
+
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
+#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
+#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
+#define IGP3_PM_CTRL_FORCE_PWR_DOWN 0x0020
+
+/* PHY Wakeup Registers and defines */
+#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0)
+#define BM_WUC PHY_REG(BM_WUC_PAGE, 1)
+#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
+#define BM_WUS PHY_REG(BM_WUC_PAGE, 3)
+#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2)))
+#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2)))
+#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2)))
+#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2)))
+#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1)))
+#define BM_IPAV (BM_PHY_REG(BM_WUC_PAGE, 64))
+#define BM_IP4AT_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 82 + ((_i) * 2)))
+#define BM_IP4AT_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 83 + ((_i) * 2)))
+
+#define BM_SHRAL_LOWER(_i) (BM_PHY_REG(BM_WUC_PAGE, 44 + ((_i) * 4)))
+#define BM_SHRAL_UPPER(_i) (BM_PHY_REG(BM_WUC_PAGE, 45 + ((_i) * 4)))
+#define BM_SHRAH_LOWER(_i) (BM_PHY_REG(BM_WUC_PAGE, 46 + ((_i) * 4)))
+#define BM_SHRAH_UPPER(_i) (BM_PHY_REG(BM_WUC_PAGE, 47 + ((_i) * 4)))
+
+#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */
+#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */
+#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */
+#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */
+#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */
+#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */
+#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */
+
+#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
+#define HV_MUX_DATA_CTRL PHY_REG(776, 16)
+#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
+#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
+#define HV_SCC_UPPER PHY_REG(778, 16) /* Single Collision Count */
+#define HV_SCC_LOWER PHY_REG(778, 17)
+#define HV_ECOL_UPPER PHY_REG(778, 18) /* Excessive Collision Count */
+#define HV_ECOL_LOWER PHY_REG(778, 19)
+#define HV_MCC_UPPER PHY_REG(778, 20) /* Multiple Collision Count */
+#define HV_MCC_LOWER PHY_REG(778, 21)
+#define HV_LATECOL_UPPER PHY_REG(778, 23) /* Late Collision Count */
+#define HV_LATECOL_LOWER PHY_REG(778, 24)
+#define HV_COLC_UPPER PHY_REG(778, 25) /* Collision Count */
+#define HV_COLC_LOWER PHY_REG(778, 26)
+#define HV_DC_UPPER PHY_REG(778, 27) /* Defer Count */
+#define HV_DC_LOWER PHY_REG(778, 28)
+#define HV_TNCRS_UPPER PHY_REG(778, 29) /* Transmit with no CRS */
+#define HV_TNCRS_LOWER PHY_REG(778, 30)
+
+#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */
+
+#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
+#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
+
+/* SMBus Address Phy Register */
+#define HV_SMB_ADDR PHY_REG(768, 26)
+#define HV_SMB_ADDR_MASK 0x007F
+#define HV_SMB_ADDR_PEC_EN 0x0200
+#define HV_SMB_ADDR_VALID 0x0080
+
+/* Strapping Option Register - RO */
+#define E1000_STRAP 0x0000C
+#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
+#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
+
+/* OEM Bits Phy Register */
+#define HV_OEM_BITS PHY_REG(768, 25)
+#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
+#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
+#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
+
+#define LCD_CFG_PHY_ADDR_BIT 0x0020 /* Phy address bit from LCD Config word */
+
+/* KMRN Mode Control */
+#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
+#define HV_KMRN_MDIO_SLOW 0x0400
+
+/* PHY Power Management Control */
+#define HV_PM_CTRL PHY_REG(770, 17)
+
+#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
+
+/* PHY Low Power Idle Control */
+#define I82579_LPI_CTRL PHY_REG(772, 20)
+#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
+
+/*
+ * Additional interrupts need to be handled for ICH family:
+ * DSW = The FW changed the status of the DISSW bit in FWSM
+ * PHYINT = The LAN connected device generates an interrupt
+ * EPRST = Manageability reset event
+ */
+#define IMS_ICH_ENABLE_MASK (\
+ E1000_IMS_DSW | \
+ E1000_IMS_PHYINT | \
+ E1000_IMS_EPRST)
+
+/* Additional interrupt register bit definitions */
+#define E1000_ICR_LSECPNC 0x00004000 /* PN threshold - client */
+#define E1000_IMS_LSECPNC E1000_ICR_LSECPNC /* PN threshold - client */
+#define E1000_ICS_LSECPNC E1000_ICR_LSECPNC /* PN threshold - client */
+
+/* Security Processing bit Indication */
+#define E1000_RXDEXT_LINKSEC_STATUS_LSECH 0x01000000
+#define E1000_RXDEXT_LINKSEC_ERROR_BIT_MASK 0x60000000
+#define E1000_RXDEXT_LINKSEC_ERROR_NO_SA_MATCH 0x20000000
+#define E1000_RXDEXT_LINKSEC_ERROR_REPLAY_ERROR 0x40000000
+#define E1000_RXDEXT_LINKSEC_ERROR_BAD_SIG 0x60000000
+
+/* Receive Address Initial CRC Calculation */
+#define E1000_PCH_RAICC(_n) (0x05F50 + ((_n) * 4))
+
+void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+ bool state);
+void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
+void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
+void e1000_disable_gig_wol_ich8lan(struct e1000_hw *hw);
+s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable);
+s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_config);
+s32 e1000_hv_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
+void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw);
+s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable);
+#endif
diff --git a/freebsd/dev/e1000/e1000_mac.c b/freebsd/dev/e1000/e1000_mac.c
new file mode 100644
index 00000000..90550c89
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_mac.c
@@ -0,0 +1,2176 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
+static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
+
+/**
+ * e1000_init_mac_ops_generic - Initialize MAC function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Setups up the function pointers to no-op functions
+ **/
+void e1000_init_mac_ops_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ DEBUGFUNC("e1000_init_mac_ops_generic");
+
+ /* General Setup */
+ mac->ops.init_params = e1000_null_ops_generic;
+ mac->ops.init_hw = e1000_null_ops_generic;
+ mac->ops.reset_hw = e1000_null_ops_generic;
+ mac->ops.setup_physical_interface = e1000_null_ops_generic;
+ mac->ops.get_bus_info = e1000_null_ops_generic;
+ mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
+ mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
+ mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
+ mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
+ /* LED */
+ mac->ops.cleanup_led = e1000_null_ops_generic;
+ mac->ops.setup_led = e1000_null_ops_generic;
+ mac->ops.blink_led = e1000_null_ops_generic;
+ mac->ops.led_on = e1000_null_ops_generic;
+ mac->ops.led_off = e1000_null_ops_generic;
+ /* LINK */
+ mac->ops.setup_link = e1000_null_ops_generic;
+ mac->ops.get_link_up_info = e1000_null_link_info;
+ mac->ops.check_for_link = e1000_null_ops_generic;
+ mac->ops.wait_autoneg = e1000_wait_autoneg_generic;
+ /* Management */
+ mac->ops.check_mng_mode = e1000_null_mng_mode;
+ mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic;
+ mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
+ mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic;
+ /* VLAN, MC, etc. */
+ mac->ops.update_mc_addr_list = e1000_null_update_mc;
+ mac->ops.clear_vfta = e1000_null_mac_generic;
+ mac->ops.write_vfta = e1000_null_write_vfta;
+ mac->ops.rar_set = e1000_rar_set_generic;
+ mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
+}
+
+/**
+ * e1000_null_ops_generic - No-op function, returns 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_ops_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_null_ops_generic");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_mac_generic - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_mac_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_null_mac_generic");
+ return;
+}
+
+/**
+ * e1000_null_link_info - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d)
+{
+ DEBUGFUNC("e1000_null_link_info");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_mng_mode - No-op function, return FALSE
+ * @hw: pointer to the HW structure
+ **/
+bool e1000_null_mng_mode(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_null_mng_mode");
+ return FALSE;
+}
+
+/**
+ * e1000_null_update_mc - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a)
+{
+ DEBUGFUNC("e1000_null_update_mc");
+ return;
+}
+
+/**
+ * e1000_null_write_vfta - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b)
+{
+ DEBUGFUNC("e1000_null_write_vfta");
+ return;
+}
+
+/**
+ * e1000_null_rar_set - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a)
+{
+ DEBUGFUNC("e1000_null_rar_set");
+ return;
+}
+
+/**
+ * e1000_get_bus_info_pci_generic - Get PCI(x) bus information
+ * @hw: pointer to the HW structure
+ *
+ * Determines and stores the system bus information for a particular
+ * network interface. The following bus information is determined and stored:
+ * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
+ **/
+s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_bus_info *bus = &hw->bus;
+ u32 status = E1000_READ_REG(hw, E1000_STATUS);
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_get_bus_info_pci_generic");
+
+ /* PCI or PCI-X? */
+ bus->type = (status & E1000_STATUS_PCIX_MODE)
+ ? e1000_bus_type_pcix
+ : e1000_bus_type_pci;
+
+ /* Bus speed */
+ if (bus->type == e1000_bus_type_pci) {
+ bus->speed = (status & E1000_STATUS_PCI66)
+ ? e1000_bus_speed_66
+ : e1000_bus_speed_33;
+ } else {
+ switch (status & E1000_STATUS_PCIX_SPEED) {
+ case E1000_STATUS_PCIX_SPEED_66:
+ bus->speed = e1000_bus_speed_66;
+ break;
+ case E1000_STATUS_PCIX_SPEED_100:
+ bus->speed = e1000_bus_speed_100;
+ break;
+ case E1000_STATUS_PCIX_SPEED_133:
+ bus->speed = e1000_bus_speed_133;
+ break;
+ default:
+ bus->speed = e1000_bus_speed_reserved;
+ break;
+ }
+ }
+
+ /* Bus width */
+ bus->width = (status & E1000_STATUS_BUS64)
+ ? e1000_bus_width_64
+ : e1000_bus_width_32;
+
+ /* Which PCI(-X) function? */
+ mac->ops.set_lan_id(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_bus_info_pcie_generic - Get PCIe bus information
+ * @hw: pointer to the HW structure
+ *
+ * Determines and stores the system bus information for a particular
+ * network interface. The following bus information is determined and stored:
+ * bus speed, bus width, type (PCIe), and PCIe function.
+ **/
+s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_bus_info *bus = &hw->bus;
+ s32 ret_val;
+ u16 pcie_link_status;
+
+ DEBUGFUNC("e1000_get_bus_info_pcie_generic");
+
+ bus->type = e1000_bus_type_pci_express;
+
+ ret_val = e1000_read_pcie_cap_reg(hw,
+ PCIE_LINK_STATUS,
+ &pcie_link_status);
+ if (ret_val) {
+ bus->width = e1000_bus_width_unknown;
+ bus->speed = e1000_bus_speed_unknown;
+ } else {
+ switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
+ case PCIE_LINK_SPEED_2500:
+ bus->speed = e1000_bus_speed_2500;
+ break;
+ case PCIE_LINK_SPEED_5000:
+ bus->speed = e1000_bus_speed_5000;
+ break;
+ default:
+ bus->speed = e1000_bus_speed_unknown;
+ break;
+ }
+
+ bus->width = (enum e1000_bus_width)((pcie_link_status &
+ PCIE_LINK_WIDTH_MASK) >>
+ PCIE_LINK_WIDTH_SHIFT);
+ }
+
+ mac->ops.set_lan_id(hw);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
+ *
+ * @hw: pointer to the HW structure
+ *
+ * Determines the LAN function id by reading memory-mapped registers
+ * and swaps the port value if requested.
+ **/
+static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ u32 reg;
+
+ /*
+ * The status register reports the correct function number
+ * for the device regardless of function swap state.
+ */
+ reg = E1000_READ_REG(hw, E1000_STATUS);
+ bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
+}
+
+/**
+ * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
+ * @hw: pointer to the HW structure
+ *
+ * Determines the LAN function id by reading PCI config space.
+ **/
+void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ u16 pci_header_type;
+ u32 status;
+
+ e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+ if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ bus->func = (status & E1000_STATUS_FUNC_MASK)
+ >> E1000_STATUS_FUNC_SHIFT;
+ } else {
+ bus->func = 0;
+ }
+}
+
+/**
+ * e1000_set_lan_id_single_port - Set LAN id for a single port device
+ * @hw: pointer to the HW structure
+ *
+ * Sets the LAN function id to zero for a single port device.
+ **/
+void e1000_set_lan_id_single_port(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+
+ bus->func = 0;
+}
+
+/**
+ * e1000_clear_vfta_generic - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * Clears the register array which contains the VLAN filter table by
+ * setting all the values to 0.
+ **/
+void e1000_clear_vfta_generic(struct e1000_hw *hw)
+{
+ u32 offset;
+
+ DEBUGFUNC("e1000_clear_vfta_generic");
+
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+}
+
+/**
+ * e1000_write_vfta_generic - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: register offset in VLAN filter table
+ * @value: register value written to VLAN filter table
+ *
+ * Writes value at the given offset in the register array which stores
+ * the VLAN filter table.
+ **/
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ DEBUGFUNC("e1000_write_vfta_generic");
+
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_init_rx_addrs_generic - Initialize receive address's
+ * @hw: pointer to the HW structure
+ * @rar_count: receive address registers
+ *
+ * Setups the receive address registers by setting the base receive address
+ * register to the devices MAC address and clearing all the other receive
+ * address registers to 0.
+ **/
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
+{
+ u32 i;
+ u8 mac_addr[ETH_ADDR_LEN] = {0};
+
+ DEBUGFUNC("e1000_init_rx_addrs_generic");
+
+ /* Setup the receive address */
+ DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+ hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
+
+ /* Zero out the other (rar_entry_count - 1) receive addresses */
+ DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
+ for (i = 1; i < rar_count; i++)
+ hw->mac.ops.rar_set(hw, mac_addr, i);
+}
+
+/**
+ * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
+ * @hw: pointer to the HW structure
+ *
+ * Checks the nvm for an alternate MAC address. An alternate MAC address
+ * can be setup by pre-boot software and must be treated like a permanent
+ * address and must override the actual permanent MAC address. If an
+ * alternate MAC address is found it is programmed into RAR0, replacing
+ * the permanent address that was installed into RAR0 by the Si on reset.
+ * This function will return SUCCESS unless it encounters an error while
+ * reading the EEPROM.
+ **/
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
+{
+ u32 i;
+ s32 ret_val = E1000_SUCCESS;
+ u16 offset, nvm_alt_mac_addr_offset, nvm_data;
+ u8 alt_mac_addr[ETH_ADDR_LEN];
+
+ DEBUGFUNC("e1000_check_alt_mac_addr_generic");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
+ if (ret_val)
+ goto out;
+
+ /* Check for LOM (vs. NIC) or one of two valid mezzanine cards */
+ if (!((nvm_data & NVM_COMPAT_LOM) ||
+ (hw->device_id == E1000_DEV_ID_82571EB_SERDES_DUAL) ||
+ (hw->device_id == E1000_DEV_ID_82571EB_SERDES_QUAD)))
+ goto out;
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
+ &nvm_alt_mac_addr_offset);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (nvm_alt_mac_addr_offset == 0xFFFF) {
+ /* There is no Alternate MAC Address */
+ goto out;
+ }
+
+ if (hw->bus.func == E1000_FUNC_1)
+ nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
+ if (hw->bus.func == E1000_FUNC_2)
+ nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
+
+ if (hw->bus.func == E1000_FUNC_3)
+ nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = nvm_alt_mac_addr_offset + (i >> 1);
+ ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
+ alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
+ }
+
+ /* if multicast bit is set, the alternate address will not be used */
+ if (alt_mac_addr[0] & 0x01) {
+ DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
+ goto out;
+ }
+
+ /*
+ * We have a valid alternate MAC address, and we want to treat it the
+ * same as the normal permanent MAC address stored by the HW into the
+ * RAR. Do this by mapping this address into RAR0.
+ */
+ hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_rar_set_generic - Set receive address register
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address array register at index to the address passed
+ * in by addr.
+ **/
+void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ u32 rar_low, rar_high;
+
+ DEBUGFUNC("e1000_rar_set_generic");
+
+ /*
+ * HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((u32) addr[0] |
+ ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+ /* If MAC address zero, no need to set the AV bit */
+ if (rar_low || rar_high)
+ rar_high |= E1000_RAH_AV;
+
+ /*
+ * Some bridges will combine consecutive 32-bit writes into
+ * a single burst write, which will malfunction on some parts.
+ * The flushes avoid this.
+ */
+ E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_update_mc_addr_list_generic - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ *
+ * Updates entire Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count)
+{
+ u32 hash_value, hash_bit, hash_reg;
+ int i;
+
+ DEBUGFUNC("e1000_update_mc_addr_list_generic");
+
+ /* clear mta_shadow */
+ memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
+
+ /* update mta_shadow from mc_addr_list */
+ for (i = 0; (u32) i < mc_addr_count; i++) {
+ hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
+
+ hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+ hash_bit = hash_value & 0x1F;
+
+ hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
+ mc_addr_list += (ETH_ADDR_LEN);
+ }
+
+ /* replace the entire MTA table */
+ for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_hash_mc_addr_generic - Generate a multicast hash value
+ * @hw: pointer to the HW structure
+ * @mc_addr: pointer to a multicast address
+ *
+ * Generates a multicast address hash value which is used to determine
+ * the multicast filter table array address and new table value.
+ **/
+u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
+{
+ u32 hash_value, hash_mask;
+ u8 bit_shift = 0;
+
+ DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+ /* Register count multiplied by bits per register */
+ hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+ /*
+ * For a mc_filter_type of 0, bit_shift is the number of left-shifts
+ * where 0xFF would still fall within the hash mask.
+ */
+ while (hash_mask >> bit_shift != 0xFF)
+ bit_shift++;
+
+ /*
+ * The portion of the address that is used for the hash table
+ * is determined by the mc_filter_type setting.
+ * The algorithm is such that there is a total of 8 bits of shifting.
+ * The bit_shift for a mc_filter_type of 0 represents the number of
+ * left-shifts where the MSB of mc_addr[5] would still fall within
+ * the hash_mask. Case 0 does this exactly. Since there are a total
+ * of 8 bits of shifting, then mc_addr[4] will shift right the
+ * remaining number of bits. Thus 8 - bit_shift. The rest of the
+ * cases are a variation of this algorithm...essentially raising the
+ * number of bits to shift mc_addr[5] left, while still keeping the
+ * 8-bit shifting total.
+ *
+ * For example, given the following Destination MAC Address and an
+ * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
+ * we can see that the bit_shift for case 0 is 4. These are the hash
+ * values resulting from each mc_filter_type...
+ * [0] [1] [2] [3] [4] [5]
+ * 01 AA 00 12 34 56
+ * LSB MSB
+ *
+ * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
+ * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
+ * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
+ * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
+ */
+ switch (hw->mac.mc_filter_type) {
+ default:
+ case 0:
+ break;
+ case 1:
+ bit_shift += 1;
+ break;
+ case 2:
+ bit_shift += 2;
+ break;
+ case 3:
+ bit_shift += 4;
+ break;
+ }
+
+ hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+ (((u16) mc_addr[5]) << bit_shift)));
+
+ return hash_value;
+}
+
+/**
+ * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
+ * @hw: pointer to the HW structure
+ *
+ * In certain situations, a system BIOS may report that the PCIx maximum
+ * memory read byte count (MMRBC) value is higher than than the actual
+ * value. We check the PCIx command register with the current PCIx status
+ * register.
+ **/
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
+{
+ u16 cmd_mmrbc;
+ u16 pcix_cmd;
+ u16 pcix_stat_hi_word;
+ u16 stat_mmrbc;
+
+ DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
+
+ /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
+ if (hw->bus.type != e1000_bus_type_pcix)
+ return;
+
+ e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+ e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
+ cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
+ PCIX_COMMAND_MMRBC_SHIFT;
+ stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+ PCIX_STATUS_HI_MMRBC_SHIFT;
+ if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+ stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+ if (cmd_mmrbc > stat_mmrbc) {
+ pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
+ pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+ e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+ }
+}
+
+/**
+ * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the base hardware counters by reading the counter registers.
+ **/
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
+
+ E1000_READ_REG(hw, E1000_CRCERRS);
+ E1000_READ_REG(hw, E1000_SYMERRS);
+ E1000_READ_REG(hw, E1000_MPC);
+ E1000_READ_REG(hw, E1000_SCC);
+ E1000_READ_REG(hw, E1000_ECOL);
+ E1000_READ_REG(hw, E1000_MCC);
+ E1000_READ_REG(hw, E1000_LATECOL);
+ E1000_READ_REG(hw, E1000_COLC);
+ E1000_READ_REG(hw, E1000_DC);
+ E1000_READ_REG(hw, E1000_SEC);
+ E1000_READ_REG(hw, E1000_RLEC);
+ E1000_READ_REG(hw, E1000_XONRXC);
+ E1000_READ_REG(hw, E1000_XONTXC);
+ E1000_READ_REG(hw, E1000_XOFFRXC);
+ E1000_READ_REG(hw, E1000_XOFFTXC);
+ E1000_READ_REG(hw, E1000_FCRUC);
+ E1000_READ_REG(hw, E1000_GPRC);
+ E1000_READ_REG(hw, E1000_BPRC);
+ E1000_READ_REG(hw, E1000_MPRC);
+ E1000_READ_REG(hw, E1000_GPTC);
+ E1000_READ_REG(hw, E1000_GORCL);
+ E1000_READ_REG(hw, E1000_GORCH);
+ E1000_READ_REG(hw, E1000_GOTCL);
+ E1000_READ_REG(hw, E1000_GOTCH);
+ E1000_READ_REG(hw, E1000_RNBC);
+ E1000_READ_REG(hw, E1000_RUC);
+ E1000_READ_REG(hw, E1000_RFC);
+ E1000_READ_REG(hw, E1000_ROC);
+ E1000_READ_REG(hw, E1000_RJC);
+ E1000_READ_REG(hw, E1000_TORL);
+ E1000_READ_REG(hw, E1000_TORH);
+ E1000_READ_REG(hw, E1000_TOTL);
+ E1000_READ_REG(hw, E1000_TOTH);
+ E1000_READ_REG(hw, E1000_TPR);
+ E1000_READ_REG(hw, E1000_TPT);
+ E1000_READ_REG(hw, E1000_MPTC);
+ E1000_READ_REG(hw, E1000_BPTC);
+}
+
+/**
+ * e1000_check_for_copper_link_generic - Check for link (Copper)
+ * @hw: pointer to the HW structure
+ *
+ * Checks to see of the link status of the hardware has changed. If a
+ * change in link status has been detected, then we read the PHY registers
+ * to get the current speed/duplex if link exists.
+ **/
+s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_check_for_copper_link");
+
+ /*
+ * We only want to go out to the PHY registers to see if Auto-Neg
+ * has completed and/or if our link status has changed. The
+ * get_link_status flag is set upon receiving a Link Status
+ * Change or Rx Sequence Error interrupt.
+ */
+ if (!mac->get_link_status) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /*
+ * First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link)
+ goto out; /* No link detected */
+
+ mac->get_link_status = FALSE;
+
+ /*
+ * Check if there was DownShift, must be checked
+ * immediately after link-up
+ */
+ e1000_check_downshift_generic(hw);
+
+ /*
+ * If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if (!mac->autoneg) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /*
+ * Auto-Neg is enabled. Auto Speed Detection takes care
+ * of MAC speed/duplex configuration. So we only need to
+ * configure Collision Distance in the MAC.
+ */
+ mac->ops.config_collision_dist(hw);
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val)
+ DEBUGOUT("Error configuring flow control\n");
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_fiber_link_generic - Check for link (Fiber)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw;
+ u32 ctrl;
+ u32 status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_fiber_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ /*
+ * If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), the cable is plugged in (we have signal),
+ * and our link partner is not trying to auto-negotiate with us (we
+ * are receiving idles or data), we need to force link up. We also
+ * need to give auto-negotiation time to complete, in case the cable
+ * was just plugged in. The autoneg_failed flag does this.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+ if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if (mac->autoneg_failed == 0) {
+ mac->autoneg_failed = 1;
+ goto out;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ goto out;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /*
+ * If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ mac->serdes_has_link = TRUE;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw;
+ u32 ctrl;
+ u32 status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ /*
+ * If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), and our link partner is not trying to
+ * auto-negotiate with us (we are receiving idles or data),
+ * we need to force link up. We also need to give auto-negotiation
+ * time to complete.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+ if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+ if (mac->autoneg_failed == 0) {
+ mac->autoneg_failed = 1;
+ goto out;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ goto out;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /*
+ * If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ mac->serdes_has_link = TRUE;
+ } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
+ /*
+ * If we force link for non-auto-negotiation switch, check
+ * link status based on MAC synchronization for internal
+ * serdes media type.
+ */
+ /* SYNCH bit and IV bit are sticky. */
+ usec_delay(10);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+ if (rxcw & E1000_RXCW_SYNCH) {
+ if (!(rxcw & E1000_RXCW_IV)) {
+ mac->serdes_has_link = TRUE;
+ DEBUGOUT("SERDES: Link up - forced.\n");
+ }
+ } else {
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("SERDES: Link down - force failed.\n");
+ }
+ }
+
+ if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_LU) {
+ /* SYNCH bit and IV bit are sticky, so reread rxcw. */
+ usec_delay(10);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+ if (rxcw & E1000_RXCW_SYNCH) {
+ if (!(rxcw & E1000_RXCW_IV)) {
+ mac->serdes_has_link = TRUE;
+ DEBUGOUT("SERDES: Link up - autoneg "
+ "completed sucessfully.\n");
+ } else {
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("SERDES: Link down - invalid"
+ "codewords detected in autoneg.\n");
+ }
+ } else {
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("SERDES: Link down - no sync.\n");
+ }
+ } else {
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("SERDES: Link down - autoneg failed\n");
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_link_generic - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ **/
+s32 e1000_setup_link_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_link_generic");
+
+ /*
+ * In the case of the phy reset being blocked, we already have a link.
+ * We do not need to set it up again.
+ */
+ if (e1000_check_reset_block(hw))
+ goto out;
+
+ /*
+ * If requested flow control is set to default, set flow control
+ * based on the EEPROM flow control settings.
+ */
+ if (hw->fc.requested_mode == e1000_fc_default) {
+ ret_val = e1000_set_default_fc_generic(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /*
+ * Save off the requested flow control mode for use later. Depending
+ * on the link partner's capabilities, we may or may not use this mode.
+ */
+ hw->fc.current_mode = hw->fc.requested_mode;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
+ hw->fc.current_mode);
+
+ /* Call the necessary media_type subroutine to configure the link. */
+ ret_val = hw->mac.ops.setup_physical_interface(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
+ E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+ E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+ E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+ ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber and serdes
+ * links. Upon successful setup, poll for link.
+ **/
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 ctrl;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Take the link out of reset */
+ ctrl &= ~E1000_CTRL_LRST;
+
+ mac->ops.config_collision_dist(hw);
+
+ ret_val = e1000_commit_fc_settings_generic(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Since auto-negotiation is enabled, take the link out of reset (the
+ * link will be in reset, because we previously reset the chip). This
+ * will restart auto-negotiation. If auto-negotiation is successful
+ * then the link-up status bit will be set and the flow control enable
+ * bits (RFCE and TFCE) will be set according to their negotiated value.
+ */
+ DEBUGOUT("Auto-negotiation enabled\n");
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+
+ /*
+ * For these adapters, the SW definable pin 1 is set when the optics
+ * detect a signal. If we have a signal, then poll for a "Link-Up"
+ * indication.
+ */
+ if (hw->phy.media_type == e1000_media_type_internal_serdes ||
+ (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+ ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+ } else {
+ DEBUGOUT("No signal detected\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_collision_dist_generic - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ **/
+void e1000_config_collision_dist_generic(struct e1000_hw *hw)
+{
+ u32 tctl;
+
+ DEBUGFUNC("e1000_config_collision_dist_generic");
+
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+
+ tctl &= ~E1000_TCTL_COLD;
+ tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_poll_fiber_serdes_link_generic - Poll for link up
+ * @hw: pointer to the HW structure
+ *
+ * Polls for link up by reading the status register, if link fails to come
+ * up with auto-negotiation, then the link is forced if a signal is detected.
+ **/
+s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 i, status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
+
+ /*
+ * If we have a signal (the cable is plugged in, or assumed TRUE for
+ * serdes media) then poll for a "Link-Up" indication in the Device
+ * Status Register. Time-out if a link isn't seen in 500 milliseconds
+ * seconds (Auto-negotiation should complete in less than 500
+ * milliseconds even if the other end is doing it in SW).
+ */
+ for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
+ msec_delay(10);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_LU)
+ break;
+ }
+ if (i == FIBER_LINK_UP_LIMIT) {
+ DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+ mac->autoneg_failed = 1;
+ /*
+ * AutoNeg failed to achieve a link, so we'll call
+ * mac->check_for_link. This routine will force the
+ * link up if we detect a signal. This will allow us to
+ * communicate with non-autonegotiating link partners.
+ */
+ ret_val = mac->ops.check_for_link(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while checking for link\n");
+ goto out;
+ }
+ mac->autoneg_failed = 0;
+ } else {
+ mac->autoneg_failed = 0;
+ DEBUGOUT("Valid Link Found\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_commit_fc_settings_generic - Configure flow control
+ * @hw: pointer to the HW structure
+ *
+ * Write the flow control settings to the Transmit Config Word Register (TXCW)
+ * base on the flow control settings in e1000_mac_info.
+ **/
+s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 txcw;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_commit_fc_settings_generic");
+
+ /*
+ * Check for a software override of the flow control settings, and
+ * setup the device accordingly. If auto-negotiation is enabled, then
+ * software will have to set the "PAUSE" bits to the correct value in
+ * the Transmit Config Word Register (TXCW) and re-start auto-
+ * negotiation. However, if auto-negotiation is disabled, then
+ * software will have to manually configure the two flow control enable
+ * bits in the CTRL register.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames,
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames but we
+ * do not support receiving pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) are enabled.
+ */
+ switch (hw->fc.current_mode) {
+ case e1000_fc_none:
+ /* Flow control completely disabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+ break;
+ case e1000_fc_rx_pause:
+ /*
+ * Rx Flow control is enabled and Tx Flow control is disabled
+ * by a software over-ride. Since there really isn't a way to
+ * advertise that we are capable of Rx Pause ONLY, we will
+ * advertise that we support both symmetric and asymmetric Rx
+ * PAUSE. Later, we will disable the adapter's ability to send
+ * PAUSE frames.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ case e1000_fc_tx_pause:
+ /*
+ * Tx Flow control is enabled, and Rx Flow control is disabled,
+ * by a software over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+ break;
+ case e1000_fc_full:
+ /*
+ * Flow control (both Rx and Tx) is enabled by a software
+ * over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ break;
+ }
+
+ E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+ mac->txcw = txcw;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
+ * @hw: pointer to the HW structure
+ *
+ * Sets the flow control high/low threshold (watermark) registers. If
+ * flow control XON frame transmission is enabled, then set XON frame
+ * transmission as well.
+ **/
+s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
+{
+ u32 fcrtl = 0, fcrth = 0;
+
+ DEBUGFUNC("e1000_set_fc_watermarks_generic");
+
+ /*
+ * Set the flow control receive threshold registers. Normally,
+ * these registers will be set to a default threshold that may be
+ * adjusted later by the driver's runtime code. However, if the
+ * ability to transmit pause frames is not enabled, then these
+ * registers will be set to 0.
+ */
+ if (hw->fc.current_mode & e1000_fc_tx_pause) {
+ /*
+ * We need to set up the Receive Threshold high and low water
+ * marks as well as (optionally) enabling the transmission of
+ * XON frames.
+ */
+ fcrtl = hw->fc.low_water;
+ if (hw->fc.send_xon)
+ fcrtl |= E1000_FCRTL_XONE;
+
+ fcrth = hw->fc.high_water;
+ }
+ E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
+ E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_default_fc_generic - Set flow control default values
+ * @hw: pointer to the HW structure
+ *
+ * Read the EEPROM for the default values for flow control and store the
+ * values.
+ **/
+s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_set_default_fc_generic");
+
+ /*
+ * Read and store word 0x0F of the EEPROM. This word contains bits
+ * that determine the hardware's default PAUSE (flow control) mode,
+ * a bit that determines whether the HW defaults to enabling or
+ * disabling auto-negotiation, and the direction of the
+ * SW defined pins. If there is no SW over-ride of the flow
+ * control setting, then the variable hw->fc will
+ * be initialized based on a value in the EEPROM.
+ */
+ ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
+
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
+ hw->fc.requested_mode = e1000_fc_none;
+ else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+ NVM_WORD0F_ASM_DIR)
+ hw->fc.requested_mode = e1000_fc_tx_pause;
+ else
+ hw->fc.requested_mode = e1000_fc_full;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_force_mac_fc_generic - Force the MAC's flow control settings
+ * @hw: pointer to the HW structure
+ *
+ * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
+ * device control register to reflect the adapter settings. TFCE and RFCE
+ * need to be explicitly set by software when a copper PHY is used because
+ * autonegotiation is managed by the PHY rather than the MAC. Software must
+ * also configure these bits when link is forced on a fiber connection.
+ **/
+s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_force_mac_fc_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /*
+ * Because we didn't get link via the internal auto-negotiation
+ * mechanism (we either forced link or we got link via PHY
+ * auto-neg), we have to manually enable/disable transmit an
+ * receive flow control.
+ *
+ * The "Case" statement below enables/disable flow control
+ * according to the "hw->fc.current_mode" parameter.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause
+ * frames but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * frames but we do not receive pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) is enabled.
+ * other: No other values should be possible at this point.
+ */
+ DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
+
+ switch (hw->fc.current_mode) {
+ case e1000_fc_none:
+ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+ break;
+ case e1000_fc_rx_pause:
+ ctrl &= (~E1000_CTRL_TFCE);
+ ctrl |= E1000_CTRL_RFCE;
+ break;
+ case e1000_fc_tx_pause:
+ ctrl &= (~E1000_CTRL_RFCE);
+ ctrl |= E1000_CTRL_TFCE;
+ break;
+ case e1000_fc_full:
+ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_config_fc_after_link_up_generic - Configures flow control after link
+ * @hw: pointer to the HW structure
+ *
+ * Checks the status of auto-negotiation after link up to ensure that the
+ * speed and duplex were not forced. If the link needed to be forced, then
+ * flow control needs to be forced also. If auto-negotiation is enabled
+ * and did not fail, then we configure flow control based on our link
+ * partner.
+ **/
+s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+ u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+ u16 speed, duplex;
+
+ DEBUGFUNC("e1000_config_fc_after_link_up_generic");
+
+ /*
+ * Check for the case where we have fiber media and auto-neg failed
+ * so we had to force link. In this case, we need to force the
+ * configuration of the MAC to match the "fc" parameter.
+ */
+ if (mac->autoneg_failed) {
+ if (hw->phy.media_type == e1000_media_type_fiber ||
+ hw->phy.media_type == e1000_media_type_internal_serdes)
+ ret_val = e1000_force_mac_fc_generic(hw);
+ } else {
+ if (hw->phy.media_type == e1000_media_type_copper)
+ ret_val = e1000_force_mac_fc_generic(hw);
+ }
+
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ goto out;
+ }
+
+ /*
+ * Check for the case where we have copper media and auto-neg is
+ * enabled. In this case, we need to check and see if Auto-Neg
+ * has completed, and if so, how the PHY and link partner has
+ * flow control configured.
+ */
+ if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
+ /*
+ * Read the MII Status Register and check to see if AutoNeg
+ * has completed. We read this twice because this reg has
+ * some "sticky" (latched) bits.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+
+ if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+ DEBUGOUT("Copper PHY and Auto Neg "
+ "has not completed.\n");
+ goto out;
+ }
+
+ /*
+ * The AutoNeg process has completed, so we now need to
+ * read both the Auto Negotiation Advertisement
+ * Register (Address 4) and the Auto_Negotiation Base
+ * Page Ability Register (Address 5) to determine how
+ * flow control was negotiated.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
+ &mii_nway_adv_reg);
+ if (ret_val)
+ goto out;
+ ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
+ &mii_nway_lp_ability_reg);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Two bits in the Auto Negotiation Advertisement Register
+ * (Address 4) and two bits in the Auto Negotiation Base
+ * Page Ability Register (Address 5) determine flow control
+ * for both the PHY and the link partner. The following
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+ * 1999, describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ *-------|---------|-------|---------|--------------------
+ * 0 | 0 | DC | DC | e1000_fc_none
+ * 0 | 1 | 0 | DC | e1000_fc_none
+ * 0 | 1 | 1 | 0 | e1000_fc_none
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ * 1 | 0 | 0 | DC | e1000_fc_none
+ * 1 | DC | 1 | DC | e1000_fc_full
+ * 1 | 1 | 0 | 0 | e1000_fc_none
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ *
+ * Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends. The
+ * ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | DC | 1 | DC | E1000_fc_full
+ *
+ */
+ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ /*
+ * Now we need to check if the user selected Rx ONLY
+ * of pause frames. In this case, we had to advertise
+ * FULL flow control because we could not advertise Rx
+ * ONLY. Hence, we must now check to see if we need to
+ * turn OFF the TRANSMISSION of PAUSE frames.
+ */
+ if (hw->fc.requested_mode == e1000_fc_full) {
+ hw->fc.current_mode = e1000_fc_full;
+ DEBUGOUT("Flow Control = FULL.\r\n");
+ } else {
+ hw->fc.current_mode = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = "
+ "Rx PAUSE frames only.\r\n");
+ }
+ }
+ /*
+ * For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ */
+ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc.current_mode = e1000_fc_tx_pause;
+ DEBUGOUT("Flow Control = Tx PAUSE frames only.\r\n");
+ }
+ /*
+ * For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ */
+ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc.current_mode = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = Rx PAUSE frames only.\r\n");
+ } else {
+ /*
+ * Per the IEEE spec, at this point flow control
+ * should be disabled.
+ */
+ hw->fc.current_mode = e1000_fc_none;
+ DEBUGOUT("Flow Control = NONE.\r\n");
+ }
+
+ /*
+ * Now we need to do one last check... If we auto-
+ * negotiated to HALF DUPLEX, flow control should not be
+ * enabled per IEEE 802.3 spec.
+ */
+ ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ goto out;
+ }
+
+ if (duplex == HALF_DUPLEX)
+ hw->fc.current_mode = e1000_fc_none;
+
+ /*
+ * Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control settings.
+ */
+ ret_val = e1000_force_mac_fc_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Read the status register for the current speed/duplex and store the current
+ * speed and duplex for copper connections.
+ **/
+s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ u32 status;
+
+ DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
+
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if (status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if (status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Sets the speed and duplex to gigabit full duplex (the only possible option)
+ * for fiber/serdes links.
+ **/
+s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex)
+{
+ DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
+
+ *speed = SPEED_1000;
+ *duplex = FULL_DUPLEX;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM
+ **/
+s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
+{
+ u32 swsm;
+ s32 ret_val = E1000_SUCCESS;
+ s32 timeout = hw->nvm.word_size + 1;
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_get_hw_semaphore_generic");
+
+ /* Get the SW semaphore */
+ while (i < timeout) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ if (!(swsm & E1000_SWSM_SMBI))
+ break;
+
+ usec_delay(50);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ /* Get the FW semaphore. */
+ for (i = 0; i < timeout; i++) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+ /* Semaphore acquired if bit latched */
+ if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+ break;
+
+ usec_delay(50);
+ }
+
+ if (i == timeout) {
+ /* Release semaphores */
+ e1000_put_hw_semaphore_generic(hw);
+ DEBUGOUT("Driver can't access the NVM\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_put_hw_semaphore_generic - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used to access the PHY or NVM
+ **/
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
+{
+ u32 swsm;
+
+ DEBUGFUNC("e1000_put_hw_semaphore_generic");
+
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+ swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/**
+ * e1000_get_auto_rd_done_generic - Check for auto read completion
+ * @hw: pointer to the HW structure
+ *
+ * Check EEPROM for Auto Read done bit.
+ **/
+s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
+{
+ s32 i = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_get_auto_rd_done_generic");
+
+ while (i < AUTO_READ_DONE_TIMEOUT) {
+ if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
+ break;
+ msec_delay(1);
+ i++;
+ }
+
+ if (i == AUTO_READ_DONE_TIMEOUT) {
+ DEBUGOUT("Auto read by HW from NVM has not completed.\n");
+ ret_val = -E1000_ERR_RESET;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_valid_led_default_generic - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration. If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ **/
+s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_generic");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+ *data = ID_LED_DEFAULT;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_id_led_init_generic -
+ * @hw: pointer to the HW structure
+ *
+ **/
+s32 e1000_id_led_init_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ const u32 ledctl_mask = 0x000000FF;
+ const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+ const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+ u16 data, i, temp;
+ const u16 led_mask = 0x0F;
+
+ DEBUGFUNC("e1000_id_led_init_generic");
+
+ ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+ if (ret_val)
+ goto out;
+
+ mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
+ mac->ledctl_mode1 = mac->ledctl_default;
+ mac->ledctl_mode2 = mac->ledctl_default;
+
+ for (i = 0; i < 4; i++) {
+ temp = (data >> (i << 2)) & led_mask;
+ switch (temp) {
+ case ID_LED_ON1_DEF2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_ON1_OFF2:
+ mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode1 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_OFF1_DEF2:
+ case ID_LED_OFF1_ON2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode1 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ switch (temp) {
+ case ID_LED_DEF1_ON2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_OFF1_ON2:
+ mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode2 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_DEF1_OFF2:
+ case ID_LED_ON1_OFF2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode2 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_led_generic - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored.
+ **/
+s32 e1000_setup_led_generic(struct e1000_hw *hw)
+{
+ u32 ledctl;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_led_generic");
+
+ if (hw->mac.ops.setup_led != e1000_setup_led_generic) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ if (hw->phy.media_type == e1000_media_type_fiber) {
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ hw->mac.ledctl_default = ledctl;
+ /* Turn off LED0 */
+ ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+ E1000_LEDCTL_LED0_BLINK |
+ E1000_LEDCTL_LED0_MODE_MASK);
+ ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+ E1000_LEDCTL_LED0_MODE_SHIFT);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+ } else if (hw->phy.media_type == e1000_media_type_copper) {
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_cleanup_led_generic - Set LED config to default operation
+ * @hw: pointer to the HW structure
+ *
+ * Remove the current LED configuration and set the LED configuration
+ * to the default value, saved from the EEPROM.
+ **/
+s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_cleanup_led_generic");
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_blink_led_generic - Blink LED
+ * @hw: pointer to the HW structure
+ *
+ * Blink the LEDs which are set to be on.
+ **/
+s32 e1000_blink_led_generic(struct e1000_hw *hw)
+{
+ u32 ledctl_blink = 0;
+ u32 i;
+
+ DEBUGFUNC("e1000_blink_led_generic");
+
+ if (hw->phy.media_type == e1000_media_type_fiber) {
+ /* always blink LED0 for PCI-E fiber */
+ ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+ (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+ } else {
+ /*
+ * set the blink bit for each LED that's "on" (0x0E)
+ * in ledctl_mode2
+ */
+ ledctl_blink = hw->mac.ledctl_mode2;
+ for (i = 0; i < 4; i++)
+ if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+ E1000_LEDCTL_MODE_LED_ON)
+ ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
+ (i * 8));
+ }
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on_generic - Turn LED on
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED on.
+ **/
+s32 e1000_led_on_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_led_on_generic");
+
+ switch (hw->phy.media_type) {
+ case e1000_media_type_fiber:
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ break;
+ case e1000_media_type_copper:
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+ break;
+ default:
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off_generic - Turn LED off
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED off.
+ **/
+s32 e1000_led_off_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_led_off_generic");
+
+ switch (hw->phy.media_type) {
+ case e1000_media_type_fiber:
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ break;
+ case e1000_media_type_copper:
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+ break;
+ default:
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
+ * @hw: pointer to the HW structure
+ * @no_snoop: bitmap of snoop events
+ *
+ * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
+ **/
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
+{
+ u32 gcr;
+
+ DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
+
+ if (hw->bus.type != e1000_bus_type_pci_express)
+ goto out;
+
+ if (no_snoop) {
+ gcr = E1000_READ_REG(hw, E1000_GCR);
+ gcr &= ~(PCIE_NO_SNOOP_ALL);
+ gcr |= no_snoop;
+ E1000_WRITE_REG(hw, E1000_GCR, gcr);
+ }
+out:
+ return;
+}
+
+/**
+ * e1000_disable_pcie_master_generic - Disables PCI-express master access
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_SUCCESS if successful, else returns -10
+ * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
+ * the master requests to be disabled.
+ *
+ * Disables PCI-Express master access and verifies there are no pending
+ * requests.
+ **/
+s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 timeout = MASTER_DISABLE_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_disable_pcie_master_generic");
+
+ if (hw->bus.type != e1000_bus_type_pci_express)
+ goto out;
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ while (timeout) {
+ if (!(E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STATUS_GIO_MASTER_ENABLE))
+ break;
+ usec_delay(100);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("Master requests are pending.\n");
+ ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
+ * @hw: pointer to the HW structure
+ *
+ * Reset the Adaptive Interframe Spacing throttle to default values.
+ **/
+void e1000_reset_adaptive_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_reset_adaptive_generic");
+
+ if (!mac->adaptive_ifs) {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ goto out;
+ }
+
+ mac->current_ifs_val = 0;
+ mac->ifs_min_val = IFS_MIN;
+ mac->ifs_max_val = IFS_MAX;
+ mac->ifs_step_size = IFS_STEP;
+ mac->ifs_ratio = IFS_RATIO;
+
+ mac->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, E1000_AIT, 0);
+out:
+ return;
+}
+
+/**
+ * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
+ * @hw: pointer to the HW structure
+ *
+ * Update the Adaptive Interframe Spacing Throttle value based on the
+ * time between transmitted packets and time between collisions.
+ **/
+void e1000_update_adaptive_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_update_adaptive_generic");
+
+ if (!mac->adaptive_ifs) {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ goto out;
+ }
+
+ if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
+ if (mac->tx_packet_delta > MIN_NUM_XMITS) {
+ mac->in_ifs_mode = TRUE;
+ if (mac->current_ifs_val < mac->ifs_max_val) {
+ if (!mac->current_ifs_val)
+ mac->current_ifs_val = mac->ifs_min_val;
+ else
+ mac->current_ifs_val +=
+ mac->ifs_step_size;
+ E1000_WRITE_REG(hw, E1000_AIT, mac->current_ifs_val);
+ }
+ }
+ } else {
+ if (mac->in_ifs_mode &&
+ (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
+ mac->current_ifs_val = 0;
+ mac->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, E1000_AIT, 0);
+ }
+ }
+out:
+ return;
+}
+
+/**
+ * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
+ * @hw: pointer to the HW structure
+ *
+ * Verify that when not using auto-negotiation that MDI/MDIx is correctly
+ * set, which is forced to MDI mode only.
+ **/
+static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_validate_mdi_setting_generic");
+
+ if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
+ DEBUGOUT("Invalid MDI setting detected\n");
+ hw->phy.mdix = 1;
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
+ * @hw: pointer to the HW structure
+ * @reg: 32bit register offset such as E1000_SCTL
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes an address/data control type register. There are several of these
+ * and they all have the format address << 8 | data and bit 31 is polled for
+ * completion.
+ **/
+s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data)
+{
+ u32 i, regvalue = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
+
+ /* Set up the address and data */
+ regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
+ E1000_WRITE_REG(hw, reg, regvalue);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
+ usec_delay(5);
+ regvalue = E1000_READ_REG(hw, reg);
+ if (regvalue & E1000_GEN_CTL_READY)
+ break;
+ }
+ if (!(regvalue & E1000_GEN_CTL_READY)) {
+ DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
diff --git a/freebsd/dev/e1000/e1000_mac.h b/freebsd/dev/e1000/e1000_mac.h
new file mode 100644
index 00000000..e1ec987e
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_mac.h
@@ -0,0 +1,98 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_MAC_HH_
+#define _E1000_MAC_HH_
+
+/*
+ * Functions that should not be called directly from drivers but can be used
+ * by other files in this 'shared code'
+ */
+void e1000_init_mac_ops_generic(struct e1000_hw *hw);
+void e1000_null_mac_generic(struct e1000_hw *hw);
+s32 e1000_null_ops_generic(struct e1000_hw *hw);
+s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d);
+bool e1000_null_mng_mode(struct e1000_hw *hw);
+void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a);
+void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b);
+void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a);
+s32 e1000_blink_led_generic(struct e1000_hw *hw);
+s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw);
+s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw);
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_cleanup_led_generic(struct e1000_hw *hw);
+s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw);
+s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw);
+s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw);
+s32 e1000_force_mac_fc_generic(struct e1000_hw *hw);
+s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw);
+s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw);
+s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw);
+void e1000_set_lan_id_single_port(struct e1000_hw *hw);
+void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw);
+s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+s32 e1000_id_led_init_generic(struct e1000_hw *hw);
+s32 e1000_led_on_generic(struct e1000_hw *hw);
+s32 e1000_led_off_generic(struct e1000_hw *hw);
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count);
+s32 e1000_set_default_fc_generic(struct e1000_hw *hw);
+s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw);
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_setup_led_generic(struct e1000_hw *hw);
+s32 e1000_setup_link_generic(struct e1000_hw *hw);
+s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data);
+
+u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr);
+
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw);
+void e1000_clear_vfta_generic(struct e1000_hw *hw);
+void e1000_config_collision_dist_generic(struct e1000_hw *hw);
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count);
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw);
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw);
+void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
+void e1000_reset_adaptive_generic(struct e1000_hw *hw);
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop);
+void e1000_update_adaptive_generic(struct e1000_hw *hw);
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
+
+#endif
diff --git a/freebsd/dev/e1000/e1000_manage.c b/freebsd/dev/e1000/e1000_manage.c
new file mode 100644
index 00000000..d5f03493
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_manage.c
@@ -0,0 +1,412 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+static u8 e1000_calculate_checksum(u8 *buffer, u32 length);
+
+/**
+ * e1000_calculate_checksum - Calculate checksum for buffer
+ * @buffer: pointer to EEPROM
+ * @length: size of EEPROM to calculate a checksum for
+ *
+ * Calculates the checksum for some buffer on a specified length. The
+ * checksum calculated is returned.
+ **/
+static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
+{
+ u32 i;
+ u8 sum = 0;
+
+ DEBUGFUNC("e1000_calculate_checksum");
+
+ if (!buffer)
+ return 0;
+
+ for (i = 0; i < length; i++)
+ sum += buffer[i];
+
+ return (u8) (0 - sum);
+}
+
+/**
+ * e1000_mng_enable_host_if_generic - Checks host interface is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ * This function checks whether the HOST IF is enabled for command operation
+ * and also checks whether the previous command is completed. It busy waits
+ * in case of previous command is not completed.
+ **/
+s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw)
+{
+ u32 hicr;
+ s32 ret_val = E1000_SUCCESS;
+ u8 i;
+
+ DEBUGFUNC("e1000_mng_enable_host_if_generic");
+
+ if (!(hw->mac.arc_subsystem_valid)) {
+ DEBUGOUT("ARC subsystem not valid.\n");
+ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+ goto out;
+ }
+
+ /* Check that the host interface is enabled. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if ((hicr & E1000_HICR_EN) == 0) {
+ DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+ goto out;
+ }
+ /* check the previous command is completed */
+ for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_C))
+ break;
+ msec_delay_irq(1);
+ }
+
+ if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+ DEBUGOUT("Previous command timeout failed .\n");
+ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_mng_mode_generic - Generic check management mode
+ * @hw: pointer to the HW structure
+ *
+ * Reads the firmware semaphore register and returns TRUE (>0) if
+ * manageability is enabled, else FALSE (0).
+ **/
+bool e1000_check_mng_mode_generic(struct e1000_hw *hw)
+{
+ u32 fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+ DEBUGFUNC("e1000_check_mng_mode_generic");
+
+
+ return (fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
+}
+
+/**
+ * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on Tx
+ * @hw: pointer to the HW structure
+ *
+ * Enables packet filtering on transmit packets if manageability is enabled
+ * and host interface is enabled.
+ **/
+bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw)
+{
+ struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
+ u32 *buffer = (u32 *)&hw->mng_cookie;
+ u32 offset;
+ s32 ret_val, hdr_csum, csum;
+ u8 i, len;
+
+ DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic");
+
+ hw->mac.tx_pkt_filtering = TRUE;
+
+ /* No manageability, no filtering */
+ if (!hw->mac.ops.check_mng_mode(hw)) {
+ hw->mac.tx_pkt_filtering = FALSE;
+ goto out;
+ }
+
+ /*
+ * If we can't read from the host interface for whatever
+ * reason, disable filtering.
+ */
+ ret_val = hw->mac.ops.mng_enable_host_if(hw);
+ if (ret_val != E1000_SUCCESS) {
+ hw->mac.tx_pkt_filtering = FALSE;
+ goto out;
+ }
+
+ /* Read in the header. Length and offset are in dwords. */
+ len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
+ offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
+ for (i = 0; i < len; i++)
+ *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
+ offset + i);
+ hdr_csum = hdr->checksum;
+ hdr->checksum = 0;
+ csum = e1000_calculate_checksum((u8 *)hdr,
+ E1000_MNG_DHCP_COOKIE_LENGTH);
+ /*
+ * If either the checksums or signature don't match, then
+ * the cookie area isn't considered valid, in which case we
+ * take the safe route of assuming Tx filtering is enabled.
+ */
+ if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
+ hw->mac.tx_pkt_filtering = TRUE;
+ goto out;
+ }
+
+ /* Cookie area is valid, make the final check for filtering. */
+ if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
+ hw->mac.tx_pkt_filtering = FALSE;
+ goto out;
+ }
+
+out:
+ return hw->mac.tx_pkt_filtering;
+}
+
+/**
+ * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface
+ * @length: size of the buffer
+ *
+ * Writes the DHCP information to the host interface.
+ **/
+s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length)
+{
+ struct e1000_host_mng_command_header hdr;
+ s32 ret_val;
+ u32 hicr;
+
+ DEBUGFUNC("e1000_mng_write_dhcp_info_generic");
+
+ hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
+ hdr.command_length = length;
+ hdr.reserved1 = 0;
+ hdr.reserved2 = 0;
+ hdr.checksum = 0;
+
+ /* Enable the host interface */
+ ret_val = hw->mac.ops.mng_enable_host_if(hw);
+ if (ret_val)
+ goto out;
+
+ /* Populate the host interface with the contents of "buffer". */
+ ret_val = hw->mac.ops.mng_host_if_write(hw, buffer, length,
+ sizeof(hdr), &(hdr.checksum));
+ if (ret_val)
+ goto out;
+
+ /* Write the manageability command header */
+ ret_val = hw->mac.ops.mng_write_cmd_header(hw, &hdr);
+ if (ret_val)
+ goto out;
+
+ /* Tell the ARC a new command is pending. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_mng_write_cmd_header_generic - Writes manageability command header
+ * @hw: pointer to the HW structure
+ * @hdr: pointer to the host interface command header
+ *
+ * Writes the command header after does the checksum calculation.
+ **/
+s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr)
+{
+ u16 i, length = sizeof(struct e1000_host_mng_command_header);
+
+ DEBUGFUNC("e1000_mng_write_cmd_header_generic");
+
+ /* Write the whole command header structure with new checksum. */
+
+ hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
+
+ length >>= 2;
+ /* Write the relevant command block into the ram area. */
+ for (i = 0; i < length; i++) {
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
+ *((u32 *) hdr + i));
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_mng_host_if_write_generic - Write to the manageability host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface buffer
+ * @length: size of the buffer
+ * @offset: location in the buffer to write to
+ * @sum: sum of the data (not checksum)
+ *
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient
+ * way. Also fills up the sum of the buffer in *buffer parameter.
+ **/
+s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length, u16 offset, u8 *sum)
+{
+ u8 *tmp;
+ u8 *bufptr = buffer;
+ u32 data = 0;
+ s32 ret_val = E1000_SUCCESS;
+ u16 remaining, i, j, prev_bytes;
+
+ DEBUGFUNC("e1000_mng_host_if_write_generic");
+
+ /* sum = only sum of the data and it is not checksum */
+
+ if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ tmp = (u8 *)&data;
+ prev_bytes = offset & 0x3;
+ offset >>= 2;
+
+ if (prev_bytes) {
+ data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset);
+ for (j = prev_bytes; j < sizeof(u32); j++) {
+ *(tmp + j) = *bufptr++;
+ *sum += *(tmp + j);
+ }
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data);
+ length -= j - prev_bytes;
+ offset++;
+ }
+
+ remaining = length & 0x3;
+ length -= remaining;
+
+ /* Calculate length in DWORDs */
+ length >>= 2;
+
+ /*
+ * The device driver writes the relevant command block into the
+ * ram area.
+ */
+ for (i = 0; i < length; i++) {
+ for (j = 0; j < sizeof(u32); j++) {
+ *(tmp + j) = *bufptr++;
+ *sum += *(tmp + j);
+ }
+
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i,
+ data);
+ }
+ if (remaining) {
+ for (j = 0; j < sizeof(u32); j++) {
+ if (j < remaining)
+ *(tmp + j) = *bufptr++;
+ else
+ *(tmp + j) = 0;
+
+ *sum += *(tmp + j);
+ }
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, data);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_enable_mng_pass_thru - Check if management passthrough is needed
+ * @hw: pointer to the HW structure
+ *
+ * Verifies the hardware needs to leave interface enabled so that frames can
+ * be directed to and from the management interface.
+ **/
+bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+ u32 manc;
+ u32 fwsm, factps;
+ bool ret_val = FALSE;
+
+ DEBUGFUNC("e1000_enable_mng_pass_thru");
+
+ if (!hw->mac.asf_firmware_present)
+ goto out;
+
+ manc = E1000_READ_REG(hw, E1000_MANC);
+
+ if (!(manc & E1000_MANC_RCV_TCO_EN))
+ goto out;
+
+ if (hw->mac.has_fwsm) {
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+ factps = E1000_READ_REG(hw, E1000_FACTPS);
+
+ if (!(factps & E1000_FACTPS_MNGCG) &&
+ ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
+ ret_val = TRUE;
+ goto out;
+ }
+ } else if ((hw->mac.type == e1000_82574) ||
+ (hw->mac.type == e1000_82583)) {
+ u16 data;
+
+ factps = E1000_READ_REG(hw, E1000_FACTPS);
+ e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+
+ if (!(factps & E1000_FACTPS_MNGCG) &&
+ ((data & E1000_NVM_INIT_CTRL2_MNGM) ==
+ (e1000_mng_mode_pt << 13))) {
+ ret_val = TRUE;
+ goto out;
+ }
+ } else if ((manc & E1000_MANC_SMBUS_EN) &&
+ !(manc & E1000_MANC_ASF_EN)) {
+ ret_val = TRUE;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
diff --git a/freebsd/dev/e1000/e1000_manage.h b/freebsd/dev/e1000/e1000_manage.h
new file mode 100644
index 00000000..42f3bf2e
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_manage.h
@@ -0,0 +1,88 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2008, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_MANAGE_HH_
+#define _E1000_MANAGE_HH_
+
+bool e1000_check_mng_mode_generic(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw);
+s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length, u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw,
+ u8 *buffer, u16 length);
+bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+
+enum e1000_mng_mode {
+ e1000_mng_mode_none = 0,
+ e1000_mng_mode_asf,
+ e1000_mng_mode_pt,
+ e1000_mng_mode_ipmi,
+ e1000_mng_mode_host_if_only
+};
+
+#define E1000_FACTPS_MNGCG 0x20000000
+
+#define E1000_FWSM_MODE_MASK 0xE
+#define E1000_FWSM_MODE_SHIFT 1
+
+#define E1000_MNG_IAMT_MODE 0x3
+#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
+#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
+
+#define E1000_VFTA_ENTRY_SHIFT 5
+#define E1000_VFTA_ENTRY_MASK 0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
+
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */
+#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI command limit */
+
+#define E1000_HICR_EN 0x01 /* Enable bit - RO */
+/* Driver sets this bit when done to put command in RAM */
+#define E1000_HICR_C 0x02
+#define E1000_HICR_SV 0x04 /* Status Validity */
+#define E1000_HICR_FW_RESET_ENABLE 0x40
+#define E1000_HICR_FW_RESET 0x80
+
+/* Intel(R) Active Management Technology signature */
+#define E1000_IAMT_SIGNATURE 0x544D4149
+
+#endif
diff --git a/freebsd/dev/e1000/e1000_mbx.c b/freebsd/dev/e1000/e1000_mbx.c
new file mode 100644
index 00000000..a000c01b
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_mbx.c
@@ -0,0 +1,768 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_mbx.h>
+#else
+#include <freebsd/dev/e1000/e1000_mbx.h>
+#endif
+
+/**
+ * e1000_null_mbx_check_for_flag - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_null_mbx_check_for_flag(struct e1000_hw *hw, u16 mbx_id)
+{
+ DEBUGFUNC("e1000_null_mbx_check_flag");
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_mbx_transact - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_null_mbx_transact(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 mbx_id)
+{
+ DEBUGFUNC("e1000_null_mbx_rw_msg");
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mbx - Reads a message from the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to read
+ *
+ * returns SUCCESS if it successfuly read message from buffer
+ **/
+s32 e1000_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_read_mbx");
+
+ /* limit read to size of mailbox */
+ if (size > mbx->size)
+ size = mbx->size;
+
+ if (mbx->ops.read)
+ ret_val = mbx->ops.read(hw, msg, size, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_mbx - Write a message to the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully copied message into the buffer
+ **/
+s32 e1000_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_mbx");
+
+ if (size > mbx->size)
+ ret_val = -E1000_ERR_MBX;
+
+ else if (mbx->ops.write)
+ ret_val = mbx->ops.write(hw, msg, size, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_msg - checks to see if someone sent us mail
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the Status bit was found or else ERR_MBX
+ **/
+s32 e1000_check_for_msg(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_msg");
+
+ if (mbx->ops.check_for_msg)
+ ret_val = mbx->ops.check_for_msg(hw, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_ack - checks to see if someone sent us ACK
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the Status bit was found or else ERR_MBX
+ **/
+s32 e1000_check_for_ack(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_ack");
+
+ if (mbx->ops.check_for_ack)
+ ret_val = mbx->ops.check_for_ack(hw, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_rst - checks to see if other side has reset
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the Status bit was found or else ERR_MBX
+ **/
+s32 e1000_check_for_rst(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_rst");
+
+ if (mbx->ops.check_for_rst)
+ ret_val = mbx->ops.check_for_rst(hw, mbx_id);
+
+ return ret_val;
+}
+
+/**
+ * e1000_poll_for_msg - Wait for message notification
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully received a message notification
+ **/
+static s32 e1000_poll_for_msg(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ int countdown = mbx->timeout;
+
+ DEBUGFUNC("e1000_poll_for_msg");
+
+ if (!countdown || !mbx->ops.check_for_msg)
+ goto out;
+
+ while (countdown && mbx->ops.check_for_msg(hw, mbx_id)) {
+ countdown--;
+ if (!countdown)
+ break;
+ usec_delay(mbx->usec_delay);
+ }
+
+ /* if we failed, all future posted messages fail until reset */
+ if (!countdown)
+ mbx->timeout = 0;
+out:
+ return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
+}
+
+/**
+ * e1000_poll_for_ack - Wait for message acknowledgement
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully received a message acknowledgement
+ **/
+static s32 e1000_poll_for_ack(struct e1000_hw *hw, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ int countdown = mbx->timeout;
+
+ DEBUGFUNC("e1000_poll_for_ack");
+
+ if (!countdown || !mbx->ops.check_for_ack)
+ goto out;
+
+ while (countdown && mbx->ops.check_for_ack(hw, mbx_id)) {
+ countdown--;
+ if (!countdown)
+ break;
+ usec_delay(mbx->usec_delay);
+ }
+
+ /* if we failed, all future posted messages fail until reset */
+ if (!countdown)
+ mbx->timeout = 0;
+out:
+ return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
+}
+
+/**
+ * e1000_read_posted_mbx - Wait for message notification and receive message
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully received a message notification and
+ * copied it into the receive buffer.
+ **/
+s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_read_posted_mbx");
+
+ if (!mbx->ops.read)
+ goto out;
+
+ ret_val = e1000_poll_for_msg(hw, mbx_id);
+
+ /* if ack received read message, otherwise we timed out */
+ if (!ret_val)
+ ret_val = mbx->ops.read(hw, msg, size, mbx_id);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_posted_mbx - Write a message to the mailbox, wait for ack
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully copied message into the buffer and
+ * received an ack to that message within delay * timeout period
+ **/
+s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_write_posted_mbx");
+
+ /* exit if either we can't write or there isn't a defined timeout */
+ if (!mbx->ops.write || !mbx->timeout)
+ goto out;
+
+ /* send msg */
+ ret_val = mbx->ops.write(hw, msg, size, mbx_id);
+
+ /* if msg sent wait until we receive an ack */
+ if (!ret_val)
+ ret_val = e1000_poll_for_ack(hw, mbx_id);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mbx_ops_generic - Initialize mbx function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Sets the function pointers to no-op functions
+ **/
+void e1000_init_mbx_ops_generic(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ mbx->ops.init_params = e1000_null_ops_generic;
+ mbx->ops.read = e1000_null_mbx_transact;
+ mbx->ops.write = e1000_null_mbx_transact;
+ mbx->ops.check_for_msg = e1000_null_mbx_check_for_flag;
+ mbx->ops.check_for_ack = e1000_null_mbx_check_for_flag;
+ mbx->ops.check_for_rst = e1000_null_mbx_check_for_flag;
+ mbx->ops.read_posted = e1000_read_posted_mbx;
+ mbx->ops.write_posted = e1000_write_posted_mbx;
+}
+
+/**
+ * e1000_read_v2p_mailbox - read v2p mailbox
+ * @hw: pointer to the HW structure
+ *
+ * This function is used to read the v2p mailbox without losing the read to
+ * clear status bits.
+ **/
+static u32 e1000_read_v2p_mailbox(struct e1000_hw *hw)
+{
+ u32 v2p_mailbox = E1000_READ_REG(hw, E1000_V2PMAILBOX(0));
+
+ v2p_mailbox |= hw->dev_spec.vf.v2p_mailbox;
+ hw->dev_spec.vf.v2p_mailbox |= v2p_mailbox & E1000_V2PMAILBOX_R2C_BITS;
+
+ return v2p_mailbox;
+}
+
+/**
+ * e1000_check_for_bit_vf - Determine if a status bit was set
+ * @hw: pointer to the HW structure
+ * @mask: bitmask for bits to be tested and cleared
+ *
+ * This function is used to check for the read to clear bits within
+ * the V2P mailbox.
+ **/
+static s32 e1000_check_for_bit_vf(struct e1000_hw *hw, u32 mask)
+{
+ u32 v2p_mailbox = e1000_read_v2p_mailbox(hw);
+ s32 ret_val = -E1000_ERR_MBX;
+
+ if (v2p_mailbox & mask)
+ ret_val = E1000_SUCCESS;
+
+ hw->dev_spec.vf.v2p_mailbox &= ~mask;
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_msg_vf - checks to see if the PF has sent mail
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the PF has set the Status bit or else ERR_MBX
+ **/
+static s32 e1000_check_for_msg_vf(struct e1000_hw *hw, u16 mbx_id)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_msg_vf");
+
+ if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFSTS)) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.reqs++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_ack_vf - checks to see if the PF has ACK'd
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns SUCCESS if the PF has set the ACK bit or else ERR_MBX
+ **/
+static s32 e1000_check_for_ack_vf(struct e1000_hw *hw, u16 mbx_id)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_ack_vf");
+
+ if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFACK)) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.acks++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_rst_vf - checks to see if the PF has reset
+ * @hw: pointer to the HW structure
+ * @mbx_id: id of mailbox to check
+ *
+ * returns TRUE if the PF has set the reset done bit or else FALSE
+ **/
+static s32 e1000_check_for_rst_vf(struct e1000_hw *hw, u16 mbx_id)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_rst_vf");
+
+ if (!e1000_check_for_bit_vf(hw, (E1000_V2PMAILBOX_RSTD |
+ E1000_V2PMAILBOX_RSTI))) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.rsts++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_obtain_mbx_lock_vf - obtain mailbox lock
+ * @hw: pointer to the HW structure
+ *
+ * return SUCCESS if we obtained the mailbox lock
+ **/
+static s32 e1000_obtain_mbx_lock_vf(struct e1000_hw *hw)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_obtain_mbx_lock_vf");
+
+ /* Take ownership of the buffer */
+ E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_VFU);
+
+ /* reserve mailbox for vf use */
+ if (e1000_read_v2p_mailbox(hw) & E1000_V2PMAILBOX_VFU)
+ ret_val = E1000_SUCCESS;
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_mbx_vf - Write a message to the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to write
+ *
+ * returns SUCCESS if it successfully copied message into the buffer
+ **/
+static s32 e1000_write_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 mbx_id)
+{
+ s32 ret_val;
+ u16 i;
+
+
+ DEBUGFUNC("e1000_write_mbx_vf");
+
+ /* lock the mailbox to prevent pf/vf race condition */
+ ret_val = e1000_obtain_mbx_lock_vf(hw);
+ if (ret_val)
+ goto out_no_write;
+
+ /* flush msg and acks as we are overwriting the message buffer */
+ e1000_check_for_msg_vf(hw, 0);
+ e1000_check_for_ack_vf(hw, 0);
+
+ /* copy the caller specified message to the mailbox memory buffer */
+ for (i = 0; i < size; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(0), i, msg[i]);
+
+ /* update stats */
+ hw->mbx.stats.msgs_tx++;
+
+ /* Drop VFU and interrupt the PF to tell it a message has been sent */
+ E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_REQ);
+
+out_no_write:
+ return ret_val;
+}
+
+/**
+ * e1000_read_mbx_vf - Reads a message from the inbox intended for vf
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @mbx_id: id of mailbox to read
+ *
+ * returns SUCCESS if it successfuly read message from buffer
+ **/
+static s32 e1000_read_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 mbx_id)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 i;
+
+ DEBUGFUNC("e1000_read_mbx_vf");
+
+ /* lock the mailbox to prevent pf/vf race condition */
+ ret_val = e1000_obtain_mbx_lock_vf(hw);
+ if (ret_val)
+ goto out_no_read;
+
+ /* copy the message from the mailbox memory buffer */
+ for (i = 0; i < size; i++)
+ msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(0), i);
+
+ /* Acknowledge receipt and release mailbox, then we're done */
+ E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_ACK);
+
+ /* update stats */
+ hw->mbx.stats.msgs_rx++;
+
+out_no_read:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mbx_params_vf - set initial values for vf mailbox
+ * @hw: pointer to the HW structure
+ *
+ * Initializes the hw->mbx struct to correct values for vf mailbox
+ */
+s32 e1000_init_mbx_params_vf(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+
+ /* start mailbox as timed out and let the reset_hw call set the timeout
+ * value to begin communications */
+ mbx->timeout = 0;
+ mbx->usec_delay = E1000_VF_MBX_INIT_DELAY;
+
+ mbx->size = E1000_VFMAILBOX_SIZE;
+
+ mbx->ops.read = e1000_read_mbx_vf;
+ mbx->ops.write = e1000_write_mbx_vf;
+ mbx->ops.read_posted = e1000_read_posted_mbx;
+ mbx->ops.write_posted = e1000_write_posted_mbx;
+ mbx->ops.check_for_msg = e1000_check_for_msg_vf;
+ mbx->ops.check_for_ack = e1000_check_for_ack_vf;
+ mbx->ops.check_for_rst = e1000_check_for_rst_vf;
+
+ mbx->stats.msgs_tx = 0;
+ mbx->stats.msgs_rx = 0;
+ mbx->stats.reqs = 0;
+ mbx->stats.acks = 0;
+ mbx->stats.rsts = 0;
+
+ return E1000_SUCCESS;
+}
+
+static s32 e1000_check_for_bit_pf(struct e1000_hw *hw, u32 mask)
+{
+ u32 mbvficr = E1000_READ_REG(hw, E1000_MBVFICR);
+ s32 ret_val = -E1000_ERR_MBX;
+
+ if (mbvficr & mask) {
+ ret_val = E1000_SUCCESS;
+ E1000_WRITE_REG(hw, E1000_MBVFICR, mask);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_msg_pf - checks to see if the VF has sent mail
+ * @hw: pointer to the HW structure
+ * @vf_number: the VF index
+ *
+ * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
+ **/
+static s32 e1000_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_msg_pf");
+
+ if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.reqs++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_ack_pf - checks to see if the VF has ACKed
+ * @hw: pointer to the HW structure
+ * @vf_number: the VF index
+ *
+ * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
+ **/
+static s32 e1000_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_ack_pf");
+
+ if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) {
+ ret_val = E1000_SUCCESS;
+ hw->mbx.stats.acks++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_rst_pf - checks to see if the VF has reset
+ * @hw: pointer to the HW structure
+ * @vf_number: the VF index
+ *
+ * returns SUCCESS if the VF has set the Status bit or else ERR_MBX
+ **/
+static s32 e1000_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number)
+{
+ u32 vflre = E1000_READ_REG(hw, E1000_VFLRE);
+ s32 ret_val = -E1000_ERR_MBX;
+
+ DEBUGFUNC("e1000_check_for_rst_pf");
+
+ if (vflre & (1 << vf_number)) {
+ ret_val = E1000_SUCCESS;
+ E1000_WRITE_REG(hw, E1000_VFLRE, (1 << vf_number));
+ hw->mbx.stats.rsts++;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_obtain_mbx_lock_pf - obtain mailbox lock
+ * @hw: pointer to the HW structure
+ * @vf_number: the VF index
+ *
+ * return SUCCESS if we obtained the mailbox lock
+ **/
+static s32 e1000_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number)
+{
+ s32 ret_val = -E1000_ERR_MBX;
+ u32 p2v_mailbox;
+
+ DEBUGFUNC("e1000_obtain_mbx_lock_pf");
+
+ /* Take ownership of the buffer */
+ E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_PFU);
+
+ /* reserve mailbox for vf use */
+ p2v_mailbox = E1000_READ_REG(hw, E1000_P2VMAILBOX(vf_number));
+ if (p2v_mailbox & E1000_P2VMAILBOX_PFU)
+ ret_val = E1000_SUCCESS;
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_mbx_pf - Places a message in the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @vf_number: the VF index
+ *
+ * returns SUCCESS if it successfully copied message into the buffer
+ **/
+static s32 e1000_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 vf_number)
+{
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_write_mbx_pf");
+
+ /* lock the mailbox to prevent pf/vf race condition */
+ ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
+ if (ret_val)
+ goto out_no_write;
+
+ /* flush msg and acks as we are overwriting the message buffer */
+ e1000_check_for_msg_pf(hw, vf_number);
+ e1000_check_for_ack_pf(hw, vf_number);
+
+ /* copy the caller specified message to the mailbox memory buffer */
+ for (i = 0; i < size; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i, msg[i]);
+
+ /* Interrupt VF to tell it a message has been sent and release buffer*/
+ E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS);
+
+ /* update stats */
+ hw->mbx.stats.msgs_tx++;
+
+out_no_write:
+ return ret_val;
+
+}
+
+/**
+ * e1000_read_mbx_pf - Read a message from the mailbox
+ * @hw: pointer to the HW structure
+ * @msg: The message buffer
+ * @size: Length of buffer
+ * @vf_number: the VF index
+ *
+ * This function copies a message from the mailbox buffer to the caller's
+ * memory buffer. The presumption is that the caller knows that there was
+ * a message due to a VF request so no polling for message is needed.
+ **/
+static s32 e1000_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
+ u16 vf_number)
+{
+ s32 ret_val;
+ u16 i;
+
+ DEBUGFUNC("e1000_read_mbx_pf");
+
+ /* lock the mailbox to prevent pf/vf race condition */
+ ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
+ if (ret_val)
+ goto out_no_read;
+
+ /* copy the message to the mailbox memory buffer */
+ for (i = 0; i < size; i++)
+ msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i);
+
+ /* Acknowledge the message and release buffer */
+ E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK);
+
+ /* update stats */
+ hw->mbx.stats.msgs_rx++;
+
+out_no_read:
+ return ret_val;
+}
+
+/**
+ * e1000_init_mbx_params_pf - set initial values for pf mailbox
+ * @hw: pointer to the HW structure
+ *
+ * Initializes the hw->mbx struct to correct values for pf mailbox
+ */
+s32 e1000_init_mbx_params_pf(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+
+ if (hw->mac.type == e1000_82576) {
+ mbx->timeout = 0;
+ mbx->usec_delay = 0;
+
+ mbx->size = E1000_VFMAILBOX_SIZE;
+
+ mbx->ops.read = e1000_read_mbx_pf;
+ mbx->ops.write = e1000_write_mbx_pf;
+ mbx->ops.read_posted = e1000_read_posted_mbx;
+ mbx->ops.write_posted = e1000_write_posted_mbx;
+ mbx->ops.check_for_msg = e1000_check_for_msg_pf;
+ mbx->ops.check_for_ack = e1000_check_for_ack_pf;
+ mbx->ops.check_for_rst = e1000_check_for_rst_pf;
+
+ mbx->stats.msgs_tx = 0;
+ mbx->stats.msgs_rx = 0;
+ mbx->stats.reqs = 0;
+ mbx->stats.acks = 0;
+ mbx->stats.rsts = 0;
+ }
+
+ return E1000_SUCCESS;
+}
+
diff --git a/freebsd/dev/e1000/e1000_mbx.h b/freebsd/dev/e1000/e1000_mbx.h
new file mode 100644
index 00000000..be6a3252
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_mbx.h
@@ -0,0 +1,110 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_MBX_HH_
+#define _E1000_MBX_HH_
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+/* Define mailbox register bits */
+#define E1000_V2PMAILBOX_REQ 0x00000001 /* Request for PF Ready bit */
+#define E1000_V2PMAILBOX_ACK 0x00000002 /* Ack PF message received */
+#define E1000_V2PMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */
+#define E1000_V2PMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */
+#define E1000_V2PMAILBOX_PFSTS 0x00000010 /* PF wrote a message in the MB */
+#define E1000_V2PMAILBOX_PFACK 0x00000020 /* PF ack the previous VF msg */
+#define E1000_V2PMAILBOX_RSTI 0x00000040 /* PF has reset indication */
+#define E1000_V2PMAILBOX_RSTD 0x00000080 /* PF has indicated reset done */
+#define E1000_V2PMAILBOX_R2C_BITS 0x000000B0 /* All read to clear bits */
+
+#define E1000_P2VMAILBOX_STS 0x00000001 /* Initiate message send to VF */
+#define E1000_P2VMAILBOX_ACK 0x00000002 /* Ack message recv'd from VF */
+#define E1000_P2VMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */
+#define E1000_P2VMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */
+#define E1000_P2VMAILBOX_RVFU 0x00000010 /* Reset VFU - used when VF stuck */
+
+#define E1000_MBVFICR_VFREQ_MASK 0x000000FF /* bits for VF messages */
+#define E1000_MBVFICR_VFREQ_VF1 0x00000001 /* bit for VF 1 message */
+#define E1000_MBVFICR_VFACK_MASK 0x00FF0000 /* bits for VF acks */
+#define E1000_MBVFICR_VFACK_VF1 0x00010000 /* bit for VF 1 ack */
+
+#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */
+
+/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the
+ * PF. The reverse is TRUE if it is E1000_PF_*.
+ * Message ACK's are the value or'd with 0xF0000000
+ */
+#define E1000_VT_MSGTYPE_ACK 0x80000000 /* Messages below or'd with
+ * this are the ACK */
+#define E1000_VT_MSGTYPE_NACK 0x40000000 /* Messages below or'd with
+ * this are the NACK */
+#define E1000_VT_MSGTYPE_CTS 0x20000000 /* Indicates that VF is still
+ clear to send requests */
+#define E1000_VT_MSGINFO_SHIFT 16
+/* bits 23:16 are used for exra info for certain messages */
+#define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT)
+
+#define E1000_VF_RESET 0x01 /* VF requests reset */
+#define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests to set MAC addr */
+#define E1000_VF_SET_MULTICAST 0x03 /* VF requests to set MC addr */
+#define E1000_VF_SET_MULTICAST_COUNT_MASK (0x1F << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_MULTICAST_OVERFLOW (0x80 << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_VLAN 0x04 /* VF requests to set VLAN */
+#define E1000_VF_SET_VLAN_ADD (0x01 << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_LPE 0x05 /* VF requests to set VMOLR.LPE */
+#define E1000_VF_SET_PROMISC 0x06 /*VF requests to clear VMOLR.ROPE/MPME*/
+#define E1000_VF_SET_PROMISC_UNICAST (0x01 << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_PROMISC_MULTICAST (0x02 << E1000_VT_MSGINFO_SHIFT)
+
+#define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */
+
+#define E1000_VF_MBX_INIT_TIMEOUT 2000 /* number of retries on mailbox */
+#define E1000_VF_MBX_INIT_DELAY 500 /* microseconds between retries */
+
+s32 e1000_read_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_write_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_read_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_write_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_check_for_msg(struct e1000_hw *, u16);
+s32 e1000_check_for_ack(struct e1000_hw *, u16);
+s32 e1000_check_for_rst(struct e1000_hw *, u16);
+void e1000_init_mbx_ops_generic(struct e1000_hw *hw);
+s32 e1000_init_mbx_params_vf(struct e1000_hw *);
+s32 e1000_init_mbx_params_pf(struct e1000_hw *);
+
+#endif /* _E1000_MBX_HH_ */
diff --git a/freebsd/dev/e1000/e1000_nvm.c b/freebsd/dev/e1000/e1000_nvm.c
new file mode 100644
index 00000000..975b4e2b
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_nvm.c
@@ -0,0 +1,1113 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+static void e1000_reload_nvm_generic(struct e1000_hw *hw);
+
+/**
+ * e1000_init_nvm_ops_generic - Initialize NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Setups up the function pointers to no-op functions
+ **/
+void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ DEBUGFUNC("e1000_init_nvm_ops_generic");
+
+ /* Initialize function pointers */
+ nvm->ops.init_params = e1000_null_ops_generic;
+ nvm->ops.acquire = e1000_null_ops_generic;
+ nvm->ops.read = e1000_null_read_nvm;
+ nvm->ops.release = e1000_null_nvm_generic;
+ nvm->ops.reload = e1000_reload_nvm_generic;
+ nvm->ops.update = e1000_null_ops_generic;
+ nvm->ops.valid_led_default = e1000_null_led_default;
+ nvm->ops.validate = e1000_null_ops_generic;
+ nvm->ops.write = e1000_null_write_nvm;
+}
+
+/**
+ * e1000_null_nvm_read - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c)
+{
+ DEBUGFUNC("e1000_null_read_nvm");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_nvm_generic - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_nvm_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_null_nvm_generic");
+ return;
+}
+
+/**
+ * e1000_null_led_default - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data)
+{
+ DEBUGFUNC("e1000_null_led_default");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_write_nvm - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c)
+{
+ DEBUGFUNC("e1000_null_write_nvm");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_raise_eec_clk - Raise EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Enable/Raise the EEPROM clock bit.
+ **/
+static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+ *eecd = *eecd | E1000_EECD_SK;
+ E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ * e1000_lower_eec_clk - Lower EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Clear/Lower the EEPROM clock bit.
+ **/
+static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+ *eecd = *eecd & ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
+ * @hw: pointer to the HW structure
+ * @data: data to send to the EEPROM
+ * @count: number of bits to shift out
+ *
+ * We need to shift 'count' bits out to the EEPROM. So, the value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ **/
+static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u32 mask;
+
+ DEBUGFUNC("e1000_shift_out_eec_bits");
+
+ mask = 0x01 << (count - 1);
+ if (nvm->type == e1000_nvm_eeprom_microwire)
+ eecd &= ~E1000_EECD_DO;
+ else
+ if (nvm->type == e1000_nvm_eeprom_spi)
+ eecd |= E1000_EECD_DO;
+
+ do {
+ eecd &= ~E1000_EECD_DI;
+
+ if (data & mask)
+ eecd |= E1000_EECD_DI;
+
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(nvm->delay_usec);
+
+ e1000_raise_eec_clk(hw, &eecd);
+ e1000_lower_eec_clk(hw, &eecd);
+
+ mask >>= 1;
+ } while (mask);
+
+ eecd &= ~E1000_EECD_DI;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
+ * @hw: pointer to the HW structure
+ * @count: number of bits to shift in
+ *
+ * In order to read a register from the EEPROM, we need to shift 'count' bits
+ * in from the EEPROM. Bits are "shifted in" by raising the clock input to
+ * the EEPROM (setting the SK bit), and then reading the value of the data out
+ * "DO" bit. During this "shifting in" process the data in "DI" bit should
+ * always be clear.
+ **/
+static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+{
+ u32 eecd;
+ u32 i;
+ u16 data;
+
+ DEBUGFUNC("e1000_shift_in_eec_bits");
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ data = 0;
+
+ for (i = 0; i < count; i++) {
+ data <<= 1;
+ e1000_raise_eec_clk(hw, &eecd);
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ eecd &= ~E1000_EECD_DI;
+ if (eecd & E1000_EECD_DO)
+ data |= 1;
+
+ e1000_lower_eec_clk(hw, &eecd);
+ }
+
+ return data;
+}
+
+/**
+ * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+ * @hw: pointer to the HW structure
+ * @ee_reg: EEPROM flag for polling
+ *
+ * Polls the EEPROM status bit for either read or write completion based
+ * upon the value of 'ee_reg'.
+ **/
+s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+{
+ u32 attempts = 100000;
+ u32 i, reg = 0;
+ s32 ret_val = -E1000_ERR_NVM;
+
+ DEBUGFUNC("e1000_poll_eerd_eewr_done");
+
+ for (i = 0; i < attempts; i++) {
+ if (ee_reg == E1000_NVM_POLL_READ)
+ reg = E1000_READ_REG(hw, E1000_EERD);
+ else
+ reg = E1000_READ_REG(hw, E1000_EEWR);
+
+ if (reg & E1000_NVM_RW_REG_DONE) {
+ ret_val = E1000_SUCCESS;
+ break;
+ }
+
+ usec_delay(5);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_acquire_nvm_generic - Generic request for access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
+{
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_acquire_nvm_generic");
+
+ E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ while (timeout) {
+ if (eecd & E1000_EECD_GNT)
+ break;
+ usec_delay(5);
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ timeout--;
+ }
+
+ if (!timeout) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ DEBUGOUT("Could not acquire NVM grant\n");
+ ret_val = -E1000_ERR_NVM;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_standby_nvm - Return EEPROM to standby state
+ * @hw: pointer to the HW structure
+ *
+ * Return the EEPROM to a standby state.
+ **/
+static void e1000_standby_nvm(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ DEBUGFUNC("e1000_standby_nvm");
+
+ if (nvm->type == e1000_nvm_eeprom_microwire) {
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+
+ e1000_raise_eec_clk(hw, &eecd);
+
+ /* Select EEPROM */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+
+ e1000_lower_eec_clk(hw, &eecd);
+ } else
+ if (nvm->type == e1000_nvm_eeprom_spi) {
+ /* Toggle CS to flush commands */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+ eecd &= ~E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+ }
+}
+
+/**
+ * e1000_stop_nvm - Terminate EEPROM command
+ * @hw: pointer to the HW structure
+ *
+ * Terminates the current command by inverting the EEPROM's chip select pin.
+ **/
+void e1000_stop_nvm(struct e1000_hw *hw)
+{
+ u32 eecd;
+
+ DEBUGFUNC("e1000_stop_nvm");
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+ /* Pull CS high */
+ eecd |= E1000_EECD_CS;
+ e1000_lower_eec_clk(hw, &eecd);
+ } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
+ /* CS on Microwire is active-high */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ e1000_raise_eec_clk(hw, &eecd);
+ e1000_lower_eec_clk(hw, &eecd);
+ }
+}
+
+/**
+ * e1000_release_nvm_generic - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+void e1000_release_nvm_generic(struct e1000_hw *hw)
+{
+ u32 eecd;
+
+ DEBUGFUNC("e1000_release_nvm_generic");
+
+ e1000_stop_nvm(hw);
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
+ * @hw: pointer to the HW structure
+ *
+ * Setups the EEPROM for reading and writing.
+ **/
+static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ s32 ret_val = E1000_SUCCESS;
+ u16 timeout = 0;
+ u8 spi_stat_reg;
+
+ DEBUGFUNC("e1000_ready_nvm_eeprom");
+
+ if (nvm->type == e1000_nvm_eeprom_microwire) {
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ } else
+ if (nvm->type == e1000_nvm_eeprom_spi) {
+ /* Clear SK and CS */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ usec_delay(1);
+ timeout = NVM_MAX_RETRY_SPI;
+
+ /*
+ * Read "Status Register" repeatedly until the LSB is cleared.
+ * The EEPROM will signal that the command has been completed
+ * by clearing bit 0 of the internal status register. If it's
+ * not cleared within 'timeout', then error out.
+ */
+ while (timeout) {
+ e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
+ hw->nvm.opcode_bits);
+ spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
+ if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
+ break;
+
+ usec_delay(5);
+ e1000_standby_nvm(hw);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("SPI NVM Status error\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_spi - Read EEPROM's using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ **/
+s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i = 0;
+ s32 ret_val;
+ u16 word_in;
+ u8 read_opcode = NVM_READ_OPCODE_SPI;
+
+ DEBUGFUNC("e1000_read_nvm_spi");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = nvm->ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_standby_nvm(hw);
+
+ if ((nvm->address_bits == 8) && (offset >= 128))
+ read_opcode |= NVM_A8_OPCODE_SPI;
+
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
+
+ /*
+ * Read the data. SPI NVMs increment the address with each byte
+ * read and will roll over if reading beyond the end. This allows
+ * us to read the whole NVM from any offset
+ */
+ for (i = 0; i < words; i++) {
+ word_in = e1000_shift_in_eec_bits(hw, 16);
+ data[i] = (word_in >> 8) | (word_in << 8);
+ }
+
+release:
+ nvm->ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_microwire - Reads EEPROM's using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ **/
+s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i = 0;
+ s32 ret_val;
+ u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
+
+ DEBUGFUNC("e1000_read_nvm_microwire");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = nvm->ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ for (i = 0; i < words; i++) {
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)(offset + i),
+ nvm->address_bits);
+
+ /*
+ * Read the data. For microwire, each word requires the
+ * overhead of setup and tear-down.
+ */
+ data[i] = e1000_shift_in_eec_bits(hw, 16);
+ e1000_standby_nvm(hw);
+ }
+
+release:
+ nvm->ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_nvm_eerd - Reads EEPROM using EERD register
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM using the EERD register.
+ **/
+s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i, eerd = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_nvm_eerd");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * too many words for the offset, and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ for (i = 0; i < words; i++) {
+ eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
+ E1000_NVM_RW_REG_START;
+
+ E1000_WRITE_REG(hw, E1000_EERD, eerd);
+ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+ if (ret_val)
+ break;
+
+ data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
+ E1000_NVM_RW_REG_DATA);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_spi - Write to EEPROM using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using SPI interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likely contain an invalid checksum.
+ **/
+s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val;
+ u16 widx = 0;
+
+ DEBUGFUNC("e1000_write_nvm_spi");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = nvm->ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ while (widx < words) {
+ u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_standby_nvm(hw);
+
+ /* Send the WRITE ENABLE command (8 bit opcode) */
+ e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
+ nvm->opcode_bits);
+
+ e1000_standby_nvm(hw);
+
+ /*
+ * Some SPI eeproms use the 8th address bit embedded in the
+ * opcode
+ */
+ if ((nvm->address_bits == 8) && (offset >= 128))
+ write_opcode |= NVM_A8_OPCODE_SPI;
+
+ /* Send the Write command (8-bit opcode + addr) */
+ e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
+ nvm->address_bits);
+
+ /* Loop to allow for up to whole page write of eeprom */
+ while (widx < words) {
+ u16 word_out = data[widx];
+ word_out = (word_out >> 8) | (word_out << 8);
+ e1000_shift_out_eec_bits(hw, word_out, 16);
+ widx++;
+
+ if ((((offset + widx) * 2) % nvm->page_size) == 0) {
+ e1000_standby_nvm(hw);
+ break;
+ }
+ }
+ }
+
+ msec_delay(10);
+release:
+ nvm->ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_nvm_microwire - Writes EEPROM using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using microwire interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likely contain an invalid checksum.
+ **/
+s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val;
+ u32 eecd;
+ u16 words_written = 0;
+ u16 widx = 0;
+
+ DEBUGFUNC("e1000_write_nvm_microwire");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = nvm->ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
+ (u16)(nvm->opcode_bits + 2));
+
+ e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+ e1000_standby_nvm(hw);
+
+ while (words_written < words) {
+ e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
+ nvm->opcode_bits);
+
+ e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
+ nvm->address_bits);
+
+ e1000_shift_out_eec_bits(hw, data[words_written], 16);
+
+ e1000_standby_nvm(hw);
+
+ for (widx = 0; widx < 200; widx++) {
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & E1000_EECD_DO)
+ break;
+ usec_delay(50);
+ }
+
+ if (widx == 200) {
+ DEBUGOUT("NVM Write did not complete\n");
+ ret_val = -E1000_ERR_NVM;
+ goto release;
+ }
+
+ e1000_standby_nvm(hw);
+
+ words_written++;
+ }
+
+ e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
+ (u16)(nvm->opcode_bits + 2));
+
+ e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+release:
+ nvm->ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_pba_string_generic - Read device part number
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ * @pba_num_size: size of part number buffer
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ **/
+s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
+ u32 pba_num_size)
+{
+ s32 ret_val;
+ u16 nvm_data;
+ u16 pba_ptr;
+ u16 offset;
+ u16 length;
+
+ DEBUGFUNC("e1000_read_pba_string_generic");
+
+ if (pba_num == NULL) {
+ DEBUGOUT("PBA string buffer was null\n");
+ ret_val = E1000_ERR_INVALID_ARGUMENT;
+ goto out;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ /*
+ * if nvm_data is not ptr guard the PBA must be in legacy format which
+ * means pba_ptr is actually our second data word for the PBA number
+ * and we can decode it into an ascii string
+ */
+ if (nvm_data != NVM_PBA_PTR_GUARD) {
+ DEBUGOUT("NVM PBA number is not stored as string\n");
+
+ /* we will need 11 characters to store the PBA */
+ if (pba_num_size < 11) {
+ DEBUGOUT("PBA string buffer too small\n");
+ return E1000_ERR_NO_SPACE;
+ }
+
+ /* extract hex string from data and pba_ptr */
+ pba_num[0] = (nvm_data >> 12) & 0xF;
+ pba_num[1] = (nvm_data >> 8) & 0xF;
+ pba_num[2] = (nvm_data >> 4) & 0xF;
+ pba_num[3] = nvm_data & 0xF;
+ pba_num[4] = (pba_ptr >> 12) & 0xF;
+ pba_num[5] = (pba_ptr >> 8) & 0xF;
+ pba_num[6] = '-';
+ pba_num[7] = 0;
+ pba_num[8] = (pba_ptr >> 4) & 0xF;
+ pba_num[9] = pba_ptr & 0xF;
+
+ /* put a null character on the end of our string */
+ pba_num[10] = '\0';
+
+ /* switch all the data but the '-' to hex char */
+ for (offset = 0; offset < 10; offset++) {
+ if (pba_num[offset] < 0xA)
+ pba_num[offset] += '0';
+ else if (pba_num[offset] < 0x10)
+ pba_num[offset] += 'A' - 0xA;
+ }
+
+ goto out;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (length == 0xFFFF || length == 0) {
+ DEBUGOUT("NVM PBA number section invalid length\n");
+ ret_val = E1000_ERR_NVM_PBA_SECTION;
+ goto out;
+ }
+ /* check if pba_num buffer is big enough */
+ if (pba_num_size < (((u32)length * 2) - 1)) {
+ DEBUGOUT("PBA string buffer too small\n");
+ ret_val = E1000_ERR_NO_SPACE;
+ goto out;
+ }
+
+ /* trim pba length from start of string */
+ pba_ptr++;
+ length--;
+
+ for (offset = 0; offset < length; offset++) {
+ ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ pba_num[offset * 2] = (u8)(nvm_data >> 8);
+ pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
+ }
+ pba_num[offset * 2] = '\0';
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_pba_length_generic - Read device part number length
+ * @hw: pointer to the HW structure
+ * @pba_num_size: size of part number buffer
+ *
+ * Reads the product board assembly (PBA) number length from the EEPROM and
+ * stores the value in pba_num_size.
+ **/
+s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
+{
+ s32 ret_val;
+ u16 nvm_data;
+ u16 pba_ptr;
+ u16 length;
+
+ DEBUGFUNC("e1000_read_pba_length_generic");
+
+ if (pba_num_size == NULL) {
+ DEBUGOUT("PBA buffer size was null\n");
+ ret_val = E1000_ERR_INVALID_ARGUMENT;
+ goto out;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ /* if data is not ptr guard the PBA must be in legacy format */
+ if (nvm_data != NVM_PBA_PTR_GUARD) {
+ *pba_num_size = 11;
+ goto out;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (length == 0xFFFF || length == 0) {
+ DEBUGOUT("NVM PBA number section invalid length\n");
+ ret_val = E1000_ERR_NVM_PBA_SECTION;
+ goto out;
+ }
+
+ /*
+ * Convert from length in u16 values to u8 chars, add 1 for NULL,
+ * and subtract 2 because length field is included in length.
+ */
+ *pba_num_size = ((u32)length * 2) - 1;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_pba_num_generic - Read device part number
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ **/
+s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
+{
+ s32 ret_val;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_read_pba_num_generic");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ } else if (nvm_data == NVM_PBA_PTR_GUARD) {
+ DEBUGOUT("NVM Not Supported\n");
+ ret_val = E1000_NOT_IMPLEMENTED;
+ goto out;
+ }
+ *pba_num = (u32)(nvm_data << 16);
+
+ ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ *pba_num |= nvm_data;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_mac_addr_generic - Read device MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the device MAC address from the EEPROM and stores the value.
+ * Since devices with two ports use the same EEPROM, we increment the
+ * last bit in the MAC address for the second port.
+ **/
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
+{
+ u32 rar_high;
+ u32 rar_low;
+ u16 i;
+
+ rar_high = E1000_READ_REG(hw, E1000_RAH(0));
+ rar_low = E1000_READ_REG(hw, E1000_RAL(0));
+
+ for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
+ hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
+
+ for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
+ hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_generic");
+
+ for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+ ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+
+ if (checksum != (u16) NVM_SUM) {
+ DEBUGOUT("NVM Checksum Invalid\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_generic - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ **/
+s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_update_nvm_checksum");
+
+ for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+ ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error while updating checksum.\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+ checksum = (u16) NVM_SUM - checksum;
+ ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
+ if (ret_val)
+ DEBUGOUT("NVM Write Error while updating checksum.\n");
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_reload_nvm_generic - Reloads EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ * extended control register.
+ **/
+static void e1000_reload_nvm_generic(struct e1000_hw *hw)
+{
+ u32 ctrl_ext;
+
+ DEBUGFUNC("e1000_reload_nvm_generic");
+
+ usec_delay(10);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+}
+
diff --git a/freebsd/dev/e1000/e1000_nvm.h b/freebsd/dev/e1000/e1000_nvm.h
new file mode 100644
index 00000000..89b65a0f
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_nvm.h
@@ -0,0 +1,70 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_NVM_HH_
+#define _E1000_NVM_HH_
+
+void e1000_init_nvm_ops_generic(struct e1000_hw *hw);
+s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
+void e1000_null_nvm_generic(struct e1000_hw *hw);
+s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data);
+s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
+s32 e1000_acquire_nvm_generic(struct e1000_hw *hw);
+
+s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
+s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num);
+s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
+ u32 pba_num_size);
+s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size);
+s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
+s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data);
+s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
+s32 e1000_write_nvm_eewr(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
+s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
+void e1000_stop_nvm(struct e1000_hw *hw);
+void e1000_release_nvm_generic(struct e1000_hw *hw);
+
+#define E1000_STM_OPCODE 0xDB00
+
+#endif
diff --git a/freebsd/dev/e1000/e1000_osdep.c b/freebsd/dev/e1000/e1000_osdep.c
new file mode 100644
index 00000000..445a23d9
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_osdep.c
@@ -0,0 +1,101 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2009, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+/*
+ * NOTE: the following routines using the e1000
+ * naming style are provided to the shared
+ * code but are OS specific
+ */
+
+void
+e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+ pci_write_config(((struct e1000_osdep *)hw->back)->dev, reg, *value, 2);
+}
+
+void
+e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+ *value = pci_read_config(((struct e1000_osdep *)hw->back)->dev, reg, 2);
+}
+
+void
+e1000_pci_set_mwi(struct e1000_hw *hw)
+{
+ pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND,
+ (hw->bus.pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
+}
+
+void
+e1000_pci_clear_mwi(struct e1000_hw *hw)
+{
+ pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND,
+ (hw->bus.pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
+}
+
+/*
+ * Read the PCI Express capabilities
+ */
+int32_t
+e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+ device_t dev = ((struct e1000_osdep *)hw->back)->dev;
+ u32 offset;
+
+ pci_find_extcap(dev, PCIY_EXPRESS, &offset);
+ *value = pci_read_config(dev, offset + reg, 2);
+ return (E1000_SUCCESS);
+}
+
+/*
+ * Write the PCI Express capabilities
+ */
+int32_t
+e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+ device_t dev = ((struct e1000_osdep *)hw->back)->dev;
+ u32 offset;
+
+ pci_find_extcap(dev, PCIY_EXPRESS, &offset);
+ pci_write_config(dev, offset + reg, *value, 2);
+ return (E1000_SUCCESS);
+}
diff --git a/freebsd/dev/e1000/e1000_osdep.h b/freebsd/dev/e1000/e1000_osdep.h
new file mode 100644
index 00000000..bd69a10b
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_osdep.h
@@ -0,0 +1,222 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+
+#ifndef _FREEBSD_OS_HH_
+#define _FREEBSD_OS_HH_
+
+#include <freebsd/sys/types.h>
+#include <freebsd/sys/param.h>
+#include <freebsd/sys/systm.h>
+#include <freebsd/sys/lock.h>
+#include <freebsd/sys/mutex.h>
+#include <freebsd/sys/mbuf.h>
+#include <freebsd/sys/protosw.h>
+#include <freebsd/sys/socket.h>
+#include <freebsd/sys/malloc.h>
+#include <freebsd/sys/kernel.h>
+#include <freebsd/sys/bus.h>
+#include <freebsd/machine/bus.h>
+#include <freebsd/sys/rman.h>
+#include <freebsd/machine/resource.h>
+#ifndef __rtems__
+#include <freebsd/vm/vm.h>
+#include <freebsd/vm/pmap.h>
+#endif
+#include <freebsd/machine/clock.h>
+#include <freebsd/dev/pci/pcivar.h>
+#include <freebsd/dev/pci/pcireg.h>
+
+
+#define ASSERT(x) if(!(x)) panic("EM: x")
+
+#define usec_delay(x) DELAY(x)
+#define msec_delay(x) DELAY(1000*(x))
+#define msec_delay_irq(x) DELAY(1000*(x))
+
+#define MSGOUT(S, A, B) printf(S "\n", A, B)
+#define DEBUGFUNC(F) DEBUGOUT(F);
+#define DEBUGOUT(S) do {} while (0)
+#define DEBUGOUT1(S,A) do {} while (0)
+#define DEBUGOUT2(S,A,B) do {} while (0)
+#define DEBUGOUT3(S,A,B,C) do {} while (0)
+#define DEBUGOUT7(S,A,B,C,D,E,F,G) do {} while (0)
+
+#define STATIC static
+#define FALSE 0
+#define false FALSE
+#define TRUE 1
+#define true TRUE
+#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */
+#define PCI_COMMAND_REGISTER PCIR_COMMAND
+
+/* Mutex used in the shared code */
+#define E1000_MUTEX struct mtx
+#define E1000_MUTEX_INIT(mutex) mtx_init((mutex), #mutex, \
+ MTX_NETWORK_LOCK, MTX_DEF)
+#define E1000_MUTEX_DESTROY(mutex) mtx_destroy(mutex)
+#define E1000_MUTEX_LOCK(mutex) mtx_lock(mutex)
+#define E1000_MUTEX_TRYLOCK(mutex) mtx_trylock(mutex)
+#define E1000_MUTEX_UNLOCK(mutex) mtx_unlock(mutex)
+
+typedef uint64_t u64;
+typedef uint32_t u32;
+typedef uint16_t u16;
+typedef uint8_t u8;
+typedef int64_t s64;
+typedef int32_t s32;
+typedef int16_t s16;
+typedef int8_t s8;
+#ifndef __rtems__
+typedef boolean_t bool;
+#endif
+
+#define __le16 u16
+#define __le32 u32
+#define __le64 u64
+
+#if __FreeBSD_version < 800000 /* Now in HEAD */
+#if defined(__i386__) || defined(__amd64__)
+#define mb() __asm volatile("mfence" ::: "memory")
+#define wmb() __asm volatile("sfence" ::: "memory")
+#define rmb() __asm volatile("lfence" ::: "memory")
+#else
+#define mb()
+#define rmb()
+#define wmb()
+#endif
+#endif /*__FreeBSD_version < 800000 */
+
+#if defined(__i386__) || defined(__amd64__)
+static __inline
+void prefetch(void *x)
+{
+ __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
+}
+#else
+#define prefetch(x)
+#endif
+
+struct e1000_osdep
+{
+ bus_space_tag_t mem_bus_space_tag;
+ bus_space_handle_t mem_bus_space_handle;
+ bus_space_tag_t io_bus_space_tag;
+ bus_space_handle_t io_bus_space_handle;
+ bus_space_tag_t flash_bus_space_tag;
+ bus_space_handle_t flash_bus_space_handle;
+ struct device *dev;
+};
+
+#define E1000_REGISTER(hw, reg) (((hw)->mac.type >= e1000_82543) \
+ ? reg : e1000_translate_register_82542(reg))
+
+#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS)
+
+/* Read from an absolute offset in the adapter's memory space */
+#define E1000_READ_OFFSET(hw, offset) \
+ bus_space_read_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, offset)
+
+/* Write to an absolute offset in the adapter's memory space */
+#define E1000_WRITE_OFFSET(hw, offset, value) \
+ bus_space_write_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, offset, value)
+
+/* Register READ/WRITE macros */
+
+#define E1000_READ_REG(hw, reg) \
+ bus_space_read_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg))
+
+#define E1000_WRITE_REG(hw, reg, value) \
+ bus_space_write_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg), value)
+
+#define E1000_READ_REG_ARRAY(hw, reg, index) \
+ bus_space_read_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg) + ((index)<< 2))
+
+#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \
+ bus_space_write_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg) + ((index)<< 2), value)
+
+#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
+#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
+
+#define E1000_READ_REG_ARRAY_BYTE(hw, reg, index) \
+ bus_space_read_1(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg) + index)
+
+#define E1000_WRITE_REG_ARRAY_BYTE(hw, reg, index, value) \
+ bus_space_write_1(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg) + index, value)
+
+#define E1000_WRITE_REG_ARRAY_WORD(hw, reg, index, value) \
+ bus_space_write_2(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \
+ E1000_REGISTER(hw, reg) + (index << 1), value)
+
+#define E1000_WRITE_REG_IO(hw, reg, value) do {\
+ bus_space_write_4(((struct e1000_osdep *)(hw)->back)->io_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->io_bus_space_handle, \
+ (hw)->io_base, reg); \
+ bus_space_write_4(((struct e1000_osdep *)(hw)->back)->io_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->io_bus_space_handle, \
+ (hw)->io_base + 4, value); } while (0)
+
+#define E1000_READ_FLASH_REG(hw, reg) \
+ bus_space_read_4(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg)
+
+#define E1000_READ_FLASH_REG16(hw, reg) \
+ bus_space_read_2(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg)
+
+#define E1000_WRITE_FLASH_REG(hw, reg, value) \
+ bus_space_write_4(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg, value)
+
+#define E1000_WRITE_FLASH_REG16(hw, reg, value) \
+ bus_space_write_2(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \
+ ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg, value)
+
+#endif /* _FREEBSD_OS_HH_ */
+
diff --git a/freebsd/dev/e1000/e1000_phy.c b/freebsd/dev/e1000/e1000_phy.c
new file mode 100644
index 00000000..2a409169
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_phy.c
@@ -0,0 +1,3574 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
+static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+ u16 *data, bool read);
+static u32 e1000_get_phy_addr_for_hv_page(u32 page);
+static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+ u16 *data, bool read);
+
+/* Cable length tables */
+static const u16 e1000_m88_cable_length_table[] =
+ { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
+#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_m88_cable_length_table) / \
+ sizeof(e1000_m88_cable_length_table[0]))
+
+static const u16 e1000_igp_2_cable_length_table[] =
+ { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
+ 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
+ 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
+ 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
+ 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
+ 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
+ 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
+ 104, 109, 114, 118, 121, 124};
+#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
+ (sizeof(e1000_igp_2_cable_length_table) / \
+ sizeof(e1000_igp_2_cable_length_table[0]))
+
+/**
+ * e1000_init_phy_ops_generic - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Setups up the function pointers to no-op functions
+ **/
+void e1000_init_phy_ops_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ DEBUGFUNC("e1000_init_phy_ops_generic");
+
+ /* Initialize function pointers */
+ phy->ops.init_params = e1000_null_ops_generic;
+ phy->ops.acquire = e1000_null_ops_generic;
+ phy->ops.check_polarity = e1000_null_ops_generic;
+ phy->ops.check_reset_block = e1000_null_ops_generic;
+ phy->ops.commit = e1000_null_ops_generic;
+ phy->ops.force_speed_duplex = e1000_null_ops_generic;
+ phy->ops.get_cfg_done = e1000_null_ops_generic;
+ phy->ops.get_cable_length = e1000_null_ops_generic;
+ phy->ops.get_info = e1000_null_ops_generic;
+ phy->ops.read_reg = e1000_null_read_reg;
+ phy->ops.read_reg_locked = e1000_null_read_reg;
+ phy->ops.release = e1000_null_phy_generic;
+ phy->ops.reset = e1000_null_ops_generic;
+ phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
+ phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
+ phy->ops.write_reg = e1000_null_write_reg;
+ phy->ops.write_reg_locked = e1000_null_write_reg;
+ phy->ops.power_up = e1000_null_phy_generic;
+ phy->ops.power_down = e1000_null_phy_generic;
+ phy->ops.cfg_on_link_up = e1000_null_ops_generic;
+}
+
+/**
+ * e1000_null_read_reg - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ DEBUGFUNC("e1000_null_read_reg");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_phy_generic - No-op function, return void
+ * @hw: pointer to the HW structure
+ **/
+void e1000_null_phy_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_null_phy_generic");
+ return;
+}
+
+/**
+ * e1000_null_lplu_state - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active)
+{
+ DEBUGFUNC("e1000_null_lplu_state");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_null_write_reg - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ DEBUGFUNC("e1000_null_write_reg");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_reset_block_generic - Check if PHY reset is blocked
+ * @hw: pointer to the HW structure
+ *
+ * Read the PHY management control register and check whether a PHY reset
+ * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
+ * return E1000_BLK_PHY_RESET (12).
+ **/
+s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
+{
+ u32 manc;
+
+ DEBUGFUNC("e1000_check_reset_block");
+
+ manc = E1000_READ_REG(hw, E1000_MANC);
+
+ return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+ E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_id - Retrieve the PHY ID and revision
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY registers and stores the PHY ID and possibly the PHY
+ * revision in the hardware structure.
+ **/
+s32 e1000_get_phy_id(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_id;
+ u16 retry_count = 0;
+
+ DEBUGFUNC("e1000_get_phy_id");
+
+ if (!(phy->ops.read_reg))
+ goto out;
+
+ while (retry_count < 2) {
+ ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
+ if (ret_val)
+ goto out;
+
+ phy->id = (u32)(phy_id << 16);
+ usec_delay(20);
+ ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
+ if (ret_val)
+ goto out;
+
+ phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
+ phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+
+ if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
+ goto out;
+
+ retry_count++;
+ }
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_reset_dsp_generic - Reset PHY DSP
+ * @hw: pointer to the HW structure
+ *
+ * Reset the digital signal processor.
+ **/
+s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_phy_reset_dsp_generic");
+
+ if (!(hw->phy.ops.write_reg))
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_mdic - Read MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the MDI control register in the PHY at offset and stores the
+ * information read to data.
+ **/
+s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, mdic = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_phy_reg_mdic");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ return -E1000_ERR_PARAM;
+ }
+
+ /*
+ * Set up Op-code, Phy Address, and register offset in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = ((offset << E1000_MDIC_REG_SHIFT) |
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
+
+ E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+ /* Workaround for Si errata */
+ if ((hw->phy.type == e1000_phy_82577) && (hw->revision_id <= 2))
+ msec_delay(10);
+
+ /*
+ * Poll the ready bit to see if the MDI read completed
+ * Increasing the time out as testing showed failures with
+ * the lower time out
+ */
+ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+ usec_delay(50);
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Read did not complete\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ *data = (u16) mdic;
+
+ /*
+ * Allow some time after each MDIC transaction to avoid
+ * reading duplicate data in the next MDIC transaction.
+ */
+ if (hw->mac.type == e1000_pch2lan)
+ usec_delay(100);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_mdic - Write MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write to register at offset
+ *
+ * Writes data to MDI control register in the PHY at offset.
+ **/
+s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, mdic = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_phy_reg_mdic");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ return -E1000_ERR_PARAM;
+ }
+
+ /*
+ * Set up Op-code, Phy Address, and register offset in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = (((u32)data) |
+ (offset << E1000_MDIC_REG_SHIFT) |
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
+
+ E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+ /* Workaround for Si errata */
+ if ((hw->phy.type == e1000_phy_82577) && (hw->revision_id <= 2))
+ msec_delay(10);
+
+ /*
+ * Poll the ready bit to see if the MDI read completed
+ * Increasing the time out as testing showed failures with
+ * the lower time out
+ */
+ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+ usec_delay(50);
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Write did not complete\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ /*
+ * Allow some time after each MDIC transaction to avoid
+ * reading duplicate data in the next MDIC transaction.
+ */
+ if (hw->mac.type == e1000_pch2lan)
+ usec_delay(100);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_i2c - Read PHY register using i2c
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset using the i2c interface and stores the
+ * retrieved information in data.
+ **/
+s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, i2ccmd = 0;
+
+ DEBUGFUNC("e1000_read_phy_reg_i2c");
+
+ /*
+ * Set up Op-code, Phy Address, and register address in the I2CCMD
+ * register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+ (E1000_I2CCMD_OPCODE_READ));
+
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+ /* Poll the ready bit to see if the I2C read completed */
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (i2ccmd & E1000_I2CCMD_READY)
+ break;
+ }
+ if (!(i2ccmd & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (i2ccmd & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Need to byte-swap the 16-bit value. */
+ *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg_i2c - Write PHY register using i2c
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset using the i2c interface.
+ **/
+s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, i2ccmd = 0;
+ u16 phy_data_swapped;
+
+ DEBUGFUNC("e1000_write_phy_reg_i2c");
+
+ /* Swap the data bytes for the I2C interface */
+ phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
+
+ /*
+ * Set up Op-code, Phy Address, and register address in the I2CCMD
+ * register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+ E1000_I2CCMD_OPCODE_WRITE |
+ phy_data_swapped);
+
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+ /* Poll the ready bit to see if the I2C read completed */
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (i2ccmd & E1000_I2CCMD_READY)
+ break;
+ }
+ if (!(i2ccmd & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (i2ccmd & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return -E1000_ERR_PHY;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_phy_reg_m88 - Read m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_phy_reg_m88");
+
+ if (!(hw->phy.ops.acquire))
+ goto out;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_m88 - Write m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_phy_reg_m88");
+
+ if (!(hw->phy.ops.acquire))
+ goto out;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * __e1000_read_phy_reg_igp - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and stores the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+static s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
+ bool locked)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("__e1000_read_phy_reg_igp");
+
+ if (!locked) {
+ if (!(hw->phy.ops.acquire))
+ goto out;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (u16)offset);
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+release:
+ if (!locked)
+ hw->phy.ops.release(hw);
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_igp - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore then reads the PHY register at offset and stores the
+ * retrieved information in data.
+ * Release the acquired semaphore before exiting.
+ **/
+s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_igp(hw, offset, data, FALSE);
+}
+
+/**
+ * e1000_read_phy_reg_igp_locked - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset and stores the retrieved information
+ * in data. Assumes semaphore already acquired.
+ **/
+s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_igp(hw, offset, data, TRUE);
+}
+
+/**
+ * e1000_write_phy_reg_igp - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
+ bool locked)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_phy_reg_igp");
+
+ if (!locked) {
+ if (!(hw->phy.ops.acquire))
+ goto out;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (u16)offset);
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+release:
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_igp - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_igp(hw, offset, data, FALSE);
+}
+
+/**
+ * e1000_write_phy_reg_igp_locked - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset.
+ * Assumes semaphore already acquired.
+ **/
+s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_igp(hw, offset, data, TRUE);
+}
+
+/**
+ * __e1000_read_kmrn_reg - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary. Then reads the PHY register at offset
+ * using the kumeran interface. The information retrieved is stored in data.
+ * Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
+ bool locked)
+{
+ u32 kmrnctrlsta;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("__e1000_read_kmrn_reg");
+
+ if (!locked) {
+ if (!(hw->phy.ops.acquire))
+ goto out;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+ usec_delay(2);
+
+ kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
+ *data = (u16)kmrnctrlsta;
+
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_read_kmrn_reg_generic - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore then reads the PHY register at offset using the
+ * kumeran interface. The information retrieved is stored in data.
+ * Release the acquired semaphore before exiting.
+ **/
+s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_kmrn_reg(hw, offset, data, FALSE);
+}
+
+/**
+ * e1000_read_kmrn_reg_locked - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset using the kumeran interface. The
+ * information retrieved is stored in data.
+ * Assumes semaphore already acquired.
+ **/
+s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_kmrn_reg(hw, offset, data, TRUE);
+}
+
+/**
+ * __e1000_write_kmrn_reg - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary. Then write the data to PHY register
+ * at the offset using the kumeran interface. Release any acquired semaphores
+ * before exiting.
+ **/
+static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
+ bool locked)
+{
+ u32 kmrnctrlsta;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_kmrn_reg_generic");
+
+ if (!locked) {
+ if (!(hw->phy.ops.acquire))
+ goto out;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | data;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+ usec_delay(2);
+
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_write_kmrn_reg_generic - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore then writes the data to the PHY register at the offset
+ * using the kumeran interface. Release the acquired semaphore before exiting.
+ **/
+s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_kmrn_reg(hw, offset, data, FALSE);
+}
+
+/**
+ * e1000_write_kmrn_reg_locked - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Write the data to PHY register at the offset using the kumeran interface.
+ * Assumes semaphore already acquired.
+ **/
+s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_kmrn_reg(hw, offset, data, TRUE);
+}
+
+/**
+ * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up Carrier-sense on Transmit and downshift values.
+ **/
+s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_setup_82577");
+
+ if (hw->phy.reset_disable) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ if (hw->phy.type == e1000_phy_82580) {
+ ret_val = hw->phy.ops.reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error resetting the PHY.\n");
+ goto out;
+ }
+ }
+
+ /* Enable CRS on TX. This must be set for half-duplex operation. */
+ ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
+
+ /* Enable downshift */
+ phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
+
+ ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
+ * and downshift values are set also.
+ **/
+s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_setup_m88");
+
+ if (phy->reset_disable) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /* Enable CRS on Tx. This must be set for half-duplex operation. */
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ /* For BM PHY this bit is downshift enable */
+ if (phy->type == e1000_phy_bm)
+ phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+ /*
+ * Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (phy->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /*
+ * Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if (phy->disable_polarity_correction == 1)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+ /* Enable downshift on BM (disabled by default) */
+ if (phy->type == e1000_phy_bm)
+ phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
+
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ if ((phy->type == e1000_phy_m88) &&
+ (phy->revision < E1000_REVISION_4) &&
+ (phy->id != BME1000_E_PHY_ID_R2)) {
+ /*
+ * Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+ if ((phy->revision == E1000_REVISION_2) &&
+ (phy->id == M88E1111_I_PHY_ID)) {
+ /* 82573L PHY - set the downshift counter to 5x. */
+ phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
+ phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+ } else {
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ }
+ ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ goto out;
+ }
+
+ if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
+ /* Set PHY page 0, register 29 to 0x0003 */
+ ret_val = phy->ops.write_reg(hw, 29, 0x0003);
+ if (ret_val)
+ goto out;
+
+ /* Set PHY page 0, register 30 to 0x0000 */
+ ret_val = phy->ops.write_reg(hw, 30, 0x0000);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Commit the changes. */
+ ret_val = phy->ops.commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error committing the PHY changes\n");
+ goto out;
+ }
+
+ if (phy->type == e1000_phy_82578) {
+ ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ goto out;
+
+ /* 82578 PHY - set the downshift count to 1x. */
+ phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
+ phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
+ ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
+ * igp PHY's.
+ **/
+s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_copper_link_setup_igp");
+
+ if (phy->reset_disable) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = hw->phy.ops.reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error resetting the PHY.\n");
+ goto out;
+ }
+
+ /*
+ * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
+ * timeout issues when LFS is enabled.
+ */
+ msec_delay(100);
+
+ /*
+ * The NVM settings will configure LPLU in D3 for
+ * non-IGP1 PHYs.
+ */
+ if (phy->type == e1000_phy_igp) {
+ /* disable lplu d3 during driver init */
+ ret_val = hw->phy.ops.set_d3_lplu_state(hw, FALSE);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D3\n");
+ goto out;
+ }
+ }
+
+ /* disable lplu d0 during driver init */
+ if (hw->phy.ops.set_d0_lplu_state) {
+ ret_val = hw->phy.ops.set_d0_lplu_state(hw, FALSE);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D0\n");
+ goto out;
+ }
+ }
+ /* Configure mdi-mdix settings */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+ switch (phy->mdix) {
+ case 1:
+ data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 2:
+ data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 0:
+ default:
+ data |= IGP01E1000_PSCR_AUTO_MDIX;
+ break;
+ }
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
+ if (ret_val)
+ goto out;
+
+ /* set auto-master slave resolution settings */
+ if (hw->mac.autoneg) {
+ /*
+ * when autonegotiation advertisement is only 1000Mbps then we
+ * should disable SmartSpeed and enable Auto MasterSlave
+ * resolution as hardware default.
+ */
+ if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
+ /* Disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* Set auto Master/Slave resolution process */
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~CR_1000T_MS_ENABLE;
+ ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ /* load defaults for future use */
+ phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
+ ((data & CR_1000T_MS_VALUE) ?
+ e1000_ms_force_master :
+ e1000_ms_force_slave) :
+ e1000_ms_auto;
+
+ switch (phy->ms_type) {
+ case e1000_ms_force_master:
+ data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_force_slave:
+ data |= CR_1000T_MS_ENABLE;
+ data &= ~(CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_auto:
+ data &= ~CR_1000T_MS_ENABLE;
+ default:
+ break;
+ }
+ ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Performs initial bounds checking on autoneg advertisement parameter, then
+ * configure to advertise the full capability. Setup the PHY to autoneg
+ * and restart the negotiation process between the link partner. If
+ * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
+ **/
+s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_ctrl;
+
+ DEBUGFUNC("e1000_copper_link_autoneg");
+
+ /*
+ * Perform some bounds checking on the autoneg advertisement
+ * parameter.
+ */
+ phy->autoneg_advertised &= phy->autoneg_mask;
+
+ /*
+ * If autoneg_advertised is zero, we assume it was not defaulted
+ * by the calling code so we set to advertise full capability.
+ */
+ if (phy->autoneg_advertised == 0)
+ phy->autoneg_advertised = phy->autoneg_mask;
+
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+ ret_val = e1000_phy_setup_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
+ goto out;
+ }
+ DEBUGOUT("Restarting Auto-Neg\n");
+
+ /*
+ * Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Does the user want to wait for Auto-Neg to complete here, or
+ * check at a later time (for example, callback routine).
+ */
+ if (phy->autoneg_wait_to_complete) {
+ ret_val = hw->mac.ops.wait_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while waiting for "
+ "autoneg to complete\n");
+ goto out;
+ }
+ }
+
+ hw->mac.get_link_status = TRUE;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
+ * @hw: pointer to the HW structure
+ *
+ * Reads the MII auto-neg advertisement register and/or the 1000T control
+ * register and if the PHY is already setup for auto-negotiation, then
+ * return successful. Otherwise, setup advertisement and flow control to
+ * the appropriate values for the wanted auto-negotiation.
+ **/
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 mii_autoneg_adv_reg;
+ u16 mii_1000t_ctrl_reg = 0;
+
+ DEBUGFUNC("e1000_phy_setup_autoneg");
+
+ phy->autoneg_advertised &= phy->autoneg_mask;
+
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+ if (ret_val)
+ goto out;
+
+ if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
+ &mii_1000t_ctrl_reg);
+ if (ret_val)
+ goto out;
+ }
+
+ /*
+ * Need to parse both autoneg_advertised and fc and set up
+ * the appropriate PHY registers. First we will parse for
+ * autoneg_advertised software override. Since we can advertise
+ * a plethora of combinations, we need to check each bit
+ * individually.
+ */
+
+ /*
+ * First we clear all the 10/100 mb speed bits in the Auto-Neg
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
+ * the 1000Base-T Control Register (Address 9).
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
+ NWAY_AR_100TX_HD_CAPS |
+ NWAY_AR_10T_FD_CAPS |
+ NWAY_AR_10T_HD_CAPS);
+ mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
+
+ DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
+
+ /* Do we want to advertise 10 Mb Half Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
+ DEBUGOUT("Advertise 10mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+ }
+
+ /* Do we want to advertise 10 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
+ DEBUGOUT("Advertise 10mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Half Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
+ DEBUGOUT("Advertise 100mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
+ DEBUGOUT("Advertise 100mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+ }
+
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+ if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
+ DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
+
+ /* Do we want to advertise 1000 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
+ DEBUGOUT("Advertise 1000mb Full duplex\n");
+ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+ }
+
+ /*
+ * Check for a software override of the flow control settings, and
+ * setup the PHY advertisement registers accordingly. If
+ * auto-negotiation is enabled, then software will have to set the
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
+ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
+ * negotiation.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * but we do not support receiving pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) are enabled.
+ * other: No software override. The flow control configuration
+ * in the EEPROM is used.
+ */
+ switch (hw->fc.current_mode) {
+ case e1000_fc_none:
+ /*
+ * Flow control (Rx & Tx) is completely disabled by a
+ * software over-ride.
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_rx_pause:
+ /*
+ * Rx Flow control is enabled, and Tx Flow control is
+ * disabled, by a software over-ride.
+ *
+ * Since there really isn't a way to advertise that we are
+ * capable of Rx Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric Rx PAUSE. Later
+ * (in e1000_config_fc_after_link_up) we will disable the
+ * hw's ability to send PAUSE frames.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_tx_pause:
+ /*
+ * Tx Flow control is enabled, and Rx Flow control is
+ * disabled, by a software over-ride.
+ */
+ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+ break;
+ case e1000_fc_full:
+ /*
+ * Flow control (both Rx and Tx) is enabled by a software
+ * over-ride.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+ if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+ ret_val = phy->ops.write_reg(hw,
+ PHY_1000T_CTRL,
+ mii_1000t_ctrl_reg);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_setup_copper_link_generic - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex. Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called. If link is
+ * not established, we return -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_setup_copper_link_generic");
+
+ if (hw->mac.autoneg) {
+ /*
+ * Setup autoneg and flow control advertisement and perform
+ * autonegotiation.
+ */
+ ret_val = e1000_copper_link_autoneg(hw);
+ if (ret_val)
+ goto out;
+ } else {
+ /*
+ * PHY will be set to 10H, 10F, 100H or 100F
+ * depending on user settings.
+ */
+ DEBUGOUT("Forcing Speed and Duplex\n");
+ ret_val = hw->phy.ops.force_speed_duplex(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ goto out;
+ }
+ }
+
+ /*
+ * Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ ret_val = e1000_phy_has_link_generic(hw,
+ COPPER_LINK_UP_LIMIT,
+ 10,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (link) {
+ DEBUGOUT("Valid link established!!!\n");
+ e1000_config_collision_dist_generic(hw);
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ } else {
+ DEBUGOUT("Unable to establish link!!!\n");
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex. Clears the
+ * auto-crossover to force MDI manually. Waits for link and returns
+ * successful if link up is successful, else -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
+
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Clear Auto-Crossover to force MDI manually. IGP requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("IGP PSCR: %X\n", phy_data);
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (!link)
+ DEBUGOUT("Link taking longer than expected.\n");
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex. Clears the
+ * auto-crossover to force MDI manually. Resets the PHY to commit the
+ * changes. If time expires while waiting for link up, we reset the DSP.
+ * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
+ * successful completion, else return corresponding error code.
+ **/
+s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
+
+ /*
+ * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
+
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /* Reset the phy to commit changes. */
+ ret_val = hw->phy.ops.commit(hw);
+ if (ret_val)
+ goto out;
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ if (hw->phy.type != e1000_phy_m88) {
+ DEBUGOUT("Link taking longer than expected.\n");
+ } else {
+ /*
+ * We didn't get link.
+ * Reset the DSP and cross our fingers.
+ */
+ ret_val = phy->ops.write_reg(hw,
+ M88E1000_PHY_PAGE_SELECT,
+ 0x001d);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_phy_reset_dsp_generic(hw);
+ if (ret_val)
+ goto out;
+ }
+ }
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ goto out;
+ }
+
+ if (hw->phy.type != e1000_phy_m88)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Resetting the phy means we need to re-force TX_CLK in the
+ * Extended PHY Specific Control Register to 25MHz clock from
+ * the reset value of 2.5MHz.
+ */
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * In addition, we must re-enable CRS on Tx for both half and full
+ * duplex.
+ */
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
+ * @hw: pointer to the HW structure
+ *
+ * Forces the speed and duplex settings of the PHY.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
+
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &data);
+
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
+ if (ret_val)
+ goto out;
+
+ /* Disable MDI-X support for 10/100 */
+ ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IFE_PMC_AUTO_MDIX;
+ data &= ~IFE_PMC_FORCE_MDIX;
+
+ ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("IFE PMC: %X\n", data);
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (!link)
+ DEBUGOUT("Link taking longer than expected.\n");
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
+ * @hw: pointer to the HW structure
+ * @phy_ctrl: pointer to current value of PHY_CONTROL
+ *
+ * Forces speed and duplex on the PHY by doing the following: disable flow
+ * control, force speed/duplex on the MAC, disable auto speed detection,
+ * disable auto-negotiation, configure duplex, configure speed, configure
+ * the collision distance, write configuration to CTRL register. The
+ * caller must write to the PHY_CONTROL register for these settings to
+ * take affect.
+ **/
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
+
+ /* Turn off flow control when forcing speed/duplex */
+ hw->fc.current_mode = e1000_fc_none;
+
+ /* Force speed/duplex on the mac */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~E1000_CTRL_SPD_SEL;
+
+ /* Disable Auto Speed Detection */
+ ctrl &= ~E1000_CTRL_ASDE;
+
+ /* Disable autoneg on the phy */
+ *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
+
+ /* Forcing Full or Half Duplex? */
+ if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
+ ctrl &= ~E1000_CTRL_FD;
+ *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ } else {
+ ctrl |= E1000_CTRL_FD;
+ *phy_ctrl |= MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ }
+
+ /* Forcing 10mb or 100mb? */
+ if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
+ ctrl |= E1000_CTRL_SPD_100;
+ *phy_ctrl |= MII_CR_SPEED_100;
+ *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+ DEBUGOUT("Forcing 100mb\n");
+ } else {
+ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+ *phy_ctrl |= MII_CR_SPEED_10;
+ *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+ DEBUGOUT("Forcing 10mb\n");
+ }
+
+ e1000_config_collision_dist_generic(hw);
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+}
+
+/**
+ * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ **/
+s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_generic");
+
+ if (!(hw->phy.ops.read_reg))
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ goto out;
+
+ if (!active) {
+ data &= ~IGP02E1000_PM_D3_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = phy->ops.read_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= IGP02E1000_PM_D3_LPLU;
+ ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_downshift_generic - Checks whether a downshift in speed occurred
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * A downshift is detected by querying the PHY link health.
+ **/
+s32 e1000_check_downshift_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, offset, mask;
+
+ DEBUGFUNC("e1000_check_downshift_generic");
+
+ switch (phy->type) {
+ case e1000_phy_m88:
+ case e1000_phy_gg82563:
+ case e1000_phy_bm:
+ case e1000_phy_82578:
+ offset = M88E1000_PHY_SPEC_STATUS;
+ mask = M88E1000_PSSR_DOWNSHIFT;
+ break;
+ case e1000_phy_igp:
+ case e1000_phy_igp_2:
+ case e1000_phy_igp_3:
+ offset = IGP01E1000_PHY_LINK_HEALTH;
+ mask = IGP01E1000_PLHR_SS_DOWNGRADE;
+ break;
+ default:
+ /* speed downshift not supported */
+ phy->speed_downgraded = FALSE;
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = phy->ops.read_reg(hw, offset, &phy_data);
+
+ if (!ret_val)
+ phy->speed_downgraded = (phy_data & mask) ? TRUE : FALSE;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_m88 - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_check_polarity_m88");
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_igp - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY port status register, and the
+ * current speed (since there is no polarity at 100Mbps).
+ **/
+s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data, offset, mask;
+
+ DEBUGFUNC("e1000_check_polarity_igp");
+
+ /*
+ * Polarity is determined based on the speed of
+ * our connection.
+ */
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ offset = IGP01E1000_PHY_PCS_INIT_REG;
+ mask = IGP01E1000_PHY_POLARITY_MASK;
+ } else {
+ /*
+ * This really only applies to 10Mbps since
+ * there is no polarity for 100Mbps (always 0).
+ */
+ offset = IGP01E1000_PHY_PORT_STATUS;
+ mask = IGP01E1000_PSSR_POLARITY_REVERSED;
+ }
+
+ ret_val = phy->ops.read_reg(hw, offset, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = (data & mask)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_ife - Check cable polarity for IFE PHY
+ * @hw: pointer to the HW structure
+ *
+ * Polarity is determined on the polarity reversal feature being enabled.
+ **/
+s32 e1000_check_polarity_ife(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, offset, mask;
+
+ DEBUGFUNC("e1000_check_polarity_ife");
+
+ /*
+ * Polarity is determined based on the reversal feature being enabled.
+ */
+ if (phy->polarity_correction) {
+ offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
+ mask = IFE_PESC_POLARITY_REVERSED;
+ } else {
+ offset = IFE_PHY_SPECIAL_CONTROL;
+ mask = IFE_PSC_FORCE_POLARITY;
+ }
+
+ ret_val = phy->ops.read_reg(hw, offset, &phy_data);
+
+ if (!ret_val)
+ phy->cable_polarity = (phy_data & mask)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+
+ return ret_val;
+}
+
+/**
+ * e1000_wait_autoneg_generic - Wait for auto-neg completion
+ * @hw: pointer to the HW structure
+ *
+ * Waits for auto-negotiation to complete or for the auto-negotiation time
+ * limit to expire, which ever happens first.
+ **/
+s32 e1000_wait_autoneg_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, phy_status;
+
+ DEBUGFUNC("e1000_wait_autoneg_generic");
+
+ if (!(hw->phy.ops.read_reg))
+ return E1000_SUCCESS;
+
+ /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
+ for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ if (phy_status & MII_SR_AUTONEG_COMPLETE)
+ break;
+ msec_delay(100);
+ }
+
+ /*
+ * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
+ * has completed.
+ */
+ return ret_val;
+}
+
+/**
+ * e1000_phy_has_link_generic - Polls PHY for link
+ * @hw: pointer to the HW structure
+ * @iterations: number of times to poll for link
+ * @usec_interval: delay between polling attempts
+ * @success: pointer to whether polling was successful or not
+ *
+ * Polls the PHY status register for link, 'iterations' number of times.
+ **/
+s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ u32 usec_interval, bool *success)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, phy_status;
+
+ DEBUGFUNC("e1000_phy_has_link_generic");
+
+ if (!(hw->phy.ops.read_reg))
+ return E1000_SUCCESS;
+
+ for (i = 0; i < iterations; i++) {
+ /*
+ * Some PHYs require the PHY_STATUS register to be read
+ * twice due to the link bit being sticky. No harm doing
+ * it across the board.
+ */
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ /*
+ * If the first read fails, another entity may have
+ * ownership of the resources, wait and try again to
+ * see if they have relinquished the resources yet.
+ */
+ usec_delay(usec_interval);
+ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ if (phy_status & MII_SR_LINK_STATUS)
+ break;
+ if (usec_interval >= 1000)
+ msec_delay_irq(usec_interval/1000);
+ else
+ usec_delay(usec_interval);
+ }
+
+ *success = (i < iterations) ? TRUE : FALSE;
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY specific status register to retrieve the cable length
+ * information. The cable length is determined by averaging the minimum and
+ * maximum values to get the "average" cable length. The m88 PHY has four
+ * possible cable length values, which are:
+ * Register Value Cable Length
+ * 0 < 50 meters
+ * 1 50 - 80 meters
+ * 2 80 - 110 meters
+ * 3 110 - 140 meters
+ * 4 > 140 meters
+ **/
+s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, index;
+
+ DEBUGFUNC("e1000_get_cable_length_m88");
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+ if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ phy->min_cable_length = e1000_m88_cable_length_table[index];
+ phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
+ * @hw: pointer to the HW structure
+ *
+ * The automatic gain control (agc) normalizes the amplitude of the
+ * received signal, adjusting for the attenuation produced by the
+ * cable. By reading the AGC registers, which represent the
+ * combination of coarse and fine gain value, the value can be put
+ * into a lookup table to obtain the approximate cable length
+ * for each channel.
+ **/
+s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data, i, agc_value = 0;
+ u16 cur_agc_index, max_agc_index = 0;
+ u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
+ u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
+ {IGP02E1000_PHY_AGC_A,
+ IGP02E1000_PHY_AGC_B,
+ IGP02E1000_PHY_AGC_C,
+ IGP02E1000_PHY_AGC_D};
+
+ DEBUGFUNC("e1000_get_cable_length_igp_2");
+
+ /* Read the AGC registers for all channels */
+ for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Getting bits 15:9, which represent the combination of
+ * coarse and fine gain values. The result is a number
+ * that can be put into the lookup table to obtain the
+ * approximate cable length.
+ */
+ cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+ IGP02E1000_AGC_LENGTH_MASK;
+
+ /* Array index bound check. */
+ if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
+ (cur_agc_index == 0)) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ /* Remove min & max AGC values from calculation. */
+ if (e1000_igp_2_cable_length_table[min_agc_index] >
+ e1000_igp_2_cable_length_table[cur_agc_index])
+ min_agc_index = cur_agc_index;
+ if (e1000_igp_2_cable_length_table[max_agc_index] <
+ e1000_igp_2_cable_length_table[cur_agc_index])
+ max_agc_index = cur_agc_index;
+
+ agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
+ }
+
+ agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+ e1000_igp_2_cable_length_table[max_agc_index]);
+ agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+
+ /* Calculate cable length with the error range of +/- 10 meters. */
+ phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+ (agc_value - IGP02E1000_AGC_RANGE) : 0;
+ phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_m88 - Retrieve PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Valid for only copper links. Read the PHY status register (sticky read)
+ * to verify that link is up. Read the PHY special control register to
+ * determine the polarity and 10base-T extended distance. Read the PHY
+ * special status register to determine MDI/MDIx and current speed. If
+ * speed is 1000, then determine cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_m88");
+
+ if (phy->media_type != e1000_media_type_copper) {
+ DEBUGOUT("Phy info is only valid for copper media\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
+ ? TRUE : FALSE;
+
+ ret_val = e1000_check_polarity_m88(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? TRUE : FALSE;
+
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+ ret_val = hw->phy.ops.get_cable_length(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+ } else {
+ /* Set values to "undefined" */
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_igp - Retrieve igp PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Read PHY status to determine if link is up. If link is up, then
+ * set/determine 10base-T extended distance and polarity correction. Read
+ * PHY port status to determine MDI/MDIx and speed. Based on the speed,
+ * determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_igp");
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ phy->polarity_correction = TRUE;
+
+ ret_val = e1000_check_polarity_igp(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? TRUE : FALSE;
+
+ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ ret_val = phy->ops.get_cable_length(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+ } else {
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_ife - Retrieves various IFE PHY states
+ * @hw: pointer to the HW structure
+ *
+ * Populates "phy" structure with various feature states.
+ **/
+s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_ife");
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
+ if (ret_val)
+ goto out;
+ phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
+ ? FALSE : TRUE;
+
+ if (phy->polarity_correction) {
+ ret_val = e1000_check_polarity_ife(hw);
+ if (ret_val)
+ goto out;
+ } else {
+ /* Polarity is forced */
+ phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+ }
+
+ ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+ if (ret_val)
+ goto out;
+
+ phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? TRUE : FALSE;
+
+ /* The following parameters are undefined for 10/100 operation. */
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_sw_reset_generic - PHY software reset
+ * @hw: pointer to the HW structure
+ *
+ * Does a software reset of the PHY by reading the PHY control register and
+ * setting/write the control register reset bit to the PHY.
+ **/
+s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_ctrl;
+
+ DEBUGFUNC("e1000_phy_sw_reset_generic");
+
+ if (!(hw->phy.ops.read_reg))
+ goto out;
+
+ ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ phy_ctrl |= MII_CR_RESET;
+ ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ usec_delay(1);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_phy_hw_reset_generic - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Verify the reset block is not blocking us from resetting. Acquire
+ * semaphore (if necessary) and read/set/write the device control reset
+ * bit in the PHY. Wait the appropriate delay time for the device to
+ * reset and release the semaphore (if necessary).
+ **/
+s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_phy_hw_reset_generic");
+
+ ret_val = phy->ops.check_reset_block(hw);
+ if (ret_val) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = phy->ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(phy->reset_delay_us);
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(150);
+
+ phy->ops.release(hw);
+
+ ret_val = phy->ops.get_cfg_done(hw);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cfg_done_generic - Generic configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Generic function to wait 10 milli-seconds for configuration to complete
+ * and return success.
+ **/
+s32 e1000_get_cfg_done_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_get_cfg_done_generic");
+
+ msec_delay_irq(10);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
+ **/
+s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
+{
+ DEBUGOUT("Running IGP 3 PHY init script\n");
+
+ /* PHY init IGP 3 */
+ /* Enable rise/fall, 10-mode work in class-A */
+ hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
+ /* Remove all caps from Replica path filter */
+ hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
+ /* Bias trimming for ADC, AFE and Driver (Default) */
+ hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
+ /* Increase Hybrid poly bias */
+ hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
+ /* Add 4% to Tx amplitude in Gig mode */
+ hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
+ /* Disable trimming (TTT) */
+ hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
+ /* Poly DC correction to 94.6% + 2% for all channels */
+ hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
+ /* ABS DC correction to 95.9% */
+ hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
+ /* BG temp curve trim */
+ hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
+ /* Increasing ADC OPAMP stage 1 currents to max */
+ hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
+ /* Force 1000 ( required for enabling PHY regs configuration) */
+ hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
+ /* Set upd_freq to 6 */
+ hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
+ /* Disable NPDFE */
+ hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
+ /* Disable adaptive fixed FFE (Default) */
+ hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
+ /* Enable FFE hysteresis */
+ hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
+ /* Fixed FFE for short cable lengths */
+ hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
+ /* Fixed FFE for medium cable lengths */
+ hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
+ /* Fixed FFE for long cable lengths */
+ hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
+ /* Enable Adaptive Clip Threshold */
+ hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
+ /* AHT reset limit to 1 */
+ hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
+ /* Set AHT master delay to 127 msec */
+ hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
+ /* Set scan bits for AHT */
+ hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
+ /* Set AHT Preset bits */
+ hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
+ /* Change integ_factor of channel A to 3 */
+ hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
+ /* Change prop_factor of channels BCD to 8 */
+ hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
+ /* Change cg_icount + enable integbp for channels BCD */
+ hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
+ /*
+ * Change cg_icount + enable integbp + change prop_factor_master
+ * to 8 for channel A
+ */
+ hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
+ /* Disable AHT in Slave mode on channel A */
+ hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
+ /*
+ * Enable LPLU and disable AN to 1000 in non-D0a states,
+ * Enable SPD+B2B
+ */
+ hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
+ /* Enable restart AN on an1000_dis change */
+ hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
+ /* Enable wh_fifo read clock in 10/100 modes */
+ hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
+ /* Restart AN, Speed selection is 1000 */
+ hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_phy_type_from_id - Get PHY type from id
+ * @phy_id: phy_id read from the phy
+ *
+ * Returns the phy type from the id.
+ **/
+enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
+{
+ enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+ switch (phy_id) {
+ case M88E1000_I_PHY_ID:
+ case M88E1000_E_PHY_ID:
+ case M88E1111_I_PHY_ID:
+ case M88E1011_I_PHY_ID:
+ phy_type = e1000_phy_m88;
+ break;
+ case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
+ phy_type = e1000_phy_igp_2;
+ break;
+ case GG82563_E_PHY_ID:
+ phy_type = e1000_phy_gg82563;
+ break;
+ case IGP03E1000_E_PHY_ID:
+ phy_type = e1000_phy_igp_3;
+ break;
+ case IFE_E_PHY_ID:
+ case IFE_PLUS_E_PHY_ID:
+ case IFE_C_E_PHY_ID:
+ phy_type = e1000_phy_ife;
+ break;
+ case BME1000_E_PHY_ID:
+ case BME1000_E_PHY_ID_R2:
+ phy_type = e1000_phy_bm;
+ break;
+ case I82578_E_PHY_ID:
+ phy_type = e1000_phy_82578;
+ break;
+ case I82577_E_PHY_ID:
+ phy_type = e1000_phy_82577;
+ break;
+ case I82579_E_PHY_ID:
+ phy_type = e1000_phy_82579;
+ break;
+ case I82580_I_PHY_ID:
+ phy_type = e1000_phy_82580;
+ break;
+ default:
+ phy_type = e1000_phy_unknown;
+ break;
+ }
+ return phy_type;
+}
+
+/**
+ * e1000_determine_phy_address - Determines PHY address.
+ * @hw: pointer to the HW structure
+ *
+ * This uses a trial and error method to loop through possible PHY
+ * addresses. It tests each by reading the PHY ID registers and
+ * checking for a match.
+ **/
+s32 e1000_determine_phy_address(struct e1000_hw *hw)
+{
+ s32 ret_val = -E1000_ERR_PHY_TYPE;
+ u32 phy_addr = 0;
+ u32 i;
+ enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+ hw->phy.id = phy_type;
+
+ for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
+ hw->phy.addr = phy_addr;
+ i = 0;
+
+ do {
+ e1000_get_phy_id(hw);
+ phy_type = e1000_get_phy_type_from_id(hw->phy.id);
+
+ /*
+ * If phy_type is valid, break - we found our
+ * PHY address
+ */
+ if (phy_type != e1000_phy_unknown) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+ msec_delay(1);
+ i++;
+ } while (i < 10);
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
+ * @page: page to access
+ *
+ * Returns the phy address for the page requested.
+ **/
+static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
+{
+ u32 phy_addr = 2;
+
+ if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
+ phy_addr = 1;
+
+ return phy_addr;
+}
+
+/**
+ * e1000_write_phy_reg_bm - Write BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+ u32 page_select = 0;
+ u32 page = offset >> IGP_PAGE_SHIFT;
+ u32 page_shift = 0;
+
+ DEBUGFUNC("e1000_write_phy_reg_bm");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+ FALSE);
+ goto out;
+ }
+
+ hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ /*
+ * Page select is register 31 for phy address 1 and 22 for
+ * phy address 2 and 3. Page select is shifted only for
+ * phy address 1.
+ */
+ if (hw->phy.addr == 1) {
+ page_shift = IGP_PAGE_SHIFT;
+ page_select = IGP01E1000_PHY_PAGE_SELECT;
+ } else {
+ page_shift = 0;
+ page_select = BM_PHY_PAGE_SELECT;
+ }
+
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw, page_select,
+ (page << page_shift));
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+out:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_bm - Read BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+ u32 page_select = 0;
+ u32 page = offset >> IGP_PAGE_SHIFT;
+ u32 page_shift = 0;
+
+ DEBUGFUNC("e1000_read_phy_reg_bm");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+ TRUE);
+ goto out;
+ }
+
+ hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ /*
+ * Page select is register 31 for phy address 1 and 22 for
+ * phy address 2 and 3. Page select is shifted only for
+ * phy address 1.
+ */
+ if (hw->phy.addr == 1) {
+ page_shift = IGP_PAGE_SHIFT;
+ page_select = IGP01E1000_PHY_PAGE_SELECT;
+ } else {
+ page_shift = 0;
+ page_select = BM_PHY_PAGE_SELECT;
+ }
+
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw, page_select,
+ (page << page_shift));
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+out:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_bm2 - Read BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+ u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+ DEBUGFUNC("e1000_write_phy_reg_bm2");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+ TRUE);
+ goto out;
+ }
+
+ hw->phy.addr = 1;
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+ page);
+
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+out:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_bm2 - Write BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+ u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+ DEBUGFUNC("e1000_write_phy_reg_bm2");
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+ FALSE);
+ goto out;
+ }
+
+ hw->phy.addr = 1;
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+ page);
+
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+out:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read or written
+ * @data: pointer to the data to read or write
+ * @read: determines if operation is read or write
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting. Note that procedure to read the wakeup
+ * registers are different. It works as such:
+ * 1) Set page 769, register 17, bit 2 = 1
+ * 2) Set page to 800 for host (801 if we were manageability)
+ * 3) Write the address using the address opcode (0x11)
+ * 4) Read or write the data using the data opcode (0x12)
+ * 5) Restore 769_17.2 to its original value
+ *
+ * Assumes semaphore already acquired.
+ **/
+static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+ u16 *data, bool read)
+{
+ s32 ret_val;
+ u16 reg = BM_PHY_REG_NUM(offset);
+ u16 phy_reg = 0;
+
+ DEBUGFUNC("e1000_access_phy_wakeup_reg_bm");
+
+ /* Gig must be disabled for MDIO accesses to page 800 */
+ if ((hw->mac.type == e1000_pchlan) &&
+ (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
+ DEBUGOUT("Attempting to access page 800 while gig enabled.\n");
+
+ /* All operations in this function are phy address 1 */
+ hw->phy.addr = 1;
+
+ /* Set page 769 */
+ e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+ (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+
+ ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
+ if (ret_val) {
+ DEBUGOUT("Could not read PHY page 769\n");
+ goto out;
+ }
+
+ /* First clear bit 4 to avoid a power state change */
+ phy_reg &= ~(BM_WUC_HOST_WU_BIT);
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+ if (ret_val) {
+ DEBUGOUT("Could not clear PHY page 769 bit 4\n");
+ goto out;
+ }
+
+ /* Write bit 2 = 1, and clear bit 4 to 769_17 */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
+ phy_reg | BM_WUC_ENABLE_BIT);
+ if (ret_val) {
+ DEBUGOUT("Could not write PHY page 769 bit 2\n");
+ goto out;
+ }
+
+ /* Select page 800 */
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (BM_WUC_PAGE << IGP_PAGE_SHIFT));
+
+ /* Write the page 800 offset value using opcode 0x11 */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
+ if (ret_val) {
+ DEBUGOUT("Could not write address opcode to page 800\n");
+ goto out;
+ }
+
+ if (read) {
+ /* Read the page 800 value using opcode 0x12 */
+ ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+ data);
+ } else {
+ /* Write the page 800 value using opcode 0x12 */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+ *data);
+ }
+
+ if (ret_val) {
+ DEBUGOUT("Could not access data value from page 800\n");
+ goto out;
+ }
+
+ /*
+ * Restore 769_17.2 to its original value
+ * Set page 769
+ */
+ e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+ (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+
+ /* Clear 769_17.2 */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+ if (ret_val) {
+ DEBUGOUT("Could not clear PHY page 769 bit 2\n");
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_up_phy_copper(struct e1000_hw *hw)
+{
+ u16 mii_reg = 0;
+
+ /* The PHY will retain its settings across a power down/up cycle */
+ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
+ mii_reg &= ~MII_CR_POWER_DOWN;
+ hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
+}
+
+/**
+ * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_down_phy_copper(struct e1000_hw *hw)
+{
+ u16 mii_reg = 0;
+
+ /* The PHY will retain its settings across a power down/up cycle */
+ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
+ mii_reg |= MII_CR_POWER_DOWN;
+ hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
+ msec_delay(1);
+}
+
+/**
+ * __e1000_read_phy_reg_hv - Read HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and stores the retrieved information in data. Release any acquired
+ * semaphore before exiting.
+ **/
+static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
+ bool locked)
+{
+ s32 ret_val;
+ u16 page = BM_PHY_REG_PAGE(offset);
+ u16 reg = BM_PHY_REG_NUM(offset);
+
+ DEBUGFUNC("__e1000_read_phy_reg_hv");
+
+ if (!locked) {
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
+ data, TRUE);
+ goto out;
+ }
+
+ if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+ ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+ data, TRUE);
+ goto out;
+ }
+
+ hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+ if (page == HV_INTC_FC_PAGE_START)
+ page = 0;
+
+ if (reg > MAX_PHY_MULTI_PAGE_REG) {
+ u32 phy_addr = hw->phy.addr;
+
+ hw->phy.addr = 1;
+
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (page << IGP_PAGE_SHIFT));
+ hw->phy.addr = phy_addr;
+
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
+ data);
+out:
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_hv - Read HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore then reads the PHY register at offset and stores
+ * the retrieved information in data. Release the acquired semaphore
+ * before exiting.
+ **/
+s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_hv(hw, offset, data, FALSE);
+}
+
+/**
+ * e1000_read_phy_reg_hv_locked - Read HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset and stores the retrieved information
+ * in data. Assumes semaphore already acquired.
+ **/
+s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_hv(hw, offset, data, TRUE);
+}
+
+/**
+ * __e1000_write_phy_reg_hv - Write HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
+ bool locked)
+{
+ s32 ret_val;
+ u16 page = BM_PHY_REG_PAGE(offset);
+ u16 reg = BM_PHY_REG_NUM(offset);
+
+ DEBUGFUNC("__e1000_write_phy_reg_hv");
+
+ if (!locked) {
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
+ &data, FALSE);
+ goto out;
+ }
+
+ if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+ ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+ &data, FALSE);
+ goto out;
+ }
+
+ hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+ if (page == HV_INTC_FC_PAGE_START)
+ page = 0;
+
+ /*
+ * Workaround MDIO accesses being disabled after entering IEEE Power
+ * Down (whenever bit 11 of the PHY Control register is set)
+ */
+ if ((hw->phy.type == e1000_phy_82578) &&
+ (hw->phy.revision >= 1) &&
+ (hw->phy.addr == 2) &&
+ ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
+ (data & (1 << 11))) {
+ u16 data2 = 0x7EFF;
+ ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
+ &data2, FALSE);
+ if (ret_val)
+ goto out;
+ }
+
+ if (reg > MAX_PHY_MULTI_PAGE_REG) {
+ u32 phy_addr = hw->phy.addr;
+
+ hw->phy.addr = 1;
+
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (page << IGP_PAGE_SHIFT));
+ hw->phy.addr = phy_addr;
+
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
+ data);
+
+out:
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_hv - Write HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore then writes the data to PHY register at the offset.
+ * Release the acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_hv(hw, offset, data, FALSE);
+}
+
+/**
+ * e1000_write_phy_reg_hv_locked - Write HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset. Assumes semaphore
+ * already acquired.
+ **/
+s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_hv(hw, offset, data, TRUE);
+}
+
+/**
+ * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
+ * @page: page to be accessed
+ **/
+static u32 e1000_get_phy_addr_for_hv_page(u32 page)
+{
+ u32 phy_addr = 2;
+
+ if (page >= HV_INTC_FC_PAGE_START)
+ phy_addr = 1;
+
+ return phy_addr;
+}
+
+/**
+ * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read or written
+ * @data: pointer to the data to be read or written
+ * @read: determines if operation is read or written
+ *
+ * Reads the PHY register at offset and stores the retreived information
+ * in data. Assumes semaphore already acquired. Note that the procedure
+ * to read these regs uses the address port and data port to read/write.
+ **/
+static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+ u16 *data, bool read)
+{
+ s32 ret_val;
+ u32 addr_reg = 0;
+ u32 data_reg = 0;
+
+ DEBUGFUNC("e1000_access_phy_debug_regs_hv");
+
+ /* This takes care of the difference with desktop vs mobile phy */
+ addr_reg = (hw->phy.type == e1000_phy_82578) ?
+ I82578_ADDR_REG : I82577_ADDR_REG;
+ data_reg = addr_reg + 1;
+
+ /* All operations in this function are phy address 2 */
+ hw->phy.addr = 2;
+
+ /* masking with 0x3F to remove the page from offset */
+ ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
+ if (ret_val) {
+ DEBUGOUT("Could not write PHY the HV address register\n");
+ goto out;
+ }
+
+ /* Read or write the data value next */
+ if (read)
+ ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data);
+ else
+ ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data);
+
+ if (ret_val) {
+ DEBUGOUT("Could not read data value from HV data register\n");
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_link_stall_workaround_hv - Si workaround
+ * @hw: pointer to the HW structure
+ *
+ * This function works around a Si bug where the link partner can get
+ * a link up indication before the PHY does. If small packets are sent
+ * by the link partner they can be placed in the packet buffer without
+ * being properly accounted for by the PHY and will stall preventing
+ * further packets from being received. The workaround is to clear the
+ * packet buffer after the PHY detects link up.
+ **/
+s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
+
+ DEBUGFUNC("e1000_link_stall_workaround_hv");
+
+ if (hw->phy.type != e1000_phy_82578)
+ goto out;
+
+ /* Do not apply workaround if in PHY loopback bit 14 set */
+ hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
+ if (data & PHY_CONTROL_LB)
+ goto out;
+
+ /* check if link is up and at 1Gbps */
+ ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ data &= BM_CS_STATUS_LINK_UP |
+ BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_MASK;
+
+ if (data != (BM_CS_STATUS_LINK_UP |
+ BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_1000))
+ goto out;
+
+ msec_delay(200);
+
+ /* flush the packets in the fifo buffer */
+ ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
+ HV_MUX_DATA_CTRL_GEN_TO_MAC |
+ HV_MUX_DATA_CTRL_FORCE_SPEED);
+ if (ret_val)
+ goto out;
+
+ ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
+ HV_MUX_DATA_CTRL_GEN_TO_MAC);
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_82577 - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_check_polarity_82577");
+
+ ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex.
+ **/
+s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
+
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
+
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (!link)
+ DEBUGOUT("Link taking longer than expected.\n");
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Read PHY status to determine if link is up. If link is up, then
+ * set/determine 10base-T extended distance and polarity correction. Read
+ * PHY port status to determine MDI/MDIx and speed. Based on the speed,
+ * determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_82577");
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ phy->polarity_correction = TRUE;
+
+ ret_val = e1000_check_polarity_82577(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+ if (ret_val)
+ goto out;
+
+ phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? TRUE : FALSE;
+
+ if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
+ I82577_PHY_STATUS2_SPEED_1000MBPS) {
+ ret_val = hw->phy.ops.get_cable_length(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+ } else {
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Reads the diagnostic status register and verifies result is valid before
+ * placing it in the phy_cable_length field.
+ **/
+s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, length;
+
+ DEBUGFUNC("e1000_get_cable_length_82577");
+
+ ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
+ I82577_DSTATUS_CABLE_LENGTH_SHIFT;
+
+ if (length == E1000_CABLE_LENGTH_UNDEFINED)
+ ret_val = -E1000_ERR_PHY;
+
+ phy->cable_length = length;
+
+out:
+ return ret_val;
+}
diff --git a/freebsd/dev/e1000/e1000_phy.h b/freebsd/dev/e1000/e1000_phy.h
new file mode 100644
index 00000000..7fd83969
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_phy.h
@@ -0,0 +1,265 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_PHY_HH_
+#define _E1000_PHY_HH_
+
+void e1000_init_phy_ops_generic(struct e1000_hw *hw);
+s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+void e1000_null_phy_generic(struct e1000_hw *hw);
+s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active);
+s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_check_downshift_generic(struct e1000_hw *hw);
+s32 e1000_check_polarity_m88(struct e1000_hw *hw);
+s32 e1000_check_polarity_igp(struct e1000_hw *hw);
+s32 e1000_check_polarity_ife(struct e1000_hw *hw);
+s32 e1000_check_reset_block_generic(struct e1000_hw *hw);
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
+s32 e1000_copper_link_autoneg(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_igp(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_m88(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
+s32 e1000_get_cable_length_m88(struct e1000_hw *hw);
+s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw);
+s32 e1000_get_cfg_done_generic(struct e1000_hw *hw);
+s32 e1000_get_phy_id(struct e1000_hw *hw);
+s32 e1000_get_phy_info_igp(struct e1000_hw *hw);
+s32 e1000_get_phy_info_m88(struct e1000_hw *hw);
+s32 e1000_get_phy_info_ife(struct e1000_hw *hw);
+s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw);
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
+s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw);
+s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw);
+s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active);
+s32 e1000_setup_copper_link_generic(struct e1000_hw *hw);
+s32 e1000_wait_autoneg_generic(struct e1000_hw *hw);
+s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
+s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ u32 usec_interval, bool *success);
+s32 e1000_phy_init_script_igp3(struct e1000_hw *hw);
+enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
+s32 e1000_determine_phy_address(struct e1000_hw *hw);
+s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
+void e1000_power_up_phy_copper(struct e1000_hw *hw);
+void e1000_power_down_phy_copper(struct e1000_hw *hw);
+s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_82577(struct e1000_hw *hw);
+s32 e1000_check_polarity_82577(struct e1000_hw *hw);
+s32 e1000_get_phy_info_82577(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
+s32 e1000_get_cable_length_82577(struct e1000_hw *hw);
+
+#define E1000_MAX_PHY_ADDR 4
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
+#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
+#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
+#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
+#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */
+#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality */
+#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
+#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
+#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */
+#define IGP_PAGE_SHIFT 5
+#define PHY_REG_MASK 0x1F
+
+/* BM/HV Specific Registers */
+#define BM_PORT_CTRL_PAGE 769
+#define BM_PCIE_PAGE 770
+#define BM_WUC_PAGE 800
+#define BM_WUC_ADDRESS_OPCODE 0x11
+#define BM_WUC_DATA_OPCODE 0x12
+#define BM_WUC_ENABLE_PAGE BM_PORT_CTRL_PAGE
+#define BM_WUC_ENABLE_REG 17
+#define BM_WUC_ENABLE_BIT (1 << 2)
+#define BM_WUC_HOST_WU_BIT (1 << 4)
+
+#define PHY_UPPER_SHIFT 21
+#define BM_PHY_REG(page, reg) \
+ (((reg) & MAX_PHY_REG_ADDRESS) |\
+ (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\
+ (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)))
+#define BM_PHY_REG_PAGE(offset) \
+ ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
+#define BM_PHY_REG_NUM(offset) \
+ ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
+ (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
+ ~MAX_PHY_REG_ADDRESS)))
+
+#define HV_INTC_FC_PAGE_START 768
+#define I82578_ADDR_REG 29
+#define I82577_ADDR_REG 16
+#define I82577_CFG_REG 22
+#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
+#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
+#define I82577_CTRL_REG 23
+
+/* 82577 specific PHY registers */
+#define I82577_PHY_CTRL_2 18
+#define I82577_PHY_LBK_CTRL 19
+#define I82577_PHY_STATUS_2 26
+#define I82577_PHY_DIAG_STATUS 31
+
+/* I82577 PHY Status 2 */
+#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
+#define I82577_PHY_STATUS2_MDIX 0x0800
+#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
+#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
+#define I82577_PHY_STATUS2_SPEED_100MBPS 0x0100
+
+/* I82577 PHY Control 2 */
+#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
+#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
+
+/* I82577 PHY Diagnostics Status */
+#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
+#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
+
+/* BM PHY Copper Specific Control 1 */
+#define BM_CS_CTRL1 16
+#define BM_CS_CTRL1_ENERGY_DETECT 0x0300 /* Enable Energy Detect */
+
+/* BM PHY Copper Specific Status */
+#define BM_CS_STATUS 17
+#define BM_CS_STATUS_ENERGY_DETECT 0x0010 /* Energy Detect Status */
+#define BM_CS_STATUS_LINK_UP 0x0400
+#define BM_CS_STATUS_RESOLVED 0x0800
+#define BM_CS_STATUS_SPEED_MASK 0xC000
+#define BM_CS_STATUS_SPEED_1000 0x8000
+
+/* 82577 Mobile Phy Status Register */
+#define HV_M_STATUS 26
+#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000
+#define HV_M_STATUS_SPEED_MASK 0x0300
+#define HV_M_STATUS_SPEED_1000 0x0200
+#define HV_M_STATUS_LINK_UP 0x0040
+
+#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
+#define IGP01E1000_PHY_POLARITY_MASK 0x0078
+
+#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
+
+#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
+
+/* Enable flexible speed on link-up */
+#define IGP01E1000_GMII_FLEX_SPD 0x0010
+#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */
+
+#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
+#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
+#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
+
+#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
+
+#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
+#define IGP01E1000_PSSR_MDIX 0x0800
+#define IGP01E1000_PSSR_SPEED_MASK 0xC000
+#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
+
+#define IGP02E1000_PHY_CHANNEL_NUM 4
+#define IGP02E1000_PHY_AGC_A 0x11B1
+#define IGP02E1000_PHY_AGC_B 0x12B1
+#define IGP02E1000_PHY_AGC_C 0x14B1
+#define IGP02E1000_PHY_AGC_D 0x18B1
+
+#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
+#define IGP02E1000_AGC_LENGTH_MASK 0x7F
+#define IGP02E1000_AGC_RANGE 15
+
+#define IGP03E1000_PHY_MISC_CTRL 0x1B
+#define IGP03E1000_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Manually Set Duplex */
+
+#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
+
+#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
+#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
+#define E1000_KMRNCTRLSTA_REN 0x00200000
+#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */
+#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
+#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */
+#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */
+#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
+#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7
+#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002
+#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
+#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */
+#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
+#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
+
+/* IFE PHY Extended Status Control */
+#define IFE_PESC_POLARITY_REVERSED 0x0100
+
+/* IFE PHY Special Control */
+#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
+#define IFE_PSC_FORCE_POLARITY 0x0020
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100
+
+/* IFE PHY Special Control and LED Control */
+#define IFE_PSCL_PROBE_MODE 0x0020
+#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
+
+/* IFE PHY MDIX Control */
+#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
+#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
+
+#endif
diff --git a/freebsd/dev/e1000/e1000_regs.h b/freebsd/dev/e1000/e1000_regs.h
new file mode 100644
index 00000000..536f087f
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_regs.h
@@ -0,0 +1,548 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_REGS_HH_
+#define _E1000_REGS_HH_
+
+#define E1000_CTRL 0x00000 /* Device Control - RW */
+#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS 0x00008 /* Device Status - RO */
+#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
+#define E1000_EERD 0x00014 /* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
+#define E1000_FLA 0x0001C /* Flash Access - RW */
+#define E1000_MDIC 0x00020 /* MDI Control - RW */
+#define E1000_MDICNFG 0x00E04 /* MDI Config - RW */
+#define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */
+#define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */
+#define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */
+#define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */
+#define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */
+#define E1000_SCTL 0x00024 /* SerDes Control - RW */
+#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
+#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
+#define E1000_FEXT 0x0002C /* Future Extended - RW */
+#define E1000_FEXTNVM4 0x00024 /* Future Extended NVM 4 - RW */
+#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */
+#define E1000_FCT 0x00030 /* Flow Control Type - RW */
+#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */
+#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
+#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
+#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
+#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
+#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
+#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
+#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
+#define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */
+#define E1000_SVCR 0x000F0
+#define E1000_SVT 0x000F4
+#define E1000_RCTL 0x00100 /* Rx Control - RW */
+#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */
+#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */
+#define E1000_PBA_ECC 0x01100 /* PBA ECC Register */
+#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
+#define E1000_EITR(_n) (0x01680 + (0x4 * (_n)))
+#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
+#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
+#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
+#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
+#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
+#define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */
+#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */
+#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */
+#define E1000_TCTL 0x00400 /* Tx Control - RW */
+#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */
+#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */
+#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */
+#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
+#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
+#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
+#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
+#define E1000_PBS 0x01008 /* Packet Buffer Size */
+#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
+#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
+#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
+#define E1000_FLSWCTL 0x01030 /* FLASH control register */
+#define E1000_FLSWDATA 0x01034 /* FLASH data register */
+#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
+#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
+#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */
+#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */
+#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */
+#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */
+#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */
+#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */
+#define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */
+#define E1000_ICR_V2 0x01500 /* Interrupt Cause - new location - RC */
+#define E1000_ICS_V2 0x01504 /* Interrupt Cause Set - new location - WO */
+#define E1000_IMS_V2 0x01508 /* Interrupt Mask Set/Read - new location - RW */
+#define E1000_IMC_V2 0x0150C /* Interrupt Mask Clear - new location - WO */
+#define E1000_IAM_V2 0x01510 /* Interrupt Ack Auto Mask - new location - RW */
+#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
+#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
+#define E1000_RDFPCQ(_n) (0x02430 + (0x4 * (_n)))
+#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */
+#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */
+/* Split and Replication Rx Control - RW */
+#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */
+#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */
+#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */
+#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */
+#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */
+#define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */
+#define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */
+#define E1000_IRPBS 0x02404 /* Same as RXPBS, renamed for newer adapters - RW */
+#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */
+#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */
+/*
+ * Convenience macros
+ *
+ * Note: "_n" is the queue number of the register to be written to.
+ *
+ * Example usage:
+ * E1000_RDBAL_REG(current_rx_queue)
+ */
+#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \
+ (0x0C000 + ((_n) * 0x40)))
+#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \
+ (0x0C004 + ((_n) * 0x40)))
+#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \
+ (0x0C008 + ((_n) * 0x40)))
+#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
+ (0x0C00C + ((_n) * 0x40)))
+#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \
+ (0x0C010 + ((_n) * 0x40)))
+#define E1000_RXCTL(_n) ((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \
+ (0x0C014 + ((_n) * 0x40)))
+#define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n)
+#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \
+ (0x0C018 + ((_n) * 0x40)))
+#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \
+ (0x0C028 + ((_n) * 0x40)))
+#define E1000_RQDPC(_n) ((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \
+ (0x0C030 + ((_n) * 0x40)))
+#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \
+ (0x0E000 + ((_n) * 0x40)))
+#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \
+ (0x0E004 + ((_n) * 0x40)))
+#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \
+ (0x0E008 + ((_n) * 0x40)))
+#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \
+ (0x0E010 + ((_n) * 0x40)))
+#define E1000_TXCTL(_n) ((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \
+ (0x0E014 + ((_n) * 0x40)))
+#define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n)
+#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \
+ (0x0E018 + ((_n) * 0x40)))
+#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \
+ (0x0E028 + ((_n) * 0x40)))
+#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \
+ (0x0E038 + ((_n) * 0x40)))
+#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \
+ (0x0E03C + ((_n) * 0x40)))
+#define E1000_TARC(_n) (0x03840 + ((_n) * 0x100))
+#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */
+#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
+#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */
+#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
+#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4))
+#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \
+ (0x054E0 + ((_i - 16) * 8)))
+#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \
+ (0x054E4 + ((_i - 16) * 8)))
+#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8))
+#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8))
+#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
+#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
+#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
+#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
+#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
+#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
+#define E1000_PBSLAC 0x03100 /* Packet Buffer Slave Access Control */
+#define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Packet Buffer DWORD (_n) */
+#define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */
+#define E1000_ITPBS 0x03404 /* Same as TXPBS, renamed for newer adpaters - RW */
+#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
+#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
+#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
+#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
+#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
+#define E1000_TDPUMB 0x0357C /* DMA Tx Descriptor uC Mail Box - RW */
+#define E1000_TDPUAD 0x03580 /* DMA Tx Descriptor uC Addr Command - RW */
+#define E1000_TDPUWD 0x03584 /* DMA Tx Descriptor uC Data Write - RW */
+#define E1000_TDPURD 0x03588 /* DMA Tx Descriptor uC Data Read - RW */
+#define E1000_TDPUCTL 0x0358C /* DMA Tx Descriptor uC Control - RW */
+#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */
+#define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */
+#define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */
+#define E1000_DTXMXSZRQ 0x03540 /* DMA Tx Max Total Allow Size Requests - RW */
+#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */
+#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
+#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
+#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
+#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
+#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
+#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
+#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
+#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
+#define E1000_COLC 0x04028 /* Collision Count - R/clr */
+#define E1000_DC 0x04030 /* Defer Count - R/clr */
+#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */
+#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
+#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
+#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */
+#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */
+#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */
+#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */
+#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */
+#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */
+#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */
+#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */
+#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */
+#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */
+#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */
+#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */
+#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */
+#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */
+#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */
+#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */
+#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */
+#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */
+#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */
+#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */
+#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */
+#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */
+#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */
+#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */
+#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */
+#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */
+#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */
+#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */
+#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */
+#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */
+#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */
+#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */
+#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */
+#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */
+#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */
+#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */
+#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */
+#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */
+#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */
+#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */
+#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */
+#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
+#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */
+#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */
+#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */
+#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */
+#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */
+#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */
+#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */
+#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
+#define E1000_CRC_OFFSET 0x05F50 /* CRC Offset register */
+
+#define E1000_VFGPRC 0x00F10
+#define E1000_VFGORC 0x00F18
+#define E1000_VFMPRC 0x00F3C
+#define E1000_VFGPTC 0x00F14
+#define E1000_VFGOTC 0x00F34
+#define E1000_VFGOTLBC 0x00F50
+#define E1000_VFGPTLBC 0x00F44
+#define E1000_VFGORLBC 0x00F48
+#define E1000_VFGPRLBC 0x00F40
+/* Virtualization statistical counters */
+#define E1000_PFVFGPRC(_n) (0x010010 + (0x100 * (_n)))
+#define E1000_PFVFGPTC(_n) (0x010014 + (0x100 * (_n)))
+#define E1000_PFVFGORC(_n) (0x010018 + (0x100 * (_n)))
+#define E1000_PFVFGOTC(_n) (0x010034 + (0x100 * (_n)))
+#define E1000_PFVFMPRC(_n) (0x010038 + (0x100 * (_n)))
+#define E1000_PFVFGPRLBC(_n) (0x010040 + (0x100 * (_n)))
+#define E1000_PFVFGPTLBC(_n) (0x010044 + (0x100 * (_n)))
+#define E1000_PFVFGORLBC(_n) (0x010048 + (0x100 * (_n)))
+#define E1000_PFVFGOTLBC(_n) (0x010050 + (0x100 * (_n)))
+
+#define E1000_LSECTXUT 0x04300 /* LinkSec Tx Untagged Packet Count - OutPktsUntagged */
+#define E1000_LSECTXPKTE 0x04304 /* LinkSec Encrypted Tx Packets Count - OutPktsEncrypted */
+#define E1000_LSECTXPKTP 0x04308 /* LinkSec Protected Tx Packet Count - OutPktsProtected */
+#define E1000_LSECTXOCTE 0x0430C /* LinkSec Encrypted Tx Octets Count - OutOctetsEncrypted */
+#define E1000_LSECTXOCTP 0x04310 /* LinkSec Protected Tx Octets Count - OutOctetsProtected */
+#define E1000_LSECRXUT 0x04314 /* LinkSec Untagged non-Strict Rx Packet Count - InPktsUntagged/InPktsNoTag */
+#define E1000_LSECRXOCTD 0x0431C /* LinkSec Rx Octets Decrypted Count - InOctetsDecrypted */
+#define E1000_LSECRXOCTV 0x04320 /* LinkSec Rx Octets Validated - InOctetsValidated */
+#define E1000_LSECRXBAD 0x04324 /* LinkSec Rx Bad Tag - InPktsBadTag */
+#define E1000_LSECRXNOSCI 0x04328 /* LinkSec Rx Packet No SCI Count - InPktsNoSci */
+#define E1000_LSECRXUNSCI 0x0432C /* LinkSec Rx Packet Unknown SCI Count - InPktsUnknownSci */
+#define E1000_LSECRXUNCH 0x04330 /* LinkSec Rx Unchecked Packets Count - InPktsUnchecked */
+#define E1000_LSECRXDELAY 0x04340 /* LinkSec Rx Delayed Packet Count - InPktsDelayed */
+#define E1000_LSECRXLATE 0x04350 /* LinkSec Rx Late Packets Count - InPktsLate */
+#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* LinkSec Rx Packet OK Count - InPktsOk */
+#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* LinkSec Rx Invalid Count - InPktsInvalid */
+#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* LinkSec Rx Not Valid Count - InPktsNotValid */
+#define E1000_LSECRXUNSA 0x043C0 /* LinkSec Rx Unused SA Count - InPktsUnusedSa */
+#define E1000_LSECRXNUSA 0x043D0 /* LinkSec Rx Not Using SA Count - InPktsNotUsingSa */
+#define E1000_LSECTXCAP 0x0B000 /* LinkSec Tx Capabilities Register - RO */
+#define E1000_LSECRXCAP 0x0B300 /* LinkSec Rx Capabilities Register - RO */
+#define E1000_LSECTXCTRL 0x0B004 /* LinkSec Tx Control - RW */
+#define E1000_LSECRXCTRL 0x0B304 /* LinkSec Rx Control - RW */
+#define E1000_LSECTXSCL 0x0B008 /* LinkSec Tx SCI Low - RW */
+#define E1000_LSECTXSCH 0x0B00C /* LinkSec Tx SCI High - RW */
+#define E1000_LSECTXSA 0x0B010 /* LinkSec Tx SA0 - RW */
+#define E1000_LSECTXPN0 0x0B018 /* LinkSec Tx SA PN 0 - RW */
+#define E1000_LSECTXPN1 0x0B01C /* LinkSec Tx SA PN 1 - RW */
+#define E1000_LSECRXSCL 0x0B3D0 /* LinkSec Rx SCI Low - RW */
+#define E1000_LSECRXSCH 0x0B3E0 /* LinkSec Rx SCI High - RW */
+#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 0 - WO */
+#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 1 - WO */
+#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */
+#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */
+/*
+ * LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit
+ * key - RW.
+ */
+#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m)))
+
+#define E1000_SSVPC 0x041A0 /* Switch Security Violation Packet Count */
+#define E1000_IPSCTRL 0xB430 /* IpSec Control Register */
+#define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */
+#define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */
+#define E1000_IPSRXIPADDR(_n) (0x0B420+ (0x04 * (_n))) /* IPSec Rx IPv4/v6 Address - RW */
+#define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n))) /* IPSec Rx 128-bit Key - RW */
+#define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */
+#define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */
+#define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n))) /* IPSec Tx 128-bit Key - RW */
+#define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */
+#define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */
+#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */
+#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */
+#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */
+#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */
+#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */
+#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */
+#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */
+#define E1000_RPTHC 0x04104 /* Rx Packets To Host */
+#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */
+#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */
+#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */
+#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */
+#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */
+#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */
+#define E1000_LENERRS 0x04138 /* Length Errors Count */
+#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */
+#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */
+#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */
+#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */
+#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */
+#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Page - RW */
+#define E1000_1GSTAT_RCV 0x04228 /* 1GSTAT Code Violation Packet Count - RW */
+#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */
+#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */
+#define E1000_RFCTL 0x05008 /* Receive Filter Control*/
+#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
+#define E1000_RA 0x05400 /* Receive Address - RW Array */
+#define E1000_RA2 0x054E0 /* 2nd half of receive address array - RW Array */
+#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
+#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */
+#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */
+#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */
+#define E1000_WUC 0x05800 /* Wakeup Control - RW */
+#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
+#define E1000_WUS 0x05810 /* Wakeup Status - RO */
+#define E1000_MANC 0x05820 /* Management Control - RW */
+#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
+#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
+#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
+#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
+#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
+#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */
+#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF 0x08800 /* Host Interface */
+#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
+#define E1000_FHFT(_n) (0x09000 + (_n * 0x100)) /* Flexible Host Filter Table */
+#define E1000_FHFT_EXT(_n) (0x09A00 + (_n * 0x100)) /* Ext Flexible Host Filter Table */
+
+
+#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */
+#define E1000_MDPHYA 0x0003C /* PHY address - RW */
+#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */
+#define E1000_MDEF(_n) (0x05890 + (4 * (_n))) /* Mngmt Decision Filters */
+#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
+#define E1000_CCMCTL 0x05B48 /* CCM Control Register */
+#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */
+#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */
+#define E1000_GCR 0x05B00 /* PCI-Ex Control */
+#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */
+#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
+#define E1000_SWSM 0x05B50 /* SW Semaphore */
+#define E1000_FWSM 0x05B54 /* FW Semaphore */
+#define E1000_SWSM2 0x05B58 /* Driver-only SW semaphore (not used by BOOT agents) */
+#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */
+#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */
+#define E1000_UFUSE 0x05B78 /* UFUSE - RO */
+#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
+#define E1000_HICR 0x08F00 /* Host Interface Control */
+
+/* RSS registers */
+#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */
+#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
+#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */
+#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate Interrupt Ext*/
+#define E1000_IMIRVP 0x05AC0 /* Immediate Interrupt Rx VLAN Priority - RW */
+#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Allocation Register
+ * (_i) - RW */
+#define E1000_MSIXTADD(_i) (0x0C000 + ((_i) * 0x10)) /* MSI-X Table entry addr
+ * low reg - RW */
+#define E1000_MSIXTUADD(_i) (0x0C004 + ((_i) * 0x10)) /* MSI-X Table entry addr
+ * upper reg - RW */
+#define E1000_MSIXTMSG(_i) (0x0C008 + ((_i) * 0x10)) /* MSI-X Table entry
+ * message reg - RW */
+#define E1000_MSIXVCTRL(_i) (0x0C00C + ((_i) * 0x10)) /* MSI-X Table entry
+ * vector ctrl reg - RW */
+#define E1000_MSIXPBA 0x0E000 /* MSI-X Pending bit array */
+#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */
+#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */
+#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */
+#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */
+/* VT Registers */
+#define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */
+#define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */
+#define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */
+#define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */
+#define E1000_VFRE 0x00C8C /* VF Receive Enables */
+#define E1000_VFTE 0x00C90 /* VF Transmit Enables */
+#define E1000_QDE 0x02408 /* Queue Drop Enable - RW */
+#define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */
+#define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */
+#define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */
+#define E1000_UTA 0x0A000 /* Unicast Table Array - RW */
+#define E1000_IOVTCL 0x05BBC /* IOV Control Register */
+#define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */
+/* These act per VF so an array friendly macro is used */
+#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n)))
+#define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n)))
+#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n)))
+#define E1000_VFVMBMEM(_n) (0x00800 + (_n))
+#define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n)))
+#define E1000_VLVF(_n) (0x05D00 + (4 * (_n))) /* VLAN Virtual Machine
+ * Filter - RW */
+#define E1000_VMVIR(_n) (0x03700 + (4 * (_n)))
+/* Time Sync */
+#define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */
+#define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */
+#define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */
+#define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */
+#define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */
+#define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */
+#define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */
+#define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */
+#define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */
+#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */
+#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */
+#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */
+#define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */
+#define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */
+#define E1000_RXMTRL 0x0B634 /* Time sync Rx EtherType and Msg Type - RW */
+#define E1000_RXUDP 0x0B638 /* Time Sync Rx UDP Port - RW */
+
+/* Filtering Registers */
+#define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */
+#define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */
+#define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */
+#define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */
+#define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */
+#define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */
+#define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */
+
+#define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */
+#define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */
+#define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */
+#define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */
+#define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */
+#define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4)) /* Tx Desc plane TC Rate-scheduler config */
+#define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Config */
+#define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Config */
+#define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler Status */
+#define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler MMW */
+#define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Status */
+#define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4)) /* Tx Packet plane TC Rate-scheduler MMW */
+#define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Status */
+#define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler MMW */
+#define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4)) /* Tx Desc plane VM Rate-Scheduler MMW*/
+#define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4)) /* Tx BCN Rate-Scheduler MMW */
+#define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */
+#define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */
+#define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */
+#define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */
+#define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */
+#define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */
+#define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */
+#define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */
+#define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */
+#define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */
+#define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */
+#define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */
+#define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */
+#define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */
+
+/* DMA Coalescing registers */
+#define E1000_DMACR 0x02508 /* Control Register */
+#define E1000_DMCTXTH 0x03550 /* Transmit Threshold */
+#define E1000_DMCTLX 0x02514 /* Time to Lx Request */
+#define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */
+#define E1000_DMCCNT 0x05DD4 /* Current RX Count */
+#define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */
+#define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */
+
+/* PCIe Parity Status Register */
+#define E1000_PCIEERRSTS 0x05BA8
+
+
+#endif
diff --git a/freebsd/dev/e1000/e1000_vf.c b/freebsd/dev/e1000/e1000_vf.c
new file mode 100644
index 00000000..7af234fa
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_vf.c
@@ -0,0 +1,580 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#endif
+
+
+static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
+static void e1000_release_vf(struct e1000_hw *hw);
+static s32 e1000_acquire_vf(struct e1000_hw *hw);
+static s32 e1000_setup_link_vf(struct e1000_hw *hw);
+static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
+static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
+static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+static s32 e1000_init_hw_vf(struct e1000_hw *hw);
+static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
+static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
+static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
+static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
+
+/**
+ * e1000_init_phy_params_vf - Inits PHY params
+ * @hw: pointer to the HW structure
+ *
+ * Doesn't do much - there's no PHY available to the VF.
+ **/
+static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_phy_params_vf");
+ hw->phy.type = e1000_phy_vf;
+ hw->phy.ops.acquire = e1000_acquire_vf;
+ hw->phy.ops.release = e1000_release_vf;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_nvm_params_vf - Inits NVM params
+ * @hw: pointer to the HW structure
+ *
+ * Doesn't do much - there's no NVM available to the VF.
+ **/
+static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_nvm_params_vf");
+ hw->nvm.type = e1000_nvm_none;
+ hw->nvm.ops.acquire = e1000_acquire_vf;
+ hw->nvm.ops.release = e1000_release_vf;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_vf - Inits MAC params
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_init_mac_params_vf");
+
+ /* Set media type */
+ /*
+ * Virtual functions don't care what they're media type is as they
+ * have no direct access to the PHY, or the media. That is handled
+ * by the physical function driver.
+ */
+ hw->phy.media_type = e1000_media_type_unknown;
+
+ /* No ASF features for the VF driver */
+ mac->asf_firmware_present = FALSE;
+ /* ARC subsystem not supported */
+ mac->arc_subsystem_valid = FALSE;
+ /* Disable adaptive IFS mode so the generic funcs don't do anything */
+ mac->adaptive_ifs = FALSE;
+ /* VF's have no MTA Registers - PF feature only */
+ mac->mta_reg_count = 128;
+ /* VF's have no access to RAR entries */
+ mac->rar_entry_count = 1;
+
+ /* Function pointers */
+ /* link setup */
+ mac->ops.setup_link = e1000_setup_link_vf;
+ /* bus type/speed/width */
+ mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
+ /* reset */
+ mac->ops.reset_hw = e1000_reset_hw_vf;
+ /* hw initialization */
+ mac->ops.init_hw = e1000_init_hw_vf;
+ /* check for link */
+ mac->ops.check_for_link = e1000_check_for_link_vf;
+ /* link info */
+ mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
+ /* multicast address update */
+ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
+ /* set mac address */
+ mac->ops.rar_set = e1000_rar_set_vf;
+ /* read mac address */
+ mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
+
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_function_pointers_vf - Inits function pointers
+ * @hw: pointer to the HW structure
+ **/
+void e1000_init_function_pointers_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_vf");
+
+ hw->mac.ops.init_params = e1000_init_mac_params_vf;
+ hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
+ hw->phy.ops.init_params = e1000_init_phy_params_vf;
+ hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
+}
+
+/**
+ * e1000_acquire_vf - Acquire rights to access PHY or NVM.
+ * @hw: pointer to the HW structure
+ *
+ * There is no PHY or NVM so we want all attempts to acquire these to fail.
+ * In addition, the MAC registers to access PHY/NVM don't exist so we don't
+ * even want any SW to attempt to use them.
+ **/
+static s32 e1000_acquire_vf(struct e1000_hw *hw)
+{
+ return -E1000_ERR_PHY;
+}
+
+/**
+ * e1000_release_vf - Release PHY or NVM
+ * @hw: pointer to the HW structure
+ *
+ * There is no PHY or NVM so we want all attempts to acquire these to fail.
+ * In addition, the MAC registers to access PHY/NVM don't exist so we don't
+ * even want any SW to attempt to use them.
+ **/
+static void e1000_release_vf(struct e1000_hw *hw)
+{
+ return;
+}
+
+/**
+ * e1000_setup_link_vf - Sets up link.
+ * @hw: pointer to the HW structure
+ *
+ * Virtual functions cannot change link.
+ **/
+static s32 e1000_setup_link_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_setup_link_vf");
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_bus_info_pcie_vf - Gets the bus info.
+ * @hw: pointer to the HW structure
+ *
+ * Virtual functions are not really on their own bus.
+ **/
+static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+
+ DEBUGFUNC("e1000_get_bus_info_pcie_vf");
+
+ /* Do not set type PCI-E because we don't want disable master to run */
+ bus->type = e1000_bus_type_reserved;
+ bus->speed = e1000_bus_speed_2500;
+
+ return 0;
+}
+
+/**
+ * e1000_get_link_up_info_vf - Gets link info.
+ * @hw: pointer to the HW structure
+ * @speed: pointer to 16 bit value to store link speed.
+ * @duplex: pointer to 16 bit value to store duplex.
+ *
+ * Since we cannot read the PHY and get accurate link info, we must rely upon
+ * the status register's data which is often stale and inaccurate.
+ **/
+static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ s32 status;
+
+ DEBUGFUNC("e1000_get_link_up_info_vf");
+
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if (status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if (status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_reset_hw_vf - Resets the HW
+ * @hw: pointer to the HW structure
+ *
+ * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
+ * This is all the reset we can perform on a VF.
+ **/
+static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 timeout = E1000_VF_INIT_TIMEOUT;
+ s32 ret_val = -E1000_ERR_MAC_INIT;
+ u32 ctrl, msgbuf[3];
+ u8 *addr = (u8 *)(&msgbuf[1]);
+
+ DEBUGFUNC("e1000_reset_hw_vf");
+
+ DEBUGOUT("Issuing a function level reset to MAC\n");
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ /* we cannot reset while the RSTI / RSTD bits are asserted */
+ while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
+ timeout--;
+ usec_delay(5);
+ }
+
+ if (timeout) {
+ /* mailbox timeout can now become active */
+ mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
+
+ msgbuf[0] = E1000_VF_RESET;
+ mbx->ops.write_posted(hw, msgbuf, 1, 0);
+
+ msec_delay(10);
+
+ /* set our "perm_addr" based on info provided by PF */
+ ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
+ if (!ret_val) {
+ if (msgbuf[0] == (E1000_VF_RESET |
+ E1000_VT_MSGTYPE_ACK))
+ memcpy(hw->mac.perm_addr, addr, 6);
+ else
+ ret_val = -E1000_ERR_MAC_INIT;
+ }
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_init_hw_vf - Inits the HW
+ * @hw: pointer to the HW structure
+ *
+ * Not much to do here except clear the PF Reset indication if there is one.
+ **/
+static s32 e1000_init_hw_vf(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_hw_vf");
+
+ /* attempt to set and restore our mac address */
+ e1000_rar_set_vf(hw, hw->mac.addr, 0);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_rar_set_vf - set device MAC address
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index receive address array register
+ **/
+static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 msgbuf[3];
+ u8 *msg_addr = (u8 *)(&msgbuf[1]);
+ s32 ret_val;
+
+ memset(msgbuf, 0, 12);
+ msgbuf[0] = E1000_VF_SET_MAC_ADDR;
+ memcpy(msg_addr, addr, 6);
+ ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
+
+ if (!ret_val)
+ ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
+
+ msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
+
+ /* if nacked the address was rejected, use "perm_addr" */
+ if (!ret_val &&
+ (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
+ e1000_read_mac_addr_vf(hw);
+}
+
+/**
+ * e1000_hash_mc_addr_vf - Generate a multicast hash value
+ * @hw: pointer to the HW structure
+ * @mc_addr: pointer to a multicast address
+ *
+ * Generates a multicast address hash value which is used to determine
+ * the multicast filter table array address and new table value.
+ **/
+static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
+{
+ u32 hash_value, hash_mask;
+ u8 bit_shift = 0;
+
+ DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+ /* Register count multiplied by bits per register */
+ hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+ /*
+ * The bit_shift is the number of left-shifts
+ * where 0xFF would still fall within the hash mask.
+ */
+ while (hash_mask >> bit_shift != 0xFF)
+ bit_shift++;
+
+ hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+ (((u16) mc_addr[5]) << bit_shift)));
+
+ return hash_value;
+}
+
+/**
+ * e1000_update_mc_addr_list_vf - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ *
+ * Updates the Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 msgbuf[E1000_VFMAILBOX_SIZE];
+ u16 *hash_list = (u16 *)&msgbuf[1];
+ u32 hash_value;
+ u32 i;
+
+ DEBUGFUNC("e1000_update_mc_addr_list_vf");
+
+ /* Each entry in the list uses 1 16 bit word. We have 30
+ * 16 bit words available in our HW msg buffer (minus 1 for the
+ * msg type). That's 30 hash values if we pack 'em right. If
+ * there are more than 30 MC addresses to add then punt the
+ * extras for now and then add code to handle more than 30 later.
+ * It would be unusual for a server to request that many multi-cast
+ * addresses except for in large enterprise network environments.
+ */
+
+ DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
+
+ if (mc_addr_count > 30) {
+ msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
+ mc_addr_count = 30;
+ }
+
+ msgbuf[0] = E1000_VF_SET_MULTICAST;
+ msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
+
+ for (i = 0; i < mc_addr_count; i++) {
+ hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
+ DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
+ hash_list[i] = hash_value & 0x0FFF;
+ mc_addr_list += ETH_ADDR_LEN;
+ }
+
+ mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE, 0);
+}
+
+/**
+ * e1000_vfta_set_vf - Set/Unset vlan filter table address
+ * @hw: pointer to the HW structure
+ * @vid: determines the vfta register and bit to set/unset
+ * @set: if TRUE then set bit, else clear bit
+ **/
+void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 msgbuf[2];
+
+ msgbuf[0] = E1000_VF_SET_VLAN;
+ msgbuf[1] = vid;
+ /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
+ if (set)
+ msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
+
+ mbx->ops.write_posted(hw, msgbuf, 2, 0);
+}
+
+/** e1000_rlpml_set_vf - Set the maximum receive packet length
+ * @hw: pointer to the HW structure
+ * @max_size: value to assign to max frame size
+ **/
+void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 msgbuf[2];
+
+ msgbuf[0] = E1000_VF_SET_LPE;
+ msgbuf[1] = max_size;
+
+ mbx->ops.write_posted(hw, msgbuf, 2, 0);
+}
+
+/**
+ * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
+ * @hw: pointer to the HW structure
+ * @uni: boolean indicating unicast promisc status
+ * @multi: boolean indicating multicast promisc status
+ **/
+s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 msgbuf = E1000_VF_SET_PROMISC;
+ s32 ret_val;
+
+ switch (type) {
+ case e1000_promisc_multicast:
+ msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
+ break;
+ case e1000_promisc_enabled:
+ msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
+ case e1000_promisc_unicast:
+ msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
+ case e1000_promisc_disabled:
+ break;
+ default:
+ return -E1000_ERR_MAC_INIT;
+ }
+
+ ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
+
+ if (!ret_val)
+ ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
+
+ if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
+ ret_val = -E1000_ERR_MAC_INIT;
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_mac_addr_vf - Read device MAC address
+ * @hw: pointer to the HW structure
+ **/
+static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
+{
+ int i;
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_check_for_link_vf - Check for link for a virtual interface
+ * @hw: pointer to the HW structure
+ *
+ * Checks to see if the underlying PF is still talking to the VF and
+ * if it is then it reports the link state to the hardware, otherwise
+ * it reports link down and returns an error.
+ **/
+static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+ u32 in_msg = 0;
+
+ DEBUGFUNC("e1000_check_for_link_vf");
+
+ /*
+ * We only want to run this if there has been a rst asserted.
+ * in this case that could mean a link change, device reset,
+ * or a virtual function reset
+ */
+
+ /* If we were hit with a reset drop the link */
+ if (!mbx->ops.check_for_rst(hw, 0))
+ mac->get_link_status = TRUE;
+
+ if (!mac->get_link_status)
+ goto out;
+
+ /* if link status is down no point in checking to see if pf is up */
+ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
+ goto out;
+
+ /* if the read failed it could just be a mailbox collision, best wait
+ * until we are called again and don't report an error */
+ if (mbx->ops.read(hw, &in_msg, 1, 0))
+ goto out;
+
+ /* if incoming message isn't clear to send we are waiting on response */
+ if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
+ /* message is not CTS and is NACK we have lost CTS status */
+ if (in_msg & E1000_VT_MSGTYPE_NACK)
+ ret_val = -E1000_ERR_MAC_INIT;
+ goto out;
+ }
+
+ /* at this point we know the PF is talking to us, check and see if
+ * we are still accepting timeout or if we had a timeout failure.
+ * if we failed then we will need to reinit */
+ if (!mbx->timeout) {
+ ret_val = -E1000_ERR_MAC_INIT;
+ goto out;
+ }
+
+ /* if we passed all the tests above then the link is up and we no
+ * longer need to check for link */
+ mac->get_link_status = FALSE;
+
+out:
+ return ret_val;
+}
+
diff --git a/freebsd/dev/e1000/e1000_vf.h b/freebsd/dev/e1000/e1000_vf.h
new file mode 100644
index 00000000..7afa1f6c
--- /dev/null
+++ b/freebsd/dev/e1000/e1000_vf.h
@@ -0,0 +1,297 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_VF_HH_
+#define _E1000_VF_HH_
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_osdep.h>
+#include <freebsd/local/e1000_regs.h>
+#include <freebsd/local/e1000_defines.h>
+#else
+#include <freebsd/dev/e1000/e1000_osdep.h>
+#include <freebsd/dev/e1000/e1000_regs.h>
+#include <freebsd/dev/e1000/e1000_defines.h>
+#endif
+
+struct e1000_hw;
+
+#define E1000_DEV_ID_82576_VF 0x10CA
+
+#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */
+
+/* Additional Descriptor Control definitions */
+#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */
+#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */
+
+/* SRRCTL bit definitions */
+#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
+#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
+#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
+#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
+#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
+#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
+#define E1000_SRRCTL_DROP_EN 0x80000000
+
+#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
+#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
+
+/* Interrupt Defines */
+#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
+#define E1000_EITR(_n) (0x01680 + ((_n) << 2))
+#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
+#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
+#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
+#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
+#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
+#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */
+#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */
+#define E1000_IVAR_VALID 0x80
+
+/* Receive Descriptor - Advanced */
+union e1000_adv_rx_desc {
+ struct {
+ u64 pkt_addr; /* Packet buffer address */
+ u64 hdr_addr; /* Header buffer address */
+ } read;
+ struct {
+ struct {
+ union {
+ u32 data;
+ struct {
+ u16 pkt_info; /* RSS type, Packet type */
+ u16 hdr_info; /* Split Header,
+ * header buffer length */
+ } hs_rss;
+ } lo_dword;
+ union {
+ u32 rss; /* RSS Hash */
+ struct {
+ u16 ip_id; /* IP id */
+ u16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ u32 status_error; /* ext status/error */
+ u16 length; /* Packet length */
+ u16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
+#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
+
+/* Transmit Descriptor - Advanced */
+union e1000_adv_tx_desc {
+ struct {
+ u64 buffer_addr; /* Address of descriptor's data buf */
+ u32 cmd_type_len;
+ u32 olinfo_status;
+ } read;
+ struct {
+ u64 rsvd; /* Reserved */
+ u32 nxtseq_seed;
+ u32 status;
+ } wb;
+};
+
+/* Adv Transmit Descriptor Config Masks */
+#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
+#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
+#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
+#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
+#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
+#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
+#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
+#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
+
+/* Context descriptors */
+struct e1000_adv_tx_context_desc {
+ u32 vlan_macip_lens;
+ u32 seqnum_seed;
+ u32 type_tucmd_mlhl;
+ u32 mss_l4len_idx;
+};
+
+#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
+#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
+#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
+#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
+
+enum e1000_mac_type {
+ e1000_undefined = 0,
+ e1000_vfadapt,
+ e1000_num_macs /* List is 1-based, so subtract 1 for TRUE count. */
+};
+
+struct e1000_vf_stats {
+ u64 base_gprc;
+ u64 base_gptc;
+ u64 base_gorc;
+ u64 base_gotc;
+ u64 base_mprc;
+ u64 base_gotlbc;
+ u64 base_gptlbc;
+ u64 base_gorlbc;
+ u64 base_gprlbc;
+
+ u32 last_gprc;
+ u32 last_gptc;
+ u32 last_gorc;
+ u32 last_gotc;
+ u32 last_mprc;
+ u32 last_gotlbc;
+ u32 last_gptlbc;
+ u32 last_gorlbc;
+ u32 last_gprlbc;
+
+ u64 gprc;
+ u64 gptc;
+ u64 gorc;
+ u64 gotc;
+ u64 mprc;
+ u64 gotlbc;
+ u64 gptlbc;
+ u64 gorlbc;
+ u64 gprlbc;
+};
+
+#include <freebsd/local/e1000_mbx.h>
+
+struct e1000_mac_operations {
+ /* Function pointers for the MAC. */
+ s32 (*init_params)(struct e1000_hw *);
+ s32 (*check_for_link)(struct e1000_hw *);
+ void (*clear_vfta)(struct e1000_hw *);
+ s32 (*get_bus_info)(struct e1000_hw *);
+ s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+ void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
+ s32 (*reset_hw)(struct e1000_hw *);
+ s32 (*init_hw)(struct e1000_hw *);
+ s32 (*setup_link)(struct e1000_hw *);
+ void (*write_vfta)(struct e1000_hw *, u32, u32);
+ void (*rar_set)(struct e1000_hw *, u8*, u32);
+ s32 (*read_mac_addr)(struct e1000_hw *);
+};
+
+struct e1000_mac_info {
+ struct e1000_mac_operations ops;
+ u8 addr[6];
+ u8 perm_addr[6];
+
+ enum e1000_mac_type type;
+
+ u16 mta_reg_count;
+ u16 rar_entry_count;
+
+ bool get_link_status;
+};
+
+struct e1000_mbx_operations {
+ s32 (*init_params)(struct e1000_hw *hw);
+ s32 (*read)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
+ s32 (*check_for_msg)(struct e1000_hw *, u16);
+ s32 (*check_for_ack)(struct e1000_hw *, u16);
+ s32 (*check_for_rst)(struct e1000_hw *, u16);
+};
+
+struct e1000_mbx_stats {
+ u32 msgs_tx;
+ u32 msgs_rx;
+
+ u32 acks;
+ u32 reqs;
+ u32 rsts;
+};
+
+struct e1000_mbx_info {
+ struct e1000_mbx_operations ops;
+ struct e1000_mbx_stats stats;
+ u32 timeout;
+ u32 usec_delay;
+ u16 size;
+};
+
+struct e1000_dev_spec_vf {
+ u32 vf_number;
+ u32 v2p_mailbox;
+};
+
+struct e1000_hw {
+ void *back;
+
+ u8 *hw_addr;
+ u8 *flash_address;
+ unsigned long io_base;
+
+ struct e1000_mac_info mac;
+ struct e1000_mbx_info mbx;
+
+ union {
+ struct e1000_dev_spec_vf vf;
+ } dev_spec;
+
+ u16 device_id;
+ u16 subsystem_vendor_id;
+ u16 subsystem_device_id;
+ u16 vendor_id;
+
+ u8 revision_id;
+};
+
+enum e1000_promisc_type {
+ e1000_promisc_disabled = 0, /* all promisc modes disabled */
+ e1000_promisc_unicast = 1, /* unicast promiscuous enabled */
+ e1000_promisc_multicast = 2, /* multicast promiscuous enabled */
+ e1000_promisc_enabled = 3, /* both uni and multicast promisc */
+ e1000_num_promisc_types
+};
+
+/* These functions must be implemented by drivers */
+s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
+void e1000_rlpml_set_vf(struct e1000_hw *, u16);
+s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type);
+#endif /* _E1000_VF_HH_ */
diff --git a/freebsd/dev/e1000/if_em.c b/freebsd/dev/e1000/if_em.c
new file mode 100644
index 00000000..6b9f4c4e
--- /dev/null
+++ b/freebsd/dev/e1000/if_em.c
@@ -0,0 +1,5526 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifdef HAVE_KERNEL_OPTION_HEADERS
+#include <freebsd/local/opt_device_polling.h>
+#include <freebsd/local/opt_inet.h>
+#endif
+
+#include <freebsd/sys/param.h>
+#include <freebsd/sys/systm.h>
+#if __FreeBSD_version >= 800000
+#include <freebsd/sys/buf_ring.h>
+#endif
+#include <freebsd/sys/bus.h>
+#include <freebsd/sys/endian.h>
+#include <freebsd/sys/kernel.h>
+#include <freebsd/sys/kthread.h>
+#include <freebsd/sys/malloc.h>
+#include <freebsd/sys/mbuf.h>
+#include <freebsd/sys/module.h>
+#include <freebsd/sys/rman.h>
+#include <freebsd/sys/socket.h>
+#include <freebsd/sys/sockio.h>
+#include <freebsd/sys/sysctl.h>
+#include <freebsd/sys/taskqueue.h>
+#include <freebsd/sys/eventhandler.h>
+#include <freebsd/machine/bus.h>
+#include <freebsd/machine/resource.h>
+
+#include <freebsd/net/bpf.h>
+#include <freebsd/net/ethernet.h>
+#include <freebsd/net/if.h>
+#include <freebsd/net/if_arp.h>
+#include <freebsd/net/if_dl.h>
+#include <freebsd/net/if_media.h>
+
+#include <freebsd/net/if_types.h>
+#include <freebsd/net/if_vlan_var.h>
+
+#include <freebsd/netinet/in_systm.h>
+#include <freebsd/netinet/in.h>
+#include <freebsd/netinet/if_ether.h>
+#include <freebsd/netinet/ip.h>
+#include <freebsd/netinet/ip6.h>
+#include <freebsd/netinet/tcp.h>
+#include <freebsd/netinet/udp.h>
+
+#include <freebsd/machine/in_cksum.h>
+#ifndef __rtems__
+#include <freebsd/dev/led/led.h>
+#endif
+#include <freebsd/dev/pci/pcivar.h>
+#include <freebsd/dev/pci/pcireg.h>
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#include <freebsd/local/e1000_82571.h>
+#include <freebsd/local/if_em.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#include <freebsd/dev/e1000/e1000_82571.h>
+#include <freebsd/dev/e1000/if_em.h>
+#endif
+
+/*********************************************************************
+ * Set this to one to display debug statistics
+ *********************************************************************/
+int em_display_debug_stats = 0;
+
+/*********************************************************************
+ * Driver version:
+ *********************************************************************/
+char em_driver_version[] = "7.1.9";
+
+/*********************************************************************
+ * PCI Device ID Table
+ *
+ * Used by probe to select devices to load on
+ * Last field stores an index into e1000_strings
+ * Last entry must be all 0s
+ *
+ * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
+ *********************************************************************/
+
+static em_vendor_info_t em_vendor_info_array[] =
+{
+ /* Intel(R) PRO/1000 Network Connection */
+ { 0x8086, E1000_DEV_ID_82571EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82571EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82571EB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82572EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82572EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82572EI_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82572EI, PCI_ANY_ID, PCI_ANY_ID, 0},
+
+ { 0x8086, E1000_DEV_ID_82573E, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82573E_IAMT, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82573L, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82583V, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH8_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH8_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH8_IFE, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH8_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH8_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH8_IGP_M, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH8_82567V_3, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH9_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH9_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH9_IGP_M, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH9_IGP_M_V, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH9_IFE, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH9_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH9_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH9_BM, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82574L, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82574LA, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH10_R_BM_LM, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH10_R_BM_LF, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH10_R_BM_V, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH10_D_BM_LM, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH10_D_BM_LF, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_ICH10_D_BM_V, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_PCH_M_HV_LM, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_PCH_M_HV_LC, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_PCH_D_HV_DM, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_PCH_D_HV_DC, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_PCH2_LV_LM, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_PCH2_LV_V, PCI_ANY_ID, PCI_ANY_ID, 0},
+ /* required last entry */
+ { 0, 0, 0, 0, 0}
+};
+
+/*********************************************************************
+ * Table of branding strings for all supported NICs.
+ *********************************************************************/
+
+static char *em_strings[] = {
+ "Intel(R) PRO/1000 Network Connection"
+};
+
+/*********************************************************************
+ * Function prototypes
+ *********************************************************************/
+static int em_probe(device_t);
+static int em_attach(device_t);
+static int em_detach(device_t);
+static int em_shutdown(device_t);
+static int em_suspend(device_t);
+static int em_resume(device_t);
+static void em_start(struct ifnet *);
+static void em_start_locked(struct ifnet *, struct tx_ring *);
+#ifdef EM_MULTIQUEUE
+static int em_mq_start(struct ifnet *, struct mbuf *);
+static int em_mq_start_locked(struct ifnet *,
+ struct tx_ring *, struct mbuf *);
+static void em_qflush(struct ifnet *);
+#endif
+static int em_ioctl(struct ifnet *, u_long, caddr_t);
+static void em_init(void *);
+static void em_init_locked(struct adapter *);
+static void em_stop(void *);
+static void em_media_status(struct ifnet *, struct ifmediareq *);
+static int em_media_change(struct ifnet *);
+static void em_identify_hardware(struct adapter *);
+static int em_allocate_pci_resources(struct adapter *);
+static int em_allocate_legacy(struct adapter *);
+static int em_allocate_msix(struct adapter *);
+static int em_allocate_queues(struct adapter *);
+static int em_setup_msix(struct adapter *);
+static void em_free_pci_resources(struct adapter *);
+static void em_local_timer(void *);
+static void em_reset(struct adapter *);
+static int em_setup_interface(device_t, struct adapter *);
+
+static void em_setup_transmit_structures(struct adapter *);
+static void em_initialize_transmit_unit(struct adapter *);
+static int em_allocate_transmit_buffers(struct tx_ring *);
+static void em_free_transmit_structures(struct adapter *);
+static void em_free_transmit_buffers(struct tx_ring *);
+
+static int em_setup_receive_structures(struct adapter *);
+static int em_allocate_receive_buffers(struct rx_ring *);
+static void em_initialize_receive_unit(struct adapter *);
+static void em_free_receive_structures(struct adapter *);
+static void em_free_receive_buffers(struct rx_ring *);
+
+static void em_enable_intr(struct adapter *);
+static void em_disable_intr(struct adapter *);
+static void em_update_stats_counters(struct adapter *);
+static void em_add_hw_stats(struct adapter *adapter);
+static bool em_txeof(struct tx_ring *);
+static bool em_rxeof(struct rx_ring *, int, int *);
+#ifndef __NO_STRICT_ALIGNMENT
+static int em_fixup_rx(struct rx_ring *);
+#endif
+static void em_receive_checksum(struct e1000_rx_desc *, struct mbuf *);
+static void em_transmit_checksum_setup(struct tx_ring *, struct mbuf *, int,
+ struct ip *, u32 *, u32 *);
+static void em_tso_setup(struct tx_ring *, struct mbuf *, int, struct ip *,
+ struct tcphdr *, u32 *, u32 *);
+static void em_set_promisc(struct adapter *);
+static void em_disable_promisc(struct adapter *);
+static void em_set_multi(struct adapter *);
+static void em_update_link_status(struct adapter *);
+static void em_refresh_mbufs(struct rx_ring *, int);
+static void em_register_vlan(void *, struct ifnet *, u16);
+static void em_unregister_vlan(void *, struct ifnet *, u16);
+static void em_setup_vlan_hw_support(struct adapter *);
+static int em_xmit(struct tx_ring *, struct mbuf **);
+static int em_dma_malloc(struct adapter *, bus_size_t,
+ struct em_dma_alloc *, int);
+static void em_dma_free(struct adapter *, struct em_dma_alloc *);
+static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
+static void em_print_nvm_info(struct adapter *);
+static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
+static void em_print_debug_info(struct adapter *);
+static int em_is_valid_ether_addr(u8 *);
+static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
+static void em_add_int_delay_sysctl(struct adapter *, const char *,
+ const char *, struct em_int_delay_info *, int, int);
+/* Management and WOL Support */
+static void em_init_manageability(struct adapter *);
+static void em_release_manageability(struct adapter *);
+static void em_get_hw_control(struct adapter *);
+static void em_release_hw_control(struct adapter *);
+static void em_get_wakeup(device_t);
+static void em_enable_wakeup(device_t);
+static int em_enable_phy_wakeup(struct adapter *);
+static void em_led_func(void *, int);
+static void em_disable_aspm(struct adapter *);
+
+static int em_irq_fast(void *);
+
+/* MSIX handlers */
+static void em_msix_tx(void *);
+static void em_msix_rx(void *);
+static void em_msix_link(void *);
+static void em_handle_tx(void *context, int pending);
+static void em_handle_rx(void *context, int pending);
+static void em_handle_link(void *context, int pending);
+
+static void em_add_rx_process_limit(struct adapter *, const char *,
+ const char *, int *, int);
+static void em_set_flow_cntrl(struct adapter *, const char *,
+ const char *, int *, int);
+
+static __inline void em_rx_discard(struct rx_ring *, int);
+
+#ifdef DEVICE_POLLING
+static poll_handler_t em_poll;
+#endif /* POLLING */
+
+/*********************************************************************
+ * FreeBSD Device Interface Entry Points
+ *********************************************************************/
+
+static device_method_t em_methods[] = {
+ /* Device interface */
+ DEVMETHOD(device_probe, em_probe),
+ DEVMETHOD(device_attach, em_attach),
+ DEVMETHOD(device_detach, em_detach),
+ DEVMETHOD(device_shutdown, em_shutdown),
+ DEVMETHOD(device_suspend, em_suspend),
+ DEVMETHOD(device_resume, em_resume),
+ {0, 0}
+};
+
+static driver_t em_driver = {
+ "em", em_methods, sizeof(struct adapter),
+};
+
+devclass_t em_devclass;
+DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
+MODULE_DEPEND(em, pci, 1, 1, 1);
+MODULE_DEPEND(em, ether, 1, 1, 1);
+
+/*********************************************************************
+ * Tunable default values.
+ *********************************************************************/
+
+#define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
+#define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
+#define M_TSO_LEN 66
+
+/* Allow common code without TSO */
+#ifndef CSUM_TSO
+#define CSUM_TSO 0
+#endif
+
+static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
+static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
+TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
+TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
+
+static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
+static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
+TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
+TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
+
+static int em_rxd = EM_DEFAULT_RXD;
+static int em_txd = EM_DEFAULT_TXD;
+TUNABLE_INT("hw.em.rxd", &em_rxd);
+TUNABLE_INT("hw.em.txd", &em_txd);
+
+static int em_smart_pwr_down = FALSE;
+TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
+
+/* Controls whether promiscuous also shows bad packets */
+static int em_debug_sbp = FALSE;
+TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
+
+static int em_enable_msix = TRUE;
+TUNABLE_INT("hw.em.enable_msix", &em_enable_msix);
+
+/* How many packets rxeof tries to clean at a time */
+static int em_rx_process_limit = 100;
+TUNABLE_INT("hw.em.rx_process_limit", &em_rx_process_limit);
+
+/* Flow control setting - default to FULL */
+static int em_fc_setting = e1000_fc_full;
+TUNABLE_INT("hw.em.fc_setting", &em_fc_setting);
+
+/* Global used in WOL setup with multiport cards */
+static int global_quad_port_a = 0;
+
+/*********************************************************************
+ * Device identification routine
+ *
+ * em_probe determines if the driver should be loaded on
+ * adapter based on PCI vendor/device id of the adapter.
+ *
+ * return BUS_PROBE_DEFAULT on success, positive on failure
+ *********************************************************************/
+
+static int
+em_probe(device_t dev)
+{
+ char adapter_name[60];
+ u16 pci_vendor_id = 0;
+ u16 pci_device_id = 0;
+ u16 pci_subvendor_id = 0;
+ u16 pci_subdevice_id = 0;
+ em_vendor_info_t *ent;
+
+ INIT_DEBUGOUT("em_probe: begin");
+
+ pci_vendor_id = pci_get_vendor(dev);
+ if (pci_vendor_id != EM_VENDOR_ID)
+ return (ENXIO);
+
+ pci_device_id = pci_get_device(dev);
+ pci_subvendor_id = pci_get_subvendor(dev);
+ pci_subdevice_id = pci_get_subdevice(dev);
+
+ ent = em_vendor_info_array;
+ while (ent->vendor_id != 0) {
+ if ((pci_vendor_id == ent->vendor_id) &&
+ (pci_device_id == ent->device_id) &&
+
+ ((pci_subvendor_id == ent->subvendor_id) ||
+ (ent->subvendor_id == PCI_ANY_ID)) &&
+
+ ((pci_subdevice_id == ent->subdevice_id) ||
+ (ent->subdevice_id == PCI_ANY_ID))) {
+ sprintf(adapter_name, "%s %s",
+ em_strings[ent->index],
+ em_driver_version);
+ device_set_desc_copy(dev, adapter_name);
+ return (BUS_PROBE_DEFAULT);
+ }
+ ent++;
+ }
+
+ return (ENXIO);
+}
+
+/*********************************************************************
+ * Device initialization routine
+ *
+ * The attach entry point is called when the driver is being loaded.
+ * This routine identifies the type of hardware, allocates all resources
+ * and initializes the hardware.
+ *
+ * return 0 on success, positive on failure
+ *********************************************************************/
+
+static int
+em_attach(device_t dev)
+{
+ struct adapter *adapter;
+ int error = 0;
+
+ INIT_DEBUGOUT("em_attach: begin");
+
+ adapter = device_get_softc(dev);
+ adapter->dev = adapter->osdep.dev = dev;
+ EM_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
+
+ /* SYSCTL stuff */
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
+ em_sysctl_nvm_info, "I", "NVM Information");
+
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
+ em_sysctl_debug_info, "I", "Debug Information");
+
+ callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
+
+ /* Determine hardware and mac info */
+ em_identify_hardware(adapter);
+
+ /* Setup PCI resources */
+ if (em_allocate_pci_resources(adapter)) {
+ device_printf(dev, "Allocation of PCI resources failed\n");
+ error = ENXIO;
+ goto err_pci;
+ }
+
+ /*
+ ** For ICH8 and family we need to
+ ** map the flash memory, and this
+ ** must happen after the MAC is
+ ** identified
+ */
+ if ((adapter->hw.mac.type == e1000_ich8lan) ||
+ (adapter->hw.mac.type == e1000_ich9lan) ||
+ (adapter->hw.mac.type == e1000_ich10lan) ||
+ (adapter->hw.mac.type == e1000_pchlan) ||
+ (adapter->hw.mac.type == e1000_pch2lan)) {
+ int rid = EM_BAR_TYPE_FLASH;
+ adapter->flash = bus_alloc_resource_any(dev,
+ SYS_RES_MEMORY, &rid, RF_ACTIVE);
+ if (adapter->flash == NULL) {
+ device_printf(dev, "Mapping of Flash failed\n");
+ error = ENXIO;
+ goto err_pci;
+ }
+ /* This is used in the shared code */
+ adapter->hw.flash_address = (u8 *)adapter->flash;
+ adapter->osdep.flash_bus_space_tag =
+ rman_get_bustag(adapter->flash);
+ adapter->osdep.flash_bus_space_handle =
+ rman_get_bushandle(adapter->flash);
+ }
+
+ /* Do Shared Code initialization */
+ if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
+ device_printf(dev, "Setup of Shared code failed\n");
+ error = ENXIO;
+ goto err_pci;
+ }
+
+ e1000_get_bus_info(&adapter->hw);
+
+ /* Set up some sysctls for the tunable interrupt delays */
+ em_add_int_delay_sysctl(adapter, "rx_int_delay",
+ "receive interrupt delay in usecs", &adapter->rx_int_delay,
+ E1000_REGISTER(&adapter->hw, E1000_RDTR), em_rx_int_delay_dflt);
+ em_add_int_delay_sysctl(adapter, "tx_int_delay",
+ "transmit interrupt delay in usecs", &adapter->tx_int_delay,
+ E1000_REGISTER(&adapter->hw, E1000_TIDV), em_tx_int_delay_dflt);
+ em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
+ "receive interrupt delay limit in usecs",
+ &adapter->rx_abs_int_delay,
+ E1000_REGISTER(&adapter->hw, E1000_RADV),
+ em_rx_abs_int_delay_dflt);
+ em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
+ "transmit interrupt delay limit in usecs",
+ &adapter->tx_abs_int_delay,
+ E1000_REGISTER(&adapter->hw, E1000_TADV),
+ em_tx_abs_int_delay_dflt);
+
+ /* Sysctl for limiting the amount of work done in the taskqueue */
+ em_add_rx_process_limit(adapter, "rx_processing_limit",
+ "max number of rx packets to process", &adapter->rx_process_limit,
+ em_rx_process_limit);
+
+ /* Sysctl for setting the interface flow control */
+ em_set_flow_cntrl(adapter, "flow_control",
+ "configure flow control",
+ &adapter->fc_setting, em_fc_setting);
+
+ /*
+ * Validate number of transmit and receive descriptors. It
+ * must not exceed hardware maximum, and must be multiple
+ * of E1000_DBA_ALIGN.
+ */
+ if (((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN) != 0 ||
+ (em_txd > EM_MAX_TXD) || (em_txd < EM_MIN_TXD)) {
+ device_printf(dev, "Using %d TX descriptors instead of %d!\n",
+ EM_DEFAULT_TXD, em_txd);
+ adapter->num_tx_desc = EM_DEFAULT_TXD;
+ } else
+ adapter->num_tx_desc = em_txd;
+
+ if (((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN) != 0 ||
+ (em_rxd > EM_MAX_RXD) || (em_rxd < EM_MIN_RXD)) {
+ device_printf(dev, "Using %d RX descriptors instead of %d!\n",
+ EM_DEFAULT_RXD, em_rxd);
+ adapter->num_rx_desc = EM_DEFAULT_RXD;
+ } else
+ adapter->num_rx_desc = em_rxd;
+
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_wait_to_complete = FALSE;
+ adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+
+ /* Copper options */
+ if (adapter->hw.phy.media_type == e1000_media_type_copper) {
+ adapter->hw.phy.mdix = AUTO_ALL_MODES;
+ adapter->hw.phy.disable_polarity_correction = FALSE;
+ adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
+ }
+
+ /*
+ * Set the frame limits assuming
+ * standard ethernet sized frames.
+ */
+ adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
+ adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
+
+ /*
+ * This controls when hardware reports transmit completion
+ * status.
+ */
+ adapter->hw.mac.report_tx_early = 1;
+
+ /*
+ ** Get queue/ring memory
+ */
+ if (em_allocate_queues(adapter)) {
+ error = ENOMEM;
+ goto err_pci;
+ }
+
+ /* Allocate multicast array memory. */
+ adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
+ MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
+ if (adapter->mta == NULL) {
+ device_printf(dev, "Can not allocate multicast setup array\n");
+ error = ENOMEM;
+ goto err_late;
+ }
+
+ /* Check SOL/IDER usage */
+ if (e1000_check_reset_block(&adapter->hw))
+ device_printf(dev, "PHY reset is blocked"
+ " due to SOL/IDER session.\n");
+
+ /*
+ ** Start from a known state, this is
+ ** important in reading the nvm and
+ ** mac from that.
+ */
+ e1000_reset_hw(&adapter->hw);
+
+ /* Make sure we have a good EEPROM before we read from it */
+ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+ /*
+ ** Some PCI-E parts fail the first check due to
+ ** the link being in sleep state, call it again,
+ ** if it fails a second time its a real issue.
+ */
+ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+ device_printf(dev,
+ "The EEPROM Checksum Is Not Valid\n");
+ error = EIO;
+ goto err_late;
+ }
+ }
+
+ /* Copy the permanent MAC address out of the EEPROM */
+ if (e1000_read_mac_addr(&adapter->hw) < 0) {
+ device_printf(dev, "EEPROM read error while reading MAC"
+ " address\n");
+ error = EIO;
+ goto err_late;
+ }
+
+ if (!em_is_valid_ether_addr(adapter->hw.mac.addr)) {
+ device_printf(dev, "Invalid MAC address\n");
+ error = EIO;
+ goto err_late;
+ }
+
+ /*
+ ** Do interrupt configuration
+ */
+ if (adapter->msix > 1) /* Do MSIX */
+ error = em_allocate_msix(adapter);
+ else /* MSI or Legacy */
+ error = em_allocate_legacy(adapter);
+ if (error)
+ goto err_late;
+
+ /*
+ * Get Wake-on-Lan and Management info for later use
+ */
+ em_get_wakeup(dev);
+
+ /* Setup OS specific network interface */
+ if (em_setup_interface(dev, adapter) != 0)
+ goto err_late;
+
+ em_reset(adapter);
+
+ /* Initialize statistics */
+ em_update_stats_counters(adapter);
+
+ adapter->hw.mac.get_link_status = 1;
+ em_update_link_status(adapter);
+
+ /* Register for VLAN events */
+ adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
+ em_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
+ adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
+ em_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
+
+ em_add_hw_stats(adapter);
+
+ /* Non-AMT based hardware can now take control from firmware */
+ if (adapter->has_manage && !adapter->has_amt)
+ em_get_hw_control(adapter);
+
+ /* Tell the stack that the interface is not active */
+ adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+
+ adapter->led_dev = led_create(em_led_func, adapter,
+ device_get_nameunit(dev));
+
+ INIT_DEBUGOUT("em_attach: end");
+
+ return (0);
+
+err_late:
+ em_free_transmit_structures(adapter);
+ em_free_receive_structures(adapter);
+ em_release_hw_control(adapter);
+ if (adapter->ifp != NULL)
+ if_free(adapter->ifp);
+err_pci:
+ em_free_pci_resources(adapter);
+ free(adapter->mta, M_DEVBUF);
+ EM_CORE_LOCK_DESTROY(adapter);
+
+ return (error);
+}
+
+/*********************************************************************
+ * Device removal routine
+ *
+ * The detach entry point is called when the driver is being removed.
+ * This routine stops the adapter and deallocates all the resources
+ * that were allocated for driver operation.
+ *
+ * return 0 on success, positive on failure
+ *********************************************************************/
+
+static int
+em_detach(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+ struct ifnet *ifp = adapter->ifp;
+
+ INIT_DEBUGOUT("em_detach: begin");
+
+ /* Make sure VLANS are not using driver */
+ if (adapter->ifp->if_vlantrunk != NULL) {
+ device_printf(dev,"Vlan in use, detach first\n");
+ return (EBUSY);
+ }
+
+#ifdef DEVICE_POLLING
+ if (ifp->if_capenable & IFCAP_POLLING)
+ ether_poll_deregister(ifp);
+#endif
+
+ if (adapter->led_dev != NULL)
+ led_destroy(adapter->led_dev);
+
+ EM_CORE_LOCK(adapter);
+ adapter->in_detach = 1;
+ em_stop(adapter);
+ EM_CORE_UNLOCK(adapter);
+ EM_CORE_LOCK_DESTROY(adapter);
+
+ e1000_phy_hw_reset(&adapter->hw);
+
+ em_release_manageability(adapter);
+ em_release_hw_control(adapter);
+
+ /* Unregister VLAN events */
+ if (adapter->vlan_attach != NULL)
+ EVENTHANDLER_DEREGISTER(vlan_config, adapter->vlan_attach);
+ if (adapter->vlan_detach != NULL)
+ EVENTHANDLER_DEREGISTER(vlan_unconfig, adapter->vlan_detach);
+
+ ether_ifdetach(adapter->ifp);
+ callout_drain(&adapter->timer);
+
+ em_free_pci_resources(adapter);
+ bus_generic_detach(dev);
+ if_free(ifp);
+
+ em_free_transmit_structures(adapter);
+ em_free_receive_structures(adapter);
+
+ em_release_hw_control(adapter);
+ free(adapter->mta, M_DEVBUF);
+
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * Shutdown entry point
+ *
+ **********************************************************************/
+
+static int
+em_shutdown(device_t dev)
+{
+ return em_suspend(dev);
+}
+
+/*
+ * Suspend/resume device methods.
+ */
+static int
+em_suspend(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+
+ EM_CORE_LOCK(adapter);
+
+ em_release_manageability(adapter);
+ em_release_hw_control(adapter);
+ em_enable_wakeup(dev);
+
+ EM_CORE_UNLOCK(adapter);
+
+ return bus_generic_suspend(dev);
+}
+
+static int
+em_resume(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+ struct ifnet *ifp = adapter->ifp;
+
+ EM_CORE_LOCK(adapter);
+ em_init_locked(adapter);
+ em_init_manageability(adapter);
+ EM_CORE_UNLOCK(adapter);
+ em_start(ifp);
+
+ return bus_generic_resume(dev);
+}
+
+
+/*********************************************************************
+ * Transmit entry point
+ *
+ * em_start is called by the stack to initiate a transmit.
+ * The driver will remain in this routine as long as there are
+ * packets to transmit and transmit resources are available.
+ * In case resources are not available stack is notified and
+ * the packet is requeued.
+ **********************************************************************/
+
+#ifdef EM_MULTIQUEUE
+static int
+em_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr, struct mbuf *m)
+{
+ struct adapter *adapter = txr->adapter;
+ struct mbuf *next;
+ int err = 0, enq = 0;
+
+ if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
+ IFF_DRV_RUNNING || adapter->link_active == 0) {
+ if (m != NULL)
+ err = drbr_enqueue(ifp, txr->br, m);
+ return (err);
+ }
+
+ /* Call cleanup if number of TX descriptors low */
+ if (txr->tx_avail <= EM_TX_CLEANUP_THRESHOLD)
+ em_txeof(txr);
+
+ enq = 0;
+ if (m == NULL) {
+ next = drbr_dequeue(ifp, txr->br);
+ } else if (drbr_needs_enqueue(ifp, txr->br)) {
+ if ((err = drbr_enqueue(ifp, txr->br, m)) != 0)
+ return (err);
+ next = drbr_dequeue(ifp, txr->br);
+ } else
+ next = m;
+
+ /* Process the queue */
+ while (next != NULL) {
+ if ((err = em_xmit(txr, &next)) != 0) {
+ if (next != NULL)
+ err = drbr_enqueue(ifp, txr->br, next);
+ break;
+ }
+ enq++;
+ drbr_stats_update(ifp, next->m_pkthdr.len, next->m_flags);
+ ETHER_BPF_MTAP(ifp, next);
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
+ break;
+ if (txr->tx_avail < EM_MAX_SCATTER) {
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ break;
+ }
+ next = drbr_dequeue(ifp, txr->br);
+ }
+
+ if (enq > 0) {
+ /* Set the watchdog */
+ txr->queue_status = EM_QUEUE_WORKING;
+ txr->watchdog_time = ticks;
+ }
+ return (err);
+}
+
+/*
+** Multiqueue capable stack interface
+*/
+static int
+em_mq_start(struct ifnet *ifp, struct mbuf *m)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct tx_ring *txr = adapter->tx_rings;
+ int error;
+
+ if (EM_TX_TRYLOCK(txr)) {
+ error = em_mq_start_locked(ifp, txr, m);
+ EM_TX_UNLOCK(txr);
+ } else
+ error = drbr_enqueue(ifp, txr->br, m);
+
+ return (error);
+}
+
+/*
+** Flush all ring buffers
+*/
+static void
+em_qflush(struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct tx_ring *txr = adapter->tx_rings;
+ struct mbuf *m;
+
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ EM_TX_LOCK(txr);
+ while ((m = buf_ring_dequeue_sc(txr->br)) != NULL)
+ m_freem(m);
+ EM_TX_UNLOCK(txr);
+ }
+ if_qflush(ifp);
+}
+
+#endif /* EM_MULTIQUEUE */
+
+static void
+em_start_locked(struct ifnet *ifp, struct tx_ring *txr)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct mbuf *m_head;
+
+ EM_TX_LOCK_ASSERT(txr);
+
+ if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
+ IFF_DRV_RUNNING)
+ return;
+
+ if (!adapter->link_active)
+ return;
+
+ /* Call cleanup if number of TX descriptors low */
+ if (txr->tx_avail <= EM_TX_CLEANUP_THRESHOLD)
+ em_txeof(txr);
+
+ while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
+ if (txr->tx_avail < EM_MAX_SCATTER) {
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ break;
+ }
+ IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
+ if (m_head == NULL)
+ break;
+ /*
+ * Encapsulation can modify our pointer, and or make it
+ * NULL on failure. In that event, we can't requeue.
+ */
+ if (em_xmit(txr, &m_head)) {
+ if (m_head == NULL)
+ break;
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
+ break;
+ }
+
+ /* Send a copy of the frame to the BPF listener */
+ ETHER_BPF_MTAP(ifp, m_head);
+
+ /* Set timeout in case hardware has problems transmitting. */
+ txr->watchdog_time = ticks;
+ txr->queue_status = EM_QUEUE_WORKING;
+ }
+
+ return;
+}
+
+static void
+em_start(struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct tx_ring *txr = adapter->tx_rings;
+
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ EM_TX_LOCK(txr);
+ em_start_locked(ifp, txr);
+ EM_TX_UNLOCK(txr);
+ }
+ return;
+}
+
+/*********************************************************************
+ * Ioctl entry point
+ *
+ * em_ioctl is called when the user wants to configure the
+ * interface.
+ *
+ * return 0 on success, positive on failure
+ **********************************************************************/
+
+static int
+em_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct ifreq *ifr = (struct ifreq *)data;
+#ifdef INET
+ struct ifaddr *ifa = (struct ifaddr *)data;
+#endif
+ int error = 0;
+
+ if (adapter->in_detach)
+ return (error);
+
+ switch (command) {
+ case SIOCSIFADDR:
+#ifdef INET
+ if (ifa->ifa_addr->sa_family == AF_INET) {
+ /*
+ * XXX
+ * Since resetting hardware takes a very long time
+ * and results in link renegotiation we only
+ * initialize the hardware only when it is absolutely
+ * required.
+ */
+ ifp->if_flags |= IFF_UP;
+ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
+ EM_CORE_LOCK(adapter);
+ em_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
+ }
+ arp_ifinit(ifp, ifa);
+ } else
+#endif
+ error = ether_ioctl(ifp, command, data);
+ break;
+ case SIOCSIFMTU:
+ {
+ int max_frame_size;
+
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
+
+ EM_CORE_LOCK(adapter);
+ switch (adapter->hw.mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_ich9lan:
+ case e1000_ich10lan:
+ case e1000_pch2lan:
+ case e1000_82574:
+ case e1000_80003es2lan: /* 9K Jumbo Frame size */
+ max_frame_size = 9234;
+ break;
+ case e1000_pchlan:
+ max_frame_size = 4096;
+ break;
+ /* Adapters that do not support jumbo frames */
+ case e1000_82583:
+ case e1000_ich8lan:
+ max_frame_size = ETHER_MAX_LEN;
+ break;
+ default:
+ max_frame_size = MAX_JUMBO_FRAME_SIZE;
+ }
+ if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
+ ETHER_CRC_LEN) {
+ EM_CORE_UNLOCK(adapter);
+ error = EINVAL;
+ break;
+ }
+
+ ifp->if_mtu = ifr->ifr_mtu;
+ adapter->max_frame_size =
+ ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
+ em_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
+ break;
+ }
+ case SIOCSIFFLAGS:
+ IOCTL_DEBUGOUT("ioctl rcv'd:\
+ SIOCSIFFLAGS (Set Interface Flags)");
+ EM_CORE_LOCK(adapter);
+ if (ifp->if_flags & IFF_UP) {
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
+ if ((ifp->if_flags ^ adapter->if_flags) &
+ (IFF_PROMISC | IFF_ALLMULTI)) {
+ em_disable_promisc(adapter);
+ em_set_promisc(adapter);
+ }
+ } else
+ em_init_locked(adapter);
+ } else
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING)
+ em_stop(adapter);
+ adapter->if_flags = ifp->if_flags;
+ EM_CORE_UNLOCK(adapter);
+ break;
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ EM_CORE_LOCK(adapter);
+ em_disable_intr(adapter);
+ em_set_multi(adapter);
+#ifdef DEVICE_POLLING
+ if (!(ifp->if_capenable & IFCAP_POLLING))
+#endif
+ em_enable_intr(adapter);
+ EM_CORE_UNLOCK(adapter);
+ }
+ break;
+ case SIOCSIFMEDIA:
+ /*
+ ** As the speed/duplex settings are being
+ ** changed, we need to reset the PHY.
+ */
+ adapter->hw.phy.reset_disable = FALSE;
+ /* Check SOL/IDER usage */
+ EM_CORE_LOCK(adapter);
+ if (e1000_check_reset_block(&adapter->hw)) {
+ EM_CORE_UNLOCK(adapter);
+ device_printf(adapter->dev, "Media change is"
+ " blocked due to SOL/IDER session.\n");
+ break;
+ }
+ EM_CORE_UNLOCK(adapter);
+ /* falls thru */
+ case SIOCGIFMEDIA:
+ IOCTL_DEBUGOUT("ioctl rcv'd: \
+ SIOCxIFMEDIA (Get/Set Interface Media)");
+ error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
+ break;
+ case SIOCSIFCAP:
+ {
+ int mask, reinit;
+
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
+ reinit = 0;
+ mask = ifr->ifr_reqcap ^ ifp->if_capenable;
+#ifdef DEVICE_POLLING
+ if (mask & IFCAP_POLLING) {
+ if (ifr->ifr_reqcap & IFCAP_POLLING) {
+ error = ether_poll_register(em_poll, ifp);
+ if (error)
+ return (error);
+ EM_CORE_LOCK(adapter);
+ em_disable_intr(adapter);
+ ifp->if_capenable |= IFCAP_POLLING;
+ EM_CORE_UNLOCK(adapter);
+ } else {
+ error = ether_poll_deregister(ifp);
+ /* Enable interrupt even in error case */
+ EM_CORE_LOCK(adapter);
+ em_enable_intr(adapter);
+ ifp->if_capenable &= ~IFCAP_POLLING;
+ EM_CORE_UNLOCK(adapter);
+ }
+ }
+#endif
+ if (mask & IFCAP_HWCSUM) {
+ ifp->if_capenable ^= IFCAP_HWCSUM;
+ reinit = 1;
+ }
+ if (mask & IFCAP_TSO4) {
+ ifp->if_capenable ^= IFCAP_TSO4;
+ reinit = 1;
+ }
+ if (mask & IFCAP_VLAN_HWTAGGING) {
+ ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
+ reinit = 1;
+ }
+ if (mask & IFCAP_VLAN_HWFILTER) {
+ ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
+ reinit = 1;
+ }
+ if ((mask & IFCAP_WOL) &&
+ (ifp->if_capabilities & IFCAP_WOL) != 0) {
+ if (mask & IFCAP_WOL_MCAST)
+ ifp->if_capenable ^= IFCAP_WOL_MCAST;
+ if (mask & IFCAP_WOL_MAGIC)
+ ifp->if_capenable ^= IFCAP_WOL_MAGIC;
+ }
+ if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING))
+ em_init(adapter);
+ VLAN_CAPABILITIES(ifp);
+ break;
+ }
+
+ default:
+ error = ether_ioctl(ifp, command, data);
+ break;
+ }
+
+ return (error);
+}
+
+
+/*********************************************************************
+ * Init entry point
+ *
+ * This routine is used in two ways. It is used by the stack as
+ * init entry point in network interface structure. It is also used
+ * by the driver as a hw/sw initialization routine to get to a
+ * consistent state.
+ *
+ * return 0 on success, positive on failure
+ **********************************************************************/
+
+static void
+em_init_locked(struct adapter *adapter)
+{
+ struct ifnet *ifp = adapter->ifp;
+ device_t dev = adapter->dev;
+ u32 pba;
+
+ INIT_DEBUGOUT("em_init: begin");
+
+ EM_CORE_LOCK_ASSERT(adapter);
+
+ em_disable_intr(adapter);
+ callout_stop(&adapter->timer);
+
+ /*
+ * Packet Buffer Allocation (PBA)
+ * Writing PBA sets the receive portion of the buffer
+ * the remainder is used for the transmit buffer.
+ */
+ switch (adapter->hw.mac.type) {
+ /* Total Packet Buffer on these is 48K */
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_80003es2lan:
+ pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
+ break;
+ case e1000_82573: /* 82573: Total Packet Buffer is 32K */
+ pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
+ break;
+ case e1000_ich8lan:
+ pba = E1000_PBA_8K;
+ break;
+ case e1000_ich9lan:
+ case e1000_ich10lan:
+ pba = E1000_PBA_10K;
+ break;
+ case e1000_pchlan:
+ case e1000_pch2lan:
+ pba = E1000_PBA_26K;
+ break;
+ default:
+ if (adapter->max_frame_size > 8192)
+ pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
+ else
+ pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
+ }
+
+ INIT_DEBUGOUT1("em_init: pba=%dK",pba);
+ E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
+
+ /* Get the latest mac address, User can use a LAA */
+ bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr,
+ ETHER_ADDR_LEN);
+
+ /* Put the address into the Receive Address Array */
+ e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
+
+ /*
+ * With the 82571 adapter, RAR[0] may be overwritten
+ * when the other port is reset, we make a duplicate
+ * in RAR[14] for that eventuality, this assures
+ * the interface continues to function.
+ */
+ if (adapter->hw.mac.type == e1000_82571) {
+ e1000_set_laa_state_82571(&adapter->hw, TRUE);
+ e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
+ E1000_RAR_ENTRIES - 1);
+ }
+
+ /* Initialize the hardware */
+ em_reset(adapter);
+ em_update_link_status(adapter);
+
+ /* Setup VLAN support, basic and offload if available */
+ E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
+
+ /* Set hardware offload abilities */
+ ifp->if_hwassist = 0;
+ if (ifp->if_capenable & IFCAP_TXCSUM)
+ ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
+ if (ifp->if_capenable & IFCAP_TSO4)
+ ifp->if_hwassist |= CSUM_TSO;
+
+ /* Configure for OS presence */
+ em_init_manageability(adapter);
+
+ /* Prepare transmit descriptors and buffers */
+ em_setup_transmit_structures(adapter);
+ em_initialize_transmit_unit(adapter);
+
+ /* Setup Multicast table */
+ em_set_multi(adapter);
+
+ /*
+ ** Figure out the desired mbuf
+ ** pool for doing jumbos
+ */
+ if (adapter->max_frame_size <= 2048)
+ adapter->rx_mbuf_sz = MCLBYTES;
+ else if (adapter->max_frame_size <= 4096)
+ adapter->rx_mbuf_sz = MJUMPAGESIZE;
+ else
+ adapter->rx_mbuf_sz = MJUM9BYTES;
+
+ /* Prepare receive descriptors and buffers */
+ if (em_setup_receive_structures(adapter)) {
+ device_printf(dev, "Could not setup receive structures\n");
+ em_stop(adapter);
+ return;
+ }
+ em_initialize_receive_unit(adapter);
+
+ /* Use real VLAN Filter support? */
+ if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
+ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
+ /* Use real VLAN Filter support */
+ em_setup_vlan_hw_support(adapter);
+ else {
+ u32 ctrl;
+ ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_VME;
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
+ }
+ }
+
+ /* Don't lose promiscuous settings */
+ em_set_promisc(adapter);
+
+ ifp->if_drv_flags |= IFF_DRV_RUNNING;
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+
+ callout_reset(&adapter->timer, hz, em_local_timer, adapter);
+ e1000_clear_hw_cntrs_base_generic(&adapter->hw);
+
+ /* MSI/X configuration for 82574 */
+ if (adapter->hw.mac.type == e1000_82574) {
+ int tmp;
+ tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ tmp |= E1000_CTRL_EXT_PBA_CLR;
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
+ /* Set the IVAR - interrupt vector routing. */
+ E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
+ }
+
+#ifdef DEVICE_POLLING
+ /*
+ * Only enable interrupts if we are not polling, make sure
+ * they are off otherwise.
+ */
+ if (ifp->if_capenable & IFCAP_POLLING)
+ em_disable_intr(adapter);
+ else
+#endif /* DEVICE_POLLING */
+ em_enable_intr(adapter);
+
+ /* AMT based hardware can now take control from firmware */
+ if (adapter->has_manage && adapter->has_amt)
+ em_get_hw_control(adapter);
+
+ /* Don't reset the phy next time init gets called */
+ adapter->hw.phy.reset_disable = TRUE;
+}
+
+static void
+em_init(void *arg)
+{
+ struct adapter *adapter = arg;
+
+ EM_CORE_LOCK(adapter);
+ em_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
+}
+
+
+#ifdef DEVICE_POLLING
+/*********************************************************************
+ *
+ * Legacy polling routine: note this only works with single queue
+ *
+ *********************************************************************/
+static int
+em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct tx_ring *txr = adapter->tx_rings;
+ struct rx_ring *rxr = adapter->rx_rings;
+ u32 reg_icr;
+ int rx_done;
+
+ EM_CORE_LOCK(adapter);
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
+ EM_CORE_UNLOCK(adapter);
+ return (0);
+ }
+
+ if (cmd == POLL_AND_CHECK_STATUS) {
+ reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
+ callout_stop(&adapter->timer);
+ adapter->hw.mac.get_link_status = 1;
+ em_update_link_status(adapter);
+ callout_reset(&adapter->timer, hz,
+ em_local_timer, adapter);
+ }
+ }
+ EM_CORE_UNLOCK(adapter);
+
+ em_rxeof(rxr, count, &rx_done);
+
+ EM_TX_LOCK(txr);
+ em_txeof(txr);
+#ifdef EM_MULTIQUEUE
+ if (!drbr_empty(ifp, txr->br))
+ em_mq_start_locked(ifp, txr, NULL);
+#else
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ em_start_locked(ifp, txr);
+#endif
+ EM_TX_UNLOCK(txr);
+
+ return (rx_done);
+}
+#endif /* DEVICE_POLLING */
+
+
+/*********************************************************************
+ *
+ * Fast Legacy/MSI Combined Interrupt Service routine
+ *
+ *********************************************************************/
+static int
+em_irq_fast(void *arg)
+{
+ struct adapter *adapter = arg;
+ struct ifnet *ifp;
+ u32 reg_icr;
+
+ ifp = adapter->ifp;
+
+ reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+
+ /* Hot eject? */
+ if (reg_icr == 0xffffffff)
+ return FILTER_STRAY;
+
+ /* Definitely not our interrupt. */
+ if (reg_icr == 0x0)
+ return FILTER_STRAY;
+
+ /*
+ * Starting with the 82571 chip, bit 31 should be used to
+ * determine whether the interrupt belongs to us.
+ */
+ if (adapter->hw.mac.type >= e1000_82571 &&
+ (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
+ return FILTER_STRAY;
+
+ em_disable_intr(adapter);
+ taskqueue_enqueue(adapter->tq, &adapter->que_task);
+
+ /* Link status change */
+ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
+ adapter->hw.mac.get_link_status = 1;
+ taskqueue_enqueue(taskqueue_fast, &adapter->link_task);
+ }
+
+ if (reg_icr & E1000_ICR_RXO)
+ adapter->rx_overruns++;
+ return FILTER_HANDLED;
+}
+
+/* Combined RX/TX handler, used by Legacy and MSI */
+static void
+em_handle_que(void *context, int pending)
+{
+ struct adapter *adapter = context;
+ struct ifnet *ifp = adapter->ifp;
+ struct tx_ring *txr = adapter->tx_rings;
+ struct rx_ring *rxr = adapter->rx_rings;
+ bool more;
+
+
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ more = em_rxeof(rxr, adapter->rx_process_limit, NULL);
+
+ EM_TX_LOCK(txr);
+ em_txeof(txr);
+#ifdef EM_MULTIQUEUE
+ if (!drbr_empty(ifp, txr->br))
+ em_mq_start_locked(ifp, txr, NULL);
+#else
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ em_start_locked(ifp, txr);
+#endif
+ em_txeof(txr);
+ EM_TX_UNLOCK(txr);
+ if (more) {
+ taskqueue_enqueue(adapter->tq, &adapter->que_task);
+ return;
+ }
+ }
+
+ em_enable_intr(adapter);
+ return;
+}
+
+
+/*********************************************************************
+ *
+ * MSIX Interrupt Service Routines
+ *
+ **********************************************************************/
+static void
+em_msix_tx(void *arg)
+{
+ struct tx_ring *txr = arg;
+ struct adapter *adapter = txr->adapter;
+ bool more;
+
+ ++txr->tx_irq;
+ EM_TX_LOCK(txr);
+ more = em_txeof(txr);
+ EM_TX_UNLOCK(txr);
+ if (more)
+ taskqueue_enqueue(txr->tq, &txr->tx_task);
+ else
+ /* Reenable this interrupt */
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS, txr->ims);
+ return;
+}
+
+/*********************************************************************
+ *
+ * MSIX RX Interrupt Service routine
+ *
+ **********************************************************************/
+
+static void
+em_msix_rx(void *arg)
+{
+ struct rx_ring *rxr = arg;
+ struct adapter *adapter = rxr->adapter;
+ bool more;
+
+ ++rxr->rx_irq;
+ more = em_rxeof(rxr, adapter->rx_process_limit, NULL);
+ if (more)
+ taskqueue_enqueue(rxr->tq, &rxr->rx_task);
+ else
+ /* Reenable this interrupt */
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxr->ims);
+ return;
+}
+
+/*********************************************************************
+ *
+ * MSIX Link Fast Interrupt Service routine
+ *
+ **********************************************************************/
+static void
+em_msix_link(void *arg)
+{
+ struct adapter *adapter = arg;
+ u32 reg_icr;
+
+ ++adapter->link_irq;
+ reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+
+ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
+ adapter->hw.mac.get_link_status = 1;
+ em_handle_link(adapter, 0);
+ } else
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS,
+ EM_MSIX_LINK | E1000_IMS_LSC);
+ return;
+}
+
+static void
+em_handle_rx(void *context, int pending)
+{
+ struct rx_ring *rxr = context;
+ struct adapter *adapter = rxr->adapter;
+ bool more;
+
+ more = em_rxeof(rxr, adapter->rx_process_limit, NULL);
+ if (more)
+ taskqueue_enqueue(rxr->tq, &rxr->rx_task);
+ else
+ /* Reenable this interrupt */
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxr->ims);
+}
+
+static void
+em_handle_tx(void *context, int pending)
+{
+ struct tx_ring *txr = context;
+ struct adapter *adapter = txr->adapter;
+ struct ifnet *ifp = adapter->ifp;
+
+ EM_TX_LOCK(txr);
+ em_txeof(txr);
+#ifdef EM_MULTIQUEUE
+ if (!drbr_empty(ifp, txr->br))
+ em_mq_start_locked(ifp, txr, NULL);
+#else
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ em_start_locked(ifp, txr);
+#endif
+ em_txeof(txr);
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS, txr->ims);
+ EM_TX_UNLOCK(txr);
+}
+
+static void
+em_handle_link(void *context, int pending)
+{
+ struct adapter *adapter = context;
+ struct ifnet *ifp = adapter->ifp;
+
+ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
+ return;
+
+ EM_CORE_LOCK(adapter);
+ callout_stop(&adapter->timer);
+ em_update_link_status(adapter);
+ callout_reset(&adapter->timer, hz, em_local_timer, adapter);
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS,
+ EM_MSIX_LINK | E1000_IMS_LSC);
+ EM_CORE_UNLOCK(adapter);
+}
+
+
+/*********************************************************************
+ *
+ * Media Ioctl callback
+ *
+ * This routine is called whenever the user queries the status of
+ * the interface using ifconfig.
+ *
+ **********************************************************************/
+static void
+em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
+{
+ struct adapter *adapter = ifp->if_softc;
+ u_char fiber_type = IFM_1000_SX;
+
+ INIT_DEBUGOUT("em_media_status: begin");
+
+ EM_CORE_LOCK(adapter);
+ em_update_link_status(adapter);
+
+ ifmr->ifm_status = IFM_AVALID;
+ ifmr->ifm_active = IFM_ETHER;
+
+ if (!adapter->link_active) {
+ EM_CORE_UNLOCK(adapter);
+ return;
+ }
+
+ ifmr->ifm_status |= IFM_ACTIVE;
+
+ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+ (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
+ ifmr->ifm_active |= fiber_type | IFM_FDX;
+ } else {
+ switch (adapter->link_speed) {
+ case 10:
+ ifmr->ifm_active |= IFM_10_T;
+ break;
+ case 100:
+ ifmr->ifm_active |= IFM_100_TX;
+ break;
+ case 1000:
+ ifmr->ifm_active |= IFM_1000_T;
+ break;
+ }
+ if (adapter->link_duplex == FULL_DUPLEX)
+ ifmr->ifm_active |= IFM_FDX;
+ else
+ ifmr->ifm_active |= IFM_HDX;
+ }
+ EM_CORE_UNLOCK(adapter);
+}
+
+/*********************************************************************
+ *
+ * Media Ioctl callback
+ *
+ * This routine is called when the user changes speed/duplex using
+ * media/mediopt option with ifconfig.
+ *
+ **********************************************************************/
+static int
+em_media_change(struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct ifmedia *ifm = &adapter->media;
+
+ INIT_DEBUGOUT("em_media_change: begin");
+
+ if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
+ return (EINVAL);
+
+ EM_CORE_LOCK(adapter);
+ switch (IFM_SUBTYPE(ifm->ifm_media)) {
+ case IFM_AUTO:
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+ break;
+ case IFM_1000_LX:
+ case IFM_1000_SX:
+ case IFM_1000_T:
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
+ break;
+ case IFM_100_TX:
+ adapter->hw.mac.autoneg = FALSE;
+ adapter->hw.phy.autoneg_advertised = 0;
+ if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
+ else
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
+ break;
+ case IFM_10_T:
+ adapter->hw.mac.autoneg = FALSE;
+ adapter->hw.phy.autoneg_advertised = 0;
+ if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
+ else
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
+ break;
+ default:
+ device_printf(adapter->dev, "Unsupported media type\n");
+ }
+
+ em_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
+
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * This routine maps the mbufs to tx descriptors.
+ *
+ * return 0 on success, positive on failure
+ **********************************************************************/
+
+static int
+em_xmit(struct tx_ring *txr, struct mbuf **m_headp)
+{
+ struct adapter *adapter = txr->adapter;
+ bus_dma_segment_t segs[EM_MAX_SCATTER];
+ bus_dmamap_t map;
+ struct em_buffer *tx_buffer, *tx_buffer_mapped;
+ struct e1000_tx_desc *ctxd = NULL;
+ struct mbuf *m_head;
+ struct ether_header *eh;
+ struct ip *ip = NULL;
+ struct tcphdr *tp = NULL;
+ u32 txd_upper, txd_lower, txd_used, txd_saved;
+ int ip_off, poff;
+ int nsegs, i, j, first, last = 0;
+ int error, do_tso, tso_desc = 0;
+
+ m_head = *m_headp;
+ txd_upper = txd_lower = txd_used = txd_saved = 0;
+ do_tso = ((m_head->m_pkthdr.csum_flags & CSUM_TSO) != 0);
+ ip_off = poff = 0;
+
+ /*
+ * Intel recommends entire IP/TCP header length reside in a single
+ * buffer. If multiple descriptors are used to describe the IP and
+ * TCP header, each descriptor should describe one or more
+ * complete headers; descriptors referencing only parts of headers
+ * are not supported. If all layer headers are not coalesced into
+ * a single buffer, each buffer should not cross a 4KB boundary,
+ * or be larger than the maximum read request size.
+ * Controller also requires modifing IP/TCP header to make TSO work
+ * so we firstly get a writable mbuf chain then coalesce ethernet/
+ * IP/TCP header into a single buffer to meet the requirement of
+ * controller. This also simplifies IP/TCP/UDP checksum offloading
+ * which also has similiar restrictions.
+ */
+ if (do_tso || m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD) {
+ if (do_tso || (m_head->m_next != NULL &&
+ m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD)) {
+ if (M_WRITABLE(*m_headp) == 0) {
+ m_head = m_dup(*m_headp, M_DONTWAIT);
+ m_freem(*m_headp);
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ *m_headp = m_head;
+ }
+ }
+ /*
+ * XXX
+ * Assume IPv4, we don't have TSO/checksum offload support
+ * for IPv6 yet.
+ */
+ ip_off = sizeof(struct ether_header);
+ m_head = m_pullup(m_head, ip_off);
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ eh = mtod(m_head, struct ether_header *);
+ if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
+ ip_off = sizeof(struct ether_vlan_header);
+ m_head = m_pullup(m_head, ip_off);
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ }
+ m_head = m_pullup(m_head, ip_off + sizeof(struct ip));
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ ip = (struct ip *)(mtod(m_head, char *) + ip_off);
+ poff = ip_off + (ip->ip_hl << 2);
+ if (do_tso) {
+ m_head = m_pullup(m_head, poff + sizeof(struct tcphdr));
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ tp = (struct tcphdr *)(mtod(m_head, char *) + poff);
+ /*
+ * TSO workaround:
+ * pull 4 more bytes of data into it.
+ */
+ m_head = m_pullup(m_head, poff + (tp->th_off << 2) + 4);
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ ip = (struct ip *)(mtod(m_head, char *) + ip_off);
+ ip->ip_len = 0;
+ ip->ip_sum = 0;
+ /*
+ * The pseudo TCP checksum does not include TCP payload
+ * length so driver should recompute the checksum here
+ * what hardware expect to see. This is adherence of
+ * Microsoft's Large Send specification.
+ */
+ tp = (struct tcphdr *)(mtod(m_head, char *) + poff);
+ tp->th_sum = in_pseudo(ip->ip_src.s_addr,
+ ip->ip_dst.s_addr, htons(IPPROTO_TCP));
+ } else if (m_head->m_pkthdr.csum_flags & CSUM_TCP) {
+ m_head = m_pullup(m_head, poff + sizeof(struct tcphdr));
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ tp = (struct tcphdr *)(mtod(m_head, char *) + poff);
+ m_head = m_pullup(m_head, poff + (tp->th_off << 2));
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ ip = (struct ip *)(mtod(m_head, char *) + ip_off);
+ tp = (struct tcphdr *)(mtod(m_head, char *) + poff);
+ } else if (m_head->m_pkthdr.csum_flags & CSUM_UDP) {
+ m_head = m_pullup(m_head, poff + sizeof(struct udphdr));
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ ip = (struct ip *)(mtod(m_head, char *) + ip_off);
+ }
+ *m_headp = m_head;
+ }
+
+ /*
+ * Map the packet for DMA
+ *
+ * Capture the first descriptor index,
+ * this descriptor will have the index
+ * of the EOP which is the only one that
+ * now gets a DONE bit writeback.
+ */
+ first = txr->next_avail_desc;
+ tx_buffer = &txr->tx_buffers[first];
+ tx_buffer_mapped = tx_buffer;
+ map = tx_buffer->map;
+
+ error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
+ *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+ /*
+ * There are two types of errors we can (try) to handle:
+ * - EFBIG means the mbuf chain was too long and bus_dma ran
+ * out of segments. Defragment the mbuf chain and try again.
+ * - ENOMEM means bus_dma could not obtain enough bounce buffers
+ * at this point in time. Defer sending and try again later.
+ * All other errors, in particular EINVAL, are fatal and prevent the
+ * mbuf chain from ever going through. Drop it and report error.
+ */
+ if (error == EFBIG) {
+ struct mbuf *m;
+
+ m = m_defrag(*m_headp, M_DONTWAIT);
+ if (m == NULL) {
+ adapter->mbuf_alloc_failed++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ *m_headp = m;
+
+ /* Try it again */
+ error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
+ *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+ if (error == ENOMEM) {
+ adapter->no_tx_dma_setup++;
+ return (error);
+ } else if (error != 0) {
+ adapter->no_tx_dma_setup++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (error);
+ }
+
+ } else if (error == ENOMEM) {
+ adapter->no_tx_dma_setup++;
+ return (error);
+ } else if (error != 0) {
+ adapter->no_tx_dma_setup++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (error);
+ }
+
+ /*
+ * TSO Hardware workaround, if this packet is not
+ * TSO, and is only a single descriptor long, and
+ * it follows a TSO burst, then we need to add a
+ * sentinel descriptor to prevent premature writeback.
+ */
+ if ((do_tso == 0) && (txr->tx_tso == TRUE)) {
+ if (nsegs == 1)
+ tso_desc = TRUE;
+ txr->tx_tso = FALSE;
+ }
+
+ if (nsegs > (txr->tx_avail - 2)) {
+ txr->no_desc_avail++;
+ bus_dmamap_unload(txr->txtag, map);
+ return (ENOBUFS);
+ }
+ m_head = *m_headp;
+
+ /* Do hardware assists */
+ if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
+ em_tso_setup(txr, m_head, ip_off, ip, tp,
+ &txd_upper, &txd_lower);
+ /* we need to make a final sentinel transmit desc */
+ tso_desc = TRUE;
+ } else if (m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD)
+ em_transmit_checksum_setup(txr, m_head,
+ ip_off, ip, &txd_upper, &txd_lower);
+
+ i = txr->next_avail_desc;
+
+ /* Set up our transmit descriptors */
+ for (j = 0; j < nsegs; j++) {
+ bus_size_t seg_len;
+ bus_addr_t seg_addr;
+
+ tx_buffer = &txr->tx_buffers[i];
+ ctxd = &txr->tx_base[i];
+ seg_addr = segs[j].ds_addr;
+ seg_len = segs[j].ds_len;
+ /*
+ ** TSO Workaround:
+ ** If this is the last descriptor, we want to
+ ** split it so we have a small final sentinel
+ */
+ if (tso_desc && (j == (nsegs -1)) && (seg_len > 8)) {
+ seg_len -= 4;
+ ctxd->buffer_addr = htole64(seg_addr);
+ ctxd->lower.data = htole32(
+ adapter->txd_cmd | txd_lower | seg_len);
+ ctxd->upper.data =
+ htole32(txd_upper);
+ if (++i == adapter->num_tx_desc)
+ i = 0;
+ /* Now make the sentinel */
+ ++txd_used; /* using an extra txd */
+ ctxd = &txr->tx_base[i];
+ tx_buffer = &txr->tx_buffers[i];
+ ctxd->buffer_addr =
+ htole64(seg_addr + seg_len);
+ ctxd->lower.data = htole32(
+ adapter->txd_cmd | txd_lower | 4);
+ ctxd->upper.data =
+ htole32(txd_upper);
+ last = i;
+ if (++i == adapter->num_tx_desc)
+ i = 0;
+ } else {
+ ctxd->buffer_addr = htole64(seg_addr);
+ ctxd->lower.data = htole32(
+ adapter->txd_cmd | txd_lower | seg_len);
+ ctxd->upper.data =
+ htole32(txd_upper);
+ last = i;
+ if (++i == adapter->num_tx_desc)
+ i = 0;
+ }
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+ }
+
+ txr->next_avail_desc = i;
+ txr->tx_avail -= nsegs;
+ if (tso_desc) /* TSO used an extra for sentinel */
+ txr->tx_avail -= txd_used;
+
+ if (m_head->m_flags & M_VLANTAG) {
+ /* Set the vlan id. */
+ ctxd->upper.fields.special =
+ htole16(m_head->m_pkthdr.ether_vtag);
+ /* Tell hardware to add tag */
+ ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
+ }
+
+ tx_buffer->m_head = m_head;
+ tx_buffer_mapped->map = tx_buffer->map;
+ tx_buffer->map = map;
+ bus_dmamap_sync(txr->txtag, map, BUS_DMASYNC_PREWRITE);
+
+ /*
+ * Last Descriptor of Packet
+ * needs End Of Packet (EOP)
+ * and Report Status (RS)
+ */
+ ctxd->lower.data |=
+ htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
+ /*
+ * Keep track in the first buffer which
+ * descriptor will be written back
+ */
+ tx_buffer = &txr->tx_buffers[first];
+ tx_buffer->next_eop = last;
+ /* Update the watchdog time early and often */
+ txr->watchdog_time = ticks;
+
+ /*
+ * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
+ * that this frame is available to transmit.
+ */
+ bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), i);
+
+ return (0);
+}
+
+static void
+em_set_promisc(struct adapter *adapter)
+{
+ struct ifnet *ifp = adapter->ifp;
+ u32 reg_rctl;
+
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+
+ if (ifp->if_flags & IFF_PROMISC) {
+ reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+ /* Turn this on if you want to see bad packets */
+ if (em_debug_sbp)
+ reg_rctl |= E1000_RCTL_SBP;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+ } else if (ifp->if_flags & IFF_ALLMULTI) {
+ reg_rctl |= E1000_RCTL_MPE;
+ reg_rctl &= ~E1000_RCTL_UPE;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+ }
+}
+
+static void
+em_disable_promisc(struct adapter *adapter)
+{
+ u32 reg_rctl;
+
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+
+ reg_rctl &= (~E1000_RCTL_UPE);
+ reg_rctl &= (~E1000_RCTL_MPE);
+ reg_rctl &= (~E1000_RCTL_SBP);
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+}
+
+
+/*********************************************************************
+ * Multicast Update
+ *
+ * This routine is called whenever multicast address list is updated.
+ *
+ **********************************************************************/
+
+static void
+em_set_multi(struct adapter *adapter)
+{
+ struct ifnet *ifp = adapter->ifp;
+ struct ifmultiaddr *ifma;
+ u32 reg_rctl = 0;
+ u8 *mta; /* Multicast array memory */
+ int mcnt = 0;
+
+ IOCTL_DEBUGOUT("em_set_multi: begin");
+
+ mta = adapter->mta;
+ bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
+
+ if (adapter->hw.mac.type == e1000_82542 &&
+ adapter->hw.revision_id == E1000_REVISION_2) {
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+ if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_clear_mwi(&adapter->hw);
+ reg_rctl |= E1000_RCTL_RST;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+ msec_delay(5);
+ }
+
+#if __FreeBSD_version < 800000
+ IF_ADDR_LOCK(ifp);
+#else
+ if_maddr_rlock(ifp);
+#endif
+ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
+ if (ifma->ifma_addr->sa_family != AF_LINK)
+ continue;
+
+ if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
+ break;
+
+ bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
+ &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
+ mcnt++;
+ }
+#if __FreeBSD_version < 800000
+ IF_ADDR_UNLOCK(ifp);
+#else
+ if_maddr_runlock(ifp);
+#endif
+ if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+ reg_rctl |= E1000_RCTL_MPE;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+ } else
+ e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
+
+ if (adapter->hw.mac.type == e1000_82542 &&
+ adapter->hw.revision_id == E1000_REVISION_2) {
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+ reg_rctl &= ~E1000_RCTL_RST;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+ msec_delay(5);
+ if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_set_mwi(&adapter->hw);
+ }
+}
+
+
+/*********************************************************************
+ * Timer routine
+ *
+ * This routine checks for link status and updates statistics.
+ *
+ **********************************************************************/
+
+static void
+em_local_timer(void *arg)
+{
+ struct adapter *adapter = arg;
+ struct ifnet *ifp = adapter->ifp;
+ struct tx_ring *txr = adapter->tx_rings;
+
+ EM_CORE_LOCK_ASSERT(adapter);
+
+ em_update_link_status(adapter);
+ em_update_stats_counters(adapter);
+
+ /* Reset LAA into RAR[0] on 82571 */
+ if ((adapter->hw.mac.type == e1000_82571) &&
+ e1000_get_laa_state_82571(&adapter->hw))
+ e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
+
+ /*
+ ** Don't do TX watchdog check if we've been paused
+ */
+ if (adapter->pause_frames) {
+ adapter->pause_frames = 0;
+ goto out;
+ }
+ /*
+ ** Check on the state of the TX queue(s), this
+ ** can be done without the lock because its RO
+ ** and the HUNG state will be static if set.
+ */
+ for (int i = 0; i < adapter->num_queues; i++, txr++)
+ if (txr->queue_status == EM_QUEUE_HUNG)
+ goto hung;
+out:
+ callout_reset(&adapter->timer, hz, em_local_timer, adapter);
+ return;
+hung:
+ /* Looks like we're hung */
+ device_printf(adapter->dev, "Watchdog timeout -- resetting\n");
+ device_printf(adapter->dev,
+ "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
+ E1000_READ_REG(&adapter->hw, E1000_TDH(txr->me)),
+ E1000_READ_REG(&adapter->hw, E1000_TDT(txr->me)));
+ device_printf(adapter->dev,"TX(%d) desc avail = %d,"
+ "Next TX to Clean = %d\n",
+ txr->me, txr->tx_avail, txr->next_to_clean);
+ ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
+ adapter->watchdog_events++;
+ em_init_locked(adapter);
+}
+
+
+static void
+em_update_link_status(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ struct ifnet *ifp = adapter->ifp;
+ device_t dev = adapter->dev;
+ struct tx_ring *txr = adapter->tx_rings;
+ u32 link_check = 0;
+
+ /* Get the cached link value or read phy for real */
+ switch (hw->phy.media_type) {
+ case e1000_media_type_copper:
+ if (hw->mac.get_link_status) {
+ /* Do the work to read phy */
+ e1000_check_for_link(hw);
+ link_check = !hw->mac.get_link_status;
+ if (link_check) /* ESB2 fix */
+ e1000_cfg_on_link_up(hw);
+ } else
+ link_check = TRUE;
+ break;
+ case e1000_media_type_fiber:
+ e1000_check_for_link(hw);
+ link_check = (E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STATUS_LU);
+ break;
+ case e1000_media_type_internal_serdes:
+ e1000_check_for_link(hw);
+ link_check = adapter->hw.mac.serdes_has_link;
+ break;
+ default:
+ case e1000_media_type_unknown:
+ break;
+ }
+
+ /* Now check for a transition */
+ if (link_check && (adapter->link_active == 0)) {
+ e1000_get_speed_and_duplex(hw, &adapter->link_speed,
+ &adapter->link_duplex);
+ /* Check if we must disable SPEED_MODE bit on PCI-E */
+ if ((adapter->link_speed != SPEED_1000) &&
+ ((hw->mac.type == e1000_82571) ||
+ (hw->mac.type == e1000_82572))) {
+ int tarc0;
+ tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
+ tarc0 &= ~SPEED_MODE_BIT;
+ E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
+ }
+ if (bootverbose)
+ device_printf(dev, "Link is up %d Mbps %s\n",
+ adapter->link_speed,
+ ((adapter->link_duplex == FULL_DUPLEX) ?
+ "Full Duplex" : "Half Duplex"));
+ adapter->link_active = 1;
+ adapter->smartspeed = 0;
+ ifp->if_baudrate = adapter->link_speed * 1000000;
+ if_link_state_change(ifp, LINK_STATE_UP);
+ } else if (!link_check && (adapter->link_active == 1)) {
+ ifp->if_baudrate = adapter->link_speed = 0;
+ adapter->link_duplex = 0;
+ if (bootverbose)
+ device_printf(dev, "Link is Down\n");
+ adapter->link_active = 0;
+ /* Link down, disable watchdog */
+ for (int i = 0; i < adapter->num_queues; i++, txr++)
+ txr->queue_status = EM_QUEUE_IDLE;
+ if_link_state_change(ifp, LINK_STATE_DOWN);
+ }
+}
+
+/*********************************************************************
+ *
+ * This routine disables all traffic on the adapter by issuing a
+ * global reset on the MAC and deallocates TX/RX buffers.
+ *
+ * This routine should always be called with BOTH the CORE
+ * and TX locks.
+ **********************************************************************/
+
+static void
+em_stop(void *arg)
+{
+ struct adapter *adapter = arg;
+ struct ifnet *ifp = adapter->ifp;
+ struct tx_ring *txr = adapter->tx_rings;
+
+ EM_CORE_LOCK_ASSERT(adapter);
+
+ INIT_DEBUGOUT("em_stop: begin");
+
+ em_disable_intr(adapter);
+ callout_stop(&adapter->timer);
+
+ /* Tell the stack that the interface is no longer active */
+ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+
+ /* Unarm watchdog timer. */
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ EM_TX_LOCK(txr);
+ txr->queue_status = EM_QUEUE_IDLE;
+ EM_TX_UNLOCK(txr);
+ }
+
+ e1000_reset_hw(&adapter->hw);
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
+
+ e1000_led_off(&adapter->hw);
+ e1000_cleanup_led(&adapter->hw);
+}
+
+
+/*********************************************************************
+ *
+ * Determine hardware revision.
+ *
+ **********************************************************************/
+static void
+em_identify_hardware(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+
+ /* Make sure our PCI config space has the necessary stuff set */
+ adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
+ if (!((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
+ (adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN))) {
+ device_printf(dev, "Memory Access and/or Bus Master bits "
+ "were not set!\n");
+ adapter->hw.bus.pci_cmd_word |=
+ (PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN);
+ pci_write_config(dev, PCIR_COMMAND,
+ adapter->hw.bus.pci_cmd_word, 2);
+ }
+
+ /* Save off the information about this board */
+ adapter->hw.vendor_id = pci_get_vendor(dev);
+ adapter->hw.device_id = pci_get_device(dev);
+ adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
+ adapter->hw.subsystem_vendor_id =
+ pci_read_config(dev, PCIR_SUBVEND_0, 2);
+ adapter->hw.subsystem_device_id =
+ pci_read_config(dev, PCIR_SUBDEV_0, 2);
+
+ /* Do Shared Code Init and Setup */
+ if (e1000_set_mac_type(&adapter->hw)) {
+ device_printf(dev, "Setup init failure\n");
+ return;
+ }
+}
+
+static int
+em_allocate_pci_resources(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ int rid;
+
+ rid = PCIR_BAR(0);
+ adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
+ &rid, RF_ACTIVE);
+ if (adapter->memory == NULL) {
+ device_printf(dev, "Unable to allocate bus resource: memory\n");
+ return (ENXIO);
+ }
+ adapter->osdep.mem_bus_space_tag =
+ rman_get_bustag(adapter->memory);
+ adapter->osdep.mem_bus_space_handle =
+ rman_get_bushandle(adapter->memory);
+ adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
+
+ /* Default to a single queue */
+ adapter->num_queues = 1;
+
+ /*
+ * Setup MSI/X or MSI if PCI Express
+ */
+ adapter->msix = em_setup_msix(adapter);
+
+ adapter->hw.back = &adapter->osdep;
+
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * Setup the Legacy or MSI Interrupt handler
+ *
+ **********************************************************************/
+int
+em_allocate_legacy(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ int error, rid = 0;
+
+ /* Manually turn off all interrupts */
+ E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
+
+ if (adapter->msix == 1) /* using MSI */
+ rid = 1;
+ /* We allocate a single interrupt resource */
+ adapter->res = bus_alloc_resource_any(dev,
+ SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
+ if (adapter->res == NULL) {
+ device_printf(dev, "Unable to allocate bus resource: "
+ "interrupt\n");
+ return (ENXIO);
+ }
+
+ /*
+ * Allocate a fast interrupt and the associated
+ * deferred processing contexts.
+ */
+ TASK_INIT(&adapter->que_task, 0, em_handle_que, adapter);
+ TASK_INIT(&adapter->link_task, 0, em_handle_link, adapter);
+ adapter->tq = taskqueue_create_fast("em_taskq", M_NOWAIT,
+ taskqueue_thread_enqueue, &adapter->tq);
+ taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq",
+ device_get_nameunit(adapter->dev));
+ if ((error = bus_setup_intr(dev, adapter->res, INTR_TYPE_NET,
+ em_irq_fast, NULL, adapter, &adapter->tag)) != 0) {
+ device_printf(dev, "Failed to register fast interrupt "
+ "handler: %d\n", error);
+ taskqueue_free(adapter->tq);
+ adapter->tq = NULL;
+ return (error);
+ }
+
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * Setup the MSIX Interrupt handlers
+ * This is not really Multiqueue, rather
+ * its just multiple interrupt vectors.
+ *
+ **********************************************************************/
+int
+em_allocate_msix(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct tx_ring *txr = adapter->tx_rings;
+ struct rx_ring *rxr = adapter->rx_rings;
+ int error, rid, vector = 0;
+
+
+ /* Make sure all interrupts are disabled */
+ E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
+
+ /* First set up ring resources */
+ for (int i = 0; i < adapter->num_queues; i++, txr++, rxr++) {
+
+ /* RX ring */
+ rid = vector + 1;
+
+ rxr->res = bus_alloc_resource_any(dev,
+ SYS_RES_IRQ, &rid, RF_ACTIVE);
+ if (rxr->res == NULL) {
+ device_printf(dev,
+ "Unable to allocate bus resource: "
+ "RX MSIX Interrupt %d\n", i);
+ return (ENXIO);
+ }
+ if ((error = bus_setup_intr(dev, rxr->res,
+ INTR_TYPE_NET | INTR_MPSAFE, NULL, em_msix_rx,
+ rxr, &rxr->tag)) != 0) {
+ device_printf(dev, "Failed to register RX handler");
+ return (error);
+ }
+#if __FreeBSD_version >= 800504
+ bus_describe_intr(dev, rxr->res, rxr->tag, "rx %d", i);
+#endif
+ rxr->msix = vector++; /* NOTE increment vector for TX */
+ TASK_INIT(&rxr->rx_task, 0, em_handle_rx, rxr);
+ rxr->tq = taskqueue_create_fast("em_rxq", M_NOWAIT,
+ taskqueue_thread_enqueue, &rxr->tq);
+ taskqueue_start_threads(&rxr->tq, 1, PI_NET, "%s rxq",
+ device_get_nameunit(adapter->dev));
+ /*
+ ** Set the bit to enable interrupt
+ ** in E1000_IMS -- bits 20 and 21
+ ** are for RX0 and RX1, note this has
+ ** NOTHING to do with the MSIX vector
+ */
+ rxr->ims = 1 << (20 + i);
+ adapter->ivars |= (8 | rxr->msix) << (i * 4);
+
+ /* TX ring */
+ rid = vector + 1;
+ txr->res = bus_alloc_resource_any(dev,
+ SYS_RES_IRQ, &rid, RF_ACTIVE);
+ if (txr->res == NULL) {
+ device_printf(dev,
+ "Unable to allocate bus resource: "
+ "TX MSIX Interrupt %d\n", i);
+ return (ENXIO);
+ }
+ if ((error = bus_setup_intr(dev, txr->res,
+ INTR_TYPE_NET | INTR_MPSAFE, NULL, em_msix_tx,
+ txr, &txr->tag)) != 0) {
+ device_printf(dev, "Failed to register TX handler");
+ return (error);
+ }
+#if __FreeBSD_version >= 800504
+ bus_describe_intr(dev, txr->res, txr->tag, "tx %d", i);
+#endif
+ txr->msix = vector++; /* Increment vector for next pass */
+ TASK_INIT(&txr->tx_task, 0, em_handle_tx, txr);
+ txr->tq = taskqueue_create_fast("em_txq", M_NOWAIT,
+ taskqueue_thread_enqueue, &txr->tq);
+ taskqueue_start_threads(&txr->tq, 1, PI_NET, "%s txq",
+ device_get_nameunit(adapter->dev));
+ /*
+ ** Set the bit to enable interrupt
+ ** in E1000_IMS -- bits 22 and 23
+ ** are for TX0 and TX1, note this has
+ ** NOTHING to do with the MSIX vector
+ */
+ txr->ims = 1 << (22 + i);
+ adapter->ivars |= (8 | txr->msix) << (8 + (i * 4));
+ }
+
+ /* Link interrupt */
+ ++rid;
+ adapter->res = bus_alloc_resource_any(dev,
+ SYS_RES_IRQ, &rid, RF_ACTIVE);
+ if (!adapter->res) {
+ device_printf(dev,"Unable to allocate "
+ "bus resource: Link interrupt [%d]\n", rid);
+ return (ENXIO);
+ }
+ /* Set the link handler function */
+ error = bus_setup_intr(dev, adapter->res,
+ INTR_TYPE_NET | INTR_MPSAFE, NULL,
+ em_msix_link, adapter, &adapter->tag);
+ if (error) {
+ adapter->res = NULL;
+ device_printf(dev, "Failed to register LINK handler");
+ return (error);
+ }
+#if __FreeBSD_version >= 800504
+ bus_describe_intr(dev, adapter->res, adapter->tag, "link");
+#endif
+ adapter->linkvec = vector;
+ adapter->ivars |= (8 | vector) << 16;
+ adapter->ivars |= 0x80000000;
+
+ return (0);
+}
+
+
+static void
+em_free_pci_resources(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct tx_ring *txr;
+ struct rx_ring *rxr;
+ int rid;
+
+
+ /*
+ ** Release all the queue interrupt resources:
+ */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ txr = &adapter->tx_rings[i];
+ rxr = &adapter->rx_rings[i];
+ /* an early abort? */
+ if ((txr == NULL) || (rxr == NULL))
+ break;
+ rid = txr->msix +1;
+ if (txr->tag != NULL) {
+ bus_teardown_intr(dev, txr->res, txr->tag);
+ txr->tag = NULL;
+ }
+ if (txr->res != NULL)
+ bus_release_resource(dev, SYS_RES_IRQ,
+ rid, txr->res);
+ rid = rxr->msix +1;
+ if (rxr->tag != NULL) {
+ bus_teardown_intr(dev, rxr->res, rxr->tag);
+ rxr->tag = NULL;
+ }
+ if (rxr->res != NULL)
+ bus_release_resource(dev, SYS_RES_IRQ,
+ rid, rxr->res);
+ }
+
+ if (adapter->linkvec) /* we are doing MSIX */
+ rid = adapter->linkvec + 1;
+ else
+ (adapter->msix != 0) ? (rid = 1):(rid = 0);
+
+ if (adapter->tag != NULL) {
+ bus_teardown_intr(dev, adapter->res, adapter->tag);
+ adapter->tag = NULL;
+ }
+
+ if (adapter->res != NULL)
+ bus_release_resource(dev, SYS_RES_IRQ, rid, adapter->res);
+
+
+ if (adapter->msix)
+ pci_release_msi(dev);
+
+ if (adapter->msix_mem != NULL)
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ PCIR_BAR(EM_MSIX_BAR), adapter->msix_mem);
+
+ if (adapter->memory != NULL)
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ PCIR_BAR(0), adapter->memory);
+
+ if (adapter->flash != NULL)
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ EM_FLASH, adapter->flash);
+}
+
+/*
+ * Setup MSI or MSI/X
+ */
+static int
+em_setup_msix(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ int val = 0;
+
+
+ /*
+ ** Setup MSI/X for Hartwell: tests have shown
+ ** use of two queues to be unstable, and to
+ ** provide no great gain anyway, so we simply
+ ** seperate the interrupts and use a single queue.
+ */
+ if ((adapter->hw.mac.type == e1000_82574) &&
+ (em_enable_msix == TRUE)) {
+ /* Map the MSIX BAR */
+ int rid = PCIR_BAR(EM_MSIX_BAR);
+ adapter->msix_mem = bus_alloc_resource_any(dev,
+ SYS_RES_MEMORY, &rid, RF_ACTIVE);
+ if (!adapter->msix_mem) {
+ /* May not be enabled */
+ device_printf(adapter->dev,
+ "Unable to map MSIX table \n");
+ goto msi;
+ }
+ val = pci_msix_count(dev);
+ if (val < 3) {
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ PCIR_BAR(EM_MSIX_BAR), adapter->msix_mem);
+ adapter->msix_mem = NULL;
+ device_printf(adapter->dev,
+ "MSIX: insufficient vectors, using MSI\n");
+ goto msi;
+ }
+ val = 3;
+ adapter->num_queues = 1;
+ if (pci_alloc_msix(dev, &val) == 0) {
+ device_printf(adapter->dev,
+ "Using MSIX interrupts "
+ "with %d vectors\n", val);
+ }
+
+ return (val);
+ }
+msi:
+ val = pci_msi_count(dev);
+ if (val == 1 && pci_alloc_msi(dev, &val) == 0) {
+ adapter->msix = 1;
+ device_printf(adapter->dev,"Using an MSI interrupt\n");
+ return (val);
+ }
+ /* Should only happen due to manual configuration */
+ device_printf(adapter->dev,"No MSI/MSIX using a Legacy IRQ\n");
+ return (0);
+}
+
+
+/*********************************************************************
+ *
+ * Initialize the hardware to a configuration
+ * as specified by the adapter structure.
+ *
+ **********************************************************************/
+static void
+em_reset(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct ifnet *ifp = adapter->ifp;
+ struct e1000_hw *hw = &adapter->hw;
+ u16 rx_buffer_size;
+
+ INIT_DEBUGOUT("em_reset: begin");
+
+ /* Set up smart power down as default off on newer adapters. */
+ if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
+ hw->mac.type == e1000_82572)) {
+ u16 phy_tmp = 0;
+
+ /* Speed up time to link by disabling smart power down. */
+ e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
+ phy_tmp &= ~IGP02E1000_PM_SPD;
+ e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
+ }
+
+ /*
+ * These parameters control the automatic generation (Tx) and
+ * response (Rx) to Ethernet PAUSE frames.
+ * - High water mark should allow for at least two frames to be
+ * received after sending an XOFF.
+ * - Low water mark works best when it is very near the high water mark.
+ * This allows the receiver to restart by sending XON when it has
+ * drained a bit. Here we use an arbitary value of 1500 which will
+ * restart after one full frame is pulled from the buffer. There
+ * could be several smaller frames in the buffer and if so they will
+ * not trigger the XON until their total number reduces the buffer
+ * by 1500.
+ * - The pause time is fairly large at 1000 x 512ns = 512 usec.
+ */
+ rx_buffer_size = ((E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10 );
+
+ hw->fc.high_water = rx_buffer_size -
+ roundup2(adapter->max_frame_size, 1024);
+ hw->fc.low_water = hw->fc.high_water - 1500;
+
+ if (hw->mac.type == e1000_80003es2lan)
+ hw->fc.pause_time = 0xFFFF;
+ else
+ hw->fc.pause_time = EM_FC_PAUSE_TIME;
+
+ hw->fc.send_xon = TRUE;
+
+ /* Set Flow control, use the tunable location if sane */
+ hw->fc.requested_mode = adapter->fc_setting;
+
+ /* Workaround: no TX flow ctrl for PCH */
+ if (hw->mac.type == e1000_pchlan)
+ hw->fc.requested_mode = e1000_fc_rx_pause;
+
+ /* Override - settings for PCH2LAN, ya its magic :) */
+ if (hw->mac.type == e1000_pch2lan) {
+ hw->fc.high_water = 0x5C20;
+ hw->fc.low_water = 0x5048;
+ hw->fc.pause_time = 0x0650;
+ hw->fc.refresh_time = 0x0400;
+ /* Jumbos need adjusted PBA */
+ if (ifp->if_mtu > ETHERMTU)
+ E1000_WRITE_REG(hw, E1000_PBA, 12);
+ else
+ E1000_WRITE_REG(hw, E1000_PBA, 26);
+ }
+
+ /* Issue a global reset */
+ e1000_reset_hw(hw);
+ E1000_WRITE_REG(hw, E1000_WUC, 0);
+ em_disable_aspm(adapter);
+
+ if (e1000_init_hw(hw) < 0) {
+ device_printf(dev, "Hardware Initialization Failed\n");
+ return;
+ }
+
+ E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
+ e1000_get_phy_info(hw);
+ e1000_check_for_link(hw);
+ return;
+}
+
+/*********************************************************************
+ *
+ * Setup networking device structure and register an interface.
+ *
+ **********************************************************************/
+static int
+em_setup_interface(device_t dev, struct adapter *adapter)
+{
+ struct ifnet *ifp;
+
+ INIT_DEBUGOUT("em_setup_interface: begin");
+
+ ifp = adapter->ifp = if_alloc(IFT_ETHER);
+ if (ifp == NULL) {
+ device_printf(dev, "can not allocate ifnet structure\n");
+ return (-1);
+ }
+ if_initname(ifp, device_get_name(dev), device_get_unit(dev));
+ ifp->if_mtu = ETHERMTU;
+ ifp->if_init = em_init;
+ ifp->if_softc = adapter;
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = em_ioctl;
+ ifp->if_start = em_start;
+ IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
+ ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
+ IFQ_SET_READY(&ifp->if_snd);
+
+ ether_ifattach(ifp, adapter->hw.mac.addr);
+
+ ifp->if_capabilities = ifp->if_capenable = 0;
+
+#ifdef EM_MULTIQUEUE
+ /* Multiqueue tx functions */
+ ifp->if_transmit = em_mq_start;
+ ifp->if_qflush = em_qflush;
+#endif
+
+ ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
+ ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
+
+ /* Enable TSO by default, can disable with ifconfig */
+ ifp->if_capabilities |= IFCAP_TSO4;
+ ifp->if_capenable |= IFCAP_TSO4;
+
+ /*
+ * Tell the upper layer(s) we
+ * support full VLAN capability
+ */
+ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
+ ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
+ ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
+
+ /*
+ ** Dont turn this on by default, if vlans are
+ ** created on another pseudo device (eg. lagg)
+ ** then vlan events are not passed thru, breaking
+ ** operation, but with HW FILTER off it works. If
+ ** using vlans directly on the em driver you can
+ ** enable this and get full hardware tag filtering.
+ */
+ ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
+
+#ifdef DEVICE_POLLING
+ ifp->if_capabilities |= IFCAP_POLLING;
+#endif
+
+ /* Enable only WOL MAGIC by default */
+ if (adapter->wol) {
+ ifp->if_capabilities |= IFCAP_WOL;
+ ifp->if_capenable |= IFCAP_WOL_MAGIC;
+ }
+
+ /*
+ * Specify the media types supported by this adapter and register
+ * callbacks to update media and link information
+ */
+ ifmedia_init(&adapter->media, IFM_IMASK,
+ em_media_change, em_media_status);
+ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+ (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
+ u_char fiber_type = IFM_1000_SX; /* default type */
+
+ ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
+ 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
+ } else {
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
+ 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
+ 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
+ 0, NULL);
+ if (adapter->hw.phy.type != e1000_phy_ife) {
+ ifmedia_add(&adapter->media,
+ IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
+ ifmedia_add(&adapter->media,
+ IFM_ETHER | IFM_1000_T, 0, NULL);
+ }
+ }
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
+ ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
+ return (0);
+}
+
+
+/*
+ * Manage DMA'able memory.
+ */
+static void
+em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
+{
+ if (error)
+ return;
+ *(bus_addr_t *) arg = segs[0].ds_addr;
+}
+
+static int
+em_dma_malloc(struct adapter *adapter, bus_size_t size,
+ struct em_dma_alloc *dma, int mapflags)
+{
+ int error;
+
+ error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
+ EM_DBA_ALIGN, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ size, /* maxsize */
+ 1, /* nsegments */
+ size, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockarg */
+ &dma->dma_tag);
+ if (error) {
+ device_printf(adapter->dev,
+ "%s: bus_dma_tag_create failed: %d\n",
+ __func__, error);
+ goto fail_0;
+ }
+
+ error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
+ BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->dma_map);
+ if (error) {
+ device_printf(adapter->dev,
+ "%s: bus_dmamem_alloc(%ju) failed: %d\n",
+ __func__, (uintmax_t)size, error);
+ goto fail_2;
+ }
+
+ dma->dma_paddr = 0;
+ error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
+ size, em_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT);
+ if (error || dma->dma_paddr == 0) {
+ device_printf(adapter->dev,
+ "%s: bus_dmamap_load failed: %d\n",
+ __func__, error);
+ goto fail_3;
+ }
+
+ return (0);
+
+fail_3:
+ bus_dmamap_unload(dma->dma_tag, dma->dma_map);
+fail_2:
+ bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
+ bus_dma_tag_destroy(dma->dma_tag);
+fail_0:
+ dma->dma_map = NULL;
+ dma->dma_tag = NULL;
+
+ return (error);
+}
+
+static void
+em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
+{
+ if (dma->dma_tag == NULL)
+ return;
+ if (dma->dma_map != NULL) {
+ bus_dmamap_sync(dma->dma_tag, dma->dma_map,
+ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(dma->dma_tag, dma->dma_map);
+ bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
+ dma->dma_map = NULL;
+ }
+ bus_dma_tag_destroy(dma->dma_tag);
+ dma->dma_tag = NULL;
+}
+
+
+/*********************************************************************
+ *
+ * Allocate memory for the transmit and receive rings, and then
+ * the descriptors associated with each, called only once at attach.
+ *
+ **********************************************************************/
+static int
+em_allocate_queues(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct tx_ring *txr = NULL;
+ struct rx_ring *rxr = NULL;
+ int rsize, tsize, error = E1000_SUCCESS;
+ int txconf = 0, rxconf = 0;
+
+
+ /* Allocate the TX ring struct memory */
+ if (!(adapter->tx_rings =
+ (struct tx_ring *) malloc(sizeof(struct tx_ring) *
+ adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
+ device_printf(dev, "Unable to allocate TX ring memory\n");
+ error = ENOMEM;
+ goto fail;
+ }
+
+ /* Now allocate the RX */
+ if (!(adapter->rx_rings =
+ (struct rx_ring *) malloc(sizeof(struct rx_ring) *
+ adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
+ device_printf(dev, "Unable to allocate RX ring memory\n");
+ error = ENOMEM;
+ goto rx_fail;
+ }
+
+ tsize = roundup2(adapter->num_tx_desc *
+ sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
+ /*
+ * Now set up the TX queues, txconf is needed to handle the
+ * possibility that things fail midcourse and we need to
+ * undo memory gracefully
+ */
+ for (int i = 0; i < adapter->num_queues; i++, txconf++) {
+ /* Set up some basics */
+ txr = &adapter->tx_rings[i];
+ txr->adapter = adapter;
+ txr->me = i;
+
+ /* Initialize the TX lock */
+ snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
+ device_get_nameunit(dev), txr->me);
+ mtx_init(&txr->tx_mtx, txr->mtx_name, NULL, MTX_DEF);
+
+ if (em_dma_malloc(adapter, tsize,
+ &txr->txdma, BUS_DMA_NOWAIT)) {
+ device_printf(dev,
+ "Unable to allocate TX Descriptor memory\n");
+ error = ENOMEM;
+ goto err_tx_desc;
+ }
+ txr->tx_base = (struct e1000_tx_desc *)txr->txdma.dma_vaddr;
+ bzero((void *)txr->tx_base, tsize);
+
+ if (em_allocate_transmit_buffers(txr)) {
+ device_printf(dev,
+ "Critical Failure setting up transmit buffers\n");
+ error = ENOMEM;
+ goto err_tx_desc;
+ }
+#if __FreeBSD_version >= 800000
+ /* Allocate a buf ring */
+ txr->br = buf_ring_alloc(4096, M_DEVBUF,
+ M_WAITOK, &txr->tx_mtx);
+#endif
+ }
+
+ /*
+ * Next the RX queues...
+ */
+ rsize = roundup2(adapter->num_rx_desc *
+ sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
+ for (int i = 0; i < adapter->num_queues; i++, rxconf++) {
+ rxr = &adapter->rx_rings[i];
+ rxr->adapter = adapter;
+ rxr->me = i;
+
+ /* Initialize the RX lock */
+ snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
+ device_get_nameunit(dev), txr->me);
+ mtx_init(&rxr->rx_mtx, rxr->mtx_name, NULL, MTX_DEF);
+
+ if (em_dma_malloc(adapter, rsize,
+ &rxr->rxdma, BUS_DMA_NOWAIT)) {
+ device_printf(dev,
+ "Unable to allocate RxDescriptor memory\n");
+ error = ENOMEM;
+ goto err_rx_desc;
+ }
+ rxr->rx_base = (struct e1000_rx_desc *)rxr->rxdma.dma_vaddr;
+ bzero((void *)rxr->rx_base, rsize);
+
+ /* Allocate receive buffers for the ring*/
+ if (em_allocate_receive_buffers(rxr)) {
+ device_printf(dev,
+ "Critical Failure setting up receive buffers\n");
+ error = ENOMEM;
+ goto err_rx_desc;
+ }
+ }
+
+ return (0);
+
+err_rx_desc:
+ for (rxr = adapter->rx_rings; rxconf > 0; rxr++, rxconf--)
+ em_dma_free(adapter, &rxr->rxdma);
+err_tx_desc:
+ for (txr = adapter->tx_rings; txconf > 0; txr++, txconf--)
+ em_dma_free(adapter, &txr->txdma);
+ free(adapter->rx_rings, M_DEVBUF);
+rx_fail:
+#if __FreeBSD_version >= 800000
+ buf_ring_free(txr->br, M_DEVBUF);
+#endif
+ free(adapter->tx_rings, M_DEVBUF);
+fail:
+ return (error);
+}
+
+
+/*********************************************************************
+ *
+ * Allocate memory for tx_buffer structures. The tx_buffer stores all
+ * the information needed to transmit a packet on the wire. This is
+ * called only once at attach, setup is done every reset.
+ *
+ **********************************************************************/
+static int
+em_allocate_transmit_buffers(struct tx_ring *txr)
+{
+ struct adapter *adapter = txr->adapter;
+ device_t dev = adapter->dev;
+ struct em_buffer *txbuf;
+ int error, i;
+
+ /*
+ * Setup DMA descriptor areas.
+ */
+ if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
+ 1, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ EM_TSO_SIZE, /* maxsize */
+ EM_MAX_SCATTER, /* nsegments */
+ PAGE_SIZE, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockfuncarg */
+ &txr->txtag))) {
+ device_printf(dev,"Unable to allocate TX DMA tag\n");
+ goto fail;
+ }
+
+ if (!(txr->tx_buffers =
+ (struct em_buffer *) malloc(sizeof(struct em_buffer) *
+ adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO))) {
+ device_printf(dev, "Unable to allocate tx_buffer memory\n");
+ error = ENOMEM;
+ goto fail;
+ }
+
+ /* Create the descriptor buffer dma maps */
+ txbuf = txr->tx_buffers;
+ for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
+ error = bus_dmamap_create(txr->txtag, 0, &txbuf->map);
+ if (error != 0) {
+ device_printf(dev, "Unable to create TX DMA map\n");
+ goto fail;
+ }
+ }
+
+ return 0;
+fail:
+ /* We free all, it handles case where we are in the middle */
+ em_free_transmit_structures(adapter);
+ return (error);
+}
+
+/*********************************************************************
+ *
+ * Initialize a transmit ring.
+ *
+ **********************************************************************/
+static void
+em_setup_transmit_ring(struct tx_ring *txr)
+{
+ struct adapter *adapter = txr->adapter;
+ struct em_buffer *txbuf;
+ int i;
+
+ /* Clear the old descriptor contents */
+ EM_TX_LOCK(txr);
+ bzero((void *)txr->tx_base,
+ (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
+ /* Reset indices */
+ txr->next_avail_desc = 0;
+ txr->next_to_clean = 0;
+
+ /* Free any existing tx buffers. */
+ txbuf = txr->tx_buffers;
+ for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
+ if (txbuf->m_head != NULL) {
+ bus_dmamap_sync(txr->txtag, txbuf->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(txr->txtag, txbuf->map);
+ m_freem(txbuf->m_head);
+ txbuf->m_head = NULL;
+ }
+ /* clear the watch index */
+ txbuf->next_eop = -1;
+ }
+
+ /* Set number of descriptors available */
+ txr->tx_avail = adapter->num_tx_desc;
+ txr->queue_status = EM_QUEUE_IDLE;
+
+ /* Clear checksum offload context. */
+ txr->last_hw_offload = 0;
+ txr->last_hw_ipcss = 0;
+ txr->last_hw_ipcso = 0;
+ txr->last_hw_tucss = 0;
+ txr->last_hw_tucso = 0;
+
+ bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+ EM_TX_UNLOCK(txr);
+}
+
+/*********************************************************************
+ *
+ * Initialize all transmit rings.
+ *
+ **********************************************************************/
+static void
+em_setup_transmit_structures(struct adapter *adapter)
+{
+ struct tx_ring *txr = adapter->tx_rings;
+
+ for (int i = 0; i < adapter->num_queues; i++, txr++)
+ em_setup_transmit_ring(txr);
+
+ return;
+}
+
+/*********************************************************************
+ *
+ * Enable transmit unit.
+ *
+ **********************************************************************/
+static void
+em_initialize_transmit_unit(struct adapter *adapter)
+{
+ struct tx_ring *txr = adapter->tx_rings;
+ struct e1000_hw *hw = &adapter->hw;
+ u32 tctl, tarc, tipg = 0;
+
+ INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
+
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ u64 bus_addr = txr->txdma.dma_paddr;
+ /* Base and Len of TX Ring */
+ E1000_WRITE_REG(hw, E1000_TDLEN(i),
+ adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
+ E1000_WRITE_REG(hw, E1000_TDBAH(i),
+ (u32)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_TDBAL(i),
+ (u32)bus_addr);
+ /* Init the HEAD/TAIL indices */
+ E1000_WRITE_REG(hw, E1000_TDT(i), 0);
+ E1000_WRITE_REG(hw, E1000_TDH(i), 0);
+
+ HW_DEBUGOUT2("Base = %x, Length = %x\n",
+ E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
+ E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
+
+ txr->queue_status = EM_QUEUE_IDLE;
+ }
+
+ /* Set the default values for the Tx Inter Packet Gap timer */
+ switch (adapter->hw.mac.type) {
+ case e1000_82542:
+ tipg = DEFAULT_82542_TIPG_IPGT;
+ tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+ tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+ break;
+ case e1000_80003es2lan:
+ tipg = DEFAULT_82543_TIPG_IPGR1;
+ tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
+ E1000_TIPG_IPGR2_SHIFT;
+ break;
+ default:
+ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+ (adapter->hw.phy.media_type ==
+ e1000_media_type_internal_serdes))
+ tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+ else
+ tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+ tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+ tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+ }
+
+ E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
+ E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
+
+ if(adapter->hw.mac.type >= e1000_82540)
+ E1000_WRITE_REG(&adapter->hw, E1000_TADV,
+ adapter->tx_abs_int_delay.value);
+
+ if ((adapter->hw.mac.type == e1000_82571) ||
+ (adapter->hw.mac.type == e1000_82572)) {
+ tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
+ tarc |= SPEED_MODE_BIT;
+ E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
+ } else if (adapter->hw.mac.type == e1000_80003es2lan) {
+ tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
+ tarc |= 1;
+ E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
+ tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
+ tarc |= 1;
+ E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
+ }
+
+ adapter->txd_cmd = E1000_TXD_CMD_IFCS;
+ if (adapter->tx_int_delay.value > 0)
+ adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+
+ /* Program the Transmit Control Register */
+ tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+ if (adapter->hw.mac.type >= e1000_82571)
+ tctl |= E1000_TCTL_MULR;
+
+ /* This write will effectively turn on the transmit unit. */
+ E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
+
+}
+
+
+/*********************************************************************
+ *
+ * Free all transmit rings.
+ *
+ **********************************************************************/
+static void
+em_free_transmit_structures(struct adapter *adapter)
+{
+ struct tx_ring *txr = adapter->tx_rings;
+
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ EM_TX_LOCK(txr);
+ em_free_transmit_buffers(txr);
+ em_dma_free(adapter, &txr->txdma);
+ EM_TX_UNLOCK(txr);
+ EM_TX_LOCK_DESTROY(txr);
+ }
+
+ free(adapter->tx_rings, M_DEVBUF);
+}
+
+/*********************************************************************
+ *
+ * Free transmit ring related data structures.
+ *
+ **********************************************************************/
+static void
+em_free_transmit_buffers(struct tx_ring *txr)
+{
+ struct adapter *adapter = txr->adapter;
+ struct em_buffer *txbuf;
+
+ INIT_DEBUGOUT("free_transmit_ring: begin");
+
+ if (txr->tx_buffers == NULL)
+ return;
+
+ for (int i = 0; i < adapter->num_tx_desc; i++) {
+ txbuf = &txr->tx_buffers[i];
+ if (txbuf->m_head != NULL) {
+ bus_dmamap_sync(txr->txtag, txbuf->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(txr->txtag,
+ txbuf->map);
+ m_freem(txbuf->m_head);
+ txbuf->m_head = NULL;
+ if (txbuf->map != NULL) {
+ bus_dmamap_destroy(txr->txtag,
+ txbuf->map);
+ txbuf->map = NULL;
+ }
+ } else if (txbuf->map != NULL) {
+ bus_dmamap_unload(txr->txtag,
+ txbuf->map);
+ bus_dmamap_destroy(txr->txtag,
+ txbuf->map);
+ txbuf->map = NULL;
+ }
+ }
+#if __FreeBSD_version >= 800000
+ if (txr->br != NULL)
+ buf_ring_free(txr->br, M_DEVBUF);
+#endif
+ if (txr->tx_buffers != NULL) {
+ free(txr->tx_buffers, M_DEVBUF);
+ txr->tx_buffers = NULL;
+ }
+ if (txr->txtag != NULL) {
+ bus_dma_tag_destroy(txr->txtag);
+ txr->txtag = NULL;
+ }
+ return;
+}
+
+
+/*********************************************************************
+ * The offload context is protocol specific (TCP/UDP) and thus
+ * only needs to be set when the protocol changes. The occasion
+ * of a context change can be a performance detriment, and
+ * might be better just disabled. The reason arises in the way
+ * in which the controller supports pipelined requests from the
+ * Tx data DMA. Up to four requests can be pipelined, and they may
+ * belong to the same packet or to multiple packets. However all
+ * requests for one packet are issued before a request is issued
+ * for a subsequent packet and if a request for the next packet
+ * requires a context change, that request will be stalled
+ * until the previous request completes. This means setting up
+ * a new context effectively disables pipelined Tx data DMA which
+ * in turn greatly slow down performance to send small sized
+ * frames.
+ **********************************************************************/
+static void
+em_transmit_checksum_setup(struct tx_ring *txr, struct mbuf *mp, int ip_off,
+ struct ip *ip, u32 *txd_upper, u32 *txd_lower)
+{
+ struct adapter *adapter = txr->adapter;
+ struct e1000_context_desc *TXD = NULL;
+ struct em_buffer *tx_buffer;
+ int cur, hdr_len;
+ u32 cmd = 0;
+ u16 offload = 0;
+ u8 ipcso, ipcss, tucso, tucss;
+
+ ipcss = ipcso = tucss = tucso = 0;
+ hdr_len = ip_off + (ip->ip_hl << 2);
+ cur = txr->next_avail_desc;
+
+ /* Setup of IP header checksum. */
+ if (mp->m_pkthdr.csum_flags & CSUM_IP) {
+ *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
+ offload |= CSUM_IP;
+ ipcss = ip_off;
+ ipcso = ip_off + offsetof(struct ip, ip_sum);
+ /*
+ * Start offset for header checksum calculation.
+ * End offset for header checksum calculation.
+ * Offset of place to put the checksum.
+ */
+ TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
+ TXD->lower_setup.ip_fields.ipcss = ipcss;
+ TXD->lower_setup.ip_fields.ipcse = htole16(hdr_len);
+ TXD->lower_setup.ip_fields.ipcso = ipcso;
+ cmd |= E1000_TXD_CMD_IP;
+ }
+
+ if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
+ *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+ *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+ offload |= CSUM_TCP;
+ tucss = hdr_len;
+ tucso = hdr_len + offsetof(struct tcphdr, th_sum);
+ /*
+ * Setting up new checksum offload context for every frames
+ * takes a lot of processing time for hardware. This also
+ * reduces performance a lot for small sized frames so avoid
+ * it if driver can use previously configured checksum
+ * offload context.
+ */
+ if (txr->last_hw_offload == offload) {
+ if (offload & CSUM_IP) {
+ if (txr->last_hw_ipcss == ipcss &&
+ txr->last_hw_ipcso == ipcso &&
+ txr->last_hw_tucss == tucss &&
+ txr->last_hw_tucso == tucso)
+ return;
+ } else {
+ if (txr->last_hw_tucss == tucss &&
+ txr->last_hw_tucso == tucso)
+ return;
+ }
+ }
+ txr->last_hw_offload = offload;
+ txr->last_hw_tucss = tucss;
+ txr->last_hw_tucso = tucso;
+ /*
+ * Start offset for payload checksum calculation.
+ * End offset for payload checksum calculation.
+ * Offset of place to put the checksum.
+ */
+ TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
+ TXD->upper_setup.tcp_fields.tucss = hdr_len;
+ TXD->upper_setup.tcp_fields.tucse = htole16(0);
+ TXD->upper_setup.tcp_fields.tucso = tucso;
+ cmd |= E1000_TXD_CMD_TCP;
+ } else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
+ *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+ *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+ tucss = hdr_len;
+ tucso = hdr_len + offsetof(struct udphdr, uh_sum);
+ /*
+ * Setting up new checksum offload context for every frames
+ * takes a lot of processing time for hardware. This also
+ * reduces performance a lot for small sized frames so avoid
+ * it if driver can use previously configured checksum
+ * offload context.
+ */
+ if (txr->last_hw_offload == offload) {
+ if (offload & CSUM_IP) {
+ if (txr->last_hw_ipcss == ipcss &&
+ txr->last_hw_ipcso == ipcso &&
+ txr->last_hw_tucss == tucss &&
+ txr->last_hw_tucso == tucso)
+ return;
+ } else {
+ if (txr->last_hw_tucss == tucss &&
+ txr->last_hw_tucso == tucso)
+ return;
+ }
+ }
+ txr->last_hw_offload = offload;
+ txr->last_hw_tucss = tucss;
+ txr->last_hw_tucso = tucso;
+ /*
+ * Start offset for header checksum calculation.
+ * End offset for header checksum calculation.
+ * Offset of place to put the checksum.
+ */
+ TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
+ TXD->upper_setup.tcp_fields.tucss = tucss;
+ TXD->upper_setup.tcp_fields.tucse = htole16(0);
+ TXD->upper_setup.tcp_fields.tucso = tucso;
+ }
+
+ if (offload & CSUM_IP) {
+ txr->last_hw_ipcss = ipcss;
+ txr->last_hw_ipcso = ipcso;
+ }
+
+ TXD->tcp_seg_setup.data = htole32(0);
+ TXD->cmd_and_length =
+ htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT | cmd);
+ tx_buffer = &txr->tx_buffers[cur];
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+
+ if (++cur == adapter->num_tx_desc)
+ cur = 0;
+
+ txr->tx_avail--;
+ txr->next_avail_desc = cur;
+}
+
+
+/**********************************************************************
+ *
+ * Setup work for hardware segmentation offload (TSO)
+ *
+ **********************************************************************/
+static void
+em_tso_setup(struct tx_ring *txr, struct mbuf *mp, int ip_off,
+ struct ip *ip, struct tcphdr *tp, u32 *txd_upper, u32 *txd_lower)
+{
+ struct adapter *adapter = txr->adapter;
+ struct e1000_context_desc *TXD;
+ struct em_buffer *tx_buffer;
+ int cur, hdr_len;
+
+ /*
+ * In theory we can use the same TSO context if and only if
+ * frame is the same type(IP/TCP) and the same MSS. However
+ * checking whether a frame has the same IP/TCP structure is
+ * hard thing so just ignore that and always restablish a
+ * new TSO context.
+ */
+ hdr_len = ip_off + (ip->ip_hl << 2) + (tp->th_off << 2);
+ *txd_lower = (E1000_TXD_CMD_DEXT | /* Extended descr type */
+ E1000_TXD_DTYP_D | /* Data descr type */
+ E1000_TXD_CMD_TSE); /* Do TSE on this packet */
+
+ /* IP and/or TCP header checksum calculation and insertion. */
+ *txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
+
+ cur = txr->next_avail_desc;
+ tx_buffer = &txr->tx_buffers[cur];
+ TXD = (struct e1000_context_desc *) &txr->tx_base[cur];
+
+ /*
+ * Start offset for header checksum calculation.
+ * End offset for header checksum calculation.
+ * Offset of place put the checksum.
+ */
+ TXD->lower_setup.ip_fields.ipcss = ip_off;
+ TXD->lower_setup.ip_fields.ipcse =
+ htole16(ip_off + (ip->ip_hl << 2) - 1);
+ TXD->lower_setup.ip_fields.ipcso = ip_off + offsetof(struct ip, ip_sum);
+ /*
+ * Start offset for payload checksum calculation.
+ * End offset for payload checksum calculation.
+ * Offset of place to put the checksum.
+ */
+ TXD->upper_setup.tcp_fields.tucss = ip_off + (ip->ip_hl << 2);
+ TXD->upper_setup.tcp_fields.tucse = 0;
+ TXD->upper_setup.tcp_fields.tucso =
+ ip_off + (ip->ip_hl << 2) + offsetof(struct tcphdr, th_sum);
+ /*
+ * Payload size per packet w/o any headers.
+ * Length of all headers up to payload.
+ */
+ TXD->tcp_seg_setup.fields.mss = htole16(mp->m_pkthdr.tso_segsz);
+ TXD->tcp_seg_setup.fields.hdr_len = hdr_len;
+
+ TXD->cmd_and_length = htole32(adapter->txd_cmd |
+ E1000_TXD_CMD_DEXT | /* Extended descr */
+ E1000_TXD_CMD_TSE | /* TSE context */
+ E1000_TXD_CMD_IP | /* Do IP csum */
+ E1000_TXD_CMD_TCP | /* Do TCP checksum */
+ (mp->m_pkthdr.len - (hdr_len))); /* Total len */
+
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+
+ if (++cur == adapter->num_tx_desc)
+ cur = 0;
+
+ txr->tx_avail--;
+ txr->next_avail_desc = cur;
+ txr->tx_tso = TRUE;
+}
+
+
+/**********************************************************************
+ *
+ * Examine each tx_buffer in the used queue. If the hardware is done
+ * processing the packet then free associated resources. The
+ * tx_buffer is put back on the free queue.
+ *
+ **********************************************************************/
+static bool
+em_txeof(struct tx_ring *txr)
+{
+ struct adapter *adapter = txr->adapter;
+ int first, last, done, processed;
+ struct em_buffer *tx_buffer;
+ struct e1000_tx_desc *tx_desc, *eop_desc;
+ struct ifnet *ifp = adapter->ifp;
+
+ EM_TX_LOCK_ASSERT(txr);
+
+ /* No work, make sure watchdog is off */
+ if (txr->tx_avail == adapter->num_tx_desc) {
+ txr->queue_status = EM_QUEUE_IDLE;
+ return (FALSE);
+ }
+
+ processed = 0;
+ first = txr->next_to_clean;
+ tx_desc = &txr->tx_base[first];
+ tx_buffer = &txr->tx_buffers[first];
+ last = tx_buffer->next_eop;
+ eop_desc = &txr->tx_base[last];
+
+ /*
+ * What this does is get the index of the
+ * first descriptor AFTER the EOP of the
+ * first packet, that way we can do the
+ * simple comparison on the inner while loop.
+ */
+ if (++last == adapter->num_tx_desc)
+ last = 0;
+ done = last;
+
+ bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
+ BUS_DMASYNC_POSTREAD);
+
+ while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
+ /* We clean the range of the packet */
+ while (first != done) {
+ tx_desc->upper.data = 0;
+ tx_desc->lower.data = 0;
+ tx_desc->buffer_addr = 0;
+ ++txr->tx_avail;
+ ++processed;
+
+ if (tx_buffer->m_head) {
+ bus_dmamap_sync(txr->txtag,
+ tx_buffer->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(txr->txtag,
+ tx_buffer->map);
+ m_freem(tx_buffer->m_head);
+ tx_buffer->m_head = NULL;
+ }
+ tx_buffer->next_eop = -1;
+ txr->watchdog_time = ticks;
+
+ if (++first == adapter->num_tx_desc)
+ first = 0;
+
+ tx_buffer = &txr->tx_buffers[first];
+ tx_desc = &txr->tx_base[first];
+ }
+ ++ifp->if_opackets;
+ /* See if we can continue to the next packet */
+ last = tx_buffer->next_eop;
+ if (last != -1) {
+ eop_desc = &txr->tx_base[last];
+ /* Get new done point */
+ if (++last == adapter->num_tx_desc) last = 0;
+ done = last;
+ } else
+ break;
+ }
+ bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ txr->next_to_clean = first;
+
+ /*
+ ** Watchdog calculation, we know there's
+ ** work outstanding or the first return
+ ** would have been taken, so none processed
+ ** for too long indicates a hang. local timer
+ ** will examine this and do a reset if needed.
+ */
+ if ((!processed) && ((ticks - txr->watchdog_time) > EM_WATCHDOG))
+ txr->queue_status = EM_QUEUE_HUNG;
+
+ /*
+ * If we have enough room, clear IFF_DRV_OACTIVE
+ * to tell the stack that it is OK to send packets.
+ */
+ if (txr->tx_avail > EM_TX_CLEANUP_THRESHOLD) {
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+ /* Disable watchdog if all clean */
+ if (txr->tx_avail == adapter->num_tx_desc) {
+ txr->queue_status = EM_QUEUE_IDLE;
+ return (FALSE);
+ }
+ }
+
+ return (TRUE);
+}
+
+
+/*********************************************************************
+ *
+ * Refresh RX descriptor mbufs from system mbuf buffer pool.
+ *
+ **********************************************************************/
+static void
+em_refresh_mbufs(struct rx_ring *rxr, int limit)
+{
+ struct adapter *adapter = rxr->adapter;
+ struct mbuf *m;
+ bus_dma_segment_t segs[1];
+ struct em_buffer *rxbuf;
+ int i, error, nsegs, cleaned;
+
+ i = rxr->next_to_refresh;
+ cleaned = -1;
+ while (i != limit) {
+ rxbuf = &rxr->rx_buffers[i];
+ if (rxbuf->m_head == NULL) {
+ m = m_getjcl(M_DONTWAIT, MT_DATA,
+ M_PKTHDR, adapter->rx_mbuf_sz);
+ /*
+ ** If we have a temporary resource shortage
+ ** that causes a failure, just abort refresh
+ ** for now, we will return to this point when
+ ** reinvoked from em_rxeof.
+ */
+ if (m == NULL)
+ goto update;
+ } else
+ m = rxbuf->m_head;
+
+ m->m_len = m->m_pkthdr.len = adapter->rx_mbuf_sz;
+ m->m_flags |= M_PKTHDR;
+ m->m_data = m->m_ext.ext_buf;
+
+ /* Use bus_dma machinery to setup the memory mapping */
+ error = bus_dmamap_load_mbuf_sg(rxr->rxtag, rxbuf->map,
+ m, segs, &nsegs, BUS_DMA_NOWAIT);
+ if (error != 0) {
+ printf("Refresh mbufs: hdr dmamap load"
+ " failure - %d\n", error);
+ m_free(m);
+ rxbuf->m_head = NULL;
+ goto update;
+ }
+ rxbuf->m_head = m;
+ bus_dmamap_sync(rxr->rxtag,
+ rxbuf->map, BUS_DMASYNC_PREREAD);
+ rxr->rx_base[i].buffer_addr = htole64(segs[0].ds_addr);
+
+ cleaned = i;
+ /* Calculate next index */
+ if (++i == adapter->num_rx_desc)
+ i = 0;
+ rxr->next_to_refresh = i;
+ }
+update:
+ /*
+ ** Update the tail pointer only if,
+ ** and as far as we have refreshed.
+ */
+ if (cleaned != -1) /* Update tail index */
+ E1000_WRITE_REG(&adapter->hw,
+ E1000_RDT(rxr->me), cleaned);
+
+ return;
+}
+
+
+/*********************************************************************
+ *
+ * Allocate memory for rx_buffer structures. Since we use one
+ * rx_buffer per received packet, the maximum number of rx_buffer's
+ * that we'll need is equal to the number of receive descriptors
+ * that we've allocated.
+ *
+ **********************************************************************/
+static int
+em_allocate_receive_buffers(struct rx_ring *rxr)
+{
+ struct adapter *adapter = rxr->adapter;
+ device_t dev = adapter->dev;
+ struct em_buffer *rxbuf;
+ int error;
+
+ rxr->rx_buffers = malloc(sizeof(struct em_buffer) *
+ adapter->num_rx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
+ if (rxr->rx_buffers == NULL) {
+ device_printf(dev, "Unable to allocate rx_buffer memory\n");
+ return (ENOMEM);
+ }
+
+ error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
+ 1, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ MJUM9BYTES, /* maxsize */
+ 1, /* nsegments */
+ MJUM9BYTES, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockarg */
+ &rxr->rxtag);
+ if (error) {
+ device_printf(dev, "%s: bus_dma_tag_create failed %d\n",
+ __func__, error);
+ goto fail;
+ }
+
+ rxbuf = rxr->rx_buffers;
+ for (int i = 0; i < adapter->num_rx_desc; i++, rxbuf++) {
+ rxbuf = &rxr->rx_buffers[i];
+ error = bus_dmamap_create(rxr->rxtag, BUS_DMA_NOWAIT,
+ &rxbuf->map);
+ if (error) {
+ device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
+ __func__, error);
+ goto fail;
+ }
+ }
+
+ return (0);
+
+fail:
+ em_free_receive_structures(adapter);
+ return (error);
+}
+
+
+/*********************************************************************
+ *
+ * Initialize a receive ring and its buffers.
+ *
+ **********************************************************************/
+static int
+em_setup_receive_ring(struct rx_ring *rxr)
+{
+ struct adapter *adapter = rxr->adapter;
+ struct em_buffer *rxbuf;
+ bus_dma_segment_t seg[1];
+ int rsize, nsegs, error;
+
+
+ /* Clear the ring contents */
+ EM_RX_LOCK(rxr);
+ rsize = roundup2(adapter->num_rx_desc *
+ sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
+ bzero((void *)rxr->rx_base, rsize);
+
+ /*
+ ** Free current RX buffer structs and their mbufs
+ */
+ for (int i = 0; i < adapter->num_rx_desc; i++) {
+ rxbuf = &rxr->rx_buffers[i];
+ if (rxbuf->m_head != NULL) {
+ bus_dmamap_sync(rxr->rxtag, rxbuf->map,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(rxr->rxtag, rxbuf->map);
+ m_freem(rxbuf->m_head);
+ }
+ }
+
+ /* Now replenish the mbufs */
+ for (int j = 0; j != adapter->num_rx_desc; ++j) {
+
+ rxbuf = &rxr->rx_buffers[j];
+ rxbuf->m_head = m_getjcl(M_DONTWAIT, MT_DATA,
+ M_PKTHDR, adapter->rx_mbuf_sz);
+ if (rxbuf->m_head == NULL)
+ return (ENOBUFS);
+ rxbuf->m_head->m_len = adapter->rx_mbuf_sz;
+ rxbuf->m_head->m_flags &= ~M_HASFCS; /* we strip it */
+ rxbuf->m_head->m_pkthdr.len = adapter->rx_mbuf_sz;
+
+ /* Get the memory mapping */
+ error = bus_dmamap_load_mbuf_sg(rxr->rxtag,
+ rxbuf->map, rxbuf->m_head, seg,
+ &nsegs, BUS_DMA_NOWAIT);
+ if (error != 0) {
+ m_freem(rxbuf->m_head);
+ rxbuf->m_head = NULL;
+ return (error);
+ }
+ bus_dmamap_sync(rxr->rxtag,
+ rxbuf->map, BUS_DMASYNC_PREREAD);
+
+ /* Update descriptor */
+ rxr->rx_base[j].buffer_addr = htole64(seg[0].ds_addr);
+ }
+
+
+ /* Setup our descriptor indices */
+ rxr->next_to_check = 0;
+ rxr->next_to_refresh = 0;
+
+ bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ EM_RX_UNLOCK(rxr);
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * Initialize all receive rings.
+ *
+ **********************************************************************/
+static int
+em_setup_receive_structures(struct adapter *adapter)
+{
+ struct rx_ring *rxr = adapter->rx_rings;
+ int j;
+
+ for (j = 0; j < adapter->num_queues; j++, rxr++)
+ if (em_setup_receive_ring(rxr))
+ goto fail;
+
+ return (0);
+fail:
+ /*
+ * Free RX buffers allocated so far, we will only handle
+ * the rings that completed, the failing case will have
+ * cleaned up for itself. 'j' failed, so its the terminus.
+ */
+ for (int i = 0; i < j; ++i) {
+ rxr = &adapter->rx_rings[i];
+ for (int n = 0; n < adapter->num_rx_desc; n++) {
+ struct em_buffer *rxbuf;
+ rxbuf = &rxr->rx_buffers[n];
+ if (rxbuf->m_head != NULL) {
+ bus_dmamap_sync(rxr->rxtag, rxbuf->map,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(rxr->rxtag, rxbuf->map);
+ m_freem(rxbuf->m_head);
+ rxbuf->m_head = NULL;
+ }
+ }
+ }
+
+ return (ENOBUFS);
+}
+
+/*********************************************************************
+ *
+ * Free all receive rings.
+ *
+ **********************************************************************/
+static void
+em_free_receive_structures(struct adapter *adapter)
+{
+ struct rx_ring *rxr = adapter->rx_rings;
+
+ for (int i = 0; i < adapter->num_queues; i++, rxr++) {
+ em_free_receive_buffers(rxr);
+ /* Free the ring memory as well */
+ em_dma_free(adapter, &rxr->rxdma);
+ EM_RX_LOCK_DESTROY(rxr);
+ }
+
+ free(adapter->rx_rings, M_DEVBUF);
+}
+
+
+/*********************************************************************
+ *
+ * Free receive ring data structures
+ *
+ **********************************************************************/
+static void
+em_free_receive_buffers(struct rx_ring *rxr)
+{
+ struct adapter *adapter = rxr->adapter;
+ struct em_buffer *rxbuf = NULL;
+
+ INIT_DEBUGOUT("free_receive_buffers: begin");
+
+ if (rxr->rx_buffers != NULL) {
+ for (int i = 0; i < adapter->num_rx_desc; i++) {
+ rxbuf = &rxr->rx_buffers[i];
+ if (rxbuf->map != NULL) {
+ bus_dmamap_sync(rxr->rxtag, rxbuf->map,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(rxr->rxtag, rxbuf->map);
+ bus_dmamap_destroy(rxr->rxtag, rxbuf->map);
+ }
+ if (rxbuf->m_head != NULL) {
+ m_freem(rxbuf->m_head);
+ rxbuf->m_head = NULL;
+ }
+ }
+ free(rxr->rx_buffers, M_DEVBUF);
+ rxr->rx_buffers = NULL;
+ }
+
+ if (rxr->rxtag != NULL) {
+ bus_dma_tag_destroy(rxr->rxtag);
+ rxr->rxtag = NULL;
+ }
+
+ return;
+}
+
+
+/*********************************************************************
+ *
+ * Enable receive unit.
+ *
+ **********************************************************************/
+#define MAX_INTS_PER_SEC 8000
+#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
+
+static void
+em_initialize_receive_unit(struct adapter *adapter)
+{
+ struct rx_ring *rxr = adapter->rx_rings;
+ struct ifnet *ifp = adapter->ifp;
+ struct e1000_hw *hw = &adapter->hw;
+ u64 bus_addr;
+ u32 rctl, rxcsum;
+
+ INIT_DEBUGOUT("em_initialize_receive_units: begin");
+
+ /*
+ * Make sure receives are disabled while setting
+ * up the descriptor ring
+ */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+
+ E1000_WRITE_REG(&adapter->hw, E1000_RADV,
+ adapter->rx_abs_int_delay.value);
+ /*
+ * Set the interrupt throttling rate. Value is calculated
+ * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
+ */
+ E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
+
+ /*
+ ** When using MSIX interrupts we need to throttle
+ ** using the EITR register (82574 only)
+ */
+ if (hw->mac.type == e1000_82574)
+ for (int i = 0; i < 4; i++)
+ E1000_WRITE_REG(hw, E1000_EITR_82574(i),
+ DEFAULT_ITR);
+
+ /* Disable accelerated ackknowledge */
+ if (adapter->hw.mac.type == e1000_82574)
+ E1000_WRITE_REG(hw, E1000_RFCTL, E1000_RFCTL_ACK_DIS);
+
+ if (ifp->if_capenable & IFCAP_RXCSUM) {
+ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
+ rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
+ E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
+ }
+
+ /*
+ ** XXX TEMPORARY WORKAROUND: on some systems with 82573
+ ** long latencies are observed, like Lenovo X60. This
+ ** change eliminates the problem, but since having positive
+ ** values in RDTR is a known source of problems on other
+ ** platforms another solution is being sought.
+ */
+ if (hw->mac.type == e1000_82573)
+ E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
+
+ for (int i = 0; i < adapter->num_queues; i++, rxr++) {
+ /* Setup the Base and Length of the Rx Descriptor Ring */
+ bus_addr = rxr->rxdma.dma_paddr;
+ E1000_WRITE_REG(hw, E1000_RDLEN(i),
+ adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
+ E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
+ /* Setup the Head and Tail Descriptor Pointers */
+ E1000_WRITE_REG(hw, E1000_RDH(i), 0);
+ E1000_WRITE_REG(hw, E1000_RDT(i), adapter->num_rx_desc - 1);
+ }
+
+ /* Set early receive threshold on appropriate hw */
+ if (((adapter->hw.mac.type == e1000_ich9lan) ||
+ (adapter->hw.mac.type == e1000_pch2lan) ||
+ (adapter->hw.mac.type == e1000_ich10lan)) &&
+ (ifp->if_mtu > ETHERMTU)) {
+ u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
+ E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
+ E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
+ }
+
+ if (adapter->hw.mac.type == e1000_pch2lan) {
+ if (ifp->if_mtu > ETHERMTU)
+ e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
+ else
+ e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
+ }
+
+ /* Setup the Receive Control Register */
+ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
+ E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+ (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+ /* Strip the CRC */
+ rctl |= E1000_RCTL_SECRC;
+
+ /* Make sure VLAN Filters are off */
+ rctl &= ~E1000_RCTL_VFE;
+ rctl &= ~E1000_RCTL_SBP;
+
+ if (adapter->rx_mbuf_sz == MCLBYTES)
+ rctl |= E1000_RCTL_SZ_2048;
+ else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
+ rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
+ else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
+ rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
+
+ if (ifp->if_mtu > ETHERMTU)
+ rctl |= E1000_RCTL_LPE;
+ else
+ rctl &= ~E1000_RCTL_LPE;
+
+ /* Write out the settings */
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ return;
+}
+
+
+/*********************************************************************
+ *
+ * This routine executes in interrupt context. It replenishes
+ * the mbufs in the descriptor and sends data which has been
+ * dma'ed into host memory to upper layer.
+ *
+ * We loop at most count times if count is > 0, or until done if
+ * count < 0.
+ *
+ * For polling we also now return the number of cleaned packets
+ *********************************************************************/
+static bool
+em_rxeof(struct rx_ring *rxr, int count, int *done)
+{
+ struct adapter *adapter = rxr->adapter;
+ struct ifnet *ifp = adapter->ifp;
+ struct mbuf *mp, *sendmp;
+ u8 status = 0;
+ u16 len;
+ int i, processed, rxdone = 0;
+ bool eop;
+ struct e1000_rx_desc *cur;
+
+ EM_RX_LOCK(rxr);
+
+ for (i = rxr->next_to_check, processed = 0; count != 0;) {
+
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
+ break;
+
+ bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
+ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+
+ cur = &rxr->rx_base[i];
+ status = cur->status;
+ mp = sendmp = NULL;
+
+ if ((status & E1000_RXD_STAT_DD) == 0)
+ break;
+
+ len = le16toh(cur->length);
+ eop = (status & E1000_RXD_STAT_EOP) != 0;
+
+ if ((cur->errors & E1000_RXD_ERR_FRAME_ERR_MASK) ||
+ (rxr->discard == TRUE)) {
+ ifp->if_ierrors++;
+ ++rxr->rx_discarded;
+ if (!eop) /* Catch subsequent segs */
+ rxr->discard = TRUE;
+ else
+ rxr->discard = FALSE;
+ em_rx_discard(rxr, i);
+ goto next_desc;
+ }
+
+ /* Assign correct length to the current fragment */
+ mp = rxr->rx_buffers[i].m_head;
+ mp->m_len = len;
+
+ /* Trigger for refresh */
+ rxr->rx_buffers[i].m_head = NULL;
+
+ /* First segment? */
+ if (rxr->fmp == NULL) {
+ mp->m_pkthdr.len = len;
+ rxr->fmp = rxr->lmp = mp;
+ } else {
+ /* Chain mbuf's together */
+ mp->m_flags &= ~M_PKTHDR;
+ rxr->lmp->m_next = mp;
+ rxr->lmp = mp;
+ rxr->fmp->m_pkthdr.len += len;
+ }
+
+ if (eop) {
+ --count;
+ sendmp = rxr->fmp;
+ sendmp->m_pkthdr.rcvif = ifp;
+ ifp->if_ipackets++;
+ em_receive_checksum(cur, sendmp);
+#ifndef __NO_STRICT_ALIGNMENT
+ if (adapter->max_frame_size >
+ (MCLBYTES - ETHER_ALIGN) &&
+ em_fixup_rx(rxr) != 0)
+ goto skip;
+#endif
+ if (status & E1000_RXD_STAT_VP) {
+ sendmp->m_pkthdr.ether_vtag =
+ (le16toh(cur->special) &
+ E1000_RXD_SPC_VLAN_MASK);
+ sendmp->m_flags |= M_VLANTAG;
+ }
+#ifdef EM_MULTIQUEUE
+ sendmp->m_pkthdr.flowid = rxr->msix;
+ sendmp->m_flags |= M_FLOWID;
+#endif
+#ifndef __NO_STRICT_ALIGNMENT
+skip:
+#endif
+ rxr->fmp = rxr->lmp = NULL;
+ }
+next_desc:
+ /* Zero out the receive descriptors status. */
+ cur->status = 0;
+ ++rxdone; /* cumulative for POLL */
+ ++processed;
+
+ /* Advance our pointers to the next descriptor. */
+ if (++i == adapter->num_rx_desc)
+ i = 0;
+
+ /* Send to the stack */
+ if (sendmp != NULL) {
+ rxr->next_to_check = i;
+ EM_RX_UNLOCK(rxr);
+ (*ifp->if_input)(ifp, sendmp);
+ EM_RX_LOCK(rxr);
+ i = rxr->next_to_check;
+ }
+
+ /* Only refresh mbufs every 8 descriptors */
+ if (processed == 8) {
+ em_refresh_mbufs(rxr, i);
+ processed = 0;
+ }
+ }
+
+ /* Catch any remaining refresh work */
+ em_refresh_mbufs(rxr, i);
+
+ rxr->next_to_check = i;
+ if (done != NULL)
+ *done = rxdone;
+ EM_RX_UNLOCK(rxr);
+
+ return ((status & E1000_RXD_STAT_DD) ? TRUE : FALSE);
+}
+
+static __inline void
+em_rx_discard(struct rx_ring *rxr, int i)
+{
+ struct em_buffer *rbuf;
+
+ rbuf = &rxr->rx_buffers[i];
+ /* Free any previous pieces */
+ if (rxr->fmp != NULL) {
+ rxr->fmp->m_flags |= M_PKTHDR;
+ m_freem(rxr->fmp);
+ rxr->fmp = NULL;
+ rxr->lmp = NULL;
+ }
+ /*
+ ** Free buffer and allow em_refresh_mbufs()
+ ** to clean up and recharge buffer.
+ */
+ if (rbuf->m_head) {
+ m_free(rbuf->m_head);
+ rbuf->m_head = NULL;
+ }
+ return;
+}
+
+#ifndef __NO_STRICT_ALIGNMENT
+/*
+ * When jumbo frames are enabled we should realign entire payload on
+ * architecures with strict alignment. This is serious design mistake of 8254x
+ * as it nullifies DMA operations. 8254x just allows RX buffer size to be
+ * 2048/4096/8192/16384. What we really want is 2048 - ETHER_ALIGN to align its
+ * payload. On architecures without strict alignment restrictions 8254x still
+ * performs unaligned memory access which would reduce the performance too.
+ * To avoid copying over an entire frame to align, we allocate a new mbuf and
+ * copy ethernet header to the new mbuf. The new mbuf is prepended into the
+ * existing mbuf chain.
+ *
+ * Be aware, best performance of the 8254x is achived only when jumbo frame is
+ * not used at all on architectures with strict alignment.
+ */
+static int
+em_fixup_rx(struct rx_ring *rxr)
+{
+ struct adapter *adapter = rxr->adapter;
+ struct mbuf *m, *n;
+ int error;
+
+ error = 0;
+ m = rxr->fmp;
+ if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
+ bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
+ m->m_data += ETHER_HDR_LEN;
+ } else {
+ MGETHDR(n, M_DONTWAIT, MT_DATA);
+ if (n != NULL) {
+ bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
+ m->m_data += ETHER_HDR_LEN;
+ m->m_len -= ETHER_HDR_LEN;
+ n->m_len = ETHER_HDR_LEN;
+ M_MOVE_PKTHDR(n, m);
+ n->m_next = m;
+ rxr->fmp = n;
+ } else {
+ adapter->dropped_pkts++;
+ m_freem(rxr->fmp);
+ rxr->fmp = NULL;
+ error = ENOMEM;
+ }
+ }
+
+ return (error);
+}
+#endif
+
+/*********************************************************************
+ *
+ * Verify that the hardware indicated that the checksum is valid.
+ * Inform the stack about the status of checksum so that stack
+ * doesn't spend time verifying the checksum.
+ *
+ *********************************************************************/
+static void
+em_receive_checksum(struct e1000_rx_desc *rx_desc, struct mbuf *mp)
+{
+ /* Ignore Checksum bit is set */
+ if (rx_desc->status & E1000_RXD_STAT_IXSM) {
+ mp->m_pkthdr.csum_flags = 0;
+ return;
+ }
+
+ if (rx_desc->status & E1000_RXD_STAT_IPCS) {
+ /* Did it pass? */
+ if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
+ /* IP Checksum Good */
+ mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
+ mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
+
+ } else {
+ mp->m_pkthdr.csum_flags = 0;
+ }
+ }
+
+ if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
+ /* Did it pass? */
+ if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
+ mp->m_pkthdr.csum_flags |=
+ (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
+ mp->m_pkthdr.csum_data = htons(0xffff);
+ }
+ }
+}
+
+/*
+ * This routine is run via an vlan
+ * config EVENT
+ */
+static void
+em_register_vlan(void *arg, struct ifnet *ifp, u16 vtag)
+{
+ struct adapter *adapter = ifp->if_softc;
+ u32 index, bit;
+
+ if (ifp->if_softc != arg) /* Not our event */
+ return;
+
+ if ((vtag == 0) || (vtag > 4095)) /* Invalid ID */
+ return;
+
+ EM_CORE_LOCK(adapter);
+ index = (vtag >> 5) & 0x7F;
+ bit = vtag & 0x1F;
+ adapter->shadow_vfta[index] |= (1 << bit);
+ ++adapter->num_vlans;
+ /* Re-init to load the changes */
+ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
+ em_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
+}
+
+/*
+ * This routine is run via an vlan
+ * unconfig EVENT
+ */
+static void
+em_unregister_vlan(void *arg, struct ifnet *ifp, u16 vtag)
+{
+ struct adapter *adapter = ifp->if_softc;
+ u32 index, bit;
+
+ if (ifp->if_softc != arg)
+ return;
+
+ if ((vtag == 0) || (vtag > 4095)) /* Invalid */
+ return;
+
+ EM_CORE_LOCK(adapter);
+ index = (vtag >> 5) & 0x7F;
+ bit = vtag & 0x1F;
+ adapter->shadow_vfta[index] &= ~(1 << bit);
+ --adapter->num_vlans;
+ /* Re-init to load the changes */
+ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
+ em_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
+}
+
+static void
+em_setup_vlan_hw_support(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ u32 reg;
+
+ /*
+ ** We get here thru init_locked, meaning
+ ** a soft reset, this has already cleared
+ ** the VFTA and other state, so if there
+ ** have been no vlan's registered do nothing.
+ */
+ if (adapter->num_vlans == 0)
+ return;
+
+ /*
+ ** A soft reset zero's out the VFTA, so
+ ** we need to repopulate it now.
+ */
+ for (int i = 0; i < EM_VFTA_SIZE; i++)
+ if (adapter->shadow_vfta[i] != 0)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
+ i, adapter->shadow_vfta[i]);
+
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg |= E1000_CTRL_VME;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+ /* Enable the Filter Table */
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ reg &= ~E1000_RCTL_CFIEN;
+ reg |= E1000_RCTL_VFE;
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+}
+
+static void
+em_enable_intr(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ u32 ims_mask = IMS_ENABLE_MASK;
+
+ if (hw->mac.type == e1000_82574) {
+ E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
+ ims_mask |= EM_MSIX_MASK;
+ }
+ E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
+}
+
+static void
+em_disable_intr(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+
+ if (hw->mac.type == e1000_82574)
+ E1000_WRITE_REG(hw, EM_EIAC, 0);
+ E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
+}
+
+/*
+ * Bit of a misnomer, what this really means is
+ * to enable OS management of the system... aka
+ * to disable special hardware management features
+ */
+static void
+em_init_manageability(struct adapter *adapter)
+{
+ /* A shared code workaround */
+#define E1000_82542_MANC2H E1000_MANC2H
+ if (adapter->has_manage) {
+ int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
+ int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
+
+ /* disable hardware interception of ARP */
+ manc &= ~(E1000_MANC_ARP_EN);
+
+ /* enable receiving management packets to the host */
+ manc |= E1000_MANC_EN_MNG2HOST;
+#define E1000_MNG2HOST_PORT_623 (1 << 5)
+#define E1000_MNG2HOST_PORT_664 (1 << 6)
+ manc2h |= E1000_MNG2HOST_PORT_623;
+ manc2h |= E1000_MNG2HOST_PORT_664;
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
+ }
+}
+
+/*
+ * Give control back to hardware management
+ * controller if there is one.
+ */
+static void
+em_release_manageability(struct adapter *adapter)
+{
+ if (adapter->has_manage) {
+ int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
+
+ /* re-enable hardware interception of ARP */
+ manc |= E1000_MANC_ARP_EN;
+ manc &= ~E1000_MANC_EN_MNG2HOST;
+
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
+ }
+}
+
+/*
+ * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means
+ * that the driver is loaded. For AMT version type f/w
+ * this means that the network i/f is open.
+ */
+static void
+em_get_hw_control(struct adapter *adapter)
+{
+ u32 ctrl_ext, swsm;
+
+ if (adapter->hw.mac.type == e1000_82573) {
+ swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
+ E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
+ swsm | E1000_SWSM_DRV_LOAD);
+ return;
+ }
+ /* else */
+ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
+ ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+ return;
+}
+
+/*
+ * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that
+ * the driver is no longer loaded. For AMT versions of the
+ * f/w this means that the network i/f is closed.
+ */
+static void
+em_release_hw_control(struct adapter *adapter)
+{
+ u32 ctrl_ext, swsm;
+
+ if (!adapter->has_manage)
+ return;
+
+ if (adapter->hw.mac.type == e1000_82573) {
+ swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
+ E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
+ swsm & ~E1000_SWSM_DRV_LOAD);
+ return;
+ }
+ /* else */
+ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
+ ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+ return;
+}
+
+static int
+em_is_valid_ether_addr(u8 *addr)
+{
+ char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
+
+ if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
+ return (FALSE);
+ }
+
+ return (TRUE);
+}
+
+/*
+** Parse the interface capabilities with regard
+** to both system management and wake-on-lan for
+** later use.
+*/
+static void
+em_get_wakeup(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+ u16 eeprom_data = 0, device_id, apme_mask;
+
+ adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
+ apme_mask = EM_EEPROM_APME;
+
+ switch (adapter->hw.mac.type) {
+ case e1000_82573:
+ case e1000_82583:
+ adapter->has_amt = TRUE;
+ /* Falls thru */
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_80003es2lan:
+ if (adapter->hw.bus.func == 1) {
+ e1000_read_nvm(&adapter->hw,
+ NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
+ break;
+ } else
+ e1000_read_nvm(&adapter->hw,
+ NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+ break;
+ case e1000_ich8lan:
+ case e1000_ich9lan:
+ case e1000_ich10lan:
+ case e1000_pchlan:
+ case e1000_pch2lan:
+ apme_mask = E1000_WUC_APME;
+ adapter->has_amt = TRUE;
+ eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
+ break;
+ default:
+ e1000_read_nvm(&adapter->hw,
+ NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+ break;
+ }
+ if (eeprom_data & apme_mask)
+ adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
+ /*
+ * We have the eeprom settings, now apply the special cases
+ * where the eeprom may be wrong or the board won't support
+ * wake on lan on a particular port
+ */
+ device_id = pci_get_device(dev);
+ switch (device_id) {
+ case E1000_DEV_ID_82571EB_FIBER:
+ /* Wake events only supported on port A for dual fiber
+ * regardless of eeprom setting */
+ if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
+ E1000_STATUS_FUNC_1)
+ adapter->wol = 0;
+ break;
+ case E1000_DEV_ID_82571EB_QUAD_COPPER:
+ case E1000_DEV_ID_82571EB_QUAD_FIBER:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
+ /* if quad port adapter, disable WoL on all but port A */
+ if (global_quad_port_a != 0)
+ adapter->wol = 0;
+ /* Reset for multiple quad port adapters */
+ if (++global_quad_port_a == 4)
+ global_quad_port_a = 0;
+ break;
+ }
+ return;
+}
+
+
+/*
+ * Enable PCI Wake On Lan capability
+ */
+static void
+em_enable_wakeup(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+ struct ifnet *ifp = adapter->ifp;
+ u32 pmc, ctrl, ctrl_ext, rctl;
+ u16 status;
+
+ if ((pci_find_extcap(dev, PCIY_PMG, &pmc) != 0))
+ return;
+
+ /* Advertise the wakeup capability */
+ ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
+
+ if ((adapter->hw.mac.type == e1000_ich8lan) ||
+ (adapter->hw.mac.type == e1000_pchlan) ||
+ (adapter->hw.mac.type == e1000_ich9lan) ||
+ (adapter->hw.mac.type == e1000_ich10lan)) {
+ e1000_disable_gig_wol_ich8lan(&adapter->hw);
+ e1000_hv_phy_powerdown_workaround_ich8lan(&adapter->hw);
+ }
+
+ /* Keep the laser running on Fiber adapters */
+ if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
+ adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
+ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
+ }
+
+ /*
+ ** Determine type of Wakeup: note that wol
+ ** is set with all bits on by default.
+ */
+ if ((ifp->if_capenable & IFCAP_WOL_MAGIC) == 0)
+ adapter->wol &= ~E1000_WUFC_MAG;
+
+ if ((ifp->if_capenable & IFCAP_WOL_MCAST) == 0)
+ adapter->wol &= ~E1000_WUFC_MC;
+ else {
+ rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+ rctl |= E1000_RCTL_MPE;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
+ }
+
+ if ((adapter->hw.mac.type == e1000_pchlan) ||
+ (adapter->hw.mac.type == e1000_pch2lan)) {
+ if (em_enable_phy_wakeup(adapter))
+ return;
+ } else {
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
+ E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
+ }
+
+ if (adapter->hw.phy.type == e1000_phy_igp_3)
+ e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
+
+ /* Request PME */
+ status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
+ status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
+ if (ifp->if_capenable & IFCAP_WOL)
+ status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
+ pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
+
+ return;
+}
+
+/*
+** WOL in the newer chipset interfaces (pchlan)
+** require thing to be copied into the phy
+*/
+static int
+em_enable_phy_wakeup(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ u32 mreg, ret = 0;
+ u16 preg;
+
+ /* copy MAC RARs to PHY RARs */
+ e1000_copy_rx_addrs_to_phy_ich8lan(hw);
+
+ /* copy MAC MTA to PHY MTA */
+ for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
+ mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
+ e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
+ e1000_write_phy_reg(hw, BM_MTA(i) + 1,
+ (u16)((mreg >> 16) & 0xFFFF));
+ }
+
+ /* configure PHY Rx Control register */
+ e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
+ mreg = E1000_READ_REG(hw, E1000_RCTL);
+ if (mreg & E1000_RCTL_UPE)
+ preg |= BM_RCTL_UPE;
+ if (mreg & E1000_RCTL_MPE)
+ preg |= BM_RCTL_MPE;
+ preg &= ~(BM_RCTL_MO_MASK);
+ if (mreg & E1000_RCTL_MO_3)
+ preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
+ << BM_RCTL_MO_SHIFT);
+ if (mreg & E1000_RCTL_BAM)
+ preg |= BM_RCTL_BAM;
+ if (mreg & E1000_RCTL_PMCF)
+ preg |= BM_RCTL_PMCF;
+ mreg = E1000_READ_REG(hw, E1000_CTRL);
+ if (mreg & E1000_CTRL_RFCE)
+ preg |= BM_RCTL_RFCE;
+ e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
+
+ /* enable PHY wakeup in MAC register */
+ E1000_WRITE_REG(hw, E1000_WUC,
+ E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
+ E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
+
+ /* configure and enable PHY wakeup in PHY registers */
+ e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
+ e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
+
+ /* activate PHY wakeup */
+ ret = hw->phy.ops.acquire(hw);
+ if (ret) {
+ printf("Could not acquire PHY\n");
+ return ret;
+ }
+ e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+ (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+ ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
+ if (ret) {
+ printf("Could not read PHY page 769\n");
+ goto out;
+ }
+ preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
+ ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
+ if (ret)
+ printf("Could not set PHY Host Wakeup bit\n");
+out:
+ hw->phy.ops.release(hw);
+
+ return ret;
+}
+
+static void
+em_led_func(void *arg, int onoff)
+{
+ struct adapter *adapter = arg;
+
+ EM_CORE_LOCK(adapter);
+ if (onoff) {
+ e1000_setup_led(&adapter->hw);
+ e1000_led_on(&adapter->hw);
+ } else {
+ e1000_led_off(&adapter->hw);
+ e1000_cleanup_led(&adapter->hw);
+ }
+ EM_CORE_UNLOCK(adapter);
+}
+
+/*
+** Disable the L0S and L1 LINK states
+*/
+static void
+em_disable_aspm(struct adapter *adapter)
+{
+ int base, reg;
+ u16 link_cap,link_ctrl;
+ device_t dev = adapter->dev;
+
+ switch (adapter->hw.mac.type) {
+ case e1000_82573:
+ case e1000_82574:
+ case e1000_82583:
+ break;
+ default:
+ return;
+ }
+ if (pci_find_extcap(dev, PCIY_EXPRESS, &base) != 0)
+ return;
+ reg = base + PCIR_EXPRESS_LINK_CAP;
+ link_cap = pci_read_config(dev, reg, 2);
+ if ((link_cap & PCIM_LINK_CAP_ASPM) == 0)
+ return;
+ reg = base + PCIR_EXPRESS_LINK_CTL;
+ link_ctrl = pci_read_config(dev, reg, 2);
+ link_ctrl &= 0xFFFC; /* turn off bit 1 and 2 */
+ pci_write_config(dev, reg, link_ctrl, 2);
+ return;
+}
+
+/**********************************************************************
+ *
+ * Update the board statistics counters.
+ *
+ **********************************************************************/
+static void
+em_update_stats_counters(struct adapter *adapter)
+{
+ struct ifnet *ifp;
+
+ if(adapter->hw.phy.media_type == e1000_media_type_copper ||
+ (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
+ adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
+ adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
+ }
+ adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
+ adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
+ adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
+ adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
+
+ adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
+ adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
+ adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
+ adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
+ adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
+ adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
+ adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
+ /*
+ ** For watchdog management we need to know if we have been
+ ** paused during the last interval, so capture that here.
+ */
+ adapter->pause_frames = E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
+ adapter->stats.xoffrxc += adapter->pause_frames;
+ adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
+ adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
+ adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
+ adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
+ adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
+ adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
+ adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
+ adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
+ adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
+ adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
+ adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
+ adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
+
+ /* For the 64-bit byte counters the low dword must be read first. */
+ /* Both registers clear on the read of the high dword */
+
+ adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
+ ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
+ adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
+ ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
+
+ adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
+ adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
+ adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
+ adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
+ adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
+
+ adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
+ adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
+
+ adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
+ adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
+ adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
+ adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
+ adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
+ adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
+ adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
+ adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
+ adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
+ adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
+
+ /* Interrupt Counts */
+
+ adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
+ adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
+ adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
+ adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
+ adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
+ adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
+ adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
+ adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
+ adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
+
+ if (adapter->hw.mac.type >= e1000_82543) {
+ adapter->stats.algnerrc +=
+ E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
+ adapter->stats.rxerrc +=
+ E1000_READ_REG(&adapter->hw, E1000_RXERRC);
+ adapter->stats.tncrs +=
+ E1000_READ_REG(&adapter->hw, E1000_TNCRS);
+ adapter->stats.cexterr +=
+ E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
+ adapter->stats.tsctc +=
+ E1000_READ_REG(&adapter->hw, E1000_TSCTC);
+ adapter->stats.tsctfc +=
+ E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
+ }
+ ifp = adapter->ifp;
+
+ ifp->if_collisions = adapter->stats.colc;
+
+ /* Rx Errors */
+ ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc +
+ adapter->stats.crcerrs + adapter->stats.algnerrc +
+ adapter->stats.ruc + adapter->stats.roc +
+ adapter->stats.mpc + adapter->stats.cexterr;
+
+ /* Tx Errors */
+ ifp->if_oerrors = adapter->stats.ecol +
+ adapter->stats.latecol + adapter->watchdog_events;
+}
+
+/* Export a single 32-bit register via a read-only sysctl. */
+static int
+em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
+{
+ struct adapter *adapter;
+ u_int val;
+
+ adapter = oidp->oid_arg1;
+ val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
+ return (sysctl_handle_int(oidp, &val, 0, req));
+}
+
+/*
+ * Add sysctl variables, one per statistic, to the system.
+ */
+static void
+em_add_hw_stats(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+
+ struct tx_ring *txr = adapter->tx_rings;
+ struct rx_ring *rxr = adapter->rx_rings;
+
+ struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
+ struct sysctl_oid *tree = device_get_sysctl_tree(dev);
+ struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
+ struct e1000_hw_stats *stats = &adapter->stats;
+
+ struct sysctl_oid *stat_node, *queue_node, *int_node;
+ struct sysctl_oid_list *stat_list, *queue_list, *int_list;
+
+#define QUEUE_NAME_LEN 32
+ char namebuf[QUEUE_NAME_LEN];
+
+ /* Driver Statistics */
+ SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "link_irq",
+ CTLFLAG_RD, &adapter->link_irq, 0,
+ "Link MSIX IRQ Handled");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_alloc_fail",
+ CTLFLAG_RD, &adapter->mbuf_alloc_failed,
+ "Std mbuf failed");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "cluster_alloc_fail",
+ CTLFLAG_RD, &adapter->mbuf_cluster_failed,
+ "Std mbuf cluster failed");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
+ CTLFLAG_RD, &adapter->dropped_pkts,
+ "Driver dropped packets");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail",
+ CTLFLAG_RD, &adapter->no_tx_dma_setup,
+ "Driver tx dma failure in xmit");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
+ CTLFLAG_RD, &adapter->rx_overruns,
+ "RX overruns");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
+ CTLFLAG_RD, &adapter->watchdog_events,
+ "Watchdog timeouts");
+
+ SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
+ CTLFLAG_RD, adapter, E1000_CTRL,
+ em_sysctl_reg_handler, "IU",
+ "Device Control Register");
+ SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
+ CTLFLAG_RD, adapter, E1000_RCTL,
+ em_sysctl_reg_handler, "IU",
+ "Receiver Control Register");
+ SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
+ CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
+ "Flow Control High Watermark");
+ SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
+ CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
+ "Flow Control Low Watermark");
+
+ for (int i = 0; i < adapter->num_queues; i++, rxr++, txr++) {
+ snprintf(namebuf, QUEUE_NAME_LEN, "queue%d", i);
+ queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
+ CTLFLAG_RD, NULL, "Queue Name");
+ queue_list = SYSCTL_CHILDREN(queue_node);
+
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
+ CTLFLAG_RD, adapter, E1000_TDH(txr->me),
+ em_sysctl_reg_handler, "IU",
+ "Transmit Descriptor Head");
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
+ CTLFLAG_RD, adapter, E1000_TDT(txr->me),
+ em_sysctl_reg_handler, "IU",
+ "Transmit Descriptor Tail");
+ SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
+ CTLFLAG_RD, &txr->tx_irq,
+ "Queue MSI-X Transmit Interrupts");
+ SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "no_desc_avail",
+ CTLFLAG_RD, &txr->no_desc_avail,
+ "Queue No Descriptor Available");
+
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
+ CTLFLAG_RD, adapter, E1000_RDH(rxr->me),
+ em_sysctl_reg_handler, "IU",
+ "Receive Descriptor Head");
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
+ CTLFLAG_RD, adapter, E1000_RDT(rxr->me),
+ em_sysctl_reg_handler, "IU",
+ "Receive Descriptor Tail");
+ SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
+ CTLFLAG_RD, &rxr->rx_irq,
+ "Queue MSI-X Receive Interrupts");
+ }
+
+ /* MAC stats get their own sub node */
+
+ stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
+ CTLFLAG_RD, NULL, "Statistics");
+ stat_list = SYSCTL_CHILDREN(stat_node);
+
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "excess_coll",
+ CTLFLAG_RD, &stats->ecol,
+ "Excessive collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "single_coll",
+ CTLFLAG_RD, &stats->scc,
+ "Single collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
+ CTLFLAG_RD, &stats->mcc,
+ "Multiple collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "late_coll",
+ CTLFLAG_RD, &stats->latecol,
+ "Late collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "collision_count",
+ CTLFLAG_RD, &stats->colc,
+ "Collision Count");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
+ CTLFLAG_RD, &adapter->stats.symerrs,
+ "Symbol Errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
+ CTLFLAG_RD, &adapter->stats.sec,
+ "Sequence Errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "defer_count",
+ CTLFLAG_RD, &adapter->stats.dc,
+ "Defer Count");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "missed_packets",
+ CTLFLAG_RD, &adapter->stats.mpc,
+ "Missed Packets");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
+ CTLFLAG_RD, &adapter->stats.rnbc,
+ "Receive No Buffers");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
+ CTLFLAG_RD, &adapter->stats.ruc,
+ "Receive Undersize");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
+ CTLFLAG_RD, &adapter->stats.rfc,
+ "Fragmented Packets Received ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
+ CTLFLAG_RD, &adapter->stats.roc,
+ "Oversized Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
+ CTLFLAG_RD, &adapter->stats.rjc,
+ "Recevied Jabber");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_errs",
+ CTLFLAG_RD, &adapter->stats.rxerrc,
+ "Receive Errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "crc_errs",
+ CTLFLAG_RD, &adapter->stats.crcerrs,
+ "CRC errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
+ CTLFLAG_RD, &adapter->stats.algnerrc,
+ "Alignment Errors");
+ /* On 82575 these are collision counts */
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
+ CTLFLAG_RD, &adapter->stats.cexterr,
+ "Collision/Carrier extension errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
+ CTLFLAG_RD, &adapter->stats.xonrxc,
+ "XON Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_txd",
+ CTLFLAG_RD, &adapter->stats.xontxc,
+ "XON Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
+ CTLFLAG_RD, &adapter->stats.xoffrxc,
+ "XOFF Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
+ CTLFLAG_RD, &adapter->stats.xofftxc,
+ "XOFF Transmitted");
+
+ /* Packet Reception Stats */
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
+ CTLFLAG_RD, &adapter->stats.tpr,
+ "Total Packets Received ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
+ CTLFLAG_RD, &adapter->stats.gprc,
+ "Good Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
+ CTLFLAG_RD, &adapter->stats.bprc,
+ "Broadcast Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
+ CTLFLAG_RD, &adapter->stats.mprc,
+ "Multicast Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
+ CTLFLAG_RD, &adapter->stats.prc64,
+ "64 byte frames received ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
+ CTLFLAG_RD, &adapter->stats.prc127,
+ "65-127 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
+ CTLFLAG_RD, &adapter->stats.prc255,
+ "128-255 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
+ CTLFLAG_RD, &adapter->stats.prc511,
+ "256-511 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
+ CTLFLAG_RD, &adapter->stats.prc1023,
+ "512-1023 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
+ CTLFLAG_RD, &adapter->stats.prc1522,
+ "1023-1522 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
+ CTLFLAG_RD, &adapter->stats.gorc,
+ "Good Octets Received");
+
+ /* Packet Transmission Stats */
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
+ CTLFLAG_RD, &adapter->stats.gotc,
+ "Good Octets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
+ CTLFLAG_RD, &adapter->stats.tpt,
+ "Total Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
+ CTLFLAG_RD, &adapter->stats.gptc,
+ "Good Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
+ CTLFLAG_RD, &adapter->stats.bptc,
+ "Broadcast Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
+ CTLFLAG_RD, &adapter->stats.mptc,
+ "Multicast Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
+ CTLFLAG_RD, &adapter->stats.ptc64,
+ "64 byte frames transmitted ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
+ CTLFLAG_RD, &adapter->stats.ptc127,
+ "65-127 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
+ CTLFLAG_RD, &adapter->stats.ptc255,
+ "128-255 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
+ CTLFLAG_RD, &adapter->stats.ptc511,
+ "256-511 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
+ CTLFLAG_RD, &adapter->stats.ptc1023,
+ "512-1023 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
+ CTLFLAG_RD, &adapter->stats.ptc1522,
+ "1024-1522 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_txd",
+ CTLFLAG_RD, &adapter->stats.tsctc,
+ "TSO Contexts Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
+ CTLFLAG_RD, &adapter->stats.tsctfc,
+ "TSO Contexts Failed");
+
+
+ /* Interrupt Stats */
+
+ int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
+ CTLFLAG_RD, NULL, "Interrupt Statistics");
+ int_list = SYSCTL_CHILDREN(int_node);
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "asserts",
+ CTLFLAG_RD, &adapter->stats.iac,
+ "Interrupt Assertion Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
+ CTLFLAG_RD, &adapter->stats.icrxptc,
+ "Interrupt Cause Rx Pkt Timer Expire Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
+ CTLFLAG_RD, &adapter->stats.icrxatc,
+ "Interrupt Cause Rx Abs Timer Expire Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
+ CTLFLAG_RD, &adapter->stats.ictxptc,
+ "Interrupt Cause Tx Pkt Timer Expire Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
+ CTLFLAG_RD, &adapter->stats.ictxatc,
+ "Interrupt Cause Tx Abs Timer Expire Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
+ CTLFLAG_RD, &adapter->stats.ictxqec,
+ "Interrupt Cause Tx Queue Empty Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
+ CTLFLAG_RD, &adapter->stats.ictxqmtc,
+ "Interrupt Cause Tx Queue Min Thresh Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
+ CTLFLAG_RD, &adapter->stats.icrxdmtc,
+ "Interrupt Cause Rx Desc Min Thresh Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_overrun",
+ CTLFLAG_RD, &adapter->stats.icrxoc,
+ "Interrupt Cause Receiver Overrun Count");
+}
+
+/**********************************************************************
+ *
+ * This routine provides a way to dump out the adapter eeprom,
+ * often a useful debug/service tool. This only dumps the first
+ * 32 words, stuff that matters is in that extent.
+ *
+ **********************************************************************/
+static int
+em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
+{
+ struct adapter *adapter;
+ int error;
+ int result;
+
+ result = -1;
+ error = sysctl_handle_int(oidp, &result, 0, req);
+
+ if (error || !req->newptr)
+ return (error);
+
+ /*
+ * This value will cause a hex dump of the
+ * first 32 16-bit words of the EEPROM to
+ * the screen.
+ */
+ if (result == 1) {
+ adapter = (struct adapter *)arg1;
+ em_print_nvm_info(adapter);
+ }
+
+ return (error);
+}
+
+static void
+em_print_nvm_info(struct adapter *adapter)
+{
+ u16 eeprom_data;
+ int i, j, row = 0;
+
+ /* Its a bit crude, but it gets the job done */
+ printf("\nInterface EEPROM Dump:\n");
+ printf("Offset\n0x0000 ");
+ for (i = 0, j = 0; i < 32; i++, j++) {
+ if (j == 8) { /* Make the offset block */
+ j = 0; ++row;
+ printf("\n0x00%x0 ",row);
+ }
+ e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
+ printf("%04x ", eeprom_data);
+ }
+ printf("\n");
+}
+
+static int
+em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
+{
+ struct em_int_delay_info *info;
+ struct adapter *adapter;
+ u32 regval;
+ int error, usecs, ticks;
+
+ info = (struct em_int_delay_info *)arg1;
+ usecs = info->value;
+ error = sysctl_handle_int(oidp, &usecs, 0, req);
+ if (error != 0 || req->newptr == NULL)
+ return (error);
+ if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
+ return (EINVAL);
+ info->value = usecs;
+ ticks = EM_USECS_TO_TICKS(usecs);
+
+ adapter = info->adapter;
+
+ EM_CORE_LOCK(adapter);
+ regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
+ regval = (regval & ~0xffff) | (ticks & 0xffff);
+ /* Handle a few special cases. */
+ switch (info->offset) {
+ case E1000_RDTR:
+ break;
+ case E1000_TIDV:
+ if (ticks == 0) {
+ adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
+ /* Don't write 0 into the TIDV register. */
+ regval++;
+ } else
+ adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+ break;
+ }
+ E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
+ EM_CORE_UNLOCK(adapter);
+ return (0);
+}
+
+static void
+em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
+ const char *description, struct em_int_delay_info *info,
+ int offset, int value)
+{
+ info->adapter = adapter;
+ info->offset = offset;
+ info->value = value;
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
+ OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
+ info, 0, em_sysctl_int_delay, "I", description);
+}
+
+static void
+em_add_rx_process_limit(struct adapter *adapter, const char *name,
+ const char *description, int *limit, int value)
+{
+ *limit = value;
+ SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
+ OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
+}
+
+static void
+em_set_flow_cntrl(struct adapter *adapter, const char *name,
+ const char *description, int *limit, int value)
+{
+ *limit = value;
+ SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
+ OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
+}
+
+static int
+em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
+{
+ struct adapter *adapter;
+ int error;
+ int result;
+
+ result = -1;
+ error = sysctl_handle_int(oidp, &result, 0, req);
+
+ if (error || !req->newptr)
+ return (error);
+
+ if (result == 1) {
+ adapter = (struct adapter *)arg1;
+ em_print_debug_info(adapter);
+ }
+
+ return (error);
+}
+
+/*
+** This routine is meant to be fluid, add whatever is
+** needed for debugging a problem. -jfv
+*/
+static void
+em_print_debug_info(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct tx_ring *txr = adapter->tx_rings;
+ struct rx_ring *rxr = adapter->rx_rings;
+
+ if (adapter->ifp->if_drv_flags & IFF_DRV_RUNNING)
+ printf("Interface is RUNNING ");
+ else
+ printf("Interface is NOT RUNNING\n");
+ if (adapter->ifp->if_drv_flags & IFF_DRV_OACTIVE)
+ printf("and ACTIVE\n");
+ else
+ printf("and INACTIVE\n");
+
+ device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
+ E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
+ E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
+ device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
+ E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
+ E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
+ device_printf(dev, "Tx Queue Status = %d\n", txr->queue_status);
+ device_printf(dev, "TX descriptors avail = %d\n",
+ txr->tx_avail);
+ device_printf(dev, "Tx Descriptors avail failure = %ld\n",
+ txr->no_desc_avail);
+ device_printf(dev, "RX discarded packets = %ld\n",
+ rxr->rx_discarded);
+ device_printf(dev, "RX Next to Check = %d\n", rxr->next_to_check);
+ device_printf(dev, "RX Next to Refresh = %d\n", rxr->next_to_refresh);
+}
diff --git a/freebsd/dev/e1000/if_em.h b/freebsd/dev/e1000/if_em.h
new file mode 100644
index 00000000..19ccf0a6
--- /dev/null
+++ b/freebsd/dev/e1000/if_em.h
@@ -0,0 +1,482 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+
+#ifndef _EM_HH_DEFINED_
+#define _EM_HH_DEFINED_
+
+
+/* Tunables */
+
+/*
+ * EM_TXD: Maximum number of Transmit Descriptors
+ * Valid Range: 80-256 for 82542 and 82543-based adapters
+ * 80-4096 for others
+ * Default Value: 256
+ * This value is the number of transmit descriptors allocated by the driver.
+ * Increasing this value allows the driver to queue more transmits. Each
+ * descriptor is 16 bytes.
+ * Since TDLEN should be multiple of 128bytes, the number of transmit
+ * desscriptors should meet the following condition.
+ * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
+ */
+#define EM_MIN_TXD 80
+#define EM_MAX_TXD 4096
+#define EM_DEFAULT_TXD 1024
+
+/*
+ * EM_RXD - Maximum number of receive Descriptors
+ * Valid Range: 80-256 for 82542 and 82543-based adapters
+ * 80-4096 for others
+ * Default Value: 256
+ * This value is the number of receive descriptors allocated by the driver.
+ * Increasing this value allows the driver to buffer more incoming packets.
+ * Each descriptor is 16 bytes. A receive buffer is also allocated for each
+ * descriptor. The maximum MTU size is 16110.
+ * Since TDLEN should be multiple of 128bytes, the number of transmit
+ * desscriptors should meet the following condition.
+ * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
+ */
+#define EM_MIN_RXD 80
+#define EM_MAX_RXD 4096
+#define EM_DEFAULT_RXD 1024
+
+/*
+ * EM_TIDV - Transmit Interrupt Delay Value
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 64
+ * This value delays the generation of transmit interrupts in units of
+ * 1.024 microseconds. Transmit interrupt reduction can improve CPU
+ * efficiency if properly tuned for specific network traffic. If the
+ * system is reporting dropped transmits, this value may be set too high
+ * causing the driver to run out of available transmit descriptors.
+ */
+#define EM_TIDV 64
+
+/*
+ * EM_TADV - Transmit Absolute Interrupt Delay Value
+ * (Not valid for 82542/82543/82544)
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 64
+ * This value, in units of 1.024 microseconds, limits the delay in which a
+ * transmit interrupt is generated. Useful only if EM_TIDV is non-zero,
+ * this value ensures that an interrupt is generated after the initial
+ * packet is sent on the wire within the set amount of time. Proper tuning,
+ * along with EM_TIDV, may improve traffic throughput in specific
+ * network conditions.
+ */
+#define EM_TADV 64
+
+/*
+ * EM_RDTR - Receive Interrupt Delay Timer (Packet Timer)
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 0
+ * This value delays the generation of receive interrupts in units of 1.024
+ * microseconds. Receive interrupt reduction can improve CPU efficiency if
+ * properly tuned for specific network traffic. Increasing this value adds
+ * extra latency to frame reception and can end up decreasing the throughput
+ * of TCP traffic. If the system is reporting dropped receives, this value
+ * may be set too high, causing the driver to run out of available receive
+ * descriptors.
+ *
+ * CAUTION: When setting EM_RDTR to a value other than 0, adapters
+ * may hang (stop transmitting) under certain network conditions.
+ * If this occurs a WATCHDOG message is logged in the system
+ * event log. In addition, the controller is automatically reset,
+ * restoring the network connection. To eliminate the potential
+ * for the hang ensure that EM_RDTR is set to 0.
+ */
+#define EM_RDTR 0
+
+/*
+ * Receive Interrupt Absolute Delay Timer (Not valid for 82542/82543/82544)
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 64
+ * This value, in units of 1.024 microseconds, limits the delay in which a
+ * receive interrupt is generated. Useful only if EM_RDTR is non-zero,
+ * this value ensures that an interrupt is generated after the initial
+ * packet is received within the set amount of time. Proper tuning,
+ * along with EM_RDTR, may improve traffic throughput in specific network
+ * conditions.
+ */
+#define EM_RADV 64
+
+/*
+ * This parameter controls the max duration of transmit watchdog.
+ */
+#define EM_WATCHDOG (10 * hz)
+
+/*
+ * This parameter controls when the driver calls the routine to reclaim
+ * transmit descriptors.
+ */
+#define EM_TX_CLEANUP_THRESHOLD (adapter->num_tx_desc / 8)
+
+/*
+ * This parameter controls whether or not autonegotation is enabled.
+ * 0 - Disable autonegotiation
+ * 1 - Enable autonegotiation
+ */
+#define DO_AUTO_NEG 1
+
+/*
+ * This parameter control whether or not the driver will wait for
+ * autonegotiation to complete.
+ * 1 - Wait for autonegotiation to complete
+ * 0 - Don't wait for autonegotiation to complete
+ */
+#define WAIT_FOR_AUTO_NEG_DEFAULT 0
+
+/* Tunables -- End */
+
+#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+
+#define AUTO_ALL_MODES 0
+
+/* PHY master/slave setting */
+#define EM_MASTER_SLAVE e1000_ms_hw_default
+
+/*
+ * Micellaneous constants
+ */
+#define EM_VENDOR_ID 0x8086
+#define EM_FLASH 0x0014
+
+#define EM_JUMBO_PBA 0x00000028
+#define EM_DEFAULT_PBA 0x00000030
+#define EM_SMARTSPEED_DOWNSHIFT 3
+#define EM_SMARTSPEED_MAX 15
+#define EM_MAX_LOOP 10
+
+#define MAX_NUM_MULTICAST_ADDRESSES 128
+#define PCI_ANY_ID (~0U)
+#define ETHER_ALIGN 2
+#define EM_FC_PAUSE_TIME 0x0680
+#define EM_EEPROM_APME 0x400;
+#define EM_82544_APME 0x0004;
+
+#define EM_QUEUE_IDLE 0
+#define EM_QUEUE_WORKING 1
+#define EM_QUEUE_HUNG 2
+
+/*
+ * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
+ * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. This will
+ * also optimize cache line size effect. H/W supports up to cache line size 128.
+ */
+#define EM_DBA_ALIGN 128
+
+#define SPEED_MODE_BIT (1<<21) /* On PCI-E MACs only */
+
+/* PCI Config defines */
+#define EM_BAR_TYPE(v) ((v) & EM_BAR_TYPE_MASK)
+#define EM_BAR_TYPE_MASK 0x00000001
+#define EM_BAR_TYPE_MMEM 0x00000000
+#define EM_BAR_TYPE_FLASH 0x0014
+#define EM_BAR_MEM_TYPE(v) ((v) & EM_BAR_MEM_TYPE_MASK)
+#define EM_BAR_MEM_TYPE_MASK 0x00000006
+#define EM_BAR_MEM_TYPE_32BIT 0x00000000
+#define EM_BAR_MEM_TYPE_64BIT 0x00000004
+#define EM_MSIX_BAR 3 /* On 82575 */
+
+/* Defines for printing debug information */
+#define DEBUG_INIT 0
+#define DEBUG_IOCTL 0
+#define DEBUG_HW 0
+
+#define INIT_DEBUGOUT(S) if (DEBUG_INIT) printf(S "\n")
+#define INIT_DEBUGOUT1(S, A) if (DEBUG_INIT) printf(S "\n", A)
+#define INIT_DEBUGOUT2(S, A, B) if (DEBUG_INIT) printf(S "\n", A, B)
+#define IOCTL_DEBUGOUT(S) if (DEBUG_IOCTL) printf(S "\n")
+#define IOCTL_DEBUGOUT1(S, A) if (DEBUG_IOCTL) printf(S "\n", A)
+#define IOCTL_DEBUGOUT2(S, A, B) if (DEBUG_IOCTL) printf(S "\n", A, B)
+#define HW_DEBUGOUT(S) if (DEBUG_HW) printf(S "\n")
+#define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A)
+#define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B)
+
+#define EM_MAX_SCATTER 32
+#define EM_VFTA_SIZE 128
+#define EM_TSO_SIZE (65535 + sizeof(struct ether_vlan_header))
+#define EM_TSO_SEG_SIZE 4096 /* Max dma segment size */
+#define EM_MSIX_MASK 0x01F00000 /* For 82574 use */
+#define EM_MSIX_LINK 0x01000000 /* For 82574 use */
+#define ETH_ZLEN 60
+#define ETH_ADDR_LEN 6
+#define CSUM_OFFLOAD 7 /* Offload bits in mbuf flag */
+
+/*
+ * 82574 has a nonstandard address for EIAC
+ * and since its only used in MSIX, and in
+ * the em driver only 82574 uses MSIX we can
+ * solve it just using this define.
+ */
+#define EM_EIAC 0x000DC
+
+/*
+ * Bus dma allocation structure used by
+ * e1000_dma_malloc and e1000_dma_free.
+ */
+struct em_dma_alloc {
+ bus_addr_t dma_paddr;
+ caddr_t dma_vaddr;
+ bus_dma_tag_t dma_tag;
+ bus_dmamap_t dma_map;
+ bus_dma_segment_t dma_seg;
+ int dma_nseg;
+};
+
+struct adapter;
+
+struct em_int_delay_info {
+ struct adapter *adapter; /* Back-pointer to the adapter struct */
+ int offset; /* Register offset to read/write */
+ int value; /* Current value in usecs */
+};
+
+/*
+ * The transmit ring, one per tx queue
+ */
+struct tx_ring {
+ struct adapter *adapter;
+ struct mtx tx_mtx;
+ char mtx_name[16];
+ u32 me;
+ u32 msix;
+ u32 ims;
+ int queue_status;
+ int watchdog_time;
+ struct em_dma_alloc txdma;
+ struct e1000_tx_desc *tx_base;
+ struct task tx_task;
+ struct taskqueue *tq;
+ u32 next_avail_desc;
+ u32 next_to_clean;
+ struct em_buffer *tx_buffers;
+ volatile u16 tx_avail;
+ u32 tx_tso; /* last tx was tso */
+ u16 last_hw_offload;
+ u8 last_hw_ipcso;
+ u8 last_hw_ipcss;
+ u8 last_hw_tucso;
+ u8 last_hw_tucss;
+#if __FreeBSD_version >= 800000
+ struct buf_ring *br;
+#endif
+ /* Interrupt resources */
+ bus_dma_tag_t txtag;
+ void *tag;
+ struct resource *res;
+ unsigned long tx_irq;
+ unsigned long no_desc_avail;
+};
+
+/*
+ * The Receive ring, one per rx queue
+ */
+struct rx_ring {
+ struct adapter *adapter;
+ u32 me;
+ u32 msix;
+ u32 ims;
+ struct mtx rx_mtx;
+ char mtx_name[16];
+ u32 payload;
+ struct task rx_task;
+ struct taskqueue *tq;
+ struct e1000_rx_desc *rx_base;
+ struct em_dma_alloc rxdma;
+ u32 next_to_refresh;
+ u32 next_to_check;
+ struct em_buffer *rx_buffers;
+ struct mbuf *fmp;
+ struct mbuf *lmp;
+
+ /* Interrupt resources */
+ void *tag;
+ struct resource *res;
+ bus_dma_tag_t rxtag;
+ bool discard;
+
+ /* Soft stats */
+ unsigned long rx_irq;
+ unsigned long rx_discarded;
+ unsigned long rx_packets;
+ unsigned long rx_bytes;
+};
+
+
+/* Our adapter structure */
+struct adapter {
+ struct ifnet *ifp;
+ struct e1000_hw hw;
+
+ /* FreeBSD operating-system-specific structures. */
+ struct e1000_osdep osdep;
+ struct device *dev;
+ struct cdev *led_dev;
+
+ struct resource *memory;
+ struct resource *flash;
+ struct resource *msix_mem;
+
+ struct resource *res;
+ void *tag;
+ u32 linkvec;
+ u32 ivars;
+
+ struct ifmedia media;
+ struct callout timer;
+ int msix;
+ int if_flags;
+ int max_frame_size;
+ int min_frame_size;
+ int pause_frames;
+ struct mtx core_mtx;
+ int em_insert_vlan_header;
+ u32 ims;
+ bool in_detach;
+
+ /* Task for FAST handling */
+ struct task link_task;
+ struct task que_task;
+ struct taskqueue *tq; /* private task queue */
+
+ eventhandler_tag vlan_attach;
+ eventhandler_tag vlan_detach;
+
+ u16 num_vlans;
+ u16 num_queues;
+
+ /*
+ * Transmit rings:
+ * Allocated at run time, an array of rings.
+ */
+ struct tx_ring *tx_rings;
+ int num_tx_desc;
+ u32 txd_cmd;
+
+ /*
+ * Receive rings:
+ * Allocated at run time, an array of rings.
+ */
+ struct rx_ring *rx_rings;
+ int num_rx_desc;
+ u32 rx_process_limit;
+ u32 rx_mbuf_sz;
+
+ /* Management and WOL features */
+ u32 wol;
+ bool has_manage;
+ bool has_amt;
+
+ /* Multicast array memory */
+ u8 *mta;
+
+ /*
+ ** Shadow VFTA table, this is needed because
+ ** the real vlan filter table gets cleared during
+ ** a soft reset and the driver needs to be able
+ ** to repopulate it.
+ */
+ u32 shadow_vfta[EM_VFTA_SIZE];
+
+ /* Info about the interface */
+ u8 link_active;
+ u16 link_speed;
+ u16 link_duplex;
+ u32 smartspeed;
+ u32 fc_setting;
+
+ struct em_int_delay_info tx_int_delay;
+ struct em_int_delay_info tx_abs_int_delay;
+ struct em_int_delay_info rx_int_delay;
+ struct em_int_delay_info rx_abs_int_delay;
+
+ /* Misc stats maintained by the driver */
+ unsigned long dropped_pkts;
+ unsigned long mbuf_alloc_failed;
+ unsigned long mbuf_cluster_failed;
+ unsigned long no_tx_map_avail;
+ unsigned long no_tx_dma_setup;
+ unsigned long rx_overruns;
+ unsigned long watchdog_events;
+ unsigned long link_irq;
+
+ struct e1000_hw_stats stats;
+};
+
+/********************************************************************************
+ * vendor_info_array
+ *
+ * This array contains the list of Subvendor/Subdevice IDs on which the driver
+ * should load.
+ *
+ ********************************************************************************/
+typedef struct _em_vendor_info_t {
+ unsigned int vendor_id;
+ unsigned int device_id;
+ unsigned int subvendor_id;
+ unsigned int subdevice_id;
+ unsigned int index;
+} em_vendor_info_t;
+
+struct em_buffer {
+ int next_eop; /* Index of the desc to watch */
+ struct mbuf *m_head;
+ bus_dmamap_t map; /* bus_dma map for packet */
+};
+
+#define EM_CORE_LOCK_INIT(_sc, _name) \
+ mtx_init(&(_sc)->core_mtx, _name, "EM Core Lock", MTX_DEF)
+#define EM_TX_LOCK_INIT(_sc, _name) \
+ mtx_init(&(_sc)->tx_mtx, _name, "EM TX Lock", MTX_DEF)
+#define EM_RX_LOCK_INIT(_sc, _name) \
+ mtx_init(&(_sc)->rx_mtx, _name, "EM RX Lock", MTX_DEF)
+#define EM_CORE_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->core_mtx)
+#define EM_TX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->tx_mtx)
+#define EM_RX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_mtx)
+#define EM_CORE_LOCK(_sc) mtx_lock(&(_sc)->core_mtx)
+#define EM_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_mtx)
+#define EM_TX_TRYLOCK(_sc) mtx_trylock(&(_sc)->tx_mtx)
+#define EM_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_mtx)
+#define EM_CORE_UNLOCK(_sc) mtx_unlock(&(_sc)->core_mtx)
+#define EM_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_mtx)
+#define EM_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_mtx)
+#define EM_CORE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->core_mtx, MA_OWNED)
+#define EM_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_mtx, MA_OWNED)
+#define EM_RX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->rx_mtx, MA_OWNED)
+
+#endif /* _EM_HH_DEFINED_ */
diff --git a/freebsd/dev/e1000/if_igb.c b/freebsd/dev/e1000/if_igb.c
new file mode 100644
index 00000000..07a0aa2d
--- /dev/null
+++ b/freebsd/dev/e1000/if_igb.c
@@ -0,0 +1,5522 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+
+#ifdef HAVE_KERNEL_OPTION_HEADERS
+#include <freebsd/local/opt_device_polling.h>
+#include <freebsd/local/opt_inet.h>
+#include <freebsd/local/opt_altq.h>
+#endif
+
+#include <freebsd/sys/param.h>
+#include <freebsd/sys/systm.h>
+#if __FreeBSD_version >= 800000
+#include <freebsd/sys/buf_ring.h>
+#endif
+#include <freebsd/sys/bus.h>
+#include <freebsd/sys/endian.h>
+#include <freebsd/sys/kernel.h>
+#include <freebsd/sys/kthread.h>
+#include <freebsd/sys/malloc.h>
+#include <freebsd/sys/mbuf.h>
+#include <freebsd/sys/module.h>
+#include <freebsd/sys/rman.h>
+#include <freebsd/sys/socket.h>
+#include <freebsd/sys/sockio.h>
+#include <freebsd/sys/sysctl.h>
+#include <freebsd/sys/taskqueue.h>
+#include <freebsd/sys/eventhandler.h>
+#include <freebsd/sys/pcpu.h>
+#ifndef __rtems__
+#include <freebsd/sys/smp.h>
+#include <freebsd/machine/smp.h>
+#endif
+#include <freebsd/machine/bus.h>
+#include <freebsd/machine/resource.h>
+
+#include <freebsd/net/bpf.h>
+#include <freebsd/net/ethernet.h>
+#include <freebsd/net/if.h>
+#include <freebsd/net/if_arp.h>
+#include <freebsd/net/if_dl.h>
+#include <freebsd/net/if_media.h>
+
+#include <freebsd/net/if_types.h>
+#include <freebsd/net/if_vlan_var.h>
+
+#include <freebsd/netinet/in_systm.h>
+#include <freebsd/netinet/in.h>
+#include <freebsd/netinet/if_ether.h>
+#include <freebsd/netinet/ip.h>
+#include <freebsd/netinet/ip6.h>
+#include <freebsd/netinet/tcp.h>
+#include <freebsd/netinet/tcp_lro.h>
+#include <freebsd/netinet/udp.h>
+
+#include <freebsd/machine/in_cksum.h>
+#ifndef __rtems__
+#include <freebsd/dev/led/led.h>
+#endif
+#include <freebsd/dev/pci/pcivar.h>
+#include <freebsd/dev/pci/pcireg.h>
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#include <freebsd/local/e1000_82575.h>
+#include <freebsd/local/if_igb.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#include <freebsd/dev/e1000/e1000_82575.h>
+#include <freebsd/dev/e1000/if_igb.h>
+#endif
+
+/*********************************************************************
+ * Set this to one to display debug statistics
+ *********************************************************************/
+int igb_display_debug_stats = 0;
+
+/*********************************************************************
+ * Driver version:
+ *********************************************************************/
+char igb_driver_version[] = "version - 2.0.7";
+
+
+/*********************************************************************
+ * PCI Device ID Table
+ *
+ * Used by probe to select devices to load on
+ * Last field stores an index into e1000_strings
+ * Last entry must be all 0s
+ *
+ * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
+ *********************************************************************/
+
+static igb_vendor_info_t igb_vendor_info_array[] =
+{
+ { 0x8086, E1000_DEV_ID_82575EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_NS, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_NS_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_SERDES_QUAD,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_QUAD_COPPER,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82576_VF, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82580_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82580_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82580_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82580_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82580_COPPER_DUAL,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82580_QUAD_FIBER,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_DH89XXCC_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_DH89XXCC_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
+ /* required last entry */
+ { 0, 0, 0, 0, 0}
+};
+
+/*********************************************************************
+ * Table of branding strings for all supported NICs.
+ *********************************************************************/
+
+static char *igb_strings[] = {
+ "Intel(R) PRO/1000 Network Connection"
+};
+
+/*********************************************************************
+ * Function prototypes
+ *********************************************************************/
+static int igb_probe(device_t);
+static int igb_attach(device_t);
+static int igb_detach(device_t);
+static int igb_shutdown(device_t);
+static int igb_suspend(device_t);
+static int igb_resume(device_t);
+static void igb_start(struct ifnet *);
+static void igb_start_locked(struct tx_ring *, struct ifnet *ifp);
+#if __FreeBSD_version >= 800000
+static int igb_mq_start(struct ifnet *, struct mbuf *);
+static int igb_mq_start_locked(struct ifnet *,
+ struct tx_ring *, struct mbuf *);
+static void igb_qflush(struct ifnet *);
+#endif
+static int igb_ioctl(struct ifnet *, u_long, caddr_t);
+static void igb_init(void *);
+static void igb_init_locked(struct adapter *);
+static void igb_stop(void *);
+static void igb_media_status(struct ifnet *, struct ifmediareq *);
+static int igb_media_change(struct ifnet *);
+static void igb_identify_hardware(struct adapter *);
+static int igb_allocate_pci_resources(struct adapter *);
+static int igb_allocate_msix(struct adapter *);
+static int igb_allocate_legacy(struct adapter *);
+static int igb_setup_msix(struct adapter *);
+static void igb_free_pci_resources(struct adapter *);
+static void igb_local_timer(void *);
+static void igb_reset(struct adapter *);
+static int igb_setup_interface(device_t, struct adapter *);
+static int igb_allocate_queues(struct adapter *);
+static void igb_configure_queues(struct adapter *);
+
+static int igb_allocate_transmit_buffers(struct tx_ring *);
+static void igb_setup_transmit_structures(struct adapter *);
+static void igb_setup_transmit_ring(struct tx_ring *);
+static void igb_initialize_transmit_units(struct adapter *);
+static void igb_free_transmit_structures(struct adapter *);
+static void igb_free_transmit_buffers(struct tx_ring *);
+
+static int igb_allocate_receive_buffers(struct rx_ring *);
+static int igb_setup_receive_structures(struct adapter *);
+static int igb_setup_receive_ring(struct rx_ring *);
+static void igb_initialize_receive_units(struct adapter *);
+static void igb_free_receive_structures(struct adapter *);
+static void igb_free_receive_buffers(struct rx_ring *);
+static void igb_free_receive_ring(struct rx_ring *);
+
+static void igb_enable_intr(struct adapter *);
+static void igb_disable_intr(struct adapter *);
+static void igb_update_stats_counters(struct adapter *);
+static bool igb_txeof(struct tx_ring *);
+
+static __inline void igb_rx_discard(struct rx_ring *, int);
+static __inline void igb_rx_input(struct rx_ring *,
+ struct ifnet *, struct mbuf *, u32);
+
+static bool igb_rxeof(struct igb_queue *, int, int *);
+static void igb_rx_checksum(u32, struct mbuf *, u32);
+#ifdef __rtems__
+/* XXX this is an inconsistency in BSD */
+static bool igb_tx_ctx_setup(struct tx_ring *, struct mbuf *);
+static boolean_t igb_tso_setup(struct tx_ring *, struct mbuf *, u32 *);
+#else
+static int igb_tx_ctx_setup(struct tx_ring *, struct mbuf *);
+static bool igb_tso_setup(struct tx_ring *, struct mbuf *, u32 *);
+#endif
+static void igb_set_promisc(struct adapter *);
+static void igb_disable_promisc(struct adapter *);
+static void igb_set_multi(struct adapter *);
+static void igb_update_link_status(struct adapter *);
+static void igb_refresh_mbufs(struct rx_ring *, int);
+
+static void igb_register_vlan(void *, struct ifnet *, u16);
+static void igb_unregister_vlan(void *, struct ifnet *, u16);
+static void igb_setup_vlan_hw_support(struct adapter *);
+
+static int igb_xmit(struct tx_ring *, struct mbuf **);
+static int igb_dma_malloc(struct adapter *, bus_size_t,
+ struct igb_dma_alloc *, int);
+static void igb_dma_free(struct adapter *, struct igb_dma_alloc *);
+static int igb_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
+static void igb_print_nvm_info(struct adapter *);
+static int igb_is_valid_ether_addr(u8 *);
+static void igb_add_hw_stats(struct adapter *);
+
+static void igb_vf_init_stats(struct adapter *);
+static void igb_update_vf_stats_counters(struct adapter *);
+
+/* Management and WOL Support */
+static void igb_init_manageability(struct adapter *);
+static void igb_release_manageability(struct adapter *);
+static void igb_get_hw_control(struct adapter *);
+static void igb_release_hw_control(struct adapter *);
+static void igb_enable_wakeup(device_t);
+static void igb_led_func(void *, int);
+
+static int igb_irq_fast(void *);
+static void igb_add_rx_process_limit(struct adapter *, const char *,
+ const char *, int *, int);
+static void igb_handle_que(void *context, int pending);
+static void igb_handle_link(void *context, int pending);
+
+/* These are MSIX only irq handlers */
+static void igb_msix_que(void *);
+static void igb_msix_link(void *);
+
+#ifdef DEVICE_POLLING
+static poll_handler_t igb_poll;
+#endif /* POLLING */
+
+/*********************************************************************
+ * FreeBSD Device Interface Entry Points
+ *********************************************************************/
+
+static device_method_t igb_methods[] = {
+ /* Device interface */
+ DEVMETHOD(device_probe, igb_probe),
+ DEVMETHOD(device_attach, igb_attach),
+ DEVMETHOD(device_detach, igb_detach),
+ DEVMETHOD(device_shutdown, igb_shutdown),
+ DEVMETHOD(device_suspend, igb_suspend),
+ DEVMETHOD(device_resume, igb_resume),
+ {0, 0}
+};
+
+static driver_t igb_driver = {
+ "igb", igb_methods, sizeof(struct adapter),
+};
+
+static devclass_t igb_devclass;
+DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
+MODULE_DEPEND(igb, pci, 1, 1, 1);
+MODULE_DEPEND(igb, ether, 1, 1, 1);
+
+/*********************************************************************
+ * Tunable default values.
+ *********************************************************************/
+
+/* Descriptor defaults */
+static int igb_rxd = IGB_DEFAULT_RXD;
+static int igb_txd = IGB_DEFAULT_TXD;
+TUNABLE_INT("hw.igb.rxd", &igb_rxd);
+TUNABLE_INT("hw.igb.txd", &igb_txd);
+
+/*
+** AIM: Adaptive Interrupt Moderation
+** which means that the interrupt rate
+** is varied over time based on the
+** traffic for that interrupt vector
+*/
+static int igb_enable_aim = TRUE;
+TUNABLE_INT("hw.igb.enable_aim", &igb_enable_aim);
+
+/*
+ * MSIX should be the default for best performance,
+ * but this allows it to be forced off for testing.
+ */
+static int igb_enable_msix = 1;
+TUNABLE_INT("hw.igb.enable_msix", &igb_enable_msix);
+
+/*
+** Tuneable Interrupt rate
+*/
+static int igb_max_interrupt_rate = 8000;
+TUNABLE_INT("hw.igb.max_interrupt_rate", &igb_max_interrupt_rate);
+
+/*
+** Header split causes the packet header to
+** be dma'd to a seperate mbuf from the payload.
+** this can have memory alignment benefits. But
+** another plus is that small packets often fit
+** into the header and thus use no cluster. Its
+** a very workload dependent type feature.
+*/
+static bool igb_header_split = FALSE;
+TUNABLE_INT("hw.igb.hdr_split", &igb_header_split);
+
+/*
+** This will autoconfigure based on
+** the number of CPUs if left at 0.
+*/
+static int igb_num_queues = 0;
+TUNABLE_INT("hw.igb.num_queues", &igb_num_queues);
+
+/* How many packets rxeof tries to clean at a time */
+static int igb_rx_process_limit = 100;
+TUNABLE_INT("hw.igb.rx_process_limit", &igb_rx_process_limit);
+
+/* Flow control setting - default to FULL */
+static int igb_fc_setting = e1000_fc_full;
+TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
+
+/*********************************************************************
+ * Device identification routine
+ *
+ * igb_probe determines if the driver should be loaded on
+ * adapter based on PCI vendor/device id of the adapter.
+ *
+ * return BUS_PROBE_DEFAULT on success, positive on failure
+ *********************************************************************/
+
+static int
+igb_probe(device_t dev)
+{
+ char adapter_name[60];
+ uint16_t pci_vendor_id = 0;
+ uint16_t pci_device_id = 0;
+ uint16_t pci_subvendor_id = 0;
+ uint16_t pci_subdevice_id = 0;
+ igb_vendor_info_t *ent;
+
+ INIT_DEBUGOUT("igb_probe: begin");
+
+ pci_vendor_id = pci_get_vendor(dev);
+ if (pci_vendor_id != IGB_VENDOR_ID)
+ return (ENXIO);
+
+ pci_device_id = pci_get_device(dev);
+ pci_subvendor_id = pci_get_subvendor(dev);
+ pci_subdevice_id = pci_get_subdevice(dev);
+
+ ent = igb_vendor_info_array;
+ while (ent->vendor_id != 0) {
+ if ((pci_vendor_id == ent->vendor_id) &&
+ (pci_device_id == ent->device_id) &&
+
+ ((pci_subvendor_id == ent->subvendor_id) ||
+ (ent->subvendor_id == PCI_ANY_ID)) &&
+
+ ((pci_subdevice_id == ent->subdevice_id) ||
+ (ent->subdevice_id == PCI_ANY_ID))) {
+ sprintf(adapter_name, "%s %s",
+ igb_strings[ent->index],
+ igb_driver_version);
+ device_set_desc_copy(dev, adapter_name);
+ return (BUS_PROBE_DEFAULT);
+ }
+ ent++;
+ }
+
+ return (ENXIO);
+}
+
+/*********************************************************************
+ * Device initialization routine
+ *
+ * The attach entry point is called when the driver is being loaded.
+ * This routine identifies the type of hardware, allocates all resources
+ * and initializes the hardware.
+ *
+ * return 0 on success, positive on failure
+ *********************************************************************/
+
+static int
+igb_attach(device_t dev)
+{
+ struct adapter *adapter;
+ int error = 0;
+ u16 eeprom_data;
+
+ INIT_DEBUGOUT("igb_attach: begin");
+
+ adapter = device_get_softc(dev);
+ adapter->dev = adapter->osdep.dev = dev;
+ IGB_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
+
+ /* SYSCTL stuff */
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
+ igb_sysctl_nvm_info, "I", "NVM Information");
+
+ SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
+ OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
+ &igb_fc_setting, 0, "Flow Control");
+
+ SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "enable_aim", CTLTYPE_INT|CTLFLAG_RW,
+ &igb_enable_aim, 1, "Interrupt Moderation");
+
+ callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
+
+ /* Determine hardware and mac info */
+ igb_identify_hardware(adapter);
+
+ /* Setup PCI resources */
+ if (igb_allocate_pci_resources(adapter)) {
+ device_printf(dev, "Allocation of PCI resources failed\n");
+ error = ENXIO;
+ goto err_pci;
+ }
+
+ /* Do Shared Code initialization */
+ if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
+ device_printf(dev, "Setup of Shared code failed\n");
+ error = ENXIO;
+ goto err_pci;
+ }
+
+ e1000_get_bus_info(&adapter->hw);
+
+ /* Sysctls for limiting the amount of work done in the taskqueue */
+ igb_add_rx_process_limit(adapter, "rx_processing_limit",
+ "max number of rx packets to process", &adapter->rx_process_limit,
+ igb_rx_process_limit);
+
+ /*
+ * Validate number of transmit and receive descriptors. It
+ * must not exceed hardware maximum, and must be multiple
+ * of E1000_DBA_ALIGN.
+ */
+ if (((igb_txd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN) != 0 ||
+ (igb_txd > IGB_MAX_TXD) || (igb_txd < IGB_MIN_TXD)) {
+ device_printf(dev, "Using %d TX descriptors instead of %d!\n",
+ IGB_DEFAULT_TXD, igb_txd);
+ adapter->num_tx_desc = IGB_DEFAULT_TXD;
+ } else
+ adapter->num_tx_desc = igb_txd;
+ if (((igb_rxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN) != 0 ||
+ (igb_rxd > IGB_MAX_RXD) || (igb_rxd < IGB_MIN_RXD)) {
+ device_printf(dev, "Using %d RX descriptors instead of %d!\n",
+ IGB_DEFAULT_RXD, igb_rxd);
+ adapter->num_rx_desc = IGB_DEFAULT_RXD;
+ } else
+ adapter->num_rx_desc = igb_rxd;
+
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_wait_to_complete = FALSE;
+ adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+
+ /* Copper options */
+ if (adapter->hw.phy.media_type == e1000_media_type_copper) {
+ adapter->hw.phy.mdix = AUTO_ALL_MODES;
+ adapter->hw.phy.disable_polarity_correction = FALSE;
+ adapter->hw.phy.ms_type = IGB_MASTER_SLAVE;
+ }
+
+ /*
+ * Set the frame limits assuming
+ * standard ethernet sized frames.
+ */
+ adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
+ adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
+
+ /*
+ ** Allocate and Setup Queues
+ */
+ if (igb_allocate_queues(adapter)) {
+ error = ENOMEM;
+ goto err_pci;
+ }
+
+ /* Allocate the appropriate stats memory */
+ if (adapter->hw.mac.type == e1000_vfadapt) {
+ adapter->stats =
+ (struct e1000_vf_stats *)malloc(sizeof \
+ (struct e1000_vf_stats), M_DEVBUF, M_NOWAIT | M_ZERO);
+ igb_vf_init_stats(adapter);
+ } else
+ adapter->stats =
+ (struct e1000_hw_stats *)malloc(sizeof \
+ (struct e1000_hw_stats), M_DEVBUF, M_NOWAIT | M_ZERO);
+ if (adapter->stats == NULL) {
+ device_printf(dev, "Can not allocate stats memory\n");
+ error = ENOMEM;
+ goto err_late;
+ }
+
+ /* Allocate multicast array memory. */
+ adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
+ MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
+ if (adapter->mta == NULL) {
+ device_printf(dev, "Can not allocate multicast setup array\n");
+ error = ENOMEM;
+ goto err_late;
+ }
+
+ /*
+ ** Start from a known state, this is
+ ** important in reading the nvm and
+ ** mac from that.
+ */
+ e1000_reset_hw(&adapter->hw);
+
+ /* Make sure we have a good EEPROM before we read from it */
+ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+ /*
+ ** Some PCI-E parts fail the first check due to
+ ** the link being in sleep state, call it again,
+ ** if it fails a second time its a real issue.
+ */
+ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+ device_printf(dev,
+ "The EEPROM Checksum Is Not Valid\n");
+ error = EIO;
+ goto err_late;
+ }
+ }
+
+ /*
+ ** Copy the permanent MAC address out of the EEPROM
+ */
+ if (e1000_read_mac_addr(&adapter->hw) < 0) {
+ device_printf(dev, "EEPROM read error while reading MAC"
+ " address\n");
+ error = EIO;
+ goto err_late;
+ }
+ /* Check its sanity */
+ if (!igb_is_valid_ether_addr(adapter->hw.mac.addr)) {
+ device_printf(dev, "Invalid MAC address\n");
+ error = EIO;
+ goto err_late;
+ }
+
+ /*
+ ** Configure Interrupts
+ */
+ if ((adapter->msix > 1) && (igb_enable_msix))
+ error = igb_allocate_msix(adapter);
+ else /* MSI or Legacy */
+ error = igb_allocate_legacy(adapter);
+ if (error)
+ goto err_late;
+
+ /* Setup OS specific network interface */
+ if (igb_setup_interface(dev, adapter) != 0)
+ goto err_late;
+
+ /* Now get a good starting state */
+ igb_reset(adapter);
+
+ /* Initialize statistics */
+ igb_update_stats_counters(adapter);
+
+ adapter->hw.mac.get_link_status = 1;
+ igb_update_link_status(adapter);
+
+ /* Indicate SOL/IDER usage */
+ if (e1000_check_reset_block(&adapter->hw))
+ device_printf(dev,
+ "PHY reset is blocked due to SOL/IDER session.\n");
+
+ /* Determine if we have to control management hardware */
+ adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
+
+ /*
+ * Setup Wake-on-Lan
+ */
+ /* APME bit in EEPROM is mapped to WUC.APME */
+ eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC) & E1000_WUC_APME;
+ if (eeprom_data)
+ adapter->wol = E1000_WUFC_MAG;
+
+ /* Register for VLAN events */
+ adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
+ igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
+ adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
+ igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
+
+ igb_add_hw_stats(adapter);
+
+ /* Tell the stack that the interface is not active */
+ adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+
+ adapter->led_dev = led_create(igb_led_func, adapter,
+ device_get_nameunit(dev));
+
+ INIT_DEBUGOUT("igb_attach: end");
+
+ return (0);
+
+err_late:
+ igb_free_transmit_structures(adapter);
+ igb_free_receive_structures(adapter);
+ igb_release_hw_control(adapter);
+ if (adapter->ifp != NULL)
+ if_free(adapter->ifp);
+err_pci:
+ igb_free_pci_resources(adapter);
+ free(adapter->mta, M_DEVBUF);
+ IGB_CORE_LOCK_DESTROY(adapter);
+
+ return (error);
+}
+
+/*********************************************************************
+ * Device removal routine
+ *
+ * The detach entry point is called when the driver is being removed.
+ * This routine stops the adapter and deallocates all the resources
+ * that were allocated for driver operation.
+ *
+ * return 0 on success, positive on failure
+ *********************************************************************/
+
+static int
+igb_detach(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+ struct ifnet *ifp = adapter->ifp;
+
+ INIT_DEBUGOUT("igb_detach: begin");
+
+ /* Make sure VLANS are not using driver */
+ if (adapter->ifp->if_vlantrunk != NULL) {
+ device_printf(dev,"Vlan in use, detach first\n");
+ return (EBUSY);
+ }
+
+ if (adapter->led_dev != NULL)
+ led_destroy(adapter->led_dev);
+
+#ifdef DEVICE_POLLING
+ if (ifp->if_capenable & IFCAP_POLLING)
+ ether_poll_deregister(ifp);
+#endif
+
+ IGB_CORE_LOCK(adapter);
+ adapter->in_detach = 1;
+ igb_stop(adapter);
+ IGB_CORE_UNLOCK(adapter);
+
+ e1000_phy_hw_reset(&adapter->hw);
+
+ /* Give control back to firmware */
+ igb_release_manageability(adapter);
+ igb_release_hw_control(adapter);
+
+ if (adapter->wol) {
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
+ E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
+ igb_enable_wakeup(dev);
+ }
+
+ /* Unregister VLAN events */
+ if (adapter->vlan_attach != NULL)
+ EVENTHANDLER_DEREGISTER(vlan_config, adapter->vlan_attach);
+ if (adapter->vlan_detach != NULL)
+ EVENTHANDLER_DEREGISTER(vlan_unconfig, adapter->vlan_detach);
+
+ ether_ifdetach(adapter->ifp);
+
+ callout_drain(&adapter->timer);
+
+ igb_free_pci_resources(adapter);
+ bus_generic_detach(dev);
+ if_free(ifp);
+
+ igb_free_transmit_structures(adapter);
+ igb_free_receive_structures(adapter);
+ free(adapter->mta, M_DEVBUF);
+
+ IGB_CORE_LOCK_DESTROY(adapter);
+
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * Shutdown entry point
+ *
+ **********************************************************************/
+
+static int
+igb_shutdown(device_t dev)
+{
+ return igb_suspend(dev);
+}
+
+/*
+ * Suspend/resume device methods.
+ */
+static int
+igb_suspend(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+
+ IGB_CORE_LOCK(adapter);
+
+ igb_stop(adapter);
+
+ igb_release_manageability(adapter);
+ igb_release_hw_control(adapter);
+
+ if (adapter->wol) {
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
+ E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
+ igb_enable_wakeup(dev);
+ }
+
+ IGB_CORE_UNLOCK(adapter);
+
+ return bus_generic_suspend(dev);
+}
+
+static int
+igb_resume(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+ struct ifnet *ifp = adapter->ifp;
+
+ IGB_CORE_LOCK(adapter);
+ igb_init_locked(adapter);
+ igb_init_manageability(adapter);
+
+ if ((ifp->if_flags & IFF_UP) &&
+ (ifp->if_drv_flags & IFF_DRV_RUNNING))
+ igb_start(ifp);
+
+ IGB_CORE_UNLOCK(adapter);
+
+ return bus_generic_resume(dev);
+}
+
+
+/*********************************************************************
+ * Transmit entry point
+ *
+ * igb_start is called by the stack to initiate a transmit.
+ * The driver will remain in this routine as long as there are
+ * packets to transmit and transmit resources are available.
+ * In case resources are not available stack is notified and
+ * the packet is requeued.
+ **********************************************************************/
+
+static void
+igb_start_locked(struct tx_ring *txr, struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct mbuf *m_head;
+
+ IGB_TX_LOCK_ASSERT(txr);
+
+ if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
+ IFF_DRV_RUNNING)
+ return;
+ if (!adapter->link_active)
+ return;
+
+ /* Call cleanup if number of TX descriptors low */
+ if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD)
+ igb_txeof(txr);
+
+ while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
+ if (txr->tx_avail <= IGB_TX_OP_THRESHOLD) {
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ break;
+ }
+ IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
+ if (m_head == NULL)
+ break;
+ /*
+ * Encapsulation can modify our pointer, and or make it
+ * NULL on failure. In that event, we can't requeue.
+ */
+ if (igb_xmit(txr, &m_head)) {
+ if (m_head == NULL)
+ break;
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
+ break;
+ }
+
+ /* Send a copy of the frame to the BPF listener */
+ ETHER_BPF_MTAP(ifp, m_head);
+
+ /* Set watchdog on */
+ txr->watchdog_time = ticks;
+ txr->queue_status = IGB_QUEUE_WORKING;
+ }
+}
+
+/*
+ * Legacy TX driver routine, called from the
+ * stack, always uses tx[0], and spins for it.
+ * Should not be used with multiqueue tx
+ */
+static void
+igb_start(struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct tx_ring *txr = adapter->tx_rings;
+
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ IGB_TX_LOCK(txr);
+ igb_start_locked(txr, ifp);
+ IGB_TX_UNLOCK(txr);
+ }
+ return;
+}
+
+#if __FreeBSD_version >= 800000
+/*
+** Multiqueue Transmit driver
+**
+*/
+static int
+igb_mq_start(struct ifnet *ifp, struct mbuf *m)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct igb_queue *que;
+ struct tx_ring *txr;
+ int i = 0, err = 0;
+
+ /* Which queue to use */
+ if ((m->m_flags & M_FLOWID) != 0)
+ i = m->m_pkthdr.flowid % adapter->num_queues;
+
+ txr = &adapter->tx_rings[i];
+ que = &adapter->queues[i];
+
+ if (IGB_TX_TRYLOCK(txr)) {
+ err = igb_mq_start_locked(ifp, txr, m);
+ IGB_TX_UNLOCK(txr);
+ } else {
+ err = drbr_enqueue(ifp, txr->br, m);
+ taskqueue_enqueue(que->tq, &que->que_task);
+ }
+
+ return (err);
+}
+
+static int
+igb_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr, struct mbuf *m)
+{
+ struct adapter *adapter = txr->adapter;
+ struct mbuf *next;
+ int err = 0, enq;
+
+ IGB_TX_LOCK_ASSERT(txr);
+
+ if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
+ IFF_DRV_RUNNING || adapter->link_active == 0) {
+ if (m != NULL)
+ err = drbr_enqueue(ifp, txr->br, m);
+ return (err);
+ }
+
+ /* Call cleanup if number of TX descriptors low */
+ if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD)
+ igb_txeof(txr);
+
+ enq = 0;
+ if (m == NULL) {
+ next = drbr_dequeue(ifp, txr->br);
+ } else if (drbr_needs_enqueue(ifp, txr->br)) {
+ if ((err = drbr_enqueue(ifp, txr->br, m)) != 0)
+ return (err);
+ next = drbr_dequeue(ifp, txr->br);
+ } else
+ next = m;
+
+ /* Process the queue */
+ while (next != NULL) {
+ if ((err = igb_xmit(txr, &next)) != 0) {
+ if (next != NULL)
+ err = drbr_enqueue(ifp, txr->br, next);
+ break;
+ }
+ enq++;
+ drbr_stats_update(ifp, next->m_pkthdr.len, next->m_flags);
+ ETHER_BPF_MTAP(ifp, next);
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
+ break;
+ if (txr->tx_avail <= IGB_TX_OP_THRESHOLD) {
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ break;
+ }
+ next = drbr_dequeue(ifp, txr->br);
+ }
+ if (enq > 0) {
+ /* Set the watchdog */
+ txr->queue_status = IGB_QUEUE_WORKING;
+ txr->watchdog_time = ticks;
+ }
+ return (err);
+}
+
+/*
+** Flush all ring buffers
+*/
+static void
+igb_qflush(struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct tx_ring *txr = adapter->tx_rings;
+ struct mbuf *m;
+
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ IGB_TX_LOCK(txr);
+ while ((m = buf_ring_dequeue_sc(txr->br)) != NULL)
+ m_freem(m);
+ IGB_TX_UNLOCK(txr);
+ }
+ if_qflush(ifp);
+}
+#endif /* __FreeBSD_version >= 800000 */
+
+/*********************************************************************
+ * Ioctl entry point
+ *
+ * igb_ioctl is called when the user wants to configure the
+ * interface.
+ *
+ * return 0 on success, positive on failure
+ **********************************************************************/
+
+static int
+igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct ifreq *ifr = (struct ifreq *)data;
+#ifdef INET
+ struct ifaddr *ifa = (struct ifaddr *)data;
+#endif
+ int error = 0;
+
+ if (adapter->in_detach)
+ return (error);
+
+ switch (command) {
+ case SIOCSIFADDR:
+#ifdef INET
+ if (ifa->ifa_addr->sa_family == AF_INET) {
+ /*
+ * XXX
+ * Since resetting hardware takes a very long time
+ * and results in link renegotiation we only
+ * initialize the hardware only when it is absolutely
+ * required.
+ */
+ ifp->if_flags |= IFF_UP;
+ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
+ IGB_CORE_LOCK(adapter);
+ igb_init_locked(adapter);
+ IGB_CORE_UNLOCK(adapter);
+ }
+ if (!(ifp->if_flags & IFF_NOARP))
+ arp_ifinit(ifp, ifa);
+ } else
+#endif
+ error = ether_ioctl(ifp, command, data);
+ break;
+ case SIOCSIFMTU:
+ {
+ int max_frame_size;
+
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
+
+ IGB_CORE_LOCK(adapter);
+ max_frame_size = 9234;
+ if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
+ ETHER_CRC_LEN) {
+ IGB_CORE_UNLOCK(adapter);
+ error = EINVAL;
+ break;
+ }
+
+ ifp->if_mtu = ifr->ifr_mtu;
+ adapter->max_frame_size =
+ ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
+ igb_init_locked(adapter);
+ IGB_CORE_UNLOCK(adapter);
+ break;
+ }
+ case SIOCSIFFLAGS:
+ IOCTL_DEBUGOUT("ioctl rcv'd:\
+ SIOCSIFFLAGS (Set Interface Flags)");
+ IGB_CORE_LOCK(adapter);
+ if (ifp->if_flags & IFF_UP) {
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
+ if ((ifp->if_flags ^ adapter->if_flags) &
+ (IFF_PROMISC | IFF_ALLMULTI)) {
+ igb_disable_promisc(adapter);
+ igb_set_promisc(adapter);
+ }
+ } else
+ igb_init_locked(adapter);
+ } else
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING)
+ igb_stop(adapter);
+ adapter->if_flags = ifp->if_flags;
+ IGB_CORE_UNLOCK(adapter);
+ break;
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ IGB_CORE_LOCK(adapter);
+ igb_disable_intr(adapter);
+ igb_set_multi(adapter);
+#ifdef DEVICE_POLLING
+ if (!(ifp->if_capenable & IFCAP_POLLING))
+#endif
+ igb_enable_intr(adapter);
+ IGB_CORE_UNLOCK(adapter);
+ }
+ break;
+ case SIOCSIFMEDIA:
+ /*
+ ** As the speed/duplex settings are being
+ ** changed, we need toreset the PHY.
+ */
+ adapter->hw.phy.reset_disable = FALSE;
+ /* Check SOL/IDER usage */
+ IGB_CORE_LOCK(adapter);
+ if (e1000_check_reset_block(&adapter->hw)) {
+ IGB_CORE_UNLOCK(adapter);
+ device_printf(adapter->dev, "Media change is"
+ " blocked due to SOL/IDER session.\n");
+ break;
+ }
+ IGB_CORE_UNLOCK(adapter);
+ case SIOCGIFMEDIA:
+ IOCTL_DEBUGOUT("ioctl rcv'd: \
+ SIOCxIFMEDIA (Get/Set Interface Media)");
+ error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
+ break;
+ case SIOCSIFCAP:
+ {
+ int mask, reinit;
+
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
+ reinit = 0;
+ mask = ifr->ifr_reqcap ^ ifp->if_capenable;
+#ifdef DEVICE_POLLING
+ if (mask & IFCAP_POLLING) {
+ if (ifr->ifr_reqcap & IFCAP_POLLING) {
+ error = ether_poll_register(igb_poll, ifp);
+ if (error)
+ return (error);
+ IGB_CORE_LOCK(adapter);
+ igb_disable_intr(adapter);
+ ifp->if_capenable |= IFCAP_POLLING;
+ IGB_CORE_UNLOCK(adapter);
+ } else {
+ error = ether_poll_deregister(ifp);
+ /* Enable interrupt even in error case */
+ IGB_CORE_LOCK(adapter);
+ igb_enable_intr(adapter);
+ ifp->if_capenable &= ~IFCAP_POLLING;
+ IGB_CORE_UNLOCK(adapter);
+ }
+ }
+#endif
+ if (mask & IFCAP_HWCSUM) {
+ ifp->if_capenable ^= IFCAP_HWCSUM;
+ reinit = 1;
+ }
+ if (mask & IFCAP_TSO4) {
+ ifp->if_capenable ^= IFCAP_TSO4;
+ reinit = 1;
+ }
+ if (mask & IFCAP_VLAN_HWTAGGING) {
+ ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
+ reinit = 1;
+ }
+ if (mask & IFCAP_VLAN_HWFILTER) {
+ ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
+ reinit = 1;
+ }
+ if (mask & IFCAP_LRO) {
+ ifp->if_capenable ^= IFCAP_LRO;
+ reinit = 1;
+ }
+ if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING))
+ igb_init(adapter);
+ VLAN_CAPABILITIES(ifp);
+ break;
+ }
+
+ default:
+ error = ether_ioctl(ifp, command, data);
+ break;
+ }
+
+ return (error);
+}
+
+
+/*********************************************************************
+ * Init entry point
+ *
+ * This routine is used in two ways. It is used by the stack as
+ * init entry point in network interface structure. It is also used
+ * by the driver as a hw/sw initialization routine to get to a
+ * consistent state.
+ *
+ * return 0 on success, positive on failure
+ **********************************************************************/
+
+static void
+igb_init_locked(struct adapter *adapter)
+{
+ struct ifnet *ifp = adapter->ifp;
+ device_t dev = adapter->dev;
+
+ INIT_DEBUGOUT("igb_init: begin");
+
+ IGB_CORE_LOCK_ASSERT(adapter);
+
+ igb_disable_intr(adapter);
+ callout_stop(&adapter->timer);
+
+ /* Get the latest mac address, User can use a LAA */
+ bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr,
+ ETHER_ADDR_LEN);
+
+ /* Put the address into the Receive Address Array */
+ e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
+
+ igb_reset(adapter);
+ igb_update_link_status(adapter);
+
+ E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
+
+ /* Set hardware offload abilities */
+ ifp->if_hwassist = 0;
+ if (ifp->if_capenable & IFCAP_TXCSUM) {
+ ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
+#if __FreeBSD_version >= 800000
+ if (adapter->hw.mac.type == e1000_82576)
+ ifp->if_hwassist |= CSUM_SCTP;
+#endif
+ }
+
+ if (ifp->if_capenable & IFCAP_TSO4)
+ ifp->if_hwassist |= CSUM_TSO;
+
+ /* Configure for OS presence */
+ igb_init_manageability(adapter);
+
+ /* Prepare transmit descriptors and buffers */
+ igb_setup_transmit_structures(adapter);
+ igb_initialize_transmit_units(adapter);
+
+ /* Setup Multicast table */
+ igb_set_multi(adapter);
+
+ /*
+ ** Figure out the desired mbuf pool
+ ** for doing jumbo/packetsplit
+ */
+ if (adapter->max_frame_size <= 2048)
+ adapter->rx_mbuf_sz = MCLBYTES;
+ else if (adapter->max_frame_size <= 4096)
+ adapter->rx_mbuf_sz = MJUMPAGESIZE;
+ else
+ adapter->rx_mbuf_sz = MJUM9BYTES;
+
+ /* Prepare receive descriptors and buffers */
+ if (igb_setup_receive_structures(adapter)) {
+ device_printf(dev, "Could not setup receive structures\n");
+ return;
+ }
+ igb_initialize_receive_units(adapter);
+
+ /* Use real VLAN Filter support? */
+ if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
+ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
+ /* Use real VLAN Filter support */
+ igb_setup_vlan_hw_support(adapter);
+ else {
+ u32 ctrl;
+ ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_VME;
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
+ }
+ }
+
+ /* Don't lose promiscuous settings */
+ igb_set_promisc(adapter);
+
+ ifp->if_drv_flags |= IFF_DRV_RUNNING;
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+
+ callout_reset(&adapter->timer, hz, igb_local_timer, adapter);
+ e1000_clear_hw_cntrs_base_generic(&adapter->hw);
+
+ if (adapter->msix > 1) /* Set up queue routing */
+ igb_configure_queues(adapter);
+
+ /* this clears any pending interrupts */
+ E1000_READ_REG(&adapter->hw, E1000_ICR);
+#ifdef DEVICE_POLLING
+ /*
+ * Only enable interrupts if we are not polling, make sure
+ * they are off otherwise.
+ */
+ if (ifp->if_capenable & IFCAP_POLLING)
+ igb_disable_intr(adapter);
+ else
+#endif /* DEVICE_POLLING */
+ {
+ igb_enable_intr(adapter);
+ E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
+ }
+
+ /* Don't reset the phy next time init gets called */
+ adapter->hw.phy.reset_disable = TRUE;
+}
+
+static void
+igb_init(void *arg)
+{
+ struct adapter *adapter = arg;
+
+ IGB_CORE_LOCK(adapter);
+ igb_init_locked(adapter);
+ IGB_CORE_UNLOCK(adapter);
+}
+
+
+static void
+igb_handle_que(void *context, int pending)
+{
+ struct igb_queue *que = context;
+ struct adapter *adapter = que->adapter;
+ struct tx_ring *txr = que->txr;
+ struct ifnet *ifp = adapter->ifp;
+
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ bool more;
+
+ more = igb_rxeof(que, -1, NULL);
+
+ IGB_TX_LOCK(txr);
+ if (igb_txeof(txr))
+ more = TRUE;
+#if __FreeBSD_version >= 800000
+ if (!drbr_empty(ifp, txr->br))
+ igb_mq_start_locked(ifp, txr, NULL);
+#else
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ igb_start_locked(txr, ifp);
+#endif
+ IGB_TX_UNLOCK(txr);
+ if (more) {
+ taskqueue_enqueue(que->tq, &que->que_task);
+ return;
+ }
+ }
+
+#ifdef DEVICE_POLLING
+ if (ifp->if_capenable & IFCAP_POLLING)
+ return;
+#endif
+ /* Reenable this interrupt */
+ if (que->eims)
+ E1000_WRITE_REG(&adapter->hw, E1000_EIMS, que->eims);
+ else
+ igb_enable_intr(adapter);
+}
+
+/* Deal with link in a sleepable context */
+static void
+igb_handle_link(void *context, int pending)
+{
+ struct adapter *adapter = context;
+
+ adapter->hw.mac.get_link_status = 1;
+ igb_update_link_status(adapter);
+}
+
+/*********************************************************************
+ *
+ * MSI/Legacy Deferred
+ * Interrupt Service routine
+ *
+ *********************************************************************/
+static int
+igb_irq_fast(void *arg)
+{
+ struct adapter *adapter = arg;
+ struct igb_queue *que = adapter->queues;
+ u32 reg_icr;
+
+
+ reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+
+ /* Hot eject? */
+ if (reg_icr == 0xffffffff)
+ return FILTER_STRAY;
+
+ /* Definitely not our interrupt. */
+ if (reg_icr == 0x0)
+ return FILTER_STRAY;
+
+ if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
+ return FILTER_STRAY;
+
+ /*
+ * Mask interrupts until the taskqueue is finished running. This is
+ * cheap, just assume that it is needed. This also works around the
+ * MSI message reordering errata on certain systems.
+ */
+ igb_disable_intr(adapter);
+ taskqueue_enqueue(que->tq, &que->que_task);
+
+ /* Link status change */
+ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
+ taskqueue_enqueue(que->tq, &adapter->link_task);
+
+ if (reg_icr & E1000_ICR_RXO)
+ adapter->rx_overruns++;
+ return FILTER_HANDLED;
+}
+
+#ifdef DEVICE_POLLING
+/*********************************************************************
+ *
+ * Legacy polling routine : if using this code you MUST be sure that
+ * multiqueue is not defined, ie, set igb_num_queues to 1.
+ *
+ *********************************************************************/
+#if __FreeBSD_version >= 800000
+#define POLL_RETURN_COUNT(a) (a)
+static int
+#else
+#define POLL_RETURN_COUNT(a)
+static void
+#endif
+igb_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct igb_queue *que = adapter->queues;
+ struct tx_ring *txr = adapter->tx_rings;
+ u32 reg_icr, rx_done = 0;
+ u32 loop = IGB_MAX_LOOP;
+ bool more;
+
+ IGB_CORE_LOCK(adapter);
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
+ IGB_CORE_UNLOCK(adapter);
+ return POLL_RETURN_COUNT(rx_done);
+ }
+
+ if (cmd == POLL_AND_CHECK_STATUS) {
+ reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+ /* Link status change */
+ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
+ igb_handle_link(adapter, 0);
+
+ if (reg_icr & E1000_ICR_RXO)
+ adapter->rx_overruns++;
+ }
+ IGB_CORE_UNLOCK(adapter);
+
+ igb_rxeof(que, count, &rx_done);
+
+ IGB_TX_LOCK(txr);
+ do {
+ more = igb_txeof(txr);
+ } while (loop-- && more);
+#if __FreeBSD_version >= 800000
+ if (!drbr_empty(ifp, txr->br))
+ igb_mq_start_locked(ifp, txr, NULL);
+#else
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ igb_start_locked(txr, ifp);
+#endif
+ IGB_TX_UNLOCK(txr);
+ return POLL_RETURN_COUNT(rx_done);
+}
+#endif /* DEVICE_POLLING */
+
+/*********************************************************************
+ *
+ * MSIX TX Interrupt Service routine
+ *
+ **********************************************************************/
+static void
+igb_msix_que(void *arg)
+{
+ struct igb_queue *que = arg;
+ struct adapter *adapter = que->adapter;
+ struct tx_ring *txr = que->txr;
+ struct rx_ring *rxr = que->rxr;
+ u32 newitr = 0;
+ bool more_tx, more_rx;
+
+ E1000_WRITE_REG(&adapter->hw, E1000_EIMC, que->eims);
+ ++que->irqs;
+
+ IGB_TX_LOCK(txr);
+ more_tx = igb_txeof(txr);
+ IGB_TX_UNLOCK(txr);
+
+ more_rx = igb_rxeof(que, adapter->rx_process_limit, NULL);
+
+ if (igb_enable_aim == FALSE)
+ goto no_calc;
+ /*
+ ** Do Adaptive Interrupt Moderation:
+ ** - Write out last calculated setting
+ ** - Calculate based on average size over
+ ** the last interval.
+ */
+ if (que->eitr_setting)
+ E1000_WRITE_REG(&adapter->hw,
+ E1000_EITR(que->msix), que->eitr_setting);
+
+ que->eitr_setting = 0;
+
+ /* Idle, do nothing */
+ if ((txr->bytes == 0) && (rxr->bytes == 0))
+ goto no_calc;
+
+ /* Used half Default if sub-gig */
+ if (adapter->link_speed != 1000)
+ newitr = IGB_DEFAULT_ITR / 2;
+ else {
+ if ((txr->bytes) && (txr->packets))
+ newitr = txr->bytes/txr->packets;
+ if ((rxr->bytes) && (rxr->packets))
+ newitr = max(newitr,
+ (rxr->bytes / rxr->packets));
+ newitr += 24; /* account for hardware frame, crc */
+ /* set an upper boundary */
+ newitr = min(newitr, 3000);
+ /* Be nice to the mid range */
+ if ((newitr > 300) && (newitr < 1200))
+ newitr = (newitr / 3);
+ else
+ newitr = (newitr / 2);
+ }
+ newitr &= 0x7FFC; /* Mask invalid bits */
+ if (adapter->hw.mac.type == e1000_82575)
+ newitr |= newitr << 16;
+ else
+ newitr |= E1000_EITR_CNT_IGNR;
+
+ /* save for next interrupt */
+ que->eitr_setting = newitr;
+
+ /* Reset state */
+ txr->bytes = 0;
+ txr->packets = 0;
+ rxr->bytes = 0;
+ rxr->packets = 0;
+
+no_calc:
+ /* Schedule a clean task if needed*/
+ if (more_tx || more_rx)
+ taskqueue_enqueue(que->tq, &que->que_task);
+ else
+ /* Reenable this interrupt */
+ E1000_WRITE_REG(&adapter->hw, E1000_EIMS, que->eims);
+ return;
+}
+
+
+/*********************************************************************
+ *
+ * MSIX Link Interrupt Service routine
+ *
+ **********************************************************************/
+
+static void
+igb_msix_link(void *arg)
+{
+ struct adapter *adapter = arg;
+ u32 icr;
+
+ ++adapter->link_irq;
+ icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+ if (!(icr & E1000_ICR_LSC))
+ goto spurious;
+ igb_handle_link(adapter, 0);
+
+spurious:
+ /* Rearm */
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
+ E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
+ return;
+}
+
+
+/*********************************************************************
+ *
+ * Media Ioctl callback
+ *
+ * This routine is called whenever the user queries the status of
+ * the interface using ifconfig.
+ *
+ **********************************************************************/
+static void
+igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
+{
+ struct adapter *adapter = ifp->if_softc;
+ u_char fiber_type = IFM_1000_SX;
+
+ INIT_DEBUGOUT("igb_media_status: begin");
+
+ IGB_CORE_LOCK(adapter);
+ igb_update_link_status(adapter);
+
+ ifmr->ifm_status = IFM_AVALID;
+ ifmr->ifm_active = IFM_ETHER;
+
+ if (!adapter->link_active) {
+ IGB_CORE_UNLOCK(adapter);
+ return;
+ }
+
+ ifmr->ifm_status |= IFM_ACTIVE;
+
+ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+ (adapter->hw.phy.media_type == e1000_media_type_internal_serdes))
+ ifmr->ifm_active |= fiber_type | IFM_FDX;
+ else {
+ switch (adapter->link_speed) {
+ case 10:
+ ifmr->ifm_active |= IFM_10_T;
+ break;
+ case 100:
+ ifmr->ifm_active |= IFM_100_TX;
+ break;
+ case 1000:
+ ifmr->ifm_active |= IFM_1000_T;
+ break;
+ }
+ if (adapter->link_duplex == FULL_DUPLEX)
+ ifmr->ifm_active |= IFM_FDX;
+ else
+ ifmr->ifm_active |= IFM_HDX;
+ }
+ IGB_CORE_UNLOCK(adapter);
+}
+
+/*********************************************************************
+ *
+ * Media Ioctl callback
+ *
+ * This routine is called when the user changes speed/duplex using
+ * media/mediopt option with ifconfig.
+ *
+ **********************************************************************/
+static int
+igb_media_change(struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct ifmedia *ifm = &adapter->media;
+
+ INIT_DEBUGOUT("igb_media_change: begin");
+
+ if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
+ return (EINVAL);
+
+ IGB_CORE_LOCK(adapter);
+ switch (IFM_SUBTYPE(ifm->ifm_media)) {
+ case IFM_AUTO:
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+ break;
+ case IFM_1000_LX:
+ case IFM_1000_SX:
+ case IFM_1000_T:
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
+ break;
+ case IFM_100_TX:
+ adapter->hw.mac.autoneg = FALSE;
+ adapter->hw.phy.autoneg_advertised = 0;
+ if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
+ else
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
+ break;
+ case IFM_10_T:
+ adapter->hw.mac.autoneg = FALSE;
+ adapter->hw.phy.autoneg_advertised = 0;
+ if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
+ else
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
+ break;
+ default:
+ device_printf(adapter->dev, "Unsupported media type\n");
+ }
+
+ igb_init_locked(adapter);
+ IGB_CORE_UNLOCK(adapter);
+
+ return (0);
+}
+
+
+/*********************************************************************
+ *
+ * This routine maps the mbufs to Advanced TX descriptors.
+ * used by the 82575 adapter.
+ *
+ **********************************************************************/
+
+static int
+igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
+{
+ struct adapter *adapter = txr->adapter;
+ bus_dma_segment_t segs[IGB_MAX_SCATTER];
+ bus_dmamap_t map;
+ struct igb_tx_buffer *tx_buffer, *tx_buffer_mapped;
+ union e1000_adv_tx_desc *txd = NULL;
+ struct mbuf *m_head;
+ u32 olinfo_status = 0, cmd_type_len = 0;
+ int nsegs, i, j, error, first, last = 0;
+ u32 hdrlen = 0;
+
+ m_head = *m_headp;
+
+
+ /* Set basic descriptor constants */
+ cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
+ cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
+ if (m_head->m_flags & M_VLANTAG)
+ cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
+
+ /*
+ * Force a cleanup if number of TX descriptors
+ * available hits the threshold
+ */
+ if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD) {
+ igb_txeof(txr);
+ /* Now do we at least have a minimal? */
+ if (txr->tx_avail <= IGB_TX_OP_THRESHOLD) {
+ txr->no_desc_avail++;
+ return (ENOBUFS);
+ }
+ }
+
+ /*
+ * Map the packet for DMA.
+ *
+ * Capture the first descriptor index,
+ * this descriptor will have the index
+ * of the EOP which is the only one that
+ * now gets a DONE bit writeback.
+ */
+ first = txr->next_avail_desc;
+ tx_buffer = &txr->tx_buffers[first];
+ tx_buffer_mapped = tx_buffer;
+ map = tx_buffer->map;
+
+ error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
+ *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+ if (error == EFBIG) {
+ struct mbuf *m;
+
+ m = m_defrag(*m_headp, M_DONTWAIT);
+ if (m == NULL) {
+ adapter->mbuf_defrag_failed++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ *m_headp = m;
+
+ /* Try it again */
+ error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
+ *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+ if (error == ENOMEM) {
+ adapter->no_tx_dma_setup++;
+ return (error);
+ } else if (error != 0) {
+ adapter->no_tx_dma_setup++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (error);
+ }
+ } else if (error == ENOMEM) {
+ adapter->no_tx_dma_setup++;
+ return (error);
+ } else if (error != 0) {
+ adapter->no_tx_dma_setup++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (error);
+ }
+
+ /* Check again to be sure we have enough descriptors */
+ if (nsegs > (txr->tx_avail - 2)) {
+ txr->no_desc_avail++;
+ bus_dmamap_unload(txr->txtag, map);
+ return (ENOBUFS);
+ }
+ m_head = *m_headp;
+
+ /*
+ * Set up the context descriptor:
+ * used when any hardware offload is done.
+ * This includes CSUM, VLAN, and TSO. It
+ * will use the first descriptor.
+ */
+ if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
+ if (igb_tso_setup(txr, m_head, &hdrlen)) {
+ cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
+ olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
+ olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
+ } else
+ return (ENXIO);
+ } else if (igb_tx_ctx_setup(txr, m_head))
+ olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
+
+ /* Calculate payload length */
+ olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
+ << E1000_ADVTXD_PAYLEN_SHIFT);
+
+ /* 82575 needs the queue index added */
+ if (adapter->hw.mac.type == e1000_82575)
+ olinfo_status |= txr->me << 4;
+
+ /* Set up our transmit descriptors */
+ i = txr->next_avail_desc;
+ for (j = 0; j < nsegs; j++) {
+ bus_size_t seg_len;
+ bus_addr_t seg_addr;
+
+ tx_buffer = &txr->tx_buffers[i];
+ txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
+ seg_addr = segs[j].ds_addr;
+ seg_len = segs[j].ds_len;
+
+ txd->read.buffer_addr = htole64(seg_addr);
+ txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
+ txd->read.olinfo_status = htole32(olinfo_status);
+ last = i;
+ if (++i == adapter->num_tx_desc)
+ i = 0;
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+ }
+
+ txr->next_avail_desc = i;
+ txr->tx_avail -= nsegs;
+
+ tx_buffer->m_head = m_head;
+ tx_buffer_mapped->map = tx_buffer->map;
+ tx_buffer->map = map;
+ bus_dmamap_sync(txr->txtag, map, BUS_DMASYNC_PREWRITE);
+
+ /*
+ * Last Descriptor of Packet
+ * needs End Of Packet (EOP)
+ * and Report Status (RS)
+ */
+ txd->read.cmd_type_len |=
+ htole32(E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_RS);
+ /*
+ * Keep track in the first buffer which
+ * descriptor will be written back
+ */
+ tx_buffer = &txr->tx_buffers[first];
+ tx_buffer->next_eop = last;
+ txr->watchdog_time = ticks;
+
+ /*
+ * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
+ * that this frame is available to transmit.
+ */
+ bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), i);
+ ++txr->tx_packets;
+
+ return (0);
+
+}
+
+static void
+igb_set_promisc(struct adapter *adapter)
+{
+ struct ifnet *ifp = adapter->ifp;
+ struct e1000_hw *hw = &adapter->hw;
+ u32 reg;
+
+ if (hw->mac.type == e1000_vfadapt) {
+ e1000_promisc_set_vf(hw, e1000_promisc_enabled);
+ return;
+ }
+
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ if (ifp->if_flags & IFF_PROMISC) {
+ reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+ } else if (ifp->if_flags & IFF_ALLMULTI) {
+ reg |= E1000_RCTL_MPE;
+ reg &= ~E1000_RCTL_UPE;
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+ }
+}
+
+static void
+igb_disable_promisc(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ u32 reg;
+
+ if (hw->mac.type == e1000_vfadapt) {
+ e1000_promisc_set_vf(hw, e1000_promisc_disabled);
+ return;
+ }
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ reg &= (~E1000_RCTL_UPE);
+ reg &= (~E1000_RCTL_MPE);
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+}
+
+
+/*********************************************************************
+ * Multicast Update
+ *
+ * This routine is called whenever multicast address list is updated.
+ *
+ **********************************************************************/
+
+static void
+igb_set_multi(struct adapter *adapter)
+{
+ struct ifnet *ifp = adapter->ifp;
+ struct ifmultiaddr *ifma;
+ u32 reg_rctl = 0;
+ u8 *mta;
+
+ int mcnt = 0;
+
+ IOCTL_DEBUGOUT("igb_set_multi: begin");
+
+ mta = adapter->mta;
+ bzero(mta, sizeof(uint8_t) * ETH_ADDR_LEN *
+ MAX_NUM_MULTICAST_ADDRESSES);
+
+#if __FreeBSD_version < 800000
+ IF_ADDR_LOCK(ifp);
+#else
+ if_maddr_rlock(ifp);
+#endif
+ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
+ if (ifma->ifma_addr->sa_family != AF_LINK)
+ continue;
+
+ if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
+ break;
+
+ bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
+ &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
+ mcnt++;
+ }
+#if __FreeBSD_version < 800000
+ IF_ADDR_UNLOCK(ifp);
+#else
+ if_maddr_runlock(ifp);
+#endif
+
+ if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+ reg_rctl |= E1000_RCTL_MPE;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+ } else
+ e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
+}
+
+
+/*********************************************************************
+ * Timer routine:
+ * This routine checks for link status,
+ * updates statistics, and does the watchdog.
+ *
+ **********************************************************************/
+
+static void
+igb_local_timer(void *arg)
+{
+ struct adapter *adapter = arg;
+ device_t dev = adapter->dev;
+ struct tx_ring *txr = adapter->tx_rings;
+
+
+ IGB_CORE_LOCK_ASSERT(adapter);
+
+ igb_update_link_status(adapter);
+ igb_update_stats_counters(adapter);
+
+ /*
+ ** If flow control has paused us since last checking
+ ** it invalidates the watchdog timing, so dont run it.
+ */
+ if (adapter->pause_frames) {
+ adapter->pause_frames = 0;
+ goto out;
+ }
+
+ /*
+ ** Watchdog: check for time since any descriptor was cleaned
+ */
+ for (int i = 0; i < adapter->num_queues; i++, txr++)
+ if (txr->queue_status == IGB_QUEUE_HUNG)
+ goto timeout;
+out:
+ callout_reset(&adapter->timer, hz, igb_local_timer, adapter);
+ return;
+
+timeout:
+ device_printf(adapter->dev, "Watchdog timeout -- resetting\n");
+ device_printf(dev,"Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
+ E1000_READ_REG(&adapter->hw, E1000_TDH(txr->me)),
+ E1000_READ_REG(&adapter->hw, E1000_TDT(txr->me)));
+ device_printf(dev,"TX(%d) desc avail = %d,"
+ "Next TX to Clean = %d\n",
+ txr->me, txr->tx_avail, txr->next_to_clean);
+ adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
+ adapter->watchdog_events++;
+ igb_init_locked(adapter);
+}
+
+static void
+igb_update_link_status(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ struct ifnet *ifp = adapter->ifp;
+ device_t dev = adapter->dev;
+ struct tx_ring *txr = adapter->tx_rings;
+ u32 link_check = 0;
+
+ /* Get the cached link value or read for real */
+ switch (hw->phy.media_type) {
+ case e1000_media_type_copper:
+ if (hw->mac.get_link_status) {
+ /* Do the work to read phy */
+ e1000_check_for_link(hw);
+ link_check = !hw->mac.get_link_status;
+ } else
+ link_check = TRUE;
+ break;
+ case e1000_media_type_fiber:
+ e1000_check_for_link(hw);
+ link_check = (E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STATUS_LU);
+ break;
+ case e1000_media_type_internal_serdes:
+ e1000_check_for_link(hw);
+ link_check = adapter->hw.mac.serdes_has_link;
+ break;
+ /* VF device is type_unknown */
+ case e1000_media_type_unknown:
+ e1000_check_for_link(hw);
+ link_check = !hw->mac.get_link_status;
+ /* Fall thru */
+ default:
+ break;
+ }
+
+ /* Now we check if a transition has happened */
+ if (link_check && (adapter->link_active == 0)) {
+ e1000_get_speed_and_duplex(&adapter->hw,
+ &adapter->link_speed, &adapter->link_duplex);
+ if (bootverbose)
+ device_printf(dev, "Link is up %d Mbps %s\n",
+ adapter->link_speed,
+ ((adapter->link_duplex == FULL_DUPLEX) ?
+ "Full Duplex" : "Half Duplex"));
+ adapter->link_active = 1;
+ ifp->if_baudrate = adapter->link_speed * 1000000;
+ /* This can sleep */
+ if_link_state_change(ifp, LINK_STATE_UP);
+ } else if (!link_check && (adapter->link_active == 1)) {
+ ifp->if_baudrate = adapter->link_speed = 0;
+ adapter->link_duplex = 0;
+ if (bootverbose)
+ device_printf(dev, "Link is Down\n");
+ adapter->link_active = 0;
+ /* This can sleep */
+ if_link_state_change(ifp, LINK_STATE_DOWN);
+ /* Turn off watchdogs */
+ for (int i = 0; i < adapter->num_queues; i++, txr++)
+ txr->queue_status = IGB_QUEUE_IDLE;
+ }
+}
+
+/*********************************************************************
+ *
+ * This routine disables all traffic on the adapter by issuing a
+ * global reset on the MAC and deallocates TX/RX buffers.
+ *
+ **********************************************************************/
+
+static void
+igb_stop(void *arg)
+{
+ struct adapter *adapter = arg;
+ struct ifnet *ifp = adapter->ifp;
+ struct tx_ring *txr = adapter->tx_rings;
+
+ IGB_CORE_LOCK_ASSERT(adapter);
+
+ INIT_DEBUGOUT("igb_stop: begin");
+
+ igb_disable_intr(adapter);
+
+ callout_stop(&adapter->timer);
+
+ /* Tell the stack that the interface is no longer active */
+ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+
+ /* Unarm watchdog timer. */
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ IGB_TX_LOCK(txr);
+ txr->queue_status = IGB_QUEUE_IDLE;
+ IGB_TX_UNLOCK(txr);
+ }
+
+ e1000_reset_hw(&adapter->hw);
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
+
+ e1000_led_off(&adapter->hw);
+ e1000_cleanup_led(&adapter->hw);
+}
+
+
+/*********************************************************************
+ *
+ * Determine hardware revision.
+ *
+ **********************************************************************/
+static void
+igb_identify_hardware(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+
+ /* Make sure our PCI config space has the necessary stuff set */
+ adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
+ if (!((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
+ (adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN))) {
+ INIT_DEBUGOUT("Memory Access and/or Bus Master "
+ "bits were not set!\n");
+ adapter->hw.bus.pci_cmd_word |=
+ (PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN);
+ pci_write_config(dev, PCIR_COMMAND,
+ adapter->hw.bus.pci_cmd_word, 2);
+ }
+
+ /* Save off the information about this board */
+ adapter->hw.vendor_id = pci_get_vendor(dev);
+ adapter->hw.device_id = pci_get_device(dev);
+ adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
+ adapter->hw.subsystem_vendor_id =
+ pci_read_config(dev, PCIR_SUBVEND_0, 2);
+ adapter->hw.subsystem_device_id =
+ pci_read_config(dev, PCIR_SUBDEV_0, 2);
+
+ /* Set MAC type early for PCI setup */
+ e1000_set_mac_type(&adapter->hw);
+}
+
+static int
+igb_allocate_pci_resources(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ int rid;
+
+ rid = PCIR_BAR(0);
+ adapter->pci_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
+ &rid, RF_ACTIVE);
+ if (adapter->pci_mem == NULL) {
+ device_printf(dev, "Unable to allocate bus resource: memory\n");
+ return (ENXIO);
+ }
+ adapter->osdep.mem_bus_space_tag =
+ rman_get_bustag(adapter->pci_mem);
+ adapter->osdep.mem_bus_space_handle =
+ rman_get_bushandle(adapter->pci_mem);
+ adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
+
+ adapter->num_queues = 1; /* Defaults for Legacy or MSI */
+
+ /* This will setup either MSI/X or MSI */
+ adapter->msix = igb_setup_msix(adapter);
+ adapter->hw.back = &adapter->osdep;
+
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * Setup the Legacy or MSI Interrupt handler
+ *
+ **********************************************************************/
+static int
+igb_allocate_legacy(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct igb_queue *que = adapter->queues;
+ int error, rid = 0;
+
+ /* Turn off all interrupts */
+ E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
+
+ /* MSI RID is 1 */
+ if (adapter->msix == 1)
+ rid = 1;
+
+ /* We allocate a single interrupt resource */
+ adapter->res = bus_alloc_resource_any(dev,
+ SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
+ if (adapter->res == NULL) {
+ device_printf(dev, "Unable to allocate bus resource: "
+ "interrupt\n");
+ return (ENXIO);
+ }
+
+ /*
+ * Try allocating a fast interrupt and the associated deferred
+ * processing contexts.
+ */
+ TASK_INIT(&que->que_task, 0, igb_handle_que, que);
+ /* Make tasklet for deferred link handling */
+ TASK_INIT(&adapter->link_task, 0, igb_handle_link, adapter);
+ que->tq = taskqueue_create_fast("igb_taskq", M_NOWAIT,
+ taskqueue_thread_enqueue, &que->tq);
+ taskqueue_start_threads(&que->tq, 1, PI_NET, "%s taskq",
+ device_get_nameunit(adapter->dev));
+ if ((error = bus_setup_intr(dev, adapter->res,
+ INTR_TYPE_NET | INTR_MPSAFE, igb_irq_fast, NULL,
+ adapter, &adapter->tag)) != 0) {
+ device_printf(dev, "Failed to register fast interrupt "
+ "handler: %d\n", error);
+ taskqueue_free(que->tq);
+ que->tq = NULL;
+ return (error);
+ }
+
+ return (0);
+}
+
+
+/*********************************************************************
+ *
+ * Setup the MSIX Queue Interrupt handlers:
+ *
+ **********************************************************************/
+static int
+igb_allocate_msix(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct igb_queue *que = adapter->queues;
+ int error, rid, vector = 0;
+
+
+ for (int i = 0; i < adapter->num_queues; i++, vector++, que++) {
+ rid = vector +1;
+ que->res = bus_alloc_resource_any(dev,
+ SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
+ if (que->res == NULL) {
+ device_printf(dev,
+ "Unable to allocate bus resource: "
+ "MSIX Queue Interrupt\n");
+ return (ENXIO);
+ }
+ error = bus_setup_intr(dev, que->res,
+ INTR_TYPE_NET | INTR_MPSAFE, NULL,
+ igb_msix_que, que, &que->tag);
+ if (error) {
+ que->res = NULL;
+ device_printf(dev, "Failed to register Queue handler");
+ return (error);
+ }
+#if __FreeBSD_version >= 800504
+ bus_describe_intr(dev, que->res, que->tag, "que %d", i);
+#endif
+ que->msix = vector;
+ if (adapter->hw.mac.type == e1000_82575)
+ que->eims = E1000_EICR_TX_QUEUE0 << i;
+ else
+ que->eims = 1 << vector;
+ /*
+ ** Bind the msix vector, and thus the
+ ** rings to the corresponding cpu.
+ */
+ if (adapter->num_queues > 1)
+ bus_bind_intr(dev, que->res, i);
+ /* Make tasklet for deferred handling */
+ TASK_INIT(&que->que_task, 0, igb_handle_que, que);
+ que->tq = taskqueue_create_fast("igb_que", M_NOWAIT,
+ taskqueue_thread_enqueue, &que->tq);
+ taskqueue_start_threads(&que->tq, 1, PI_NET, "%s que",
+ device_get_nameunit(adapter->dev));
+ }
+
+ /* And Link */
+ rid = vector + 1;
+ adapter->res = bus_alloc_resource_any(dev,
+ SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
+ if (adapter->res == NULL) {
+ device_printf(dev,
+ "Unable to allocate bus resource: "
+ "MSIX Link Interrupt\n");
+ return (ENXIO);
+ }
+ if ((error = bus_setup_intr(dev, adapter->res,
+ INTR_TYPE_NET | INTR_MPSAFE, NULL,
+ igb_msix_link, adapter, &adapter->tag)) != 0) {
+ device_printf(dev, "Failed to register Link handler");
+ return (error);
+ }
+#if __FreeBSD_version >= 800504
+ bus_describe_intr(dev, adapter->res, adapter->tag, "link");
+#endif
+ adapter->linkvec = vector;
+
+ return (0);
+}
+
+
+static void
+igb_configure_queues(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ struct igb_queue *que;
+ u32 tmp, ivar = 0, newitr = 0;
+
+ /* First turn on RSS capability */
+ if (adapter->hw.mac.type > e1000_82575)
+ E1000_WRITE_REG(hw, E1000_GPIE,
+ E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
+ E1000_GPIE_PBA | E1000_GPIE_NSICR);
+
+ /* Turn on MSIX */
+ switch (adapter->hw.mac.type) {
+ case e1000_82580:
+ case e1000_vfadapt:
+ /* RX entries */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ u32 index = i >> 1;
+ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
+ que = &adapter->queues[i];
+ if (i & 1) {
+ ivar &= 0xFF00FFFF;
+ ivar |= (que->msix | E1000_IVAR_VALID) << 16;
+ } else {
+ ivar &= 0xFFFFFF00;
+ ivar |= que->msix | E1000_IVAR_VALID;
+ }
+ E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
+ }
+ /* TX entries */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ u32 index = i >> 1;
+ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
+ que = &adapter->queues[i];
+ if (i & 1) {
+ ivar &= 0x00FFFFFF;
+ ivar |= (que->msix | E1000_IVAR_VALID) << 24;
+ } else {
+ ivar &= 0xFFFF00FF;
+ ivar |= (que->msix | E1000_IVAR_VALID) << 8;
+ }
+ E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
+ adapter->eims_mask |= que->eims;
+ }
+
+ /* And for the link interrupt */
+ ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
+ adapter->link_mask = 1 << adapter->linkvec;
+ adapter->eims_mask |= adapter->link_mask;
+ E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
+ break;
+ case e1000_82576:
+ /* RX entries */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ u32 index = i & 0x7; /* Each IVAR has two entries */
+ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
+ que = &adapter->queues[i];
+ if (i < 8) {
+ ivar &= 0xFFFFFF00;
+ ivar |= que->msix | E1000_IVAR_VALID;
+ } else {
+ ivar &= 0xFF00FFFF;
+ ivar |= (que->msix | E1000_IVAR_VALID) << 16;
+ }
+ E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
+ adapter->eims_mask |= que->eims;
+ }
+ /* TX entries */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ u32 index = i & 0x7; /* Each IVAR has two entries */
+ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
+ que = &adapter->queues[i];
+ if (i < 8) {
+ ivar &= 0xFFFF00FF;
+ ivar |= (que->msix | E1000_IVAR_VALID) << 8;
+ } else {
+ ivar &= 0x00FFFFFF;
+ ivar |= (que->msix | E1000_IVAR_VALID) << 24;
+ }
+ E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
+ adapter->eims_mask |= que->eims;
+ }
+
+ /* And for the link interrupt */
+ ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
+ adapter->link_mask = 1 << adapter->linkvec;
+ adapter->eims_mask |= adapter->link_mask;
+ E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
+ break;
+
+ case e1000_82575:
+ /* enable MSI-X support*/
+ tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ tmp |= E1000_CTRL_EXT_PBA_CLR;
+ /* Auto-Mask interrupts upon ICR read. */
+ tmp |= E1000_CTRL_EXT_EIAME;
+ tmp |= E1000_CTRL_EXT_IRCA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
+
+ /* Queues */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ que = &adapter->queues[i];
+ tmp = E1000_EICR_RX_QUEUE0 << i;
+ tmp |= E1000_EICR_TX_QUEUE0 << i;
+ que->eims = tmp;
+ E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
+ i, que->eims);
+ adapter->eims_mask |= que->eims;
+ }
+
+ /* Link */
+ E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
+ E1000_EIMS_OTHER);
+ adapter->link_mask |= E1000_EIMS_OTHER;
+ adapter->eims_mask |= adapter->link_mask;
+ default:
+ break;
+ }
+
+ /* Set the starting interrupt rate */
+ if (igb_max_interrupt_rate > 0)
+ newitr = (4000000 / igb_max_interrupt_rate) & 0x7FFC;
+
+ if (hw->mac.type == e1000_82575)
+ newitr |= newitr << 16;
+ else
+ newitr |= E1000_EITR_CNT_IGNR;
+
+ for (int i = 0; i < adapter->num_queues; i++) {
+ que = &adapter->queues[i];
+ E1000_WRITE_REG(hw, E1000_EITR(que->msix), newitr);
+ }
+
+ return;
+}
+
+
+static void
+igb_free_pci_resources(struct adapter *adapter)
+{
+ struct igb_queue *que = adapter->queues;
+ device_t dev = adapter->dev;
+ int rid;
+
+ /*
+ ** There is a slight possibility of a failure mode
+ ** in attach that will result in entering this function
+ ** before interrupt resources have been initialized, and
+ ** in that case we do not want to execute the loops below
+ ** We can detect this reliably by the state of the adapter
+ ** res pointer.
+ */
+ if (adapter->res == NULL)
+ goto mem;
+
+ /*
+ * First release all the interrupt resources:
+ */
+ for (int i = 0; i < adapter->num_queues; i++, que++) {
+ rid = que->msix + 1;
+ if (que->tag != NULL) {
+ bus_teardown_intr(dev, que->res, que->tag);
+ que->tag = NULL;
+ }
+ if (que->res != NULL)
+ bus_release_resource(dev,
+ SYS_RES_IRQ, rid, que->res);
+ }
+
+ /* Clean the Legacy or Link interrupt last */
+ if (adapter->linkvec) /* we are doing MSIX */
+ rid = adapter->linkvec + 1;
+ else
+ (adapter->msix != 0) ? (rid = 1):(rid = 0);
+
+ if (adapter->tag != NULL) {
+ bus_teardown_intr(dev, adapter->res, adapter->tag);
+ adapter->tag = NULL;
+ }
+ if (adapter->res != NULL)
+ bus_release_resource(dev, SYS_RES_IRQ, rid, adapter->res);
+
+mem:
+ if (adapter->msix)
+ pci_release_msi(dev);
+
+ if (adapter->msix_mem != NULL)
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem);
+
+ if (adapter->pci_mem != NULL)
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ PCIR_BAR(0), adapter->pci_mem);
+
+}
+
+/*
+ * Setup Either MSI/X or MSI
+ */
+static int
+igb_setup_msix(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ int rid, want, queues, msgs;
+
+ /* tuneable override */
+ if (igb_enable_msix == 0)
+ goto msi;
+
+ /* First try MSI/X */
+ rid = PCIR_BAR(IGB_MSIX_BAR);
+ adapter->msix_mem = bus_alloc_resource_any(dev,
+ SYS_RES_MEMORY, &rid, RF_ACTIVE);
+ if (!adapter->msix_mem) {
+ /* May not be enabled */
+ device_printf(adapter->dev,
+ "Unable to map MSIX table \n");
+ goto msi;
+ }
+
+ msgs = pci_msix_count(dev);
+ if (msgs == 0) { /* system has msix disabled */
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem);
+ adapter->msix_mem = NULL;
+ goto msi;
+ }
+
+#ifdef __rtems__
+ /* Figure out a reasonable auto config value */
+ queues = 10; /* XXX fix me */
+#else
+ /* Figure out a reasonable auto config value */
+ queues = (mp_ncpus > (msgs-1)) ? (msgs-1) : mp_ncpus;
+#endif
+
+ /* Manual override */
+ if (igb_num_queues != 0)
+ queues = igb_num_queues;
+ if (queues > 8) /* max queues */
+ queues = 8;
+
+ /* Can have max of 4 queues on 82575 */
+ if ((adapter->hw.mac.type == e1000_82575) && (queues > 4))
+ queues = 4;
+
+ /* Limit the VF adapter to one queue */
+ if (adapter->hw.mac.type == e1000_vfadapt)
+ queues = 1;
+
+ /*
+ ** One vector (RX/TX pair) per queue
+ ** plus an additional for Link interrupt
+ */
+ want = queues + 1;
+ if (msgs >= want)
+ msgs = want;
+ else {
+ device_printf(adapter->dev,
+ "MSIX Configuration Problem, "
+ "%d vectors configured, but %d queues wanted!\n",
+ msgs, want);
+ return (ENXIO);
+ }
+ if ((msgs) && pci_alloc_msix(dev, &msgs) == 0) {
+ device_printf(adapter->dev,
+ "Using MSIX interrupts with %d vectors\n", msgs);
+ adapter->num_queues = queues;
+ return (msgs);
+ }
+msi:
+ msgs = pci_msi_count(dev);
+ if (msgs == 1 && pci_alloc_msi(dev, &msgs) == 0)
+ device_printf(adapter->dev,"Using MSI interrupt\n");
+ return (msgs);
+}
+
+/*********************************************************************
+ *
+ * Set up an fresh starting state
+ *
+ **********************************************************************/
+static void
+igb_reset(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct e1000_hw *hw = &adapter->hw;
+ struct e1000_fc_info *fc = &hw->fc;
+ struct ifnet *ifp = adapter->ifp;
+ u32 pba = 0;
+ u16 hwm;
+
+ INIT_DEBUGOUT("igb_reset: begin");
+
+ /* Let the firmware know the OS is in control */
+ igb_get_hw_control(adapter);
+
+ /*
+ * Packet Buffer Allocation (PBA)
+ * Writing PBA sets the receive portion of the buffer
+ * the remainder is used for the transmit buffer.
+ */
+ switch (hw->mac.type) {
+ case e1000_82575:
+ pba = E1000_PBA_32K;
+ break;
+ case e1000_82576:
+ case e1000_vfadapt:
+ pba = E1000_PBA_64K;
+ break;
+ case e1000_82580:
+ pba = E1000_PBA_35K;
+ default:
+ break;
+ }
+
+ /* Special needs in case of Jumbo frames */
+ if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
+ u32 tx_space, min_tx, min_rx;
+ pba = E1000_READ_REG(hw, E1000_PBA);
+ tx_space = pba >> 16;
+ pba &= 0xffff;
+ min_tx = (adapter->max_frame_size +
+ sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
+ min_tx = roundup2(min_tx, 1024);
+ min_tx >>= 10;
+ min_rx = adapter->max_frame_size;
+ min_rx = roundup2(min_rx, 1024);
+ min_rx >>= 10;
+ if (tx_space < min_tx &&
+ ((min_tx - tx_space) < pba)) {
+ pba = pba - (min_tx - tx_space);
+ /*
+ * if short on rx space, rx wins
+ * and must trump tx adjustment
+ */
+ if (pba < min_rx)
+ pba = min_rx;
+ }
+ E1000_WRITE_REG(hw, E1000_PBA, pba);
+ }
+
+ INIT_DEBUGOUT1("igb_init: pba=%dK",pba);
+
+ /*
+ * These parameters control the automatic generation (Tx) and
+ * response (Rx) to Ethernet PAUSE frames.
+ * - High water mark should allow for at least two frames to be
+ * received after sending an XOFF.
+ * - Low water mark works best when it is very near the high water mark.
+ * This allows the receiver to restart by sending XON when it has
+ * drained a bit.
+ */
+ hwm = min(((pba << 10) * 9 / 10),
+ ((pba << 10) - 2 * adapter->max_frame_size));
+
+ if (hw->mac.type < e1000_82576) {
+ fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
+ fc->low_water = fc->high_water - 8;
+ } else {
+ fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
+ fc->low_water = fc->high_water - 16;
+ }
+
+ fc->pause_time = IGB_FC_PAUSE_TIME;
+ fc->send_xon = TRUE;
+
+ /* Set Flow control, use the tunable location if sane */
+ if ((igb_fc_setting >= 0) && (igb_fc_setting < 4))
+ fc->requested_mode = igb_fc_setting;
+ else
+ fc->requested_mode = e1000_fc_none;
+
+ fc->current_mode = fc->requested_mode;
+
+ /* Issue a global reset */
+ e1000_reset_hw(hw);
+ E1000_WRITE_REG(hw, E1000_WUC, 0);
+
+ if (e1000_init_hw(hw) < 0)
+ device_printf(dev, "Hardware Initialization Failed\n");
+
+ if (hw->mac.type == e1000_82580) {
+ u32 reg;
+
+ hwm = (pba << 10) - (2 * adapter->max_frame_size);
+ /*
+ * 0x80000000 - enable DMA COAL
+ * 0x10000000 - use L0s as low power
+ * 0x20000000 - use L1 as low power
+ * X << 16 - exit dma coal when rx data exceeds X kB
+ * Y - upper limit to stay in dma coal in units of 32usecs
+ */
+ E1000_WRITE_REG(hw, E1000_DMACR,
+ 0xA0000006 | ((hwm << 6) & 0x00FF0000));
+
+ /* set hwm to PBA - 2 * max frame size */
+ E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
+ /*
+ * This sets the time to wait before requesting transition to
+ * low power state to number of usecs needed to receive 1 512
+ * byte frame at gigabit line rate
+ */
+ E1000_WRITE_REG(hw, E1000_DMCTLX, 4);
+
+ /* free space in tx packet buffer to wake from DMA coal */
+ E1000_WRITE_REG(hw, E1000_DMCTXTH,
+ (20480 - (2 * adapter->max_frame_size)) >> 6);
+
+ /* make low power state decision controlled by DMA coal */
+ reg = E1000_READ_REG(hw, E1000_PCIEMISC);
+ E1000_WRITE_REG(hw, E1000_PCIEMISC,
+ reg | E1000_PCIEMISC_LX_DECISION);
+ }
+
+ E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
+ e1000_get_phy_info(hw);
+ e1000_check_for_link(hw);
+ return;
+}
+
+/*********************************************************************
+ *
+ * Setup networking device structure and register an interface.
+ *
+ **********************************************************************/
+static int
+igb_setup_interface(device_t dev, struct adapter *adapter)
+{
+ struct ifnet *ifp;
+
+ INIT_DEBUGOUT("igb_setup_interface: begin");
+
+ ifp = adapter->ifp = if_alloc(IFT_ETHER);
+ if (ifp == NULL) {
+ device_printf(dev, "can not allocate ifnet structure\n");
+ return (-1);
+ }
+ if_initname(ifp, device_get_name(dev), device_get_unit(dev));
+ ifp->if_mtu = ETHERMTU;
+ ifp->if_init = igb_init;
+ ifp->if_softc = adapter;
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = igb_ioctl;
+ ifp->if_start = igb_start;
+#if __FreeBSD_version >= 800000
+ ifp->if_transmit = igb_mq_start;
+ ifp->if_qflush = igb_qflush;
+#endif
+ IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
+ ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
+ IFQ_SET_READY(&ifp->if_snd);
+
+ ether_ifattach(ifp, adapter->hw.mac.addr);
+
+ ifp->if_capabilities = ifp->if_capenable = 0;
+
+ ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
+ ifp->if_capabilities |= IFCAP_TSO4;
+ ifp->if_capabilities |= IFCAP_JUMBO_MTU;
+ ifp->if_capenable = ifp->if_capabilities;
+
+ /* Don't enable LRO by default */
+ ifp->if_capabilities |= IFCAP_LRO;
+
+#ifdef DEVICE_POLLING
+ ifp->if_capabilities |= IFCAP_POLLING;
+#endif
+
+ /*
+ * Tell the upper layer(s) we
+ * support full VLAN capability.
+ */
+ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
+ ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
+ ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
+
+ /*
+ ** Dont turn this on by default, if vlans are
+ ** created on another pseudo device (eg. lagg)
+ ** then vlan events are not passed thru, breaking
+ ** operation, but with HW FILTER off it works. If
+ ** using vlans directly on the em driver you can
+ ** enable this and get full hardware tag filtering.
+ */
+ ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
+
+ /*
+ * Specify the media types supported by this adapter and register
+ * callbacks to update media and link information
+ */
+ ifmedia_init(&adapter->media, IFM_IMASK,
+ igb_media_change, igb_media_status);
+ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+ (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
+ 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
+ } else {
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
+ 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
+ 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
+ 0, NULL);
+ if (adapter->hw.phy.type != e1000_phy_ife) {
+ ifmedia_add(&adapter->media,
+ IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
+ ifmedia_add(&adapter->media,
+ IFM_ETHER | IFM_1000_T, 0, NULL);
+ }
+ }
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
+ ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
+ return (0);
+}
+
+
+/*
+ * Manage DMA'able memory.
+ */
+static void
+igb_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
+{
+ if (error)
+ return;
+ *(bus_addr_t *) arg = segs[0].ds_addr;
+}
+
+static int
+igb_dma_malloc(struct adapter *adapter, bus_size_t size,
+ struct igb_dma_alloc *dma, int mapflags)
+{
+ int error;
+
+ error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
+ IGB_DBA_ALIGN, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ size, /* maxsize */
+ 1, /* nsegments */
+ size, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockarg */
+ &dma->dma_tag);
+ if (error) {
+ device_printf(adapter->dev,
+ "%s: bus_dma_tag_create failed: %d\n",
+ __func__, error);
+ goto fail_0;
+ }
+
+ error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
+ BUS_DMA_NOWAIT, &dma->dma_map);
+ if (error) {
+ device_printf(adapter->dev,
+ "%s: bus_dmamem_alloc(%ju) failed: %d\n",
+ __func__, (uintmax_t)size, error);
+ goto fail_2;
+ }
+
+ dma->dma_paddr = 0;
+ error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
+ size, igb_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT);
+ if (error || dma->dma_paddr == 0) {
+ device_printf(adapter->dev,
+ "%s: bus_dmamap_load failed: %d\n",
+ __func__, error);
+ goto fail_3;
+ }
+
+ return (0);
+
+fail_3:
+ bus_dmamap_unload(dma->dma_tag, dma->dma_map);
+fail_2:
+ bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
+ bus_dma_tag_destroy(dma->dma_tag);
+fail_0:
+ dma->dma_map = NULL;
+ dma->dma_tag = NULL;
+
+ return (error);
+}
+
+static void
+igb_dma_free(struct adapter *adapter, struct igb_dma_alloc *dma)
+{
+ if (dma->dma_tag == NULL)
+ return;
+ if (dma->dma_map != NULL) {
+ bus_dmamap_sync(dma->dma_tag, dma->dma_map,
+ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(dma->dma_tag, dma->dma_map);
+ bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
+ dma->dma_map = NULL;
+ }
+ bus_dma_tag_destroy(dma->dma_tag);
+ dma->dma_tag = NULL;
+}
+
+
+/*********************************************************************
+ *
+ * Allocate memory for the transmit and receive rings, and then
+ * the descriptors associated with each, called only once at attach.
+ *
+ **********************************************************************/
+static int
+igb_allocate_queues(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct igb_queue *que = NULL;
+ struct tx_ring *txr = NULL;
+ struct rx_ring *rxr = NULL;
+ int rsize, tsize, error = E1000_SUCCESS;
+ int txconf = 0, rxconf = 0;
+
+ /* First allocate the top level queue structs */
+ if (!(adapter->queues =
+ (struct igb_queue *) malloc(sizeof(struct igb_queue) *
+ adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
+ device_printf(dev, "Unable to allocate queue memory\n");
+ error = ENOMEM;
+ goto fail;
+ }
+
+ /* Next allocate the TX ring struct memory */
+ if (!(adapter->tx_rings =
+ (struct tx_ring *) malloc(sizeof(struct tx_ring) *
+ adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
+ device_printf(dev, "Unable to allocate TX ring memory\n");
+ error = ENOMEM;
+ goto tx_fail;
+ }
+
+ /* Now allocate the RX */
+ if (!(adapter->rx_rings =
+ (struct rx_ring *) malloc(sizeof(struct rx_ring) *
+ adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
+ device_printf(dev, "Unable to allocate RX ring memory\n");
+ error = ENOMEM;
+ goto rx_fail;
+ }
+
+ tsize = roundup2(adapter->num_tx_desc *
+ sizeof(union e1000_adv_tx_desc), IGB_DBA_ALIGN);
+ /*
+ * Now set up the TX queues, txconf is needed to handle the
+ * possibility that things fail midcourse and we need to
+ * undo memory gracefully
+ */
+ for (int i = 0; i < adapter->num_queues; i++, txconf++) {
+ /* Set up some basics */
+ txr = &adapter->tx_rings[i];
+ txr->adapter = adapter;
+ txr->me = i;
+
+ /* Initialize the TX lock */
+ snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
+ device_get_nameunit(dev), txr->me);
+ mtx_init(&txr->tx_mtx, txr->mtx_name, NULL, MTX_DEF);
+
+ if (igb_dma_malloc(adapter, tsize,
+ &txr->txdma, BUS_DMA_NOWAIT)) {
+ device_printf(dev,
+ "Unable to allocate TX Descriptor memory\n");
+ error = ENOMEM;
+ goto err_tx_desc;
+ }
+ txr->tx_base = (struct e1000_tx_desc *)txr->txdma.dma_vaddr;
+ bzero((void *)txr->tx_base, tsize);
+
+ /* Now allocate transmit buffers for the ring */
+ if (igb_allocate_transmit_buffers(txr)) {
+ device_printf(dev,
+ "Critical Failure setting up transmit buffers\n");
+ error = ENOMEM;
+ goto err_tx_desc;
+ }
+#if __FreeBSD_version >= 800000
+ /* Allocate a buf ring */
+ txr->br = buf_ring_alloc(IGB_BR_SIZE, M_DEVBUF,
+ M_WAITOK, &txr->tx_mtx);
+#endif
+ }
+
+ /*
+ * Next the RX queues...
+ */
+ rsize = roundup2(adapter->num_rx_desc *
+ sizeof(union e1000_adv_rx_desc), IGB_DBA_ALIGN);
+ for (int i = 0; i < adapter->num_queues; i++, rxconf++) {
+ rxr = &adapter->rx_rings[i];
+ rxr->adapter = adapter;
+ rxr->me = i;
+
+ /* Initialize the RX lock */
+ snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
+ device_get_nameunit(dev), txr->me);
+ mtx_init(&rxr->rx_mtx, rxr->mtx_name, NULL, MTX_DEF);
+
+ if (igb_dma_malloc(adapter, rsize,
+ &rxr->rxdma, BUS_DMA_NOWAIT)) {
+ device_printf(dev,
+ "Unable to allocate RxDescriptor memory\n");
+ error = ENOMEM;
+ goto err_rx_desc;
+ }
+ rxr->rx_base = (union e1000_adv_rx_desc *)rxr->rxdma.dma_vaddr;
+ bzero((void *)rxr->rx_base, rsize);
+
+ /* Allocate receive buffers for the ring*/
+ if (igb_allocate_receive_buffers(rxr)) {
+ device_printf(dev,
+ "Critical Failure setting up receive buffers\n");
+ error = ENOMEM;
+ goto err_rx_desc;
+ }
+ }
+
+ /*
+ ** Finally set up the queue holding structs
+ */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ que = &adapter->queues[i];
+ que->adapter = adapter;
+ que->txr = &adapter->tx_rings[i];
+ que->rxr = &adapter->rx_rings[i];
+ }
+
+ return (0);
+
+err_rx_desc:
+ for (rxr = adapter->rx_rings; rxconf > 0; rxr++, rxconf--)
+ igb_dma_free(adapter, &rxr->rxdma);
+err_tx_desc:
+ for (txr = adapter->tx_rings; txconf > 0; txr++, txconf--)
+ igb_dma_free(adapter, &txr->txdma);
+ free(adapter->rx_rings, M_DEVBUF);
+rx_fail:
+#if __FreeBSD_version >= 800000
+ buf_ring_free(txr->br, M_DEVBUF);
+#endif
+ free(adapter->tx_rings, M_DEVBUF);
+tx_fail:
+ free(adapter->queues, M_DEVBUF);
+fail:
+ return (error);
+}
+
+/*********************************************************************
+ *
+ * Allocate memory for tx_buffer structures. The tx_buffer stores all
+ * the information needed to transmit a packet on the wire. This is
+ * called only once at attach, setup is done every reset.
+ *
+ **********************************************************************/
+static int
+igb_allocate_transmit_buffers(struct tx_ring *txr)
+{
+ struct adapter *adapter = txr->adapter;
+ device_t dev = adapter->dev;
+ struct igb_tx_buffer *txbuf;
+ int error, i;
+
+ /*
+ * Setup DMA descriptor areas.
+ */
+ if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
+ 1, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ IGB_TSO_SIZE, /* maxsize */
+ IGB_MAX_SCATTER, /* nsegments */
+ PAGE_SIZE, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockfuncarg */
+ &txr->txtag))) {
+ device_printf(dev,"Unable to allocate TX DMA tag\n");
+ goto fail;
+ }
+
+ if (!(txr->tx_buffers =
+ (struct igb_tx_buffer *) malloc(sizeof(struct igb_tx_buffer) *
+ adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO))) {
+ device_printf(dev, "Unable to allocate tx_buffer memory\n");
+ error = ENOMEM;
+ goto fail;
+ }
+
+ /* Create the descriptor buffer dma maps */
+ txbuf = txr->tx_buffers;
+ for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
+ error = bus_dmamap_create(txr->txtag, 0, &txbuf->map);
+ if (error != 0) {
+ device_printf(dev, "Unable to create TX DMA map\n");
+ goto fail;
+ }
+ }
+
+ return 0;
+fail:
+ /* We free all, it handles case where we are in the middle */
+ igb_free_transmit_structures(adapter);
+ return (error);
+}
+
+/*********************************************************************
+ *
+ * Initialize a transmit ring.
+ *
+ **********************************************************************/
+static void
+igb_setup_transmit_ring(struct tx_ring *txr)
+{
+ struct adapter *adapter = txr->adapter;
+ struct igb_tx_buffer *txbuf;
+ int i;
+
+ /* Clear the old descriptor contents */
+ IGB_TX_LOCK(txr);
+ bzero((void *)txr->tx_base,
+ (sizeof(union e1000_adv_tx_desc)) * adapter->num_tx_desc);
+ /* Reset indices */
+ txr->next_avail_desc = 0;
+ txr->next_to_clean = 0;
+
+ /* Free any existing tx buffers. */
+ txbuf = txr->tx_buffers;
+ for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
+ if (txbuf->m_head != NULL) {
+ bus_dmamap_sync(txr->txtag, txbuf->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(txr->txtag, txbuf->map);
+ m_freem(txbuf->m_head);
+ txbuf->m_head = NULL;
+ }
+ /* clear the watch index */
+ txbuf->next_eop = -1;
+ }
+
+ /* Set number of descriptors available */
+ txr->tx_avail = adapter->num_tx_desc;
+
+ bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+ IGB_TX_UNLOCK(txr);
+}
+
+/*********************************************************************
+ *
+ * Initialize all transmit rings.
+ *
+ **********************************************************************/
+static void
+igb_setup_transmit_structures(struct adapter *adapter)
+{
+ struct tx_ring *txr = adapter->tx_rings;
+
+ for (int i = 0; i < adapter->num_queues; i++, txr++)
+ igb_setup_transmit_ring(txr);
+
+ return;
+}
+
+/*********************************************************************
+ *
+ * Enable transmit unit.
+ *
+ **********************************************************************/
+static void
+igb_initialize_transmit_units(struct adapter *adapter)
+{
+ struct tx_ring *txr = adapter->tx_rings;
+ struct e1000_hw *hw = &adapter->hw;
+ u32 tctl, txdctl;
+
+ INIT_DEBUGOUT("igb_initialize_transmit_units: begin");
+ tctl = txdctl = 0;
+
+ /* Setup the Tx Descriptor Rings */
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ u64 bus_addr = txr->txdma.dma_paddr;
+
+ E1000_WRITE_REG(hw, E1000_TDLEN(i),
+ adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
+ E1000_WRITE_REG(hw, E1000_TDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_TDBAL(i),
+ (uint32_t)bus_addr);
+
+ /* Setup the HW Tx Head and Tail descriptor pointers */
+ E1000_WRITE_REG(hw, E1000_TDT(i), 0);
+ E1000_WRITE_REG(hw, E1000_TDH(i), 0);
+
+ HW_DEBUGOUT2("Base = %x, Length = %x\n",
+ E1000_READ_REG(hw, E1000_TDBAL(i)),
+ E1000_READ_REG(hw, E1000_TDLEN(i)));
+
+ txr->queue_status = IGB_QUEUE_IDLE;
+
+ txdctl |= IGB_TX_PTHRESH;
+ txdctl |= IGB_TX_HTHRESH << 8;
+ txdctl |= IGB_TX_WTHRESH << 16;
+ txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
+ }
+
+ if (adapter->hw.mac.type == e1000_vfadapt)
+ return;
+
+ e1000_config_collision_dist(hw);
+
+ /* Program the Transmit Control Register */
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+ /* This write will effectively turn on the transmit unit. */
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+}
+
+/*********************************************************************
+ *
+ * Free all transmit rings.
+ *
+ **********************************************************************/
+static void
+igb_free_transmit_structures(struct adapter *adapter)
+{
+ struct tx_ring *txr = adapter->tx_rings;
+
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ IGB_TX_LOCK(txr);
+ igb_free_transmit_buffers(txr);
+ igb_dma_free(adapter, &txr->txdma);
+ IGB_TX_UNLOCK(txr);
+ IGB_TX_LOCK_DESTROY(txr);
+ }
+ free(adapter->tx_rings, M_DEVBUF);
+}
+
+/*********************************************************************
+ *
+ * Free transmit ring related data structures.
+ *
+ **********************************************************************/
+static void
+igb_free_transmit_buffers(struct tx_ring *txr)
+{
+ struct adapter *adapter = txr->adapter;
+ struct igb_tx_buffer *tx_buffer;
+ int i;
+
+ INIT_DEBUGOUT("free_transmit_ring: begin");
+
+ if (txr->tx_buffers == NULL)
+ return;
+
+ tx_buffer = txr->tx_buffers;
+ for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
+ if (tx_buffer->m_head != NULL) {
+ bus_dmamap_sync(txr->txtag, tx_buffer->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(txr->txtag,
+ tx_buffer->map);
+ m_freem(tx_buffer->m_head);
+ tx_buffer->m_head = NULL;
+ if (tx_buffer->map != NULL) {
+ bus_dmamap_destroy(txr->txtag,
+ tx_buffer->map);
+ tx_buffer->map = NULL;
+ }
+ } else if (tx_buffer->map != NULL) {
+ bus_dmamap_unload(txr->txtag,
+ tx_buffer->map);
+ bus_dmamap_destroy(txr->txtag,
+ tx_buffer->map);
+ tx_buffer->map = NULL;
+ }
+ }
+#if __FreeBSD_version >= 800000
+ if (txr->br != NULL)
+ buf_ring_free(txr->br, M_DEVBUF);
+#endif
+ if (txr->tx_buffers != NULL) {
+ free(txr->tx_buffers, M_DEVBUF);
+ txr->tx_buffers = NULL;
+ }
+ if (txr->txtag != NULL) {
+ bus_dma_tag_destroy(txr->txtag);
+ txr->txtag = NULL;
+ }
+ return;
+}
+
+/**********************************************************************
+ *
+ * Setup work for hardware segmentation offload (TSO)
+ *
+ **********************************************************************/
+static boolean_t
+igb_tso_setup(struct tx_ring *txr, struct mbuf *mp, u32 *hdrlen)
+{
+ struct adapter *adapter = txr->adapter;
+ struct e1000_adv_tx_context_desc *TXD;
+ struct igb_tx_buffer *tx_buffer;
+ u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
+ u32 mss_l4len_idx = 0;
+ u16 vtag = 0;
+ int ctxd, ehdrlen, ip_hlen, tcp_hlen;
+ struct ether_vlan_header *eh;
+ struct ip *ip;
+ struct tcphdr *th;
+
+
+ /*
+ * Determine where frame payload starts.
+ * Jump over vlan headers if already present
+ */
+ eh = mtod(mp, struct ether_vlan_header *);
+ if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
+ ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
+ else
+ ehdrlen = ETHER_HDR_LEN;
+
+ /* Ensure we have at least the IP+TCP header in the first mbuf. */
+ if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr))
+ return FALSE;
+
+ /* Only supports IPV4 for now */
+ ctxd = txr->next_avail_desc;
+ tx_buffer = &txr->tx_buffers[ctxd];
+ TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd];
+
+ ip = (struct ip *)(mp->m_data + ehdrlen);
+ if (ip->ip_p != IPPROTO_TCP)
+ return FALSE; /* 0 */
+ ip->ip_sum = 0;
+ ip_hlen = ip->ip_hl << 2;
+ th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
+ th->th_sum = in_pseudo(ip->ip_src.s_addr,
+ ip->ip_dst.s_addr, htons(IPPROTO_TCP));
+ tcp_hlen = th->th_off << 2;
+ /*
+ * Calculate header length, this is used
+ * in the transmit desc in igb_xmit
+ */
+ *hdrlen = ehdrlen + ip_hlen + tcp_hlen;
+
+ /* VLAN MACLEN IPLEN */
+ if (mp->m_flags & M_VLANTAG) {
+ vtag = htole16(mp->m_pkthdr.ether_vtag);
+ vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
+ }
+
+ vlan_macip_lens |= (ehdrlen << E1000_ADVTXD_MACLEN_SHIFT);
+ vlan_macip_lens |= ip_hlen;
+ TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
+
+ /* ADV DTYPE TUCMD */
+ type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
+ TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
+
+ /* MSS L4LEN IDX */
+ mss_l4len_idx |= (mp->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
+ mss_l4len_idx |= (tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
+ /* 82575 needs the queue index added */
+ if (adapter->hw.mac.type == e1000_82575)
+ mss_l4len_idx |= txr->me << 4;
+ TXD->mss_l4len_idx = htole32(mss_l4len_idx);
+
+ TXD->seqnum_seed = htole32(0);
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+
+ if (++ctxd == adapter->num_tx_desc)
+ ctxd = 0;
+
+ txr->tx_avail--;
+ txr->next_avail_desc = ctxd;
+ return TRUE;
+}
+
+
+/*********************************************************************
+ *
+ * Context Descriptor setup for VLAN or CSUM
+ *
+ **********************************************************************/
+
+static bool
+igb_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp)
+{
+ struct adapter *adapter = txr->adapter;
+ struct e1000_adv_tx_context_desc *TXD;
+ struct igb_tx_buffer *tx_buffer;
+ u32 vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
+ struct ether_vlan_header *eh;
+ struct ip *ip = NULL;
+ struct ip6_hdr *ip6;
+ int ehdrlen, ctxd, ip_hlen = 0;
+ u16 etype, vtag = 0;
+ u8 ipproto = 0;
+ bool offload = TRUE;
+
+ if ((mp->m_pkthdr.csum_flags & CSUM_OFFLOAD) == 0)
+ offload = FALSE;
+
+ vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
+ ctxd = txr->next_avail_desc;
+ tx_buffer = &txr->tx_buffers[ctxd];
+ TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd];
+
+ /*
+ ** In advanced descriptors the vlan tag must
+ ** be placed into the context descriptor, thus
+ ** we need to be here just for that setup.
+ */
+ if (mp->m_flags & M_VLANTAG) {
+ vtag = htole16(mp->m_pkthdr.ether_vtag);
+ vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
+ } else if (offload == FALSE)
+ return FALSE;
+
+ /*
+ * Determine where frame payload starts.
+ * Jump over vlan headers if already present,
+ * helpful for QinQ too.
+ */
+ eh = mtod(mp, struct ether_vlan_header *);
+ if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
+ etype = ntohs(eh->evl_proto);
+ ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
+ } else {
+ etype = ntohs(eh->evl_encap_proto);
+ ehdrlen = ETHER_HDR_LEN;
+ }
+
+ /* Set the ether header length */
+ vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
+
+ switch (etype) {
+ case ETHERTYPE_IP:
+ ip = (struct ip *)(mp->m_data + ehdrlen);
+ ip_hlen = ip->ip_hl << 2;
+ if (mp->m_len < ehdrlen + ip_hlen) {
+ offload = FALSE;
+ break;
+ }
+ ipproto = ip->ip_p;
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
+ break;
+ case ETHERTYPE_IPV6:
+ ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
+ ip_hlen = sizeof(struct ip6_hdr);
+ ipproto = ip6->ip6_nxt;
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
+ break;
+ default:
+ offload = FALSE;
+ break;
+ }
+
+ vlan_macip_lens |= ip_hlen;
+ type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
+
+ switch (ipproto) {
+ case IPPROTO_TCP:
+ if (mp->m_pkthdr.csum_flags & CSUM_TCP)
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
+ break;
+ case IPPROTO_UDP:
+ if (mp->m_pkthdr.csum_flags & CSUM_UDP)
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
+ break;
+#if __FreeBSD_version >= 800000
+ case IPPROTO_SCTP:
+ if (mp->m_pkthdr.csum_flags & CSUM_SCTP)
+ type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP;
+ break;
+#endif
+ default:
+ offload = FALSE;
+ break;
+ }
+
+ /* 82575 needs the queue index added */
+ if (adapter->hw.mac.type == e1000_82575)
+ mss_l4len_idx = txr->me << 4;
+
+ /* Now copy bits into descriptor */
+ TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
+ TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
+ TXD->seqnum_seed = htole32(0);
+ TXD->mss_l4len_idx = htole32(mss_l4len_idx);
+
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+
+ /* We've consumed the first desc, adjust counters */
+ if (++ctxd == adapter->num_tx_desc)
+ ctxd = 0;
+ txr->next_avail_desc = ctxd;
+ --txr->tx_avail;
+
+ return (offload);
+}
+
+
+/**********************************************************************
+ *
+ * Examine each tx_buffer in the used queue. If the hardware is done
+ * processing the packet then free associated resources. The
+ * tx_buffer is put back on the free queue.
+ *
+ * TRUE return means there's work in the ring to clean, FALSE its empty.
+ **********************************************************************/
+static bool
+igb_txeof(struct tx_ring *txr)
+{
+ struct adapter *adapter = txr->adapter;
+ int first, last, done, processed;
+ struct igb_tx_buffer *tx_buffer;
+ struct e1000_tx_desc *tx_desc, *eop_desc;
+ struct ifnet *ifp = adapter->ifp;
+
+ IGB_TX_LOCK_ASSERT(txr);
+
+ if (txr->tx_avail == adapter->num_tx_desc) {
+ txr->queue_status = IGB_QUEUE_IDLE;
+ return FALSE;
+ }
+
+ processed = 0;
+ first = txr->next_to_clean;
+ tx_desc = &txr->tx_base[first];
+ tx_buffer = &txr->tx_buffers[first];
+ last = tx_buffer->next_eop;
+ eop_desc = &txr->tx_base[last];
+
+ /*
+ * What this does is get the index of the
+ * first descriptor AFTER the EOP of the
+ * first packet, that way we can do the
+ * simple comparison on the inner while loop.
+ */
+ if (++last == adapter->num_tx_desc)
+ last = 0;
+ done = last;
+
+ bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
+ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+
+ while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
+ /* We clean the range of the packet */
+ while (first != done) {
+ tx_desc->upper.data = 0;
+ tx_desc->lower.data = 0;
+ tx_desc->buffer_addr = 0;
+ ++txr->tx_avail;
+ ++processed;
+
+ if (tx_buffer->m_head) {
+ txr->bytes +=
+ tx_buffer->m_head->m_pkthdr.len;
+ bus_dmamap_sync(txr->txtag,
+ tx_buffer->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(txr->txtag,
+ tx_buffer->map);
+
+ m_freem(tx_buffer->m_head);
+ tx_buffer->m_head = NULL;
+ }
+ tx_buffer->next_eop = -1;
+ txr->watchdog_time = ticks;
+
+ if (++first == adapter->num_tx_desc)
+ first = 0;
+
+ tx_buffer = &txr->tx_buffers[first];
+ tx_desc = &txr->tx_base[first];
+ }
+ ++txr->packets;
+ ++ifp->if_opackets;
+ /* See if we can continue to the next packet */
+ last = tx_buffer->next_eop;
+ if (last != -1) {
+ eop_desc = &txr->tx_base[last];
+ /* Get new done point */
+ if (++last == adapter->num_tx_desc) last = 0;
+ done = last;
+ } else
+ break;
+ }
+ bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ txr->next_to_clean = first;
+
+ /*
+ ** Watchdog calculation, we know there's
+ ** work outstanding or the first return
+ ** would have been taken, so none processed
+ ** for too long indicates a hang.
+ */
+ if ((!processed) && ((ticks - txr->watchdog_time) > IGB_WATCHDOG))
+ txr->queue_status = IGB_QUEUE_HUNG;
+
+ /*
+ * If we have enough room, clear IFF_DRV_OACTIVE
+ * to tell the stack that it is OK to send packets.
+ */
+ if (txr->tx_avail > IGB_TX_CLEANUP_THRESHOLD) {
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+ /* All clean, turn off the watchdog */
+ if (txr->tx_avail == adapter->num_tx_desc) {
+ txr->queue_status = IGB_QUEUE_IDLE;
+ return (FALSE);
+ }
+ }
+
+ return (TRUE);
+}
+
+
+/*********************************************************************
+ *
+ * Refresh mbuf buffers for RX descriptor rings
+ * - now keeps its own state so discards due to resource
+ * exhaustion are unnecessary, if an mbuf cannot be obtained
+ * it just returns, keeping its placeholder, thus it can simply
+ * be recalled to try again.
+ *
+ **********************************************************************/
+static void
+igb_refresh_mbufs(struct rx_ring *rxr, int limit)
+{
+ struct adapter *adapter = rxr->adapter;
+ bus_dma_segment_t hseg[1];
+ bus_dma_segment_t pseg[1];
+ struct igb_rx_buf *rxbuf;
+ struct mbuf *mh, *mp;
+ int i, nsegs, error, cleaned;
+
+ i = rxr->next_to_refresh;
+ cleaned = -1; /* Signify no completions */
+ while (i != limit) {
+ rxbuf = &rxr->rx_buffers[i];
+ /* No hdr mbuf used with header split off */
+ if (rxr->hdr_split == FALSE)
+ goto no_split;
+ if (rxbuf->m_head == NULL) {
+ mh = m_gethdr(M_DONTWAIT, MT_DATA);
+ if (mh == NULL)
+ goto update;
+ } else
+ mh = rxbuf->m_head;
+
+ mh->m_pkthdr.len = mh->m_len = MHLEN;
+ mh->m_len = MHLEN;
+ mh->m_flags |= M_PKTHDR;
+ /* Get the memory mapping */
+ error = bus_dmamap_load_mbuf_sg(rxr->htag,
+ rxbuf->hmap, mh, hseg, &nsegs, BUS_DMA_NOWAIT);
+ if (error != 0) {
+ printf("Refresh mbufs: hdr dmamap load"
+ " failure - %d\n", error);
+ m_free(mh);
+ rxbuf->m_head = NULL;
+ goto update;
+ }
+ rxbuf->m_head = mh;
+ bus_dmamap_sync(rxr->htag, rxbuf->hmap,
+ BUS_DMASYNC_PREREAD);
+ rxr->rx_base[i].read.hdr_addr =
+ htole64(hseg[0].ds_addr);
+no_split:
+ if (rxbuf->m_pack == NULL) {
+ mp = m_getjcl(M_DONTWAIT, MT_DATA,
+ M_PKTHDR, adapter->rx_mbuf_sz);
+ if (mp == NULL)
+ goto update;
+ } else
+ mp = rxbuf->m_pack;
+
+ mp->m_pkthdr.len = mp->m_len = adapter->rx_mbuf_sz;
+ /* Get the memory mapping */
+ error = bus_dmamap_load_mbuf_sg(rxr->ptag,
+ rxbuf->pmap, mp, pseg, &nsegs, BUS_DMA_NOWAIT);
+ if (error != 0) {
+ printf("Refresh mbufs: payload dmamap load"
+ " failure - %d\n", error);
+ m_free(mp);
+ rxbuf->m_pack = NULL;
+ goto update;
+ }
+ rxbuf->m_pack = mp;
+ bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
+ BUS_DMASYNC_PREREAD);
+ rxr->rx_base[i].read.pkt_addr =
+ htole64(pseg[0].ds_addr);
+
+ cleaned = i;
+ /* Calculate next index */
+ if (++i == adapter->num_rx_desc)
+ i = 0;
+ /* This is the work marker for refresh */
+ rxr->next_to_refresh = i;
+ }
+update:
+ if (cleaned != -1) /* If we refreshed some, bump tail */
+ E1000_WRITE_REG(&adapter->hw,
+ E1000_RDT(rxr->me), cleaned);
+ return;
+}
+
+
+/*********************************************************************
+ *
+ * Allocate memory for rx_buffer structures. Since we use one
+ * rx_buffer per received packet, the maximum number of rx_buffer's
+ * that we'll need is equal to the number of receive descriptors
+ * that we've allocated.
+ *
+ **********************************************************************/
+static int
+igb_allocate_receive_buffers(struct rx_ring *rxr)
+{
+ struct adapter *adapter = rxr->adapter;
+ device_t dev = adapter->dev;
+ struct igb_rx_buf *rxbuf;
+ int i, bsize, error;
+
+ bsize = sizeof(struct igb_rx_buf) * adapter->num_rx_desc;
+ if (!(rxr->rx_buffers =
+ (struct igb_rx_buf *) malloc(bsize,
+ M_DEVBUF, M_NOWAIT | M_ZERO))) {
+ device_printf(dev, "Unable to allocate rx_buffer memory\n");
+ error = ENOMEM;
+ goto fail;
+ }
+
+ if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
+ 1, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ MSIZE, /* maxsize */
+ 1, /* nsegments */
+ MSIZE, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockfuncarg */
+ &rxr->htag))) {
+ device_printf(dev, "Unable to create RX DMA tag\n");
+ goto fail;
+ }
+
+ if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
+ 1, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ MJUM9BYTES, /* maxsize */
+ 1, /* nsegments */
+ MJUM9BYTES, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockfuncarg */
+ &rxr->ptag))) {
+ device_printf(dev, "Unable to create RX payload DMA tag\n");
+ goto fail;
+ }
+
+ for (i = 0; i < adapter->num_rx_desc; i++) {
+ rxbuf = &rxr->rx_buffers[i];
+ error = bus_dmamap_create(rxr->htag,
+ BUS_DMA_NOWAIT, &rxbuf->hmap);
+ if (error) {
+ device_printf(dev,
+ "Unable to create RX head DMA maps\n");
+ goto fail;
+ }
+ error = bus_dmamap_create(rxr->ptag,
+ BUS_DMA_NOWAIT, &rxbuf->pmap);
+ if (error) {
+ device_printf(dev,
+ "Unable to create RX packet DMA maps\n");
+ goto fail;
+ }
+ }
+
+ return (0);
+
+fail:
+ /* Frees all, but can handle partial completion */
+ igb_free_receive_structures(adapter);
+ return (error);
+}
+
+
+static void
+igb_free_receive_ring(struct rx_ring *rxr)
+{
+ struct adapter *adapter;
+ struct igb_rx_buf *rxbuf;
+ int i;
+
+ adapter = rxr->adapter;
+ for (i = 0; i < adapter->num_rx_desc; i++) {
+ rxbuf = &rxr->rx_buffers[i];
+ if (rxbuf->m_head != NULL) {
+ bus_dmamap_sync(rxr->htag, rxbuf->hmap,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(rxr->htag, rxbuf->hmap);
+ rxbuf->m_head->m_flags |= M_PKTHDR;
+ m_freem(rxbuf->m_head);
+ }
+ if (rxbuf->m_pack != NULL) {
+ bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(rxr->ptag, rxbuf->pmap);
+ rxbuf->m_pack->m_flags |= M_PKTHDR;
+ m_freem(rxbuf->m_pack);
+ }
+ rxbuf->m_head = NULL;
+ rxbuf->m_pack = NULL;
+ }
+}
+
+
+/*********************************************************************
+ *
+ * Initialize a receive ring and its buffers.
+ *
+ **********************************************************************/
+static int
+igb_setup_receive_ring(struct rx_ring *rxr)
+{
+ struct adapter *adapter;
+ struct ifnet *ifp;
+ device_t dev;
+ struct igb_rx_buf *rxbuf;
+ bus_dma_segment_t pseg[1], hseg[1];
+ struct lro_ctrl *lro = &rxr->lro;
+ int rsize, nsegs, error = 0;
+
+ adapter = rxr->adapter;
+ dev = adapter->dev;
+ ifp = adapter->ifp;
+
+ /* Clear the ring contents */
+ IGB_RX_LOCK(rxr);
+ rsize = roundup2(adapter->num_rx_desc *
+ sizeof(union e1000_adv_rx_desc), IGB_DBA_ALIGN);
+ bzero((void *)rxr->rx_base, rsize);
+
+ /*
+ ** Free current RX buffer structures and their mbufs
+ */
+ igb_free_receive_ring(rxr);
+
+ /* Configure for header split? */
+ if (igb_header_split)
+ rxr->hdr_split = TRUE;
+
+ /* Now replenish the ring mbufs */
+ for (int j = 0; j < adapter->num_rx_desc; ++j) {
+ struct mbuf *mh, *mp;
+
+ rxbuf = &rxr->rx_buffers[j];
+ if (rxr->hdr_split == FALSE)
+ goto skip_head;
+
+ /* First the header */
+ rxbuf->m_head = m_gethdr(M_DONTWAIT, MT_DATA);
+ if (rxbuf->m_head == NULL) {
+ error = ENOBUFS;
+ goto fail;
+ }
+ m_adj(rxbuf->m_head, ETHER_ALIGN);
+ mh = rxbuf->m_head;
+ mh->m_len = mh->m_pkthdr.len = MHLEN;
+ mh->m_flags |= M_PKTHDR;
+ /* Get the memory mapping */
+ error = bus_dmamap_load_mbuf_sg(rxr->htag,
+ rxbuf->hmap, rxbuf->m_head, hseg,
+ &nsegs, BUS_DMA_NOWAIT);
+ if (error != 0) /* Nothing elegant to do here */
+ goto fail;
+ bus_dmamap_sync(rxr->htag,
+ rxbuf->hmap, BUS_DMASYNC_PREREAD);
+ /* Update descriptor */
+ rxr->rx_base[j].read.hdr_addr = htole64(hseg[0].ds_addr);
+
+skip_head:
+ /* Now the payload cluster */
+ rxbuf->m_pack = m_getjcl(M_DONTWAIT, MT_DATA,
+ M_PKTHDR, adapter->rx_mbuf_sz);
+ if (rxbuf->m_pack == NULL) {
+ error = ENOBUFS;
+ goto fail;
+ }
+ mp = rxbuf->m_pack;
+ mp->m_pkthdr.len = mp->m_len = adapter->rx_mbuf_sz;
+ /* Get the memory mapping */
+ error = bus_dmamap_load_mbuf_sg(rxr->ptag,
+ rxbuf->pmap, mp, pseg,
+ &nsegs, BUS_DMA_NOWAIT);
+ if (error != 0)
+ goto fail;
+ bus_dmamap_sync(rxr->ptag,
+ rxbuf->pmap, BUS_DMASYNC_PREREAD);
+ /* Update descriptor */
+ rxr->rx_base[j].read.pkt_addr = htole64(pseg[0].ds_addr);
+ }
+
+ /* Setup our descriptor indices */
+ rxr->next_to_check = 0;
+ rxr->next_to_refresh = 0;
+ rxr->lro_enabled = FALSE;
+ rxr->rx_split_packets = 0;
+ rxr->rx_bytes = 0;
+
+ rxr->fmp = NULL;
+ rxr->lmp = NULL;
+ rxr->discard = FALSE;
+
+ bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ /*
+ ** Now set up the LRO interface, we
+ ** also only do head split when LRO
+ ** is enabled, since so often they
+ ** are undesireable in similar setups.
+ */
+ if (ifp->if_capenable & IFCAP_LRO) {
+ error = tcp_lro_init(lro);
+ if (error) {
+ device_printf(dev, "LRO Initialization failed!\n");
+ goto fail;
+ }
+ INIT_DEBUGOUT("RX LRO Initialized\n");
+ rxr->lro_enabled = TRUE;
+ lro->ifp = adapter->ifp;
+ }
+
+ IGB_RX_UNLOCK(rxr);
+ return (0);
+
+fail:
+ igb_free_receive_ring(rxr);
+ IGB_RX_UNLOCK(rxr);
+ return (error);
+}
+
+/*********************************************************************
+ *
+ * Initialize all receive rings.
+ *
+ **********************************************************************/
+static int
+igb_setup_receive_structures(struct adapter *adapter)
+{
+ struct rx_ring *rxr = adapter->rx_rings;
+ int i;
+
+ for (i = 0; i < adapter->num_queues; i++, rxr++)
+ if (igb_setup_receive_ring(rxr))
+ goto fail;
+
+ return (0);
+fail:
+ /*
+ * Free RX buffers allocated so far, we will only handle
+ * the rings that completed, the failing case will have
+ * cleaned up for itself. 'i' is the endpoint.
+ */
+ for (int j = 0; j > i; ++j) {
+ rxr = &adapter->rx_rings[i];
+ IGB_RX_LOCK(rxr);
+ igb_free_receive_ring(rxr);
+ IGB_RX_UNLOCK(rxr);
+ }
+
+ return (ENOBUFS);
+}
+
+/*********************************************************************
+ *
+ * Enable receive unit.
+ *
+ **********************************************************************/
+static void
+igb_initialize_receive_units(struct adapter *adapter)
+{
+ struct rx_ring *rxr = adapter->rx_rings;
+ struct ifnet *ifp = adapter->ifp;
+ struct e1000_hw *hw = &adapter->hw;
+ u32 rctl, rxcsum, psize, srrctl = 0;
+
+ INIT_DEBUGOUT("igb_initialize_receive_unit: begin");
+
+ /*
+ * Make sure receives are disabled while setting
+ * up the descriptor ring
+ */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+
+ /*
+ ** Set up for header split
+ */
+ if (rxr->hdr_split) {
+ /* Use a standard mbuf for the header */
+ srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
+ srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
+ } else
+ srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
+
+ /*
+ ** Set up for jumbo frames
+ */
+ if (ifp->if_mtu > ETHERMTU) {
+ rctl |= E1000_RCTL_LPE;
+ if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
+ srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
+ rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
+ } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
+ srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
+ rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
+ }
+ /* Set maximum packet len */
+ psize = adapter->max_frame_size;
+ /* are we on a vlan? */
+ if (adapter->ifp->if_vlantrunk != NULL)
+ psize += VLAN_TAG_SIZE;
+ E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
+ } else {
+ rctl &= ~E1000_RCTL_LPE;
+ srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
+ rctl |= E1000_RCTL_SZ_2048;
+ }
+
+ /* Setup the Base and Length of the Rx Descriptor Rings */
+ for (int i = 0; i < adapter->num_queues; i++, rxr++) {
+ u64 bus_addr = rxr->rxdma.dma_paddr;
+ u32 rxdctl;
+
+ E1000_WRITE_REG(hw, E1000_RDLEN(i),
+ adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
+ E1000_WRITE_REG(hw, E1000_RDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_RDBAL(i),
+ (uint32_t)bus_addr);
+ E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
+ /* Enable this Queue */
+ rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
+ rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
+ rxdctl &= 0xFFF00000;
+ rxdctl |= IGB_RX_PTHRESH;
+ rxdctl |= IGB_RX_HTHRESH << 8;
+ rxdctl |= IGB_RX_WTHRESH << 16;
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
+ }
+
+ /*
+ ** Setup for RX MultiQueue
+ */
+ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
+ if (adapter->num_queues >1) {
+ u32 random[10], mrqc, shift = 0;
+ union igb_reta {
+ u32 dword;
+ u8 bytes[4];
+ } reta;
+
+ arc4rand(&random, sizeof(random), 0);
+ if (adapter->hw.mac.type == e1000_82575)
+ shift = 6;
+ /* Warning FM follows */
+ for (int i = 0; i < 128; i++) {
+ reta.bytes[i & 3] =
+ (i % adapter->num_queues) << shift;
+ if ((i & 3) == 3)
+ E1000_WRITE_REG(hw,
+ E1000_RETA(i >> 2), reta.dword);
+ }
+ /* Now fill in hash table */
+ mrqc = E1000_MRQC_ENABLE_RSS_4Q;
+ for (int i = 0; i < 10; i++)
+ E1000_WRITE_REG_ARRAY(hw,
+ E1000_RSSRK(0), i, random[i]);
+
+ mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
+ E1000_MRQC_RSS_FIELD_IPV4_TCP);
+ mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
+ E1000_MRQC_RSS_FIELD_IPV6_TCP);
+ mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
+ E1000_MRQC_RSS_FIELD_IPV6_UDP);
+ mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
+ E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
+
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+
+ /*
+ ** NOTE: Receive Full-Packet Checksum Offload
+ ** is mutually exclusive with Multiqueue. However
+ ** this is not the same as TCP/IP checksums which
+ ** still work.
+ */
+ rxcsum |= E1000_RXCSUM_PCSD;
+#if __FreeBSD_version >= 800000
+ /* For SCTP Offload */
+ if ((hw->mac.type == e1000_82576)
+ && (ifp->if_capenable & IFCAP_RXCSUM))
+ rxcsum |= E1000_RXCSUM_CRCOFL;
+#endif
+ } else {
+ /* Non RSS setup */
+ if (ifp->if_capenable & IFCAP_RXCSUM) {
+ rxcsum |= E1000_RXCSUM_IPPCSE;
+#if __FreeBSD_version >= 800000
+ if (adapter->hw.mac.type == e1000_82576)
+ rxcsum |= E1000_RXCSUM_CRCOFL;
+#endif
+ } else
+ rxcsum &= ~E1000_RXCSUM_TUOFL;
+ }
+ E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
+
+ /* Setup the Receive Control Register */
+ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+ E1000_RCTL_RDMTS_HALF |
+ (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+ /* Strip CRC bytes. */
+ rctl |= E1000_RCTL_SECRC;
+ /* Make sure VLAN Filters are off */
+ rctl &= ~E1000_RCTL_VFE;
+ /* Don't store bad packets */
+ rctl &= ~E1000_RCTL_SBP;
+
+ /* Enable Receives */
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ /*
+ * Setup the HW Rx Head and Tail Descriptor Pointers
+ * - needs to be after enable
+ */
+ for (int i = 0; i < adapter->num_queues; i++) {
+ E1000_WRITE_REG(hw, E1000_RDH(i), 0);
+ E1000_WRITE_REG(hw, E1000_RDT(i),
+ adapter->num_rx_desc - 1);
+ }
+ return;
+}
+
+/*********************************************************************
+ *
+ * Free receive rings.
+ *
+ **********************************************************************/
+static void
+igb_free_receive_structures(struct adapter *adapter)
+{
+ struct rx_ring *rxr = adapter->rx_rings;
+
+ for (int i = 0; i < adapter->num_queues; i++, rxr++) {
+ struct lro_ctrl *lro = &rxr->lro;
+ igb_free_receive_buffers(rxr);
+ tcp_lro_free(lro);
+ igb_dma_free(adapter, &rxr->rxdma);
+ }
+
+ free(adapter->rx_rings, M_DEVBUF);
+}
+
+/*********************************************************************
+ *
+ * Free receive ring data structures.
+ *
+ **********************************************************************/
+static void
+igb_free_receive_buffers(struct rx_ring *rxr)
+{
+ struct adapter *adapter = rxr->adapter;
+ struct igb_rx_buf *rxbuf;
+ int i;
+
+ INIT_DEBUGOUT("free_receive_structures: begin");
+
+ /* Cleanup any existing buffers */
+ if (rxr->rx_buffers != NULL) {
+ for (i = 0; i < adapter->num_rx_desc; i++) {
+ rxbuf = &rxr->rx_buffers[i];
+ if (rxbuf->m_head != NULL) {
+ bus_dmamap_sync(rxr->htag, rxbuf->hmap,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(rxr->htag, rxbuf->hmap);
+ rxbuf->m_head->m_flags |= M_PKTHDR;
+ m_freem(rxbuf->m_head);
+ }
+ if (rxbuf->m_pack != NULL) {
+ bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(rxr->ptag, rxbuf->pmap);
+ rxbuf->m_pack->m_flags |= M_PKTHDR;
+ m_freem(rxbuf->m_pack);
+ }
+ rxbuf->m_head = NULL;
+ rxbuf->m_pack = NULL;
+ if (rxbuf->hmap != NULL) {
+ bus_dmamap_destroy(rxr->htag, rxbuf->hmap);
+ rxbuf->hmap = NULL;
+ }
+ if (rxbuf->pmap != NULL) {
+ bus_dmamap_destroy(rxr->ptag, rxbuf->pmap);
+ rxbuf->pmap = NULL;
+ }
+ }
+ if (rxr->rx_buffers != NULL) {
+ free(rxr->rx_buffers, M_DEVBUF);
+ rxr->rx_buffers = NULL;
+ }
+ }
+
+ if (rxr->htag != NULL) {
+ bus_dma_tag_destroy(rxr->htag);
+ rxr->htag = NULL;
+ }
+ if (rxr->ptag != NULL) {
+ bus_dma_tag_destroy(rxr->ptag);
+ rxr->ptag = NULL;
+ }
+}
+
+static __inline void
+igb_rx_discard(struct rx_ring *rxr, int i)
+{
+ struct igb_rx_buf *rbuf;
+
+ rbuf = &rxr->rx_buffers[i];
+
+ /* Partially received? Free the chain */
+ if (rxr->fmp != NULL) {
+ rxr->fmp->m_flags |= M_PKTHDR;
+ m_freem(rxr->fmp);
+ rxr->fmp = NULL;
+ rxr->lmp = NULL;
+ }
+
+ /*
+ ** With advanced descriptors the writeback
+ ** clobbers the buffer addrs, so its easier
+ ** to just free the existing mbufs and take
+ ** the normal refresh path to get new buffers
+ ** and mapping.
+ */
+ if (rbuf->m_head) {
+ m_free(rbuf->m_head);
+ rbuf->m_head = NULL;
+ }
+
+ if (rbuf->m_pack) {
+ m_free(rbuf->m_pack);
+ rbuf->m_pack = NULL;
+ }
+
+ return;
+}
+
+static __inline void
+igb_rx_input(struct rx_ring *rxr, struct ifnet *ifp, struct mbuf *m, u32 ptype)
+{
+
+ /*
+ * ATM LRO is only for IPv4/TCP packets and TCP checksum of the packet
+ * should be computed by hardware. Also it should not have VLAN tag in
+ * ethernet header.
+ */
+ if (rxr->lro_enabled &&
+ (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
+ (ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
+ (ptype & (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP)) ==
+ (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP) &&
+ (m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
+ (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
+ /*
+ * Send to the stack if:
+ ** - LRO not enabled, or
+ ** - no LRO resources, or
+ ** - lro enqueue fails
+ */
+ if (rxr->lro.lro_cnt != 0)
+ if (tcp_lro_rx(&rxr->lro, m, 0) == 0)
+ return;
+ }
+ IGB_RX_UNLOCK(rxr);
+ (*ifp->if_input)(ifp, m);
+ IGB_RX_LOCK(rxr);
+}
+
+/*********************************************************************
+ *
+ * This routine executes in interrupt context. It replenishes
+ * the mbufs in the descriptor and sends data which has been
+ * dma'ed into host memory to upper layer.
+ *
+ * We loop at most count times if count is > 0, or until done if
+ * count < 0.
+ *
+ * Return TRUE if more to clean, FALSE otherwise
+ *********************************************************************/
+static bool
+igb_rxeof(struct igb_queue *que, int count, int *done)
+{
+ struct adapter *adapter = que->adapter;
+ struct rx_ring *rxr = que->rxr;
+ struct ifnet *ifp = adapter->ifp;
+ struct lro_ctrl *lro = &rxr->lro;
+ struct lro_entry *queued;
+ int i, processed = 0, rxdone = 0;
+ u32 ptype, staterr = 0;
+ union e1000_adv_rx_desc *cur;
+
+ IGB_RX_LOCK(rxr);
+ /* Sync the ring. */
+ bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
+ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+
+ /* Main clean loop */
+ for (i = rxr->next_to_check; count != 0;) {
+ struct mbuf *sendmp, *mh, *mp;
+ struct igb_rx_buf *rxbuf;
+ u16 hlen, plen, hdr, vtag;
+ bool eop = FALSE;
+
+ cur = &rxr->rx_base[i];
+ staterr = le32toh(cur->wb.upper.status_error);
+ if ((staterr & E1000_RXD_STAT_DD) == 0)
+ break;
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
+ break;
+ count--;
+ sendmp = mh = mp = NULL;
+ cur->wb.upper.status_error = 0;
+ rxbuf = &rxr->rx_buffers[i];
+ plen = le16toh(cur->wb.upper.length);
+ ptype = le32toh(cur->wb.lower.lo_dword.data) & IGB_PKTTYPE_MASK;
+ vtag = le16toh(cur->wb.upper.vlan);
+ hdr = le16toh(cur->wb.lower.lo_dword.hs_rss.hdr_info);
+ eop = ((staterr & E1000_RXD_STAT_EOP) == E1000_RXD_STAT_EOP);
+
+ /* Make sure all segments of a bad packet are discarded */
+ if (((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) != 0) ||
+ (rxr->discard)) {
+ ifp->if_ierrors++;
+ ++rxr->rx_discarded;
+ if (!eop) /* Catch subsequent segs */
+ rxr->discard = TRUE;
+ else
+ rxr->discard = FALSE;
+ igb_rx_discard(rxr, i);
+ goto next_desc;
+ }
+
+ /*
+ ** The way the hardware is configured to
+ ** split, it will ONLY use the header buffer
+ ** when header split is enabled, otherwise we
+ ** get normal behavior, ie, both header and
+ ** payload are DMA'd into the payload buffer.
+ **
+ ** The fmp test is to catch the case where a
+ ** packet spans multiple descriptors, in that
+ ** case only the first header is valid.
+ */
+ if (rxr->hdr_split && rxr->fmp == NULL) {
+ hlen = (hdr & E1000_RXDADV_HDRBUFLEN_MASK) >>
+ E1000_RXDADV_HDRBUFLEN_SHIFT;
+ if (hlen > IGB_HDR_BUF)
+ hlen = IGB_HDR_BUF;
+ mh = rxr->rx_buffers[i].m_head;
+ mh->m_len = hlen;
+ /* clear buf pointer for refresh */
+ rxbuf->m_head = NULL;
+ /*
+ ** Get the payload length, this
+ ** could be zero if its a small
+ ** packet.
+ */
+ if (plen > 0) {
+ mp = rxr->rx_buffers[i].m_pack;
+ mp->m_len = plen;
+ mh->m_next = mp;
+ /* clear buf pointer */
+ rxbuf->m_pack = NULL;
+ rxr->rx_split_packets++;
+ }
+ } else {
+ /*
+ ** Either no header split, or a
+ ** secondary piece of a fragmented
+ ** split packet.
+ */
+ mh = rxr->rx_buffers[i].m_pack;
+ mh->m_len = plen;
+ /* clear buf info for refresh */
+ rxbuf->m_pack = NULL;
+ }
+
+ ++processed; /* So we know when to refresh */
+
+ /* Initial frame - setup */
+ if (rxr->fmp == NULL) {
+ mh->m_pkthdr.len = mh->m_len;
+ /* Save the head of the chain */
+ rxr->fmp = mh;
+ rxr->lmp = mh;
+ if (mp != NULL) {
+ /* Add payload if split */
+ mh->m_pkthdr.len += mp->m_len;
+ rxr->lmp = mh->m_next;
+ }
+ } else {
+ /* Chain mbuf's together */
+ rxr->lmp->m_next = mh;
+ rxr->lmp = rxr->lmp->m_next;
+ rxr->fmp->m_pkthdr.len += mh->m_len;
+ }
+
+ if (eop) {
+ rxr->fmp->m_pkthdr.rcvif = ifp;
+ ifp->if_ipackets++;
+ rxr->rx_packets++;
+ /* capture data for AIM */
+ rxr->packets++;
+ rxr->bytes += rxr->fmp->m_pkthdr.len;
+ rxr->rx_bytes += rxr->fmp->m_pkthdr.len;
+
+ if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
+ igb_rx_checksum(staterr, rxr->fmp, ptype);
+
+ if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
+ (staterr & E1000_RXD_STAT_VP) != 0) {
+ rxr->fmp->m_pkthdr.ether_vtag = vtag;
+ rxr->fmp->m_flags |= M_VLANTAG;
+ }
+#if __FreeBSD_version >= 800000
+ rxr->fmp->m_pkthdr.flowid = que->msix;
+ rxr->fmp->m_flags |= M_FLOWID;
+#endif
+ sendmp = rxr->fmp;
+ /* Make sure to set M_PKTHDR. */
+ sendmp->m_flags |= M_PKTHDR;
+ rxr->fmp = NULL;
+ rxr->lmp = NULL;
+ }
+
+next_desc:
+ bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ /* Advance our pointers to the next descriptor. */
+ if (++i == adapter->num_rx_desc)
+ i = 0;
+ /*
+ ** Send to the stack or LRO
+ */
+ if (sendmp != NULL) {
+ rxr->next_to_check = i;
+ igb_rx_input(rxr, ifp, sendmp, ptype);
+ i = rxr->next_to_check;
+ rxdone++;
+ }
+
+ /* Every 8 descriptors we go to refresh mbufs */
+ if (processed == 8) {
+ igb_refresh_mbufs(rxr, i);
+ processed = 0;
+ }
+ }
+
+ /* Catch any remainders */
+ if (processed != 0) {
+ igb_refresh_mbufs(rxr, i);
+ processed = 0;
+ }
+
+ rxr->next_to_check = i;
+
+ /*
+ * Flush any outstanding LRO work
+ */
+ while ((queued = SLIST_FIRST(&lro->lro_active)) != NULL) {
+ SLIST_REMOVE_HEAD(&lro->lro_active, next);
+ tcp_lro_flush(lro, queued);
+ }
+
+ IGB_RX_UNLOCK(rxr);
+
+ if (done != NULL)
+ *done = rxdone;
+
+ /*
+ ** We still have cleaning to do?
+ ** Schedule another interrupt if so.
+ */
+ if ((staterr & E1000_RXD_STAT_DD) != 0)
+ return (TRUE);
+
+ return (FALSE);
+}
+
+/*********************************************************************
+ *
+ * Verify that the hardware indicated that the checksum is valid.
+ * Inform the stack about the status of checksum so that stack
+ * doesn't spend time verifying the checksum.
+ *
+ *********************************************************************/
+static void
+igb_rx_checksum(u32 staterr, struct mbuf *mp, u32 ptype)
+{
+ u16 status = (u16)staterr;
+ u8 errors = (u8) (staterr >> 24);
+ int sctp;
+
+ /* Ignore Checksum bit is set */
+ if (status & E1000_RXD_STAT_IXSM) {
+ mp->m_pkthdr.csum_flags = 0;
+ return;
+ }
+
+ if ((ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
+ (ptype & E1000_RXDADV_PKTTYPE_SCTP) != 0)
+ sctp = 1;
+ else
+ sctp = 0;
+ if (status & E1000_RXD_STAT_IPCS) {
+ /* Did it pass? */
+ if (!(errors & E1000_RXD_ERR_IPE)) {
+ /* IP Checksum Good */
+ mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
+ mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
+ } else
+ mp->m_pkthdr.csum_flags = 0;
+ }
+
+ if (status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
+ u16 type = (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
+#if __FreeBSD_version >= 800000
+ if (sctp) /* reassign */
+ type = CSUM_SCTP_VALID;
+#endif
+ /* Did it pass? */
+ if (!(errors & E1000_RXD_ERR_TCPE)) {
+ mp->m_pkthdr.csum_flags |= type;
+ if (sctp == 0)
+ mp->m_pkthdr.csum_data = htons(0xffff);
+ }
+ }
+ return;
+}
+
+/*
+ * This routine is run via an vlan
+ * config EVENT
+ */
+static void
+igb_register_vlan(void *arg, struct ifnet *ifp, u16 vtag)
+{
+ struct adapter *adapter = ifp->if_softc;
+ u32 index, bit;
+
+ if (ifp->if_softc != arg) /* Not our event */
+ return;
+
+ if ((vtag == 0) || (vtag > 4095)) /* Invalid */
+ return;
+
+ IGB_CORE_LOCK(adapter);
+ index = (vtag >> 5) & 0x7F;
+ bit = vtag & 0x1F;
+ adapter->shadow_vfta[index] |= (1 << bit);
+ ++adapter->num_vlans;
+ /* Re-init to load the changes */
+ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
+ igb_init_locked(adapter);
+ IGB_CORE_UNLOCK(adapter);
+}
+
+/*
+ * This routine is run via an vlan
+ * unconfig EVENT
+ */
+static void
+igb_unregister_vlan(void *arg, struct ifnet *ifp, u16 vtag)
+{
+ struct adapter *adapter = ifp->if_softc;
+ u32 index, bit;
+
+ if (ifp->if_softc != arg)
+ return;
+
+ if ((vtag == 0) || (vtag > 4095)) /* Invalid */
+ return;
+
+ IGB_CORE_LOCK(adapter);
+ index = (vtag >> 5) & 0x7F;
+ bit = vtag & 0x1F;
+ adapter->shadow_vfta[index] &= ~(1 << bit);
+ --adapter->num_vlans;
+ /* Re-init to load the changes */
+ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
+ igb_init_locked(adapter);
+ IGB_CORE_UNLOCK(adapter);
+}
+
+static void
+igb_setup_vlan_hw_support(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ u32 reg;
+
+ /*
+ ** We get here thru init_locked, meaning
+ ** a soft reset, this has already cleared
+ ** the VFTA and other state, so if there
+ ** have been no vlan's registered do nothing.
+ */
+ if (adapter->num_vlans == 0)
+ return;
+
+ /*
+ ** A soft reset zero's out the VFTA, so
+ ** we need to repopulate it now.
+ */
+ for (int i = 0; i < IGB_VFTA_SIZE; i++)
+ if (adapter->shadow_vfta[i] != 0) {
+ if (hw->mac.type == e1000_vfadapt)
+ e1000_vfta_set_vf(hw,
+ adapter->shadow_vfta[i], TRUE);
+ else
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
+ i, adapter->shadow_vfta[i]);
+ }
+
+ if (hw->mac.type == e1000_vfadapt)
+ e1000_rlpml_set_vf(hw,
+ adapter->max_frame_size + VLAN_TAG_SIZE);
+ else {
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg |= E1000_CTRL_VME;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+ /* Enable the Filter Table */
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ reg &= ~E1000_RCTL_CFIEN;
+ reg |= E1000_RCTL_VFE;
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+
+ /* Update the frame size */
+ E1000_WRITE_REG(&adapter->hw, E1000_RLPML,
+ adapter->max_frame_size + VLAN_TAG_SIZE);
+ }
+}
+
+static void
+igb_enable_intr(struct adapter *adapter)
+{
+ /* With RSS set up what to auto clear */
+ if (adapter->msix_mem) {
+ E1000_WRITE_REG(&adapter->hw, E1000_EIAC,
+ adapter->eims_mask);
+ E1000_WRITE_REG(&adapter->hw, E1000_EIAM,
+ adapter->eims_mask);
+ E1000_WRITE_REG(&adapter->hw, E1000_EIMS,
+ adapter->eims_mask);
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS,
+ E1000_IMS_LSC);
+ } else {
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS,
+ IMS_ENABLE_MASK);
+ }
+ E1000_WRITE_FLUSH(&adapter->hw);
+
+ return;
+}
+
+static void
+igb_disable_intr(struct adapter *adapter)
+{
+ if (adapter->msix_mem) {
+ E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0);
+ E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0);
+ }
+ E1000_WRITE_REG(&adapter->hw, E1000_IMC, ~0);
+ E1000_WRITE_FLUSH(&adapter->hw);
+ return;
+}
+
+/*
+ * Bit of a misnomer, what this really means is
+ * to enable OS management of the system... aka
+ * to disable special hardware management features
+ */
+static void
+igb_init_manageability(struct adapter *adapter)
+{
+ if (adapter->has_manage) {
+ int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
+ int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
+
+ /* disable hardware interception of ARP */
+ manc &= ~(E1000_MANC_ARP_EN);
+
+ /* enable receiving management packets to the host */
+ manc |= E1000_MANC_EN_MNG2HOST;
+ manc2h |= 1 << 5; /* Mng Port 623 */
+ manc2h |= 1 << 6; /* Mng Port 664 */
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
+ }
+}
+
+/*
+ * Give control back to hardware management
+ * controller if there is one.
+ */
+static void
+igb_release_manageability(struct adapter *adapter)
+{
+ if (adapter->has_manage) {
+ int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
+
+ /* re-enable hardware interception of ARP */
+ manc |= E1000_MANC_ARP_EN;
+ manc &= ~E1000_MANC_EN_MNG2HOST;
+
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
+ }
+}
+
+/*
+ * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that
+ * the driver is loaded.
+ *
+ */
+static void
+igb_get_hw_control(struct adapter *adapter)
+{
+ u32 ctrl_ext;
+
+ if (adapter->hw.mac.type == e1000_vfadapt)
+ return;
+
+ /* Let firmware know the driver has taken over */
+ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
+ ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+}
+
+/*
+ * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that the
+ * driver is no longer loaded.
+ *
+ */
+static void
+igb_release_hw_control(struct adapter *adapter)
+{
+ u32 ctrl_ext;
+
+ if (adapter->hw.mac.type == e1000_vfadapt)
+ return;
+
+ /* Let firmware taken over control of h/w */
+ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
+ ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+}
+
+static int
+igb_is_valid_ether_addr(uint8_t *addr)
+{
+ char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
+
+ if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
+ return (FALSE);
+ }
+
+ return (TRUE);
+}
+
+
+/*
+ * Enable PCI Wake On Lan capability
+ */
+static void
+igb_enable_wakeup(device_t dev)
+{
+ u16 cap, status;
+ u8 id;
+
+ /* First find the capabilities pointer*/
+ cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
+ /* Read the PM Capabilities */
+ id = pci_read_config(dev, cap, 1);
+ if (id != PCIY_PMG) /* Something wrong */
+ return;
+ /* OK, we have the power capabilities, so
+ now get the status register */
+ cap += PCIR_POWER_STATUS;
+ status = pci_read_config(dev, cap, 2);
+ status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
+ pci_write_config(dev, cap, status, 2);
+ return;
+}
+
+static void
+igb_led_func(void *arg, int onoff)
+{
+ struct adapter *adapter = arg;
+
+ IGB_CORE_LOCK(adapter);
+ if (onoff) {
+ e1000_setup_led(&adapter->hw);
+ e1000_led_on(&adapter->hw);
+ } else {
+ e1000_led_off(&adapter->hw);
+ e1000_cleanup_led(&adapter->hw);
+ }
+ IGB_CORE_UNLOCK(adapter);
+}
+
+/**********************************************************************
+ *
+ * Update the board statistics counters.
+ *
+ **********************************************************************/
+static void
+igb_update_stats_counters(struct adapter *adapter)
+{
+ struct ifnet *ifp;
+ struct e1000_hw *hw = &adapter->hw;
+ struct e1000_hw_stats *stats;
+
+ /*
+ ** The virtual function adapter has only a
+ ** small controlled set of stats, do only
+ ** those and return.
+ */
+ if (adapter->hw.mac.type == e1000_vfadapt) {
+ igb_update_vf_stats_counters(adapter);
+ return;
+ }
+
+ stats = (struct e1000_hw_stats *)adapter->stats;
+
+ if(adapter->hw.phy.media_type == e1000_media_type_copper ||
+ (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+ stats->symerrs +=
+ E1000_READ_REG(hw,E1000_SYMERRS);
+ stats->sec += E1000_READ_REG(hw, E1000_SEC);
+ }
+
+ stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
+ stats->mpc += E1000_READ_REG(hw, E1000_MPC);
+ stats->scc += E1000_READ_REG(hw, E1000_SCC);
+ stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
+
+ stats->mcc += E1000_READ_REG(hw, E1000_MCC);
+ stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
+ stats->colc += E1000_READ_REG(hw, E1000_COLC);
+ stats->dc += E1000_READ_REG(hw, E1000_DC);
+ stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
+ stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
+ stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
+ /*
+ ** For watchdog management we need to know if we have been
+ ** paused during the last interval, so capture that here.
+ */
+ adapter->pause_frames = E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
+ stats->xoffrxc += adapter->pause_frames;
+ stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
+ stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
+ stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
+ stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
+ stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
+ stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
+ stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
+ stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
+ stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
+ stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
+ stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
+ stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
+
+ /* For the 64-bit byte counters the low dword must be read first. */
+ /* Both registers clear on the read of the high dword */
+
+ stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
+ ((u64)E1000_READ_REG(hw, E1000_GORCH) << 32);
+ stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
+ ((u64)E1000_READ_REG(hw, E1000_GOTCH) << 32);
+
+ stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
+ stats->ruc += E1000_READ_REG(hw, E1000_RUC);
+ stats->rfc += E1000_READ_REG(hw, E1000_RFC);
+ stats->roc += E1000_READ_REG(hw, E1000_ROC);
+ stats->rjc += E1000_READ_REG(hw, E1000_RJC);
+
+ stats->tor += E1000_READ_REG(hw, E1000_TORH);
+ stats->tot += E1000_READ_REG(hw, E1000_TOTH);
+
+ stats->tpr += E1000_READ_REG(hw, E1000_TPR);
+ stats->tpt += E1000_READ_REG(hw, E1000_TPT);
+ stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
+ stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
+ stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
+ stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
+ stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
+ stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
+ stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
+ stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
+
+ /* Interrupt Counts */
+
+ stats->iac += E1000_READ_REG(hw, E1000_IAC);
+ stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
+ stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
+ stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
+ stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
+ stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
+ stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
+ stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
+ stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
+
+ /* Host to Card Statistics */
+
+ stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
+ stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
+ stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
+ stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
+ stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
+ stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
+ stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
+ stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
+ ((u64)E1000_READ_REG(hw, E1000_HGORCH) << 32));
+ stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
+ ((u64)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
+ stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
+ stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
+ stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
+
+ stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
+ stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
+ stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
+ stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
+ stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
+ stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
+
+ ifp = adapter->ifp;
+ ifp->if_collisions = stats->colc;
+
+ /* Rx Errors */
+ ifp->if_ierrors = adapter->dropped_pkts + stats->rxerrc +
+ stats->crcerrs + stats->algnerrc +
+ stats->ruc + stats->roc + stats->mpc + stats->cexterr;
+
+ /* Tx Errors */
+ ifp->if_oerrors = stats->ecol +
+ stats->latecol + adapter->watchdog_events;
+
+ /* Driver specific counters */
+ adapter->device_control = E1000_READ_REG(hw, E1000_CTRL);
+ adapter->rx_control = E1000_READ_REG(hw, E1000_RCTL);
+ adapter->int_mask = E1000_READ_REG(hw, E1000_IMS);
+ adapter->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
+ adapter->packet_buf_alloc_tx =
+ ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
+ adapter->packet_buf_alloc_rx =
+ (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
+}
+
+
+/**********************************************************************
+ *
+ * Initialize the VF board statistics counters.
+ *
+ **********************************************************************/
+static void
+igb_vf_init_stats(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ struct e1000_vf_stats *stats;
+
+ stats = (struct e1000_vf_stats *)adapter->stats;
+ if (stats == NULL)
+ return;
+ stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
+ stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
+ stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
+ stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
+ stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
+}
+
+/**********************************************************************
+ *
+ * Update the VF board statistics counters.
+ *
+ **********************************************************************/
+static void
+igb_update_vf_stats_counters(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ struct e1000_vf_stats *stats;
+
+ if (adapter->link_speed == 0)
+ return;
+
+ stats = (struct e1000_vf_stats *)adapter->stats;
+
+ UPDATE_VF_REG(E1000_VFGPRC,
+ stats->last_gprc, stats->gprc);
+ UPDATE_VF_REG(E1000_VFGORC,
+ stats->last_gorc, stats->gorc);
+ UPDATE_VF_REG(E1000_VFGPTC,
+ stats->last_gptc, stats->gptc);
+ UPDATE_VF_REG(E1000_VFGOTC,
+ stats->last_gotc, stats->gotc);
+ UPDATE_VF_REG(E1000_VFMPRC,
+ stats->last_mprc, stats->mprc);
+}
+
+/* Export a single 32-bit register via a read-only sysctl. */
+static int
+igb_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
+{
+ struct adapter *adapter;
+ u_int val;
+
+ adapter = oidp->oid_arg1;
+ val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
+ return (sysctl_handle_int(oidp, &val, 0, req));
+}
+
+/*
+** Tuneable interrupt rate handler
+*/
+static int
+igb_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
+{
+ struct igb_queue *que = ((struct igb_queue *)oidp->oid_arg1);
+ int error;
+ u32 reg, usec, rate;
+
+ reg = E1000_READ_REG(&que->adapter->hw, E1000_EITR(que->msix));
+ usec = ((reg & 0x7FFC) >> 2);
+ if (usec > 0)
+ rate = 1000000 / usec;
+ else
+ rate = 0;
+ error = sysctl_handle_int(oidp, &rate, 0, req);
+ if (error || !req->newptr)
+ return error;
+ return 0;
+}
+
+/*
+ * Add sysctl variables, one per statistic, to the system.
+ */
+static void
+igb_add_hw_stats(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+
+ struct tx_ring *txr = adapter->tx_rings;
+ struct rx_ring *rxr = adapter->rx_rings;
+
+ struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
+ struct sysctl_oid *tree = device_get_sysctl_tree(dev);
+ struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
+ struct e1000_hw_stats *stats = adapter->stats;
+
+ struct sysctl_oid *stat_node, *queue_node, *int_node, *host_node;
+ struct sysctl_oid_list *stat_list, *queue_list, *int_list, *host_list;
+
+#define QUEUE_NAME_LEN 32
+ char namebuf[QUEUE_NAME_LEN];
+
+ /* Driver Statistics */
+ SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "link_irq",
+ CTLFLAG_RD, &adapter->link_irq, 0,
+ "Link MSIX IRQ Handled");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
+ CTLFLAG_RD, &adapter->dropped_pkts,
+ "Driver dropped packets");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail",
+ CTLFLAG_RD, &adapter->no_tx_dma_setup,
+ "Driver tx dma failure in xmit");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
+ CTLFLAG_RD, &adapter->rx_overruns,
+ "RX overruns");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
+ CTLFLAG_RD, &adapter->watchdog_events,
+ "Watchdog timeouts");
+
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "device_control",
+ CTLFLAG_RD, &adapter->device_control,
+ "Device Control Register");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_control",
+ CTLFLAG_RD, &adapter->rx_control,
+ "Receiver Control Register");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "interrupt_mask",
+ CTLFLAG_RD, &adapter->int_mask,
+ "Interrupt Mask");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "extended_int_mask",
+ CTLFLAG_RD, &adapter->eint_mask,
+ "Extended Interrupt Mask");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_buf_alloc",
+ CTLFLAG_RD, &adapter->packet_buf_alloc_tx,
+ "Transmit Buffer Packet Allocation");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_buf_alloc",
+ CTLFLAG_RD, &adapter->packet_buf_alloc_rx,
+ "Receive Buffer Packet Allocation");
+ SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
+ CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
+ "Flow Control High Watermark");
+ SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
+ CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
+ "Flow Control Low Watermark");
+
+ for (int i = 0; i < adapter->num_queues; i++, rxr++, txr++) {
+ struct lro_ctrl *lro = &rxr->lro;
+
+ snprintf(namebuf, QUEUE_NAME_LEN, "queue%d", i);
+ queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
+ CTLFLAG_RD, NULL, "Queue Name");
+ queue_list = SYSCTL_CHILDREN(queue_node);
+
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
+ CTLFLAG_RD, &adapter->queues[i],
+ sizeof(&adapter->queues[i]),
+ igb_sysctl_interrupt_rate_handler,
+ "IU", "Interrupt Rate");
+
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
+ CTLFLAG_RD, adapter, E1000_TDH(txr->me),
+ igb_sysctl_reg_handler, "IU",
+ "Transmit Descriptor Head");
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
+ CTLFLAG_RD, adapter, E1000_TDT(txr->me),
+ igb_sysctl_reg_handler, "IU",
+ "Transmit Descriptor Tail");
+ SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "no_desc_avail",
+ CTLFLAG_RD, &txr->no_desc_avail,
+ "Queue No Descriptor Available");
+ SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "tx_packets",
+ CTLFLAG_RD, &txr->tx_packets,
+ "Queue Packets Transmitted");
+
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
+ CTLFLAG_RD, adapter, E1000_RDH(rxr->me),
+ igb_sysctl_reg_handler, "IU",
+ "Receive Descriptor Head");
+ SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
+ CTLFLAG_RD, adapter, E1000_RDT(rxr->me),
+ igb_sysctl_reg_handler, "IU",
+ "Receive Descriptor Tail");
+ SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "rx_packets",
+ CTLFLAG_RD, &rxr->rx_packets,
+ "Queue Packets Received");
+ SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "rx_bytes",
+ CTLFLAG_RD, &rxr->rx_bytes,
+ "Queue Bytes Received");
+ SYSCTL_ADD_UINT(ctx, queue_list, OID_AUTO, "lro_queued",
+ CTLFLAG_RD, &lro->lro_queued, 0,
+ "LRO Queued");
+ SYSCTL_ADD_UINT(ctx, queue_list, OID_AUTO, "lro_flushed",
+ CTLFLAG_RD, &lro->lro_flushed, 0,
+ "LRO Flushed");
+ }
+
+ /* MAC stats get their own sub node */
+
+ stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
+ CTLFLAG_RD, NULL, "MAC Statistics");
+ stat_list = SYSCTL_CHILDREN(stat_node);
+
+ /*
+ ** VF adapter has a very limited set of stats
+ ** since its not managing the metal, so to speak.
+ */
+ if (adapter->hw.mac.type == e1000_vfadapt) {
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
+ CTLFLAG_RD, &stats->gprc,
+ "Good Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
+ CTLFLAG_RD, &stats->gptc,
+ "Good Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
+ CTLFLAG_RD, &stats->gorc,
+ "Good Octets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
+ CTLFLAG_RD, &stats->gotc,
+ "Good Octets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
+ CTLFLAG_RD, &stats->mprc,
+ "Multicast Packets Received");
+ return;
+ }
+
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "excess_coll",
+ CTLFLAG_RD, &stats->ecol,
+ "Excessive collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "single_coll",
+ CTLFLAG_RD, &stats->scc,
+ "Single collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
+ CTLFLAG_RD, &stats->mcc,
+ "Multiple collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "late_coll",
+ CTLFLAG_RD, &stats->latecol,
+ "Late collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "collision_count",
+ CTLFLAG_RD, &stats->colc,
+ "Collision Count");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
+ CTLFLAG_RD, &stats->symerrs,
+ "Symbol Errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
+ CTLFLAG_RD, &stats->sec,
+ "Sequence Errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "defer_count",
+ CTLFLAG_RD, &stats->dc,
+ "Defer Count");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "missed_packets",
+ CTLFLAG_RD, &stats->mpc,
+ "Missed Packets");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
+ CTLFLAG_RD, &stats->rnbc,
+ "Receive No Buffers");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
+ CTLFLAG_RD, &stats->ruc,
+ "Receive Undersize");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
+ CTLFLAG_RD, &stats->rfc,
+ "Fragmented Packets Received ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
+ CTLFLAG_RD, &stats->roc,
+ "Oversized Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
+ CTLFLAG_RD, &stats->rjc,
+ "Recevied Jabber");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_errs",
+ CTLFLAG_RD, &stats->rxerrc,
+ "Receive Errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "crc_errs",
+ CTLFLAG_RD, &stats->crcerrs,
+ "CRC errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
+ CTLFLAG_RD, &stats->algnerrc,
+ "Alignment Errors");
+ /* On 82575 these are collision counts */
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
+ CTLFLAG_RD, &stats->cexterr,
+ "Collision/Carrier extension errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
+ CTLFLAG_RD, &stats->xonrxc,
+ "XON Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_txd",
+ CTLFLAG_RD, &stats->xontxc,
+ "XON Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
+ CTLFLAG_RD, &stats->xoffrxc,
+ "XOFF Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
+ CTLFLAG_RD, &stats->xofftxc,
+ "XOFF Transmitted");
+ /* Packet Reception Stats */
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
+ CTLFLAG_RD, &stats->tpr,
+ "Total Packets Received ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
+ CTLFLAG_RD, &stats->gprc,
+ "Good Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
+ CTLFLAG_RD, &stats->bprc,
+ "Broadcast Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
+ CTLFLAG_RD, &stats->mprc,
+ "Multicast Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
+ CTLFLAG_RD, &stats->prc64,
+ "64 byte frames received ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
+ CTLFLAG_RD, &stats->prc127,
+ "65-127 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
+ CTLFLAG_RD, &stats->prc255,
+ "128-255 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
+ CTLFLAG_RD, &stats->prc511,
+ "256-511 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
+ CTLFLAG_RD, &stats->prc1023,
+ "512-1023 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
+ CTLFLAG_RD, &stats->prc1522,
+ "1023-1522 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
+ CTLFLAG_RD, &stats->gorc,
+ "Good Octets Received");
+
+ /* Packet Transmission Stats */
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
+ CTLFLAG_RD, &stats->gotc,
+ "Good Octets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
+ CTLFLAG_RD, &stats->tpt,
+ "Total Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
+ CTLFLAG_RD, &stats->gptc,
+ "Good Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
+ CTLFLAG_RD, &stats->bptc,
+ "Broadcast Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
+ CTLFLAG_RD, &stats->mptc,
+ "Multicast Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
+ CTLFLAG_RD, &stats->ptc64,
+ "64 byte frames transmitted ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
+ CTLFLAG_RD, &stats->ptc127,
+ "65-127 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
+ CTLFLAG_RD, &stats->ptc255,
+ "128-255 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
+ CTLFLAG_RD, &stats->ptc511,
+ "256-511 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
+ CTLFLAG_RD, &stats->ptc1023,
+ "512-1023 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
+ CTLFLAG_RD, &stats->ptc1522,
+ "1024-1522 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_txd",
+ CTLFLAG_RD, &stats->tsctc,
+ "TSO Contexts Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
+ CTLFLAG_RD, &stats->tsctfc,
+ "TSO Contexts Failed");
+
+
+ /* Interrupt Stats */
+
+ int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
+ CTLFLAG_RD, NULL, "Interrupt Statistics");
+ int_list = SYSCTL_CHILDREN(int_node);
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "asserts",
+ CTLFLAG_RD, &stats->iac,
+ "Interrupt Assertion Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
+ CTLFLAG_RD, &stats->icrxptc,
+ "Interrupt Cause Rx Pkt Timer Expire Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
+ CTLFLAG_RD, &stats->icrxatc,
+ "Interrupt Cause Rx Abs Timer Expire Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
+ CTLFLAG_RD, &stats->ictxptc,
+ "Interrupt Cause Tx Pkt Timer Expire Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
+ CTLFLAG_RD, &stats->ictxatc,
+ "Interrupt Cause Tx Abs Timer Expire Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
+ CTLFLAG_RD, &stats->ictxqec,
+ "Interrupt Cause Tx Queue Empty Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
+ CTLFLAG_RD, &stats->ictxqmtc,
+ "Interrupt Cause Tx Queue Min Thresh Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
+ CTLFLAG_RD, &stats->icrxdmtc,
+ "Interrupt Cause Rx Desc Min Thresh Count");
+
+ SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_overrun",
+ CTLFLAG_RD, &stats->icrxoc,
+ "Interrupt Cause Receiver Overrun Count");
+
+ /* Host to Card Stats */
+
+ host_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "host",
+ CTLFLAG_RD, NULL,
+ "Host to Card Statistics");
+
+ host_list = SYSCTL_CHILDREN(host_node);
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_tx_pkt",
+ CTLFLAG_RD, &stats->cbtmpc,
+ "Circuit Breaker Tx Packet Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "host_tx_pkt_discard",
+ CTLFLAG_RD, &stats->htdpmc,
+ "Host Transmit Discarded Packets");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "rx_pkt",
+ CTLFLAG_RD, &stats->rpthc,
+ "Rx Packets To Host");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_rx_pkts",
+ CTLFLAG_RD, &stats->cbrmpc,
+ "Circuit Breaker Rx Packet Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_rx_pkt_drop",
+ CTLFLAG_RD, &stats->cbrdpc,
+ "Circuit Breaker Rx Dropped Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "tx_good_pkt",
+ CTLFLAG_RD, &stats->hgptc,
+ "Host Good Packets Tx Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_tx_pkt_drop",
+ CTLFLAG_RD, &stats->htcbdpc,
+ "Host Tx Circuit Breaker Dropped Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "rx_good_bytes",
+ CTLFLAG_RD, &stats->hgorc,
+ "Host Good Octets Received Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "tx_good_bytes",
+ CTLFLAG_RD, &stats->hgotc,
+ "Host Good Octets Transmit Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "length_errors",
+ CTLFLAG_RD, &stats->lenerrs,
+ "Length Errors");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "serdes_violation_pkt",
+ CTLFLAG_RD, &stats->scvpc,
+ "SerDes/SGMII Code Violation Pkt Count");
+
+ SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "header_redir_missed",
+ CTLFLAG_RD, &stats->hrmpc,
+ "Header Redirection Missed Packet Count");
+}
+
+
+/**********************************************************************
+ *
+ * This routine provides a way to dump out the adapter eeprom,
+ * often a useful debug/service tool. This only dumps the first
+ * 32 words, stuff that matters is in that extent.
+ *
+ **********************************************************************/
+static int
+igb_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
+{
+ struct adapter *adapter;
+ int error;
+ int result;
+
+ result = -1;
+ error = sysctl_handle_int(oidp, &result, 0, req);
+
+ if (error || !req->newptr)
+ return (error);
+
+ /*
+ * This value will cause a hex dump of the
+ * first 32 16-bit words of the EEPROM to
+ * the screen.
+ */
+ if (result == 1) {
+ adapter = (struct adapter *)arg1;
+ igb_print_nvm_info(adapter);
+ }
+
+ return (error);
+}
+
+static void
+igb_print_nvm_info(struct adapter *adapter)
+{
+ u16 eeprom_data;
+ int i, j, row = 0;
+
+ /* Its a bit crude, but it gets the job done */
+ printf("\nInterface EEPROM Dump:\n");
+ printf("Offset\n0x0000 ");
+ for (i = 0, j = 0; i < 32; i++, j++) {
+ if (j == 8) { /* Make the offset block */
+ j = 0; ++row;
+ printf("\n0x00%x0 ",row);
+ }
+ e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
+ printf("%04x ", eeprom_data);
+ }
+ printf("\n");
+}
+
+static void
+igb_add_rx_process_limit(struct adapter *adapter, const char *name,
+ const char *description, int *limit, int value)
+{
+ *limit = value;
+ SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
+ OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
+}
diff --git a/freebsd/dev/e1000/if_igb.h b/freebsd/dev/e1000/if_igb.h
new file mode 100644
index 00000000..c77e9f17
--- /dev/null
+++ b/freebsd/dev/e1000/if_igb.h
@@ -0,0 +1,526 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _IGB_HH_DEFINED_
+#define _IGB_HH_DEFINED_
+
+/* Tunables */
+
+/*
+ * IGB_TXD: Maximum number of Transmit Descriptors
+ *
+ * This value is the number of transmit descriptors allocated by the driver.
+ * Increasing this value allows the driver to queue more transmits. Each
+ * descriptor is 16 bytes.
+ * Since TDLEN should be multiple of 128bytes, the number of transmit
+ * desscriptors should meet the following condition.
+ * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
+ */
+#define IGB_MIN_TXD 256
+#define IGB_DEFAULT_TXD 1024
+#define IGB_MAX_TXD 4096
+
+/*
+ * IGB_RXD: Maximum number of Transmit Descriptors
+ *
+ * This value is the number of receive descriptors allocated by the driver.
+ * Increasing this value allows the driver to buffer more incoming packets.
+ * Each descriptor is 16 bytes. A receive buffer is also allocated for each
+ * descriptor. The maximum MTU size is 16110.
+ * Since TDLEN should be multiple of 128bytes, the number of transmit
+ * desscriptors should meet the following condition.
+ * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
+ */
+#define IGB_MIN_RXD 256
+#define IGB_DEFAULT_RXD 1024
+#define IGB_MAX_RXD 4096
+
+/*
+ * IGB_TIDV - Transmit Interrupt Delay Value
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 64
+ * This value delays the generation of transmit interrupts in units of
+ * 1.024 microseconds. Transmit interrupt reduction can improve CPU
+ * efficiency if properly tuned for specific network traffic. If the
+ * system is reporting dropped transmits, this value may be set too high
+ * causing the driver to run out of available transmit descriptors.
+ */
+#define IGB_TIDV 64
+
+/*
+ * IGB_TADV - Transmit Absolute Interrupt Delay Value
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 64
+ * This value, in units of 1.024 microseconds, limits the delay in which a
+ * transmit interrupt is generated. Useful only if IGB_TIDV is non-zero,
+ * this value ensures that an interrupt is generated after the initial
+ * packet is sent on the wire within the set amount of time. Proper tuning,
+ * along with IGB_TIDV, may improve traffic throughput in specific
+ * network conditions.
+ */
+#define IGB_TADV 64
+
+/*
+ * IGB_RDTR - Receive Interrupt Delay Timer (Packet Timer)
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 0
+ * This value delays the generation of receive interrupts in units of 1.024
+ * microseconds. Receive interrupt reduction can improve CPU efficiency if
+ * properly tuned for specific network traffic. Increasing this value adds
+ * extra latency to frame reception and can end up decreasing the throughput
+ * of TCP traffic. If the system is reporting dropped receives, this value
+ * may be set too high, causing the driver to run out of available receive
+ * descriptors.
+ *
+ * CAUTION: When setting IGB_RDTR to a value other than 0, adapters
+ * may hang (stop transmitting) under certain network conditions.
+ * If this occurs a WATCHDOG message is logged in the system
+ * event log. In addition, the controller is automatically reset,
+ * restoring the network connection. To eliminate the potential
+ * for the hang ensure that IGB_RDTR is set to 0.
+ */
+#define IGB_RDTR 0
+
+/*
+ * Receive Interrupt Absolute Delay Timer (Not valid for 82542/82543/82544)
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 64
+ * This value, in units of 1.024 microseconds, limits the delay in which a
+ * receive interrupt is generated. Useful only if IGB_RDTR is non-zero,
+ * this value ensures that an interrupt is generated after the initial
+ * packet is received within the set amount of time. Proper tuning,
+ * along with IGB_RDTR, may improve traffic throughput in specific network
+ * conditions.
+ */
+#define IGB_RADV 64
+
+/*
+ * This parameter controls the duration of transmit watchdog timer.
+ */
+#define IGB_WATCHDOG (10 * hz)
+
+/*
+ * This parameter controls when the driver calls the routine to reclaim
+ * transmit descriptors.
+ */
+#define IGB_TX_CLEANUP_THRESHOLD (adapter->num_tx_desc / 8)
+#define IGB_TX_OP_THRESHOLD (adapter->num_tx_desc / 32)
+
+/*
+ * This parameter controls whether or not autonegotation is enabled.
+ * 0 - Disable autonegotiation
+ * 1 - Enable autonegotiation
+ */
+#define DO_AUTO_NEG 1
+
+/*
+ * This parameter control whether or not the driver will wait for
+ * autonegotiation to complete.
+ * 1 - Wait for autonegotiation to complete
+ * 0 - Don't wait for autonegotiation to complete
+ */
+#define WAIT_FOR_AUTO_NEG_DEFAULT 0
+
+/* Tunables -- End */
+
+#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+
+#define AUTO_ALL_MODES 0
+
+/* PHY master/slave setting */
+#define IGB_MASTER_SLAVE e1000_ms_hw_default
+
+/*
+ * Micellaneous constants
+ */
+#define IGB_VENDOR_ID 0x8086
+
+#define IGB_JUMBO_PBA 0x00000028
+#define IGB_DEFAULT_PBA 0x00000030
+#define IGB_SMARTSPEED_DOWNSHIFT 3
+#define IGB_SMARTSPEED_MAX 15
+#define IGB_MAX_LOOP 10
+
+#define IGB_RX_PTHRESH (hw->mac.type <= e1000_82576 ? 16 : 8)
+#define IGB_RX_HTHRESH 8
+#define IGB_RX_WTHRESH 1
+
+#define IGB_TX_PTHRESH 8
+#define IGB_TX_HTHRESH 1
+#define IGB_TX_WTHRESH (((hw->mac.type == e1000_82576 || \
+ hw->mac.type == e1000_vfadapt) && \
+ adapter->msix_mem) ? 1 : 16)
+
+#define MAX_NUM_MULTICAST_ADDRESSES 128
+#define PCI_ANY_ID (~0U)
+#define ETHER_ALIGN 2
+#define IGB_TX_BUFFER_SIZE ((uint32_t) 1514)
+#define IGB_FC_PAUSE_TIME 0x0680
+#define IGB_EEPROM_APME 0x400;
+#define IGB_QUEUE_IDLE 0
+#define IGB_QUEUE_WORKING 1
+#define IGB_QUEUE_HUNG 2
+
+/*
+ * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
+ * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. This will
+ * also optimize cache line size effect. H/W supports up to cache line size 128.
+ */
+#define IGB_DBA_ALIGN 128
+
+#define SPEED_MODE_BIT (1<<21) /* On PCI-E MACs only */
+
+/* PCI Config defines */
+#define IGB_MSIX_BAR 3
+
+/* Defines for printing debug information */
+#define DEBUG_INIT 0
+#define DEBUG_IOCTL 0
+#define DEBUG_HW 0
+
+#define INIT_DEBUGOUT(S) if (DEBUG_INIT) printf(S "\n")
+#define INIT_DEBUGOUT1(S, A) if (DEBUG_INIT) printf(S "\n", A)
+#define INIT_DEBUGOUT2(S, A, B) if (DEBUG_INIT) printf(S "\n", A, B)
+#define IOCTL_DEBUGOUT(S) if (DEBUG_IOCTL) printf(S "\n")
+#define IOCTL_DEBUGOUT1(S, A) if (DEBUG_IOCTL) printf(S "\n", A)
+#define IOCTL_DEBUGOUT2(S, A, B) if (DEBUG_IOCTL) printf(S "\n", A, B)
+#define HW_DEBUGOUT(S) if (DEBUG_HW) printf(S "\n")
+#define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A)
+#define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B)
+
+#define IGB_MAX_SCATTER 64
+#define IGB_VFTA_SIZE 128
+#define IGB_BR_SIZE 4096 /* ring buf size */
+#define IGB_TSO_SIZE (65535 + sizeof(struct ether_vlan_header))
+#define IGB_TSO_SEG_SIZE 4096 /* Max dma segment size */
+#define IGB_HDR_BUF 128
+#define IGB_PKTTYPE_MASK 0x0000FFF0
+#define ETH_ZLEN 60
+#define ETH_ADDR_LEN 6
+
+/* Offload bits in mbuf flag */
+#if __FreeBSD_version >= 800000
+#define CSUM_OFFLOAD (CSUM_IP|CSUM_TCP|CSUM_UDP|CSUM_SCTP)
+#else
+#define CSUM_OFFLOAD (CSUM_IP|CSUM_TCP|CSUM_UDP)
+#endif
+
+/* Define the starting Interrupt rate per Queue */
+#define IGB_INTS_PER_SEC 8000
+#define IGB_DEFAULT_ITR ((1000000/IGB_INTS_PER_SEC) << 2)
+
+#define IGB_LINK_ITR 2000
+
+/* Precision Time Sync (IEEE 1588) defines */
+#define ETHERTYPE_IEEE1588 0x88F7
+#define PICOSECS_PER_TICK 20833
+#define TSYNC_PORT 319 /* UDP port for the protocol */
+
+/*
+ * Bus dma allocation structure used by
+ * e1000_dma_malloc and e1000_dma_free.
+ */
+struct igb_dma_alloc {
+ bus_addr_t dma_paddr;
+ caddr_t dma_vaddr;
+ bus_dma_tag_t dma_tag;
+ bus_dmamap_t dma_map;
+ bus_dma_segment_t dma_seg;
+ int dma_nseg;
+};
+
+
+/*
+** Driver queue struct: this is the interrupt container
+** for the associated tx and rx ring.
+*/
+struct igb_queue {
+ struct adapter *adapter;
+ u32 msix; /* This queue's MSIX vector */
+ u32 eims; /* This queue's EIMS bit */
+ u32 eitr_setting;
+ struct resource *res;
+ void *tag;
+ struct tx_ring *txr;
+ struct rx_ring *rxr;
+ struct task que_task;
+ struct taskqueue *tq;
+ u64 irqs;
+};
+
+/*
+ * Transmit ring: one per queue
+ */
+struct tx_ring {
+ struct adapter *adapter;
+ u32 me;
+ struct mtx tx_mtx;
+ char mtx_name[16];
+ struct igb_dma_alloc txdma;
+ struct e1000_tx_desc *tx_base;
+ u32 next_avail_desc;
+ u32 next_to_clean;
+ volatile u16 tx_avail;
+ struct igb_tx_buffer *tx_buffers;
+#if __FreeBSD_version >= 800000
+ struct buf_ring *br;
+#endif
+ bus_dma_tag_t txtag;
+
+ u32 bytes;
+ u32 packets;
+
+ int queue_status;
+ int watchdog_time;
+ int tdt;
+ int tdh;
+ u64 no_desc_avail;
+ u64 tx_packets;
+};
+
+/*
+ * Receive ring: one per queue
+ */
+struct rx_ring {
+ struct adapter *adapter;
+ u32 me;
+ struct igb_dma_alloc rxdma;
+ union e1000_adv_rx_desc *rx_base;
+ struct lro_ctrl lro;
+ bool lro_enabled;
+ bool hdr_split;
+ bool discard;
+ struct mtx rx_mtx;
+ char mtx_name[16];
+ u32 next_to_refresh;
+ u32 next_to_check;
+ struct igb_rx_buf *rx_buffers;
+ bus_dma_tag_t htag; /* dma tag for rx head */
+ bus_dma_tag_t ptag; /* dma tag for rx packet */
+ /*
+ * First/last mbuf pointers, for
+ * collecting multisegment RX packets.
+ */
+ struct mbuf *fmp;
+ struct mbuf *lmp;
+
+ u32 bytes;
+ u32 packets;
+ int rdt;
+ int rdh;
+
+ /* Soft stats */
+ u64 rx_split_packets;
+ u64 rx_discarded;
+ u64 rx_packets;
+ u64 rx_bytes;
+};
+
+struct adapter {
+ struct ifnet *ifp;
+ struct e1000_hw hw;
+
+ struct e1000_osdep osdep;
+ struct device *dev;
+ struct cdev *led_dev;
+
+ struct resource *pci_mem;
+ struct resource *msix_mem;
+ struct resource *res;
+ void *tag;
+ u32 eims_mask;
+
+ int linkvec;
+ int link_mask;
+ struct task link_task;
+ int link_irq;
+
+ struct ifmedia media;
+ struct callout timer;
+ int msix; /* total vectors allocated */
+ int if_flags;
+ int max_frame_size;
+ int min_frame_size;
+ int pause_frames;
+ struct mtx core_mtx;
+ int igb_insert_vlan_header;
+ u16 num_queues;
+
+ eventhandler_tag vlan_attach;
+ eventhandler_tag vlan_detach;
+ u32 num_vlans;
+
+ /* Management and WOL features */
+ int wol;
+ int has_manage;
+
+ /*
+ ** Shadow VFTA table, this is needed because
+ ** the real vlan filter table gets cleared during
+ ** a soft reset and the driver needs to be able
+ ** to repopulate it.
+ */
+ u32 shadow_vfta[IGB_VFTA_SIZE];
+
+ /* Info about the interface */
+ u8 link_active;
+ u16 link_speed;
+ u16 link_duplex;
+ u32 smartspeed;
+
+ /* Interface queues */
+ struct igb_queue *queues;
+
+ /*
+ * Transmit rings
+ */
+ struct tx_ring *tx_rings;
+ u16 num_tx_desc;
+
+ /* Multicast array pointer */
+ u8 *mta;
+
+ /*
+ * Receive rings
+ */
+ struct rx_ring *rx_rings;
+ bool rx_hdr_split;
+ u16 num_rx_desc;
+ int rx_process_limit;
+ u32 rx_mbuf_sz;
+ u32 rx_mask;
+
+ /* Misc stats maintained by the driver */
+ unsigned long dropped_pkts;
+ unsigned long mbuf_defrag_failed;
+ unsigned long mbuf_header_failed;
+ unsigned long mbuf_packet_failed;
+ unsigned long no_tx_map_avail;
+ unsigned long no_tx_dma_setup;
+ unsigned long watchdog_events;
+ unsigned long rx_overruns;
+ unsigned long device_control;
+ unsigned long rx_control;
+ unsigned long int_mask;
+ unsigned long eint_mask;
+ unsigned long packet_buf_alloc_rx;
+ unsigned long packet_buf_alloc_tx;
+
+ boolean_t in_detach;
+
+#ifdef IGB_IEEE1588
+ /* IEEE 1588 precision time support */
+ struct cyclecounter cycles;
+ struct nettimer clock;
+ struct nettime_compare compare;
+ struct hwtstamp_ctrl hwtstamp;
+#endif
+
+ void *stats;
+};
+
+/* ******************************************************************************
+ * vendor_info_array
+ *
+ * This array contains the list of Subvendor/Subdevice IDs on which the driver
+ * should load.
+ *
+ * ******************************************************************************/
+typedef struct _igb_vendor_info_t {
+ unsigned int vendor_id;
+ unsigned int device_id;
+ unsigned int subvendor_id;
+ unsigned int subdevice_id;
+ unsigned int index;
+} igb_vendor_info_t;
+
+
+struct igb_tx_buffer {
+ int next_eop; /* Index of the desc to watch */
+ struct mbuf *m_head;
+ bus_dmamap_t map; /* bus_dma map for packet */
+};
+
+struct igb_rx_buf {
+ struct mbuf *m_head;
+ struct mbuf *m_pack;
+ bus_dmamap_t hmap; /* bus_dma map for header */
+ bus_dmamap_t pmap; /* bus_dma map for packet */
+};
+
+#define IGB_CORE_LOCK_INIT(_sc, _name) \
+ mtx_init(&(_sc)->core_mtx, _name, "IGB Core Lock", MTX_DEF)
+#define IGB_CORE_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->core_mtx)
+#define IGB_CORE_LOCK(_sc) mtx_lock(&(_sc)->core_mtx)
+#define IGB_CORE_UNLOCK(_sc) mtx_unlock(&(_sc)->core_mtx)
+#define IGB_CORE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->core_mtx, MA_OWNED)
+
+#define IGB_TX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->tx_mtx)
+#define IGB_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_mtx)
+#define IGB_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_mtx)
+#define IGB_TX_TRYLOCK(_sc) mtx_trylock(&(_sc)->tx_mtx)
+#define IGB_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_mtx, MA_OWNED)
+
+#define IGB_RX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_mtx)
+#define IGB_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_mtx)
+#define IGB_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_mtx)
+#define IGB_RX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->rx_mtx, MA_OWNED)
+
+#define UPDATE_VF_REG(reg, last, cur) \
+{ \
+ u32 new = E1000_READ_REG(hw, reg); \
+ if (new < last) \
+ cur += 0x100000000LL; \
+ last = new; \
+ cur &= 0xFFFFFFFF00000000LL; \
+ cur |= new; \
+}
+
+#if __FreeBSD_version < 800504
+static __inline int
+drbr_needs_enqueue(struct ifnet *ifp, struct buf_ring *br)
+{
+#ifdef ALTQ
+ if (ALTQ_IS_ENABLED(&ifp->if_snd))
+ return (1);
+#endif
+ return (!buf_ring_empty(br));
+}
+#endif
+
+#endif /* _IGB_HH_DEFINED_ */
+
+
diff --git a/freebsd/dev/e1000/if_lem.c b/freebsd/dev/e1000/if_lem.c
new file mode 100644
index 00000000..5d3e9389
--- /dev/null
+++ b/freebsd/dev/e1000/if_lem.c
@@ -0,0 +1,4628 @@
+#include <freebsd/machine/rtems-bsd-config.h>
+
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifdef HAVE_KERNEL_OPTION_HEADERS
+#include <freebsd/local/opt_device_polling.h>
+#include <freebsd/local/opt_inet.h>
+#endif
+
+#include <freebsd/sys/param.h>
+#include <freebsd/sys/systm.h>
+#include <freebsd/sys/bus.h>
+#include <freebsd/sys/endian.h>
+#include <freebsd/sys/kernel.h>
+#include <freebsd/sys/kthread.h>
+#include <freebsd/sys/malloc.h>
+#include <freebsd/sys/mbuf.h>
+#include <freebsd/sys/module.h>
+#include <freebsd/sys/rman.h>
+#include <freebsd/sys/socket.h>
+#include <freebsd/sys/sockio.h>
+#include <freebsd/sys/sysctl.h>
+#include <freebsd/sys/taskqueue.h>
+#include <freebsd/sys/eventhandler.h>
+#include <freebsd/machine/bus.h>
+#include <freebsd/machine/resource.h>
+
+#include <freebsd/net/bpf.h>
+#include <freebsd/net/ethernet.h>
+#include <freebsd/net/if.h>
+#include <freebsd/net/if_arp.h>
+#include <freebsd/net/if_dl.h>
+#include <freebsd/net/if_media.h>
+
+#include <freebsd/net/if_types.h>
+#include <freebsd/net/if_vlan_var.h>
+
+#include <freebsd/netinet/in_systm.h>
+#include <freebsd/netinet/in.h>
+#include <freebsd/netinet/if_ether.h>
+#include <freebsd/netinet/ip.h>
+#include <freebsd/netinet/ip6.h>
+#include <freebsd/netinet/tcp.h>
+#include <freebsd/netinet/udp.h>
+
+#include <freebsd/machine/in_cksum.h>
+#ifndef __rtems__
+#include <freebsd/dev/led/led.h>
+#endif
+#include <freebsd/dev/pci/pcivar.h>
+#include <freebsd/dev/pci/pcireg.h>
+
+#ifndef __rtems__
+#include <freebsd/local/e1000_api.h>
+#include <freebsd/local/if_lem.h>
+#else
+#include <freebsd/dev/e1000/e1000_api.h>
+#include <freebsd/dev/e1000/if_lem.h>
+#endif
+
+/*********************************************************************
+ * Legacy Em Driver version:
+ *********************************************************************/
+char lem_driver_version[] = "1.0.3";
+
+/*********************************************************************
+ * PCI Device ID Table
+ *
+ * Used by probe to select devices to load on
+ * Last field stores an index into e1000_strings
+ * Last entry must be all 0s
+ *
+ * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
+ *********************************************************************/
+
+static em_vendor_info_t lem_vendor_info_array[] =
+{
+ /* Intel(R) PRO/1000 Network Connection */
+ { 0x8086, E1000_DEV_ID_82540EM, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82540EM_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82540EP, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82540EP_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82540EP_LP, PCI_ANY_ID, PCI_ANY_ID, 0},
+
+ { 0x8086, E1000_DEV_ID_82541EI, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82541ER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82541ER_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82541EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82541GI, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82541GI_LF, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82541GI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
+
+ { 0x8086, E1000_DEV_ID_82542, PCI_ANY_ID, PCI_ANY_ID, 0},
+
+ { 0x8086, E1000_DEV_ID_82543GC_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82543GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+
+ { 0x8086, E1000_DEV_ID_82544EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82544EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82544GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82544GC_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
+
+ { 0x8086, E1000_DEV_ID_82545EM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82545EM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82545GM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82545GM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82545GM_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+
+ { 0x8086, E1000_DEV_ID_82546EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82546EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82546GB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82546GB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82546GB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82546GB_PCIE, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+
+ { 0x8086, E1000_DEV_ID_82547EI, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82547EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_82547GI, PCI_ANY_ID, PCI_ANY_ID, 0},
+ /* required last entry */
+ { 0, 0, 0, 0, 0}
+};
+
+/*********************************************************************
+ * Table of branding strings for all supported NICs.
+ *********************************************************************/
+
+static char *lem_strings[] = {
+ "Intel(R) PRO/1000 Legacy Network Connection"
+};
+
+/*********************************************************************
+ * Function prototypes
+ *********************************************************************/
+static int lem_probe(device_t);
+static int lem_attach(device_t);
+static int lem_detach(device_t);
+static int lem_shutdown(device_t);
+static int lem_suspend(device_t);
+static int lem_resume(device_t);
+static void lem_start(struct ifnet *);
+static void lem_start_locked(struct ifnet *ifp);
+static int lem_ioctl(struct ifnet *, u_long, caddr_t);
+static void lem_init(void *);
+static void lem_init_locked(struct adapter *);
+static void lem_stop(void *);
+static void lem_media_status(struct ifnet *, struct ifmediareq *);
+static int lem_media_change(struct ifnet *);
+static void lem_identify_hardware(struct adapter *);
+static int lem_allocate_pci_resources(struct adapter *);
+static int lem_allocate_irq(struct adapter *adapter);
+static void lem_free_pci_resources(struct adapter *);
+static void lem_local_timer(void *);
+static int lem_hardware_init(struct adapter *);
+static int lem_setup_interface(device_t, struct adapter *);
+static void lem_setup_transmit_structures(struct adapter *);
+static void lem_initialize_transmit_unit(struct adapter *);
+static int lem_setup_receive_structures(struct adapter *);
+static void lem_initialize_receive_unit(struct adapter *);
+static void lem_enable_intr(struct adapter *);
+static void lem_disable_intr(struct adapter *);
+static void lem_free_transmit_structures(struct adapter *);
+static void lem_free_receive_structures(struct adapter *);
+static void lem_update_stats_counters(struct adapter *);
+static void lem_add_hw_stats(struct adapter *adapter);
+static void lem_txeof(struct adapter *);
+static void lem_tx_purge(struct adapter *);
+static int lem_allocate_receive_structures(struct adapter *);
+static int lem_allocate_transmit_structures(struct adapter *);
+static bool lem_rxeof(struct adapter *, int, int *);
+#ifndef __NO_STRICT_ALIGNMENT
+static int lem_fixup_rx(struct adapter *);
+#endif
+static void lem_receive_checksum(struct adapter *, struct e1000_rx_desc *,
+ struct mbuf *);
+static void lem_transmit_checksum_setup(struct adapter *, struct mbuf *,
+ u32 *, u32 *);
+static void lem_set_promisc(struct adapter *);
+static void lem_disable_promisc(struct adapter *);
+static void lem_set_multi(struct adapter *);
+static void lem_update_link_status(struct adapter *);
+static int lem_get_buf(struct adapter *, int);
+static void lem_register_vlan(void *, struct ifnet *, u16);
+static void lem_unregister_vlan(void *, struct ifnet *, u16);
+static void lem_setup_vlan_hw_support(struct adapter *);
+static int lem_xmit(struct adapter *, struct mbuf **);
+static void lem_smartspeed(struct adapter *);
+static int lem_82547_fifo_workaround(struct adapter *, int);
+static void lem_82547_update_fifo_head(struct adapter *, int);
+static int lem_82547_tx_fifo_reset(struct adapter *);
+static void lem_82547_move_tail(void *);
+static int lem_dma_malloc(struct adapter *, bus_size_t,
+ struct em_dma_alloc *, int);
+static void lem_dma_free(struct adapter *, struct em_dma_alloc *);
+static int lem_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
+static void lem_print_nvm_info(struct adapter *);
+static int lem_is_valid_ether_addr(u8 *);
+static u32 lem_fill_descriptors (bus_addr_t address, u32 length,
+ PDESC_ARRAY desc_array);
+static int lem_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
+static void lem_add_int_delay_sysctl(struct adapter *, const char *,
+ const char *, struct em_int_delay_info *, int, int);
+static void lem_set_flow_cntrl(struct adapter *, const char *,
+ const char *, int *, int);
+/* Management and WOL Support */
+static void lem_init_manageability(struct adapter *);
+static void lem_release_manageability(struct adapter *);
+static void lem_get_hw_control(struct adapter *);
+static void lem_release_hw_control(struct adapter *);
+static void lem_get_wakeup(device_t);
+static void lem_enable_wakeup(device_t);
+static int lem_enable_phy_wakeup(struct adapter *);
+static void lem_led_func(void *, int);
+
+#ifdef EM_LEGACY_IRQ
+static void lem_intr(void *);
+#else /* FAST IRQ */
+static int lem_irq_fast(void *);
+static void lem_handle_rxtx(void *context, int pending);
+static void lem_handle_link(void *context, int pending);
+static void lem_add_rx_process_limit(struct adapter *, const char *,
+ const char *, int *, int);
+#endif /* ~EM_LEGACY_IRQ */
+
+#ifdef DEVICE_POLLING
+static poll_handler_t lem_poll;
+#endif /* POLLING */
+
+/*********************************************************************
+ * FreeBSD Device Interface Entry Points
+ *********************************************************************/
+
+static device_method_t lem_methods[] = {
+ /* Device interface */
+ DEVMETHOD(device_probe, lem_probe),
+ DEVMETHOD(device_attach, lem_attach),
+ DEVMETHOD(device_detach, lem_detach),
+ DEVMETHOD(device_shutdown, lem_shutdown),
+ DEVMETHOD(device_suspend, lem_suspend),
+ DEVMETHOD(device_resume, lem_resume),
+ {0, 0}
+};
+
+static driver_t lem_driver = {
+ "em", lem_methods, sizeof(struct adapter),
+};
+
+extern devclass_t em_devclass;
+DRIVER_MODULE(lem, pci, lem_driver, em_devclass, 0, 0);
+MODULE_DEPEND(lem, pci, 1, 1, 1);
+MODULE_DEPEND(lem, ether, 1, 1, 1);
+
+/*********************************************************************
+ * Tunable default values.
+ *********************************************************************/
+
+#define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
+#define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
+
+static int lem_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
+static int lem_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
+static int lem_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
+static int lem_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
+static int lem_rxd = EM_DEFAULT_RXD;
+static int lem_txd = EM_DEFAULT_TXD;
+static int lem_smart_pwr_down = FALSE;
+
+/* Controls whether promiscuous also shows bad packets */
+static int lem_debug_sbp = FALSE;
+
+TUNABLE_INT("hw.em.tx_int_delay", &lem_tx_int_delay_dflt);
+TUNABLE_INT("hw.em.rx_int_delay", &lem_rx_int_delay_dflt);
+TUNABLE_INT("hw.em.tx_abs_int_delay", &lem_tx_abs_int_delay_dflt);
+TUNABLE_INT("hw.em.rx_abs_int_delay", &lem_rx_abs_int_delay_dflt);
+TUNABLE_INT("hw.em.rxd", &lem_rxd);
+TUNABLE_INT("hw.em.txd", &lem_txd);
+TUNABLE_INT("hw.em.smart_pwr_down", &lem_smart_pwr_down);
+TUNABLE_INT("hw.em.sbp", &lem_debug_sbp);
+
+#ifndef EM_LEGACY_IRQ
+/* How many packets rxeof tries to clean at a time */
+static int lem_rx_process_limit = 100;
+TUNABLE_INT("hw.em.rx_process_limit", &lem_rx_process_limit);
+#endif
+
+/* Flow control setting - default to FULL */
+static int lem_fc_setting = e1000_fc_full;
+TUNABLE_INT("hw.em.fc_setting", &lem_fc_setting);
+
+/* Global used in WOL setup with multiport cards */
+static int global_quad_port_a = 0;
+
+/*********************************************************************
+ * Device identification routine
+ *
+ * em_probe determines if the driver should be loaded on
+ * adapter based on PCI vendor/device id of the adapter.
+ *
+ * return BUS_PROBE_DEFAULT on success, positive on failure
+ *********************************************************************/
+
+static int
+lem_probe(device_t dev)
+{
+ char adapter_name[60];
+ u16 pci_vendor_id = 0;
+ u16 pci_device_id = 0;
+ u16 pci_subvendor_id = 0;
+ u16 pci_subdevice_id = 0;
+ em_vendor_info_t *ent;
+
+ INIT_DEBUGOUT("em_probe: begin");
+
+ pci_vendor_id = pci_get_vendor(dev);
+ if (pci_vendor_id != EM_VENDOR_ID)
+ return (ENXIO);
+
+ pci_device_id = pci_get_device(dev);
+ pci_subvendor_id = pci_get_subvendor(dev);
+ pci_subdevice_id = pci_get_subdevice(dev);
+
+ ent = lem_vendor_info_array;
+ while (ent->vendor_id != 0) {
+ if ((pci_vendor_id == ent->vendor_id) &&
+ (pci_device_id == ent->device_id) &&
+
+ ((pci_subvendor_id == ent->subvendor_id) ||
+ (ent->subvendor_id == PCI_ANY_ID)) &&
+
+ ((pci_subdevice_id == ent->subdevice_id) ||
+ (ent->subdevice_id == PCI_ANY_ID))) {
+ sprintf(adapter_name, "%s %s",
+ lem_strings[ent->index],
+ lem_driver_version);
+ device_set_desc_copy(dev, adapter_name);
+ return (BUS_PROBE_DEFAULT);
+ }
+ ent++;
+ }
+
+ return (ENXIO);
+}
+
+/*********************************************************************
+ * Device initialization routine
+ *
+ * The attach entry point is called when the driver is being loaded.
+ * This routine identifies the type of hardware, allocates all resources
+ * and initializes the hardware.
+ *
+ * return 0 on success, positive on failure
+ *********************************************************************/
+
+static int
+lem_attach(device_t dev)
+{
+ struct adapter *adapter;
+ int tsize, rsize;
+ int error = 0;
+
+ INIT_DEBUGOUT("lem_attach: begin");
+
+ adapter = device_get_softc(dev);
+ adapter->dev = adapter->osdep.dev = dev;
+ EM_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
+ EM_TX_LOCK_INIT(adapter, device_get_nameunit(dev));
+ EM_RX_LOCK_INIT(adapter, device_get_nameunit(dev));
+
+ /* SYSCTL stuff */
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
+ lem_sysctl_nvm_info, "I", "NVM Information");
+
+ callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
+ callout_init_mtx(&adapter->tx_fifo_timer, &adapter->tx_mtx, 0);
+
+ /* Determine hardware and mac info */
+ lem_identify_hardware(adapter);
+
+ /* Setup PCI resources */
+ if (lem_allocate_pci_resources(adapter)) {
+ device_printf(dev, "Allocation of PCI resources failed\n");
+ error = ENXIO;
+ goto err_pci;
+ }
+
+ /* Do Shared Code initialization */
+ if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
+ device_printf(dev, "Setup of Shared code failed\n");
+ error = ENXIO;
+ goto err_pci;
+ }
+
+ e1000_get_bus_info(&adapter->hw);
+
+ /* Set up some sysctls for the tunable interrupt delays */
+ lem_add_int_delay_sysctl(adapter, "rx_int_delay",
+ "receive interrupt delay in usecs", &adapter->rx_int_delay,
+ E1000_REGISTER(&adapter->hw, E1000_RDTR), lem_rx_int_delay_dflt);
+ lem_add_int_delay_sysctl(adapter, "tx_int_delay",
+ "transmit interrupt delay in usecs", &adapter->tx_int_delay,
+ E1000_REGISTER(&adapter->hw, E1000_TIDV), lem_tx_int_delay_dflt);
+ if (adapter->hw.mac.type >= e1000_82540) {
+ lem_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
+ "receive interrupt delay limit in usecs",
+ &adapter->rx_abs_int_delay,
+ E1000_REGISTER(&adapter->hw, E1000_RADV),
+ lem_rx_abs_int_delay_dflt);
+ lem_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
+ "transmit interrupt delay limit in usecs",
+ &adapter->tx_abs_int_delay,
+ E1000_REGISTER(&adapter->hw, E1000_TADV),
+ lem_tx_abs_int_delay_dflt);
+ }
+
+#ifndef EM_LEGACY_IRQ
+ /* Sysctls for limiting the amount of work done in the taskqueue */
+ lem_add_rx_process_limit(adapter, "rx_processing_limit",
+ "max number of rx packets to process", &adapter->rx_process_limit,
+ lem_rx_process_limit);
+#endif
+
+ /* Sysctl for setting the interface flow control */
+ lem_set_flow_cntrl(adapter, "flow_control",
+ "max number of rx packets to process",
+ &adapter->fc_setting, lem_fc_setting);
+
+ /*
+ * Validate number of transmit and receive descriptors. It
+ * must not exceed hardware maximum, and must be multiple
+ * of E1000_DBA_ALIGN.
+ */
+ if (((lem_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN) != 0 ||
+ (adapter->hw.mac.type >= e1000_82544 && lem_txd > EM_MAX_TXD) ||
+ (adapter->hw.mac.type < e1000_82544 && lem_txd > EM_MAX_TXD_82543) ||
+ (lem_txd < EM_MIN_TXD)) {
+ device_printf(dev, "Using %d TX descriptors instead of %d!\n",
+ EM_DEFAULT_TXD, lem_txd);
+ adapter->num_tx_desc = EM_DEFAULT_TXD;
+ } else
+ adapter->num_tx_desc = lem_txd;
+ if (((lem_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN) != 0 ||
+ (adapter->hw.mac.type >= e1000_82544 && lem_rxd > EM_MAX_RXD) ||
+ (adapter->hw.mac.type < e1000_82544 && lem_rxd > EM_MAX_RXD_82543) ||
+ (lem_rxd < EM_MIN_RXD)) {
+ device_printf(dev, "Using %d RX descriptors instead of %d!\n",
+ EM_DEFAULT_RXD, lem_rxd);
+ adapter->num_rx_desc = EM_DEFAULT_RXD;
+ } else
+ adapter->num_rx_desc = lem_rxd;
+
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_wait_to_complete = FALSE;
+ adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+ adapter->rx_buffer_len = 2048;
+
+ e1000_init_script_state_82541(&adapter->hw, TRUE);
+ e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
+
+ /* Copper options */
+ if (adapter->hw.phy.media_type == e1000_media_type_copper) {
+ adapter->hw.phy.mdix = AUTO_ALL_MODES;
+ adapter->hw.phy.disable_polarity_correction = FALSE;
+ adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
+ }
+
+ /*
+ * Set the frame limits assuming
+ * standard ethernet sized frames.
+ */
+ adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
+ adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
+
+ /*
+ * This controls when hardware reports transmit completion
+ * status.
+ */
+ adapter->hw.mac.report_tx_early = 1;
+
+ tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
+ EM_DBA_ALIGN);
+
+ /* Allocate Transmit Descriptor ring */
+ if (lem_dma_malloc(adapter, tsize, &adapter->txdma, BUS_DMA_NOWAIT)) {
+ device_printf(dev, "Unable to allocate tx_desc memory\n");
+ error = ENOMEM;
+ goto err_tx_desc;
+ }
+ adapter->tx_desc_base =
+ (struct e1000_tx_desc *)adapter->txdma.dma_vaddr;
+
+ rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
+ EM_DBA_ALIGN);
+
+ /* Allocate Receive Descriptor ring */
+ if (lem_dma_malloc(adapter, rsize, &adapter->rxdma, BUS_DMA_NOWAIT)) {
+ device_printf(dev, "Unable to allocate rx_desc memory\n");
+ error = ENOMEM;
+ goto err_rx_desc;
+ }
+ adapter->rx_desc_base =
+ (struct e1000_rx_desc *)adapter->rxdma.dma_vaddr;
+
+ /* Allocate multicast array memory. */
+ adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
+ MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
+ if (adapter->mta == NULL) {
+ device_printf(dev, "Can not allocate multicast setup array\n");
+ error = ENOMEM;
+ goto err_hw_init;
+ }
+
+ /*
+ ** Start from a known state, this is
+ ** important in reading the nvm and
+ ** mac from that.
+ */
+ e1000_reset_hw(&adapter->hw);
+
+ /* Make sure we have a good EEPROM before we read from it */
+ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+ /*
+ ** Some PCI-E parts fail the first check due to
+ ** the link being in sleep state, call it again,
+ ** if it fails a second time its a real issue.
+ */
+ if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+ device_printf(dev,
+ "The EEPROM Checksum Is Not Valid\n");
+ error = EIO;
+ goto err_hw_init;
+ }
+ }
+
+ /* Copy the permanent MAC address out of the EEPROM */
+ if (e1000_read_mac_addr(&adapter->hw) < 0) {
+ device_printf(dev, "EEPROM read error while reading MAC"
+ " address\n");
+ error = EIO;
+ goto err_hw_init;
+ }
+
+ if (!lem_is_valid_ether_addr(adapter->hw.mac.addr)) {
+ device_printf(dev, "Invalid MAC address\n");
+ error = EIO;
+ goto err_hw_init;
+ }
+
+ /* Initialize the hardware */
+ if (lem_hardware_init(adapter)) {
+ device_printf(dev, "Unable to initialize the hardware\n");
+ error = EIO;
+ goto err_hw_init;
+ }
+
+ /* Allocate transmit descriptors and buffers */
+ if (lem_allocate_transmit_structures(adapter)) {
+ device_printf(dev, "Could not setup transmit structures\n");
+ error = ENOMEM;
+ goto err_tx_struct;
+ }
+
+ /* Allocate receive descriptors and buffers */
+ if (lem_allocate_receive_structures(adapter)) {
+ device_printf(dev, "Could not setup receive structures\n");
+ error = ENOMEM;
+ goto err_rx_struct;
+ }
+
+ /*
+ ** Do interrupt configuration
+ */
+ error = lem_allocate_irq(adapter);
+ if (error)
+ goto err_rx_struct;
+
+ /*
+ * Get Wake-on-Lan and Management info for later use
+ */
+ lem_get_wakeup(dev);
+
+ /* Setup OS specific network interface */
+ if (lem_setup_interface(dev, adapter) != 0)
+ goto err_rx_struct;
+
+ /* Initialize statistics */
+ lem_update_stats_counters(adapter);
+
+ adapter->hw.mac.get_link_status = 1;
+ lem_update_link_status(adapter);
+
+ /* Indicate SOL/IDER usage */
+ if (e1000_check_reset_block(&adapter->hw))
+ device_printf(dev,
+ "PHY reset is blocked due to SOL/IDER session.\n");
+
+ /* Do we need workaround for 82544 PCI-X adapter? */
+ if (adapter->hw.bus.type == e1000_bus_type_pcix &&
+ adapter->hw.mac.type == e1000_82544)
+ adapter->pcix_82544 = TRUE;
+ else
+ adapter->pcix_82544 = FALSE;
+
+ /* Register for VLAN events */
+ adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
+ lem_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
+ adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
+ lem_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
+
+ lem_add_hw_stats(adapter);
+
+ /* Non-AMT based hardware can now take control from firmware */
+ if (adapter->has_manage && !adapter->has_amt)
+ lem_get_hw_control(adapter);
+
+ /* Tell the stack that the interface is not active */
+ adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+
+ adapter->led_dev = led_create(lem_led_func, adapter,
+ device_get_nameunit(dev));
+
+ INIT_DEBUGOUT("lem_attach: end");
+
+ return (0);
+
+err_rx_struct:
+ lem_free_transmit_structures(adapter);
+err_tx_struct:
+err_hw_init:
+ lem_release_hw_control(adapter);
+ lem_dma_free(adapter, &adapter->rxdma);
+err_rx_desc:
+ lem_dma_free(adapter, &adapter->txdma);
+err_tx_desc:
+err_pci:
+ if (adapter->ifp != NULL)
+ if_free(adapter->ifp);
+ lem_free_pci_resources(adapter);
+ free(adapter->mta, M_DEVBUF);
+ EM_TX_LOCK_DESTROY(adapter);
+ EM_RX_LOCK_DESTROY(adapter);
+ EM_CORE_LOCK_DESTROY(adapter);
+
+ return (error);
+}
+
+/*********************************************************************
+ * Device removal routine
+ *
+ * The detach entry point is called when the driver is being removed.
+ * This routine stops the adapter and deallocates all the resources
+ * that were allocated for driver operation.
+ *
+ * return 0 on success, positive on failure
+ *********************************************************************/
+
+static int
+lem_detach(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+ struct ifnet *ifp = adapter->ifp;
+
+ INIT_DEBUGOUT("em_detach: begin");
+
+ /* Make sure VLANS are not using driver */
+ if (adapter->ifp->if_vlantrunk != NULL) {
+ device_printf(dev,"Vlan in use, detach first\n");
+ return (EBUSY);
+ }
+
+#ifdef DEVICE_POLLING
+ if (ifp->if_capenable & IFCAP_POLLING)
+ ether_poll_deregister(ifp);
+#endif
+
+ if (adapter->led_dev != NULL)
+ led_destroy(adapter->led_dev);
+
+ EM_CORE_LOCK(adapter);
+ EM_TX_LOCK(adapter);
+ adapter->in_detach = 1;
+ lem_stop(adapter);
+ e1000_phy_hw_reset(&adapter->hw);
+
+ lem_release_manageability(adapter);
+
+ EM_TX_UNLOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
+
+ /* Unregister VLAN events */
+ if (adapter->vlan_attach != NULL)
+ EVENTHANDLER_DEREGISTER(vlan_config, adapter->vlan_attach);
+ if (adapter->vlan_detach != NULL)
+ EVENTHANDLER_DEREGISTER(vlan_unconfig, adapter->vlan_detach);
+
+ ether_ifdetach(adapter->ifp);
+ callout_drain(&adapter->timer);
+ callout_drain(&adapter->tx_fifo_timer);
+
+ lem_free_pci_resources(adapter);
+ bus_generic_detach(dev);
+ if_free(ifp);
+
+ lem_free_transmit_structures(adapter);
+ lem_free_receive_structures(adapter);
+
+ /* Free Transmit Descriptor ring */
+ if (adapter->tx_desc_base) {
+ lem_dma_free(adapter, &adapter->txdma);
+ adapter->tx_desc_base = NULL;
+ }
+
+ /* Free Receive Descriptor ring */
+ if (adapter->rx_desc_base) {
+ lem_dma_free(adapter, &adapter->rxdma);
+ adapter->rx_desc_base = NULL;
+ }
+
+ lem_release_hw_control(adapter);
+ free(adapter->mta, M_DEVBUF);
+ EM_TX_LOCK_DESTROY(adapter);
+ EM_RX_LOCK_DESTROY(adapter);
+ EM_CORE_LOCK_DESTROY(adapter);
+
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * Shutdown entry point
+ *
+ **********************************************************************/
+
+static int
+lem_shutdown(device_t dev)
+{
+ return lem_suspend(dev);
+}
+
+/*
+ * Suspend/resume device methods.
+ */
+static int
+lem_suspend(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+
+ EM_CORE_LOCK(adapter);
+
+ lem_release_manageability(adapter);
+ lem_release_hw_control(adapter);
+ lem_enable_wakeup(dev);
+
+ EM_CORE_UNLOCK(adapter);
+
+ return bus_generic_suspend(dev);
+}
+
+static int
+lem_resume(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+ struct ifnet *ifp = adapter->ifp;
+
+ EM_CORE_LOCK(adapter);
+ lem_init_locked(adapter);
+ lem_init_manageability(adapter);
+ EM_CORE_UNLOCK(adapter);
+ lem_start(ifp);
+
+ return bus_generic_resume(dev);
+}
+
+
+static void
+lem_start_locked(struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct mbuf *m_head;
+
+ EM_TX_LOCK_ASSERT(adapter);
+
+ if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
+ IFF_DRV_RUNNING)
+ return;
+ if (!adapter->link_active)
+ return;
+
+ /*
+ * Force a cleanup if number of TX descriptors
+ * available hits the threshold
+ */
+ if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
+ lem_txeof(adapter);
+ /* Now do we at least have a minimal? */
+ if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD) {
+ adapter->no_tx_desc_avail1++;
+ return;
+ }
+ }
+
+ while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
+
+ IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
+ if (m_head == NULL)
+ break;
+ /*
+ * Encapsulation can modify our pointer, and or make it
+ * NULL on failure. In that event, we can't requeue.
+ */
+ if (lem_xmit(adapter, &m_head)) {
+ if (m_head == NULL)
+ break;
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
+ break;
+ }
+
+ /* Send a copy of the frame to the BPF listener */
+ ETHER_BPF_MTAP(ifp, m_head);
+
+ /* Set timeout in case hardware has problems transmitting. */
+ adapter->watchdog_check = TRUE;
+ adapter->watchdog_time = ticks;
+ }
+ if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD)
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+
+ return;
+}
+
+static void
+lem_start(struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+
+ EM_TX_LOCK(adapter);
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING)
+ lem_start_locked(ifp);
+ EM_TX_UNLOCK(adapter);
+}
+
+/*********************************************************************
+ * Ioctl entry point
+ *
+ * em_ioctl is called when the user wants to configure the
+ * interface.
+ *
+ * return 0 on success, positive on failure
+ **********************************************************************/
+
+static int
+lem_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct ifreq *ifr = (struct ifreq *)data;
+#ifdef INET
+ struct ifaddr *ifa = (struct ifaddr *)data;
+#endif
+ int error = 0;
+
+ if (adapter->in_detach)
+ return (error);
+
+ switch (command) {
+ case SIOCSIFADDR:
+#ifdef INET
+ if (ifa->ifa_addr->sa_family == AF_INET) {
+ /*
+ * XXX
+ * Since resetting hardware takes a very long time
+ * and results in link renegotiation we only
+ * initialize the hardware only when it is absolutely
+ * required.
+ */
+ ifp->if_flags |= IFF_UP;
+ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
+ EM_CORE_LOCK(adapter);
+ lem_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
+ }
+ arp_ifinit(ifp, ifa);
+ } else
+#endif
+ error = ether_ioctl(ifp, command, data);
+ break;
+ case SIOCSIFMTU:
+ {
+ int max_frame_size;
+
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
+
+ EM_CORE_LOCK(adapter);
+ switch (adapter->hw.mac.type) {
+ case e1000_82542:
+ max_frame_size = ETHER_MAX_LEN;
+ break;
+ default:
+ max_frame_size = MAX_JUMBO_FRAME_SIZE;
+ }
+ if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
+ ETHER_CRC_LEN) {
+ EM_CORE_UNLOCK(adapter);
+ error = EINVAL;
+ break;
+ }
+
+ ifp->if_mtu = ifr->ifr_mtu;
+ adapter->max_frame_size =
+ ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
+ lem_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
+ break;
+ }
+ case SIOCSIFFLAGS:
+ IOCTL_DEBUGOUT("ioctl rcv'd:\
+ SIOCSIFFLAGS (Set Interface Flags)");
+ EM_CORE_LOCK(adapter);
+ if (ifp->if_flags & IFF_UP) {
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
+ if ((ifp->if_flags ^ adapter->if_flags) &
+ (IFF_PROMISC | IFF_ALLMULTI)) {
+ lem_disable_promisc(adapter);
+ lem_set_promisc(adapter);
+ }
+ } else
+ lem_init_locked(adapter);
+ } else
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ EM_TX_LOCK(adapter);
+ lem_stop(adapter);
+ EM_TX_UNLOCK(adapter);
+ }
+ adapter->if_flags = ifp->if_flags;
+ EM_CORE_UNLOCK(adapter);
+ break;
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ EM_CORE_LOCK(adapter);
+ lem_disable_intr(adapter);
+ lem_set_multi(adapter);
+ if (adapter->hw.mac.type == e1000_82542 &&
+ adapter->hw.revision_id == E1000_REVISION_2) {
+ lem_initialize_receive_unit(adapter);
+ }
+#ifdef DEVICE_POLLING
+ if (!(ifp->if_capenable & IFCAP_POLLING))
+#endif
+ lem_enable_intr(adapter);
+ EM_CORE_UNLOCK(adapter);
+ }
+ break;
+ case SIOCSIFMEDIA:
+ /* Check SOL/IDER usage */
+ EM_CORE_LOCK(adapter);
+ if (e1000_check_reset_block(&adapter->hw)) {
+ EM_CORE_UNLOCK(adapter);
+ device_printf(adapter->dev, "Media change is"
+ " blocked due to SOL/IDER session.\n");
+ break;
+ }
+ EM_CORE_UNLOCK(adapter);
+ case SIOCGIFMEDIA:
+ IOCTL_DEBUGOUT("ioctl rcv'd: \
+ SIOCxIFMEDIA (Get/Set Interface Media)");
+ error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
+ break;
+ case SIOCSIFCAP:
+ {
+ int mask, reinit;
+
+ IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
+ reinit = 0;
+ mask = ifr->ifr_reqcap ^ ifp->if_capenable;
+#ifdef DEVICE_POLLING
+ if (mask & IFCAP_POLLING) {
+ if (ifr->ifr_reqcap & IFCAP_POLLING) {
+ error = ether_poll_register(lem_poll, ifp);
+ if (error)
+ return (error);
+ EM_CORE_LOCK(adapter);
+ lem_disable_intr(adapter);
+ ifp->if_capenable |= IFCAP_POLLING;
+ EM_CORE_UNLOCK(adapter);
+ } else {
+ error = ether_poll_deregister(ifp);
+ /* Enable interrupt even in error case */
+ EM_CORE_LOCK(adapter);
+ lem_enable_intr(adapter);
+ ifp->if_capenable &= ~IFCAP_POLLING;
+ EM_CORE_UNLOCK(adapter);
+ }
+ }
+#endif
+ if (mask & IFCAP_HWCSUM) {
+ ifp->if_capenable ^= IFCAP_HWCSUM;
+ reinit = 1;
+ }
+ if (mask & IFCAP_VLAN_HWTAGGING) {
+ ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
+ reinit = 1;
+ }
+ if ((mask & IFCAP_WOL) &&
+ (ifp->if_capabilities & IFCAP_WOL) != 0) {
+ if (mask & IFCAP_WOL_MCAST)
+ ifp->if_capenable ^= IFCAP_WOL_MCAST;
+ if (mask & IFCAP_WOL_MAGIC)
+ ifp->if_capenable ^= IFCAP_WOL_MAGIC;
+ }
+ if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING))
+ lem_init(adapter);
+ VLAN_CAPABILITIES(ifp);
+ break;
+ }
+
+ default:
+ error = ether_ioctl(ifp, command, data);
+ break;
+ }
+
+ return (error);
+}
+
+
+/*********************************************************************
+ * Init entry point
+ *
+ * This routine is used in two ways. It is used by the stack as
+ * init entry point in network interface structure. It is also used
+ * by the driver as a hw/sw initialization routine to get to a
+ * consistent state.
+ *
+ * return 0 on success, positive on failure
+ **********************************************************************/
+
+static void
+lem_init_locked(struct adapter *adapter)
+{
+ struct ifnet *ifp = adapter->ifp;
+ device_t dev = adapter->dev;
+ u32 pba;
+
+ INIT_DEBUGOUT("lem_init: begin");
+
+ EM_CORE_LOCK_ASSERT(adapter);
+
+ EM_TX_LOCK(adapter);
+ lem_stop(adapter);
+ EM_TX_UNLOCK(adapter);
+
+ /*
+ * Packet Buffer Allocation (PBA)
+ * Writing PBA sets the receive portion of the buffer
+ * the remainder is used for the transmit buffer.
+ *
+ * Devices before the 82547 had a Packet Buffer of 64K.
+ * Default allocation: PBA=48K for Rx, leaving 16K for Tx.
+ * After the 82547 the buffer was reduced to 40K.
+ * Default allocation: PBA=30K for Rx, leaving 10K for Tx.
+ * Note: default does not leave enough room for Jumbo Frame >10k.
+ */
+ switch (adapter->hw.mac.type) {
+ case e1000_82547:
+ case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
+ if (adapter->max_frame_size > 8192)
+ pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
+ else
+ pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
+ adapter->tx_fifo_head = 0;
+ adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
+ adapter->tx_fifo_size =
+ (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
+ break;
+ default:
+ /* Devices before 82547 had a Packet Buffer of 64K. */
+ if (adapter->max_frame_size > 8192)
+ pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
+ else
+ pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
+ }
+
+ INIT_DEBUGOUT1("lem_init: pba=%dK",pba);
+ E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
+
+ /* Get the latest mac address, User can use a LAA */
+ bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr,
+ ETHER_ADDR_LEN);
+
+ /* Put the address into the Receive Address Array */
+ e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
+
+ /* Initialize the hardware */
+ if (lem_hardware_init(adapter)) {
+ device_printf(dev, "Unable to initialize the hardware\n");
+ return;
+ }
+ lem_update_link_status(adapter);
+
+ /* Setup VLAN support, basic and offload if available */
+ E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
+
+ /* Set hardware offload abilities */
+ ifp->if_hwassist = 0;
+ if (adapter->hw.mac.type >= e1000_82543) {
+ if (ifp->if_capenable & IFCAP_TXCSUM)
+ ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
+ }
+
+ /* Configure for OS presence */
+ lem_init_manageability(adapter);
+
+ /* Prepare transmit descriptors and buffers */
+ lem_setup_transmit_structures(adapter);
+ lem_initialize_transmit_unit(adapter);
+
+ /* Setup Multicast table */
+ lem_set_multi(adapter);
+
+ /* Prepare receive descriptors and buffers */
+ if (lem_setup_receive_structures(adapter)) {
+ device_printf(dev, "Could not setup receive structures\n");
+ EM_TX_LOCK(adapter);
+ lem_stop(adapter);
+ EM_TX_UNLOCK(adapter);
+ return;
+ }
+ lem_initialize_receive_unit(adapter);
+
+ /* Use real VLAN Filter support? */
+ if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
+ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
+ /* Use real VLAN Filter support */
+ lem_setup_vlan_hw_support(adapter);
+ else {
+ u32 ctrl;
+ ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_VME;
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
+ }
+ }
+
+ /* Don't lose promiscuous settings */
+ lem_set_promisc(adapter);
+
+ ifp->if_drv_flags |= IFF_DRV_RUNNING;
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+
+ callout_reset(&adapter->timer, hz, lem_local_timer, adapter);
+ e1000_clear_hw_cntrs_base_generic(&adapter->hw);
+
+ /* MSI/X configuration for 82574 */
+ if (adapter->hw.mac.type == e1000_82574) {
+ int tmp;
+ tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ tmp |= E1000_CTRL_EXT_PBA_CLR;
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
+ /*
+ ** Set the IVAR - interrupt vector routing.
+ ** Each nibble represents a vector, high bit
+ ** is enable, other 3 bits are the MSIX table
+ ** entry, we map RXQ0 to 0, TXQ0 to 1, and
+ ** Link (other) to 2, hence the magic number.
+ */
+ E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
+ }
+
+#ifdef DEVICE_POLLING
+ /*
+ * Only enable interrupts if we are not polling, make sure
+ * they are off otherwise.
+ */
+ if (ifp->if_capenable & IFCAP_POLLING)
+ lem_disable_intr(adapter);
+ else
+#endif /* DEVICE_POLLING */
+ lem_enable_intr(adapter);
+
+ /* AMT based hardware can now take control from firmware */
+ if (adapter->has_manage && adapter->has_amt)
+ lem_get_hw_control(adapter);
+
+ /* Don't reset the phy next time init gets called */
+ adapter->hw.phy.reset_disable = TRUE;
+}
+
+static void
+lem_init(void *arg)
+{
+ struct adapter *adapter = arg;
+
+ EM_CORE_LOCK(adapter);
+ lem_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
+}
+
+
+#ifdef DEVICE_POLLING
+/*********************************************************************
+ *
+ * Legacy polling routine
+ *
+ *********************************************************************/
+static int
+lem_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
+{
+ struct adapter *adapter = ifp->if_softc;
+ u32 reg_icr, rx_done = 0;
+
+ EM_CORE_LOCK(adapter);
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
+ EM_CORE_UNLOCK(adapter);
+ return (rx_done);
+ }
+
+ if (cmd == POLL_AND_CHECK_STATUS) {
+ reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
+ callout_stop(&adapter->timer);
+ adapter->hw.mac.get_link_status = 1;
+ lem_update_link_status(adapter);
+ callout_reset(&adapter->timer, hz,
+ lem_local_timer, adapter);
+ }
+ }
+ EM_CORE_UNLOCK(adapter);
+
+ lem_rxeof(adapter, count, &rx_done);
+
+ EM_TX_LOCK(adapter);
+ lem_txeof(adapter);
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ lem_start_locked(ifp);
+ EM_TX_UNLOCK(adapter);
+ return (rx_done);
+}
+#endif /* DEVICE_POLLING */
+
+#ifdef EM_LEGACY_IRQ
+/*********************************************************************
+ *
+ * Legacy Interrupt Service routine
+ *
+ *********************************************************************/
+static void
+lem_intr(void *arg)
+{
+ struct adapter *adapter = arg;
+ struct ifnet *ifp = adapter->ifp;
+ u32 reg_icr;
+
+
+ if (ifp->if_capenable & IFCAP_POLLING)
+ return;
+
+ EM_CORE_LOCK(adapter);
+ reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+ if (reg_icr & E1000_ICR_RXO)
+ adapter->rx_overruns++;
+
+ if ((reg_icr == 0xffffffff) || (reg_icr == 0))
+ goto out;
+
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
+ goto out;
+
+ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
+ callout_stop(&adapter->timer);
+ adapter->hw.mac.get_link_status = 1;
+ lem_update_link_status(adapter);
+ /* Deal with TX cruft when link lost */
+ lem_tx_purge(adapter);
+ callout_reset(&adapter->timer, hz,
+ lem_local_timer, adapter);
+ goto out;
+ }
+
+ EM_TX_LOCK(adapter);
+ lem_rxeof(adapter, -1, NULL);
+ lem_txeof(adapter);
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
+ !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ lem_start_locked(ifp);
+ EM_TX_UNLOCK(adapter);
+
+out:
+ EM_CORE_UNLOCK(adapter);
+ return;
+}
+
+#else /* EM_FAST_IRQ, then fast interrupt routines only */
+
+static void
+lem_handle_link(void *context, int pending)
+{
+ struct adapter *adapter = context;
+ struct ifnet *ifp = adapter->ifp;
+
+ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
+ return;
+
+ EM_CORE_LOCK(adapter);
+ callout_stop(&adapter->timer);
+ lem_update_link_status(adapter);
+ /* Deal with TX cruft when link lost */
+ lem_tx_purge(adapter);
+ callout_reset(&adapter->timer, hz, lem_local_timer, adapter);
+ EM_CORE_UNLOCK(adapter);
+}
+
+
+/* Combined RX/TX handler, used by Legacy and MSI */
+static void
+lem_handle_rxtx(void *context, int pending)
+{
+ struct adapter *adapter = context;
+ struct ifnet *ifp = adapter->ifp;
+
+
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ lem_rxeof(adapter, adapter->rx_process_limit, NULL);
+ EM_TX_LOCK(adapter);
+ lem_txeof(adapter);
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ lem_start_locked(ifp);
+ EM_TX_UNLOCK(adapter);
+ }
+
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING)
+ lem_enable_intr(adapter);
+}
+
+/*********************************************************************
+ *
+ * Fast Legacy/MSI Combined Interrupt Service routine
+ *
+ *********************************************************************/
+static int
+lem_irq_fast(void *arg)
+{
+ struct adapter *adapter = arg;
+ struct ifnet *ifp;
+ u32 reg_icr;
+
+ ifp = adapter->ifp;
+
+ reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
+
+ /* Hot eject? */
+ if (reg_icr == 0xffffffff)
+ return FILTER_STRAY;
+
+ /* Definitely not our interrupt. */
+ if (reg_icr == 0x0)
+ return FILTER_STRAY;
+
+ /*
+ * Mask interrupts until the taskqueue is finished running. This is
+ * cheap, just assume that it is needed. This also works around the
+ * MSI message reordering errata on certain systems.
+ */
+ lem_disable_intr(adapter);
+ taskqueue_enqueue(adapter->tq, &adapter->rxtx_task);
+
+ /* Link status change */
+ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
+ adapter->hw.mac.get_link_status = 1;
+ taskqueue_enqueue(taskqueue_fast, &adapter->link_task);
+ }
+
+ if (reg_icr & E1000_ICR_RXO)
+ adapter->rx_overruns++;
+ return FILTER_HANDLED;
+}
+#endif /* ~EM_LEGACY_IRQ */
+
+
+/*********************************************************************
+ *
+ * Media Ioctl callback
+ *
+ * This routine is called whenever the user queries the status of
+ * the interface using ifconfig.
+ *
+ **********************************************************************/
+static void
+lem_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
+{
+ struct adapter *adapter = ifp->if_softc;
+ u_char fiber_type = IFM_1000_SX;
+
+ INIT_DEBUGOUT("lem_media_status: begin");
+
+ EM_CORE_LOCK(adapter);
+ lem_update_link_status(adapter);
+
+ ifmr->ifm_status = IFM_AVALID;
+ ifmr->ifm_active = IFM_ETHER;
+
+ if (!adapter->link_active) {
+ EM_CORE_UNLOCK(adapter);
+ return;
+ }
+
+ ifmr->ifm_status |= IFM_ACTIVE;
+
+ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+ (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
+ if (adapter->hw.mac.type == e1000_82545)
+ fiber_type = IFM_1000_LX;
+ ifmr->ifm_active |= fiber_type | IFM_FDX;
+ } else {
+ switch (adapter->link_speed) {
+ case 10:
+ ifmr->ifm_active |= IFM_10_T;
+ break;
+ case 100:
+ ifmr->ifm_active |= IFM_100_TX;
+ break;
+ case 1000:
+ ifmr->ifm_active |= IFM_1000_T;
+ break;
+ }
+ if (adapter->link_duplex == FULL_DUPLEX)
+ ifmr->ifm_active |= IFM_FDX;
+ else
+ ifmr->ifm_active |= IFM_HDX;
+ }
+ EM_CORE_UNLOCK(adapter);
+}
+
+/*********************************************************************
+ *
+ * Media Ioctl callback
+ *
+ * This routine is called when the user changes speed/duplex using
+ * media/mediopt option with ifconfig.
+ *
+ **********************************************************************/
+static int
+lem_media_change(struct ifnet *ifp)
+{
+ struct adapter *adapter = ifp->if_softc;
+ struct ifmedia *ifm = &adapter->media;
+
+ INIT_DEBUGOUT("lem_media_change: begin");
+
+ if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
+ return (EINVAL);
+
+ EM_CORE_LOCK(adapter);
+ switch (IFM_SUBTYPE(ifm->ifm_media)) {
+ case IFM_AUTO:
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+ break;
+ case IFM_1000_LX:
+ case IFM_1000_SX:
+ case IFM_1000_T:
+ adapter->hw.mac.autoneg = DO_AUTO_NEG;
+ adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
+ break;
+ case IFM_100_TX:
+ adapter->hw.mac.autoneg = FALSE;
+ adapter->hw.phy.autoneg_advertised = 0;
+ if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
+ else
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
+ break;
+ case IFM_10_T:
+ adapter->hw.mac.autoneg = FALSE;
+ adapter->hw.phy.autoneg_advertised = 0;
+ if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
+ else
+ adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
+ break;
+ default:
+ device_printf(adapter->dev, "Unsupported media type\n");
+ }
+
+ /* As the speed/duplex settings my have changed we need to
+ * reset the PHY.
+ */
+ adapter->hw.phy.reset_disable = FALSE;
+
+ lem_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
+
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * This routine maps the mbufs to tx descriptors.
+ *
+ * return 0 on success, positive on failure
+ **********************************************************************/
+
+static int
+lem_xmit(struct adapter *adapter, struct mbuf **m_headp)
+{
+ bus_dma_segment_t segs[EM_MAX_SCATTER];
+ bus_dmamap_t map;
+ struct em_buffer *tx_buffer, *tx_buffer_mapped;
+ struct e1000_tx_desc *ctxd = NULL;
+ struct mbuf *m_head;
+ u32 txd_upper, txd_lower, txd_used, txd_saved;
+ int error, nsegs, i, j, first, last = 0;
+
+ m_head = *m_headp;
+ txd_upper = txd_lower = txd_used = txd_saved = 0;
+
+ /*
+ ** When doing checksum offload, it is critical to
+ ** make sure the first mbuf has more than header,
+ ** because that routine expects data to be present.
+ */
+ if ((m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD) &&
+ (m_head->m_len < ETHER_HDR_LEN + sizeof(struct ip))) {
+ m_head = m_pullup(m_head, ETHER_HDR_LEN + sizeof(struct ip));
+ *m_headp = m_head;
+ if (m_head == NULL)
+ return (ENOBUFS);
+ }
+
+ /*
+ * Map the packet for DMA
+ *
+ * Capture the first descriptor index,
+ * this descriptor will have the index
+ * of the EOP which is the only one that
+ * now gets a DONE bit writeback.
+ */
+ first = adapter->next_avail_tx_desc;
+ tx_buffer = &adapter->tx_buffer_area[first];
+ tx_buffer_mapped = tx_buffer;
+ map = tx_buffer->map;
+
+ error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
+ *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+ /*
+ * There are two types of errors we can (try) to handle:
+ * - EFBIG means the mbuf chain was too long and bus_dma ran
+ * out of segments. Defragment the mbuf chain and try again.
+ * - ENOMEM means bus_dma could not obtain enough bounce buffers
+ * at this point in time. Defer sending and try again later.
+ * All other errors, in particular EINVAL, are fatal and prevent the
+ * mbuf chain from ever going through. Drop it and report error.
+ */
+ if (error == EFBIG) {
+ struct mbuf *m;
+
+ m = m_defrag(*m_headp, M_DONTWAIT);
+ if (m == NULL) {
+ adapter->mbuf_alloc_failed++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ *m_headp = m;
+
+ /* Try it again */
+ error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
+ *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
+
+ if (error) {
+ adapter->no_tx_dma_setup++;
+ m_freem(*m_headp);
+ *m_headp = NULL;
+ return (error);
+ }
+ } else if (error != 0) {
+ adapter->no_tx_dma_setup++;
+ return (error);
+ }
+
+ if (nsegs > (adapter->num_tx_desc_avail - 2)) {
+ adapter->no_tx_desc_avail2++;
+ bus_dmamap_unload(adapter->txtag, map);
+ return (ENOBUFS);
+ }
+ m_head = *m_headp;
+
+ /* Do hardware assists */
+ if (m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD)
+ lem_transmit_checksum_setup(adapter, m_head,
+ &txd_upper, &txd_lower);
+
+ i = adapter->next_avail_tx_desc;
+ if (adapter->pcix_82544)
+ txd_saved = i;
+
+ /* Set up our transmit descriptors */
+ for (j = 0; j < nsegs; j++) {
+ bus_size_t seg_len;
+ bus_addr_t seg_addr;
+ /* If adapter is 82544 and on PCIX bus */
+ if(adapter->pcix_82544) {
+ DESC_ARRAY desc_array;
+ u32 array_elements, counter;
+ /*
+ * Check the Address and Length combination and
+ * split the data accordingly
+ */
+ array_elements = lem_fill_descriptors(segs[j].ds_addr,
+ segs[j].ds_len, &desc_array);
+ for (counter = 0; counter < array_elements; counter++) {
+ if (txd_used == adapter->num_tx_desc_avail) {
+ adapter->next_avail_tx_desc = txd_saved;
+ adapter->no_tx_desc_avail2++;
+ bus_dmamap_unload(adapter->txtag, map);
+ return (ENOBUFS);
+ }
+ tx_buffer = &adapter->tx_buffer_area[i];
+ ctxd = &adapter->tx_desc_base[i];
+ ctxd->buffer_addr = htole64(
+ desc_array.descriptor[counter].address);
+ ctxd->lower.data = htole32(
+ (adapter->txd_cmd | txd_lower | (u16)
+ desc_array.descriptor[counter].length));
+ ctxd->upper.data =
+ htole32((txd_upper));
+ last = i;
+ if (++i == adapter->num_tx_desc)
+ i = 0;
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+ txd_used++;
+ }
+ } else {
+ tx_buffer = &adapter->tx_buffer_area[i];
+ ctxd = &adapter->tx_desc_base[i];
+ seg_addr = segs[j].ds_addr;
+ seg_len = segs[j].ds_len;
+ ctxd->buffer_addr = htole64(seg_addr);
+ ctxd->lower.data = htole32(
+ adapter->txd_cmd | txd_lower | seg_len);
+ ctxd->upper.data =
+ htole32(txd_upper);
+ last = i;
+ if (++i == adapter->num_tx_desc)
+ i = 0;
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+ }
+ }
+
+ adapter->next_avail_tx_desc = i;
+
+ if (adapter->pcix_82544)
+ adapter->num_tx_desc_avail -= txd_used;
+ else
+ adapter->num_tx_desc_avail -= nsegs;
+
+ if (m_head->m_flags & M_VLANTAG) {
+ /* Set the vlan id. */
+ ctxd->upper.fields.special =
+ htole16(m_head->m_pkthdr.ether_vtag);
+ /* Tell hardware to add tag */
+ ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
+ }
+
+ tx_buffer->m_head = m_head;
+ tx_buffer_mapped->map = tx_buffer->map;
+ tx_buffer->map = map;
+ bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
+
+ /*
+ * Last Descriptor of Packet
+ * needs End Of Packet (EOP)
+ * and Report Status (RS)
+ */
+ ctxd->lower.data |=
+ htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
+ /*
+ * Keep track in the first buffer which
+ * descriptor will be written back
+ */
+ tx_buffer = &adapter->tx_buffer_area[first];
+ tx_buffer->next_eop = last;
+ adapter->watchdog_time = ticks;
+
+ /*
+ * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
+ * that this frame is available to transmit.
+ */
+ bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+ if (adapter->hw.mac.type == e1000_82547 &&
+ adapter->link_duplex == HALF_DUPLEX)
+ lem_82547_move_tail(adapter);
+ else {
+ E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
+ if (adapter->hw.mac.type == e1000_82547)
+ lem_82547_update_fifo_head(adapter,
+ m_head->m_pkthdr.len);
+ }
+
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * 82547 workaround to avoid controller hang in half-duplex environment.
+ * The workaround is to avoid queuing a large packet that would span
+ * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
+ * in this case. We do that only when FIFO is quiescent.
+ *
+ **********************************************************************/
+static void
+lem_82547_move_tail(void *arg)
+{
+ struct adapter *adapter = arg;
+ struct e1000_tx_desc *tx_desc;
+ u16 hw_tdt, sw_tdt, length = 0;
+ bool eop = 0;
+
+ EM_TX_LOCK_ASSERT(adapter);
+
+ hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
+ sw_tdt = adapter->next_avail_tx_desc;
+
+ while (hw_tdt != sw_tdt) {
+ tx_desc = &adapter->tx_desc_base[hw_tdt];
+ length += tx_desc->lower.flags.length;
+ eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
+ if (++hw_tdt == adapter->num_tx_desc)
+ hw_tdt = 0;
+
+ if (eop) {
+ if (lem_82547_fifo_workaround(adapter, length)) {
+ adapter->tx_fifo_wrk_cnt++;
+ callout_reset(&adapter->tx_fifo_timer, 1,
+ lem_82547_move_tail, adapter);
+ break;
+ }
+ E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
+ lem_82547_update_fifo_head(adapter, length);
+ length = 0;
+ }
+ }
+}
+
+static int
+lem_82547_fifo_workaround(struct adapter *adapter, int len)
+{
+ int fifo_space, fifo_pkt_len;
+
+ fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
+
+ if (adapter->link_duplex == HALF_DUPLEX) {
+ fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
+
+ if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
+ if (lem_82547_tx_fifo_reset(adapter))
+ return (0);
+ else
+ return (1);
+ }
+ }
+
+ return (0);
+}
+
+static void
+lem_82547_update_fifo_head(struct adapter *adapter, int len)
+{
+ int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
+
+ /* tx_fifo_head is always 16 byte aligned */
+ adapter->tx_fifo_head += fifo_pkt_len;
+ if (adapter->tx_fifo_head >= adapter->tx_fifo_size) {
+ adapter->tx_fifo_head -= adapter->tx_fifo_size;
+ }
+}
+
+
+static int
+lem_82547_tx_fifo_reset(struct adapter *adapter)
+{
+ u32 tctl;
+
+ if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
+ E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
+ (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
+ E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
+ (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
+ E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
+ (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
+ /* Disable TX unit */
+ tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
+ E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
+ tctl & ~E1000_TCTL_EN);
+
+ /* Reset FIFO pointers */
+ E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
+ adapter->tx_head_addr);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
+ adapter->tx_head_addr);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
+ adapter->tx_head_addr);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
+ adapter->tx_head_addr);
+
+ /* Re-enable TX unit */
+ E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
+ E1000_WRITE_FLUSH(&adapter->hw);
+
+ adapter->tx_fifo_head = 0;
+ adapter->tx_fifo_reset_cnt++;
+
+ return (TRUE);
+ }
+ else {
+ return (FALSE);
+ }
+}
+
+static void
+lem_set_promisc(struct adapter *adapter)
+{
+ struct ifnet *ifp = adapter->ifp;
+ u32 reg_rctl;
+
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+
+ if (ifp->if_flags & IFF_PROMISC) {
+ reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+ /* Turn this on if you want to see bad packets */
+ if (lem_debug_sbp)
+ reg_rctl |= E1000_RCTL_SBP;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+ } else if (ifp->if_flags & IFF_ALLMULTI) {
+ reg_rctl |= E1000_RCTL_MPE;
+ reg_rctl &= ~E1000_RCTL_UPE;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+ }
+}
+
+static void
+lem_disable_promisc(struct adapter *adapter)
+{
+ u32 reg_rctl;
+
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+
+ reg_rctl &= (~E1000_RCTL_UPE);
+ reg_rctl &= (~E1000_RCTL_MPE);
+ reg_rctl &= (~E1000_RCTL_SBP);
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+}
+
+
+/*********************************************************************
+ * Multicast Update
+ *
+ * This routine is called whenever multicast address list is updated.
+ *
+ **********************************************************************/
+
+static void
+lem_set_multi(struct adapter *adapter)
+{
+ struct ifnet *ifp = adapter->ifp;
+ struct ifmultiaddr *ifma;
+ u32 reg_rctl = 0;
+ u8 *mta; /* Multicast array memory */
+ int mcnt = 0;
+
+ IOCTL_DEBUGOUT("lem_set_multi: begin");
+
+ mta = adapter->mta;
+ bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
+
+ if (adapter->hw.mac.type == e1000_82542 &&
+ adapter->hw.revision_id == E1000_REVISION_2) {
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+ if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_clear_mwi(&adapter->hw);
+ reg_rctl |= E1000_RCTL_RST;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+ msec_delay(5);
+ }
+
+#if __FreeBSD_version < 800000
+ IF_ADDR_LOCK(ifp);
+#else
+ if_maddr_rlock(ifp);
+#endif
+ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
+ if (ifma->ifma_addr->sa_family != AF_LINK)
+ continue;
+
+ if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
+ break;
+
+ bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
+ &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
+ mcnt++;
+ }
+#if __FreeBSD_version < 800000
+ IF_ADDR_UNLOCK(ifp);
+#else
+ if_maddr_runlock(ifp);
+#endif
+ if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+ reg_rctl |= E1000_RCTL_MPE;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+ } else
+ e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
+
+ if (adapter->hw.mac.type == e1000_82542 &&
+ adapter->hw.revision_id == E1000_REVISION_2) {
+ reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+ reg_rctl &= ~E1000_RCTL_RST;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
+ msec_delay(5);
+ if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_set_mwi(&adapter->hw);
+ }
+}
+
+
+/*********************************************************************
+ * Timer routine
+ *
+ * This routine checks for link status and updates statistics.
+ *
+ **********************************************************************/
+
+static void
+lem_local_timer(void *arg)
+{
+ struct adapter *adapter = arg;
+
+ EM_CORE_LOCK_ASSERT(adapter);
+
+ lem_update_link_status(adapter);
+ lem_update_stats_counters(adapter);
+
+ lem_smartspeed(adapter);
+
+ /*
+ * We check the watchdog: the time since
+ * the last TX descriptor was cleaned.
+ * This implies a functional TX engine.
+ */
+ if ((adapter->watchdog_check == TRUE) &&
+ (ticks - adapter->watchdog_time > EM_WATCHDOG))
+ goto hung;
+
+ callout_reset(&adapter->timer, hz, lem_local_timer, adapter);
+ return;
+hung:
+ device_printf(adapter->dev, "Watchdog timeout -- resetting\n");
+ adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
+ adapter->watchdog_events++;
+ lem_init_locked(adapter);
+}
+
+static void
+lem_update_link_status(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ struct ifnet *ifp = adapter->ifp;
+ device_t dev = adapter->dev;
+ u32 link_check = 0;
+
+ /* Get the cached link value or read phy for real */
+ switch (hw->phy.media_type) {
+ case e1000_media_type_copper:
+ if (hw->mac.get_link_status) {
+ /* Do the work to read phy */
+ e1000_check_for_link(hw);
+ link_check = !hw->mac.get_link_status;
+ if (link_check) /* ESB2 fix */
+ e1000_cfg_on_link_up(hw);
+ } else
+ link_check = TRUE;
+ break;
+ case e1000_media_type_fiber:
+ e1000_check_for_link(hw);
+ link_check = (E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STATUS_LU);
+ break;
+ case e1000_media_type_internal_serdes:
+ e1000_check_for_link(hw);
+ link_check = adapter->hw.mac.serdes_has_link;
+ break;
+ default:
+ case e1000_media_type_unknown:
+ break;
+ }
+
+ /* Now check for a transition */
+ if (link_check && (adapter->link_active == 0)) {
+ e1000_get_speed_and_duplex(hw, &adapter->link_speed,
+ &adapter->link_duplex);
+ if (bootverbose)
+ device_printf(dev, "Link is up %d Mbps %s\n",
+ adapter->link_speed,
+ ((adapter->link_duplex == FULL_DUPLEX) ?
+ "Full Duplex" : "Half Duplex"));
+ adapter->link_active = 1;
+ adapter->smartspeed = 0;
+ ifp->if_baudrate = adapter->link_speed * 1000000;
+ if_link_state_change(ifp, LINK_STATE_UP);
+ } else if (!link_check && (adapter->link_active == 1)) {
+ ifp->if_baudrate = adapter->link_speed = 0;
+ adapter->link_duplex = 0;
+ if (bootverbose)
+ device_printf(dev, "Link is Down\n");
+ adapter->link_active = 0;
+ /* Link down, disable watchdog */
+ adapter->watchdog_check = FALSE;
+ if_link_state_change(ifp, LINK_STATE_DOWN);
+ }
+}
+
+/*********************************************************************
+ *
+ * This routine disables all traffic on the adapter by issuing a
+ * global reset on the MAC and deallocates TX/RX buffers.
+ *
+ * This routine should always be called with BOTH the CORE
+ * and TX locks.
+ **********************************************************************/
+
+static void
+lem_stop(void *arg)
+{
+ struct adapter *adapter = arg;
+ struct ifnet *ifp = adapter->ifp;
+
+ EM_CORE_LOCK_ASSERT(adapter);
+ EM_TX_LOCK_ASSERT(adapter);
+
+ INIT_DEBUGOUT("lem_stop: begin");
+
+ lem_disable_intr(adapter);
+ callout_stop(&adapter->timer);
+ callout_stop(&adapter->tx_fifo_timer);
+
+ /* Tell the stack that the interface is no longer active */
+ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+
+ e1000_reset_hw(&adapter->hw);
+ if (adapter->hw.mac.type >= e1000_82544)
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
+
+ e1000_led_off(&adapter->hw);
+ e1000_cleanup_led(&adapter->hw);
+}
+
+
+/*********************************************************************
+ *
+ * Determine hardware revision.
+ *
+ **********************************************************************/
+static void
+lem_identify_hardware(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+
+ /* Make sure our PCI config space has the necessary stuff set */
+ adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
+ if (!((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
+ (adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN))) {
+ device_printf(dev, "Memory Access and/or Bus Master bits "
+ "were not set!\n");
+ adapter->hw.bus.pci_cmd_word |=
+ (PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN);
+ pci_write_config(dev, PCIR_COMMAND,
+ adapter->hw.bus.pci_cmd_word, 2);
+ }
+
+ /* Save off the information about this board */
+ adapter->hw.vendor_id = pci_get_vendor(dev);
+ adapter->hw.device_id = pci_get_device(dev);
+ adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
+ adapter->hw.subsystem_vendor_id =
+ pci_read_config(dev, PCIR_SUBVEND_0, 2);
+ adapter->hw.subsystem_device_id =
+ pci_read_config(dev, PCIR_SUBDEV_0, 2);
+
+ /* Do Shared Code Init and Setup */
+ if (e1000_set_mac_type(&adapter->hw)) {
+ device_printf(dev, "Setup init failure\n");
+ return;
+ }
+}
+
+static int
+lem_allocate_pci_resources(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ int val, rid, error = E1000_SUCCESS;
+
+ rid = PCIR_BAR(0);
+ adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
+ &rid, RF_ACTIVE);
+ if (adapter->memory == NULL) {
+ device_printf(dev, "Unable to allocate bus resource: memory\n");
+ return (ENXIO);
+ }
+ adapter->osdep.mem_bus_space_tag =
+ rman_get_bustag(adapter->memory);
+ adapter->osdep.mem_bus_space_handle =
+ rman_get_bushandle(adapter->memory);
+ adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
+
+ /* Only older adapters use IO mapping */
+ if (adapter->hw.mac.type > e1000_82543) {
+ /* Figure our where our IO BAR is ? */
+ for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
+ val = pci_read_config(dev, rid, 4);
+ if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
+ adapter->io_rid = rid;
+ break;
+ }
+ rid += 4;
+ /* check for 64bit BAR */
+ if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
+ rid += 4;
+ }
+ if (rid >= PCIR_CIS) {
+ device_printf(dev, "Unable to locate IO BAR\n");
+ return (ENXIO);
+ }
+ adapter->ioport = bus_alloc_resource_any(dev,
+ SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
+ if (adapter->ioport == NULL) {
+ device_printf(dev, "Unable to allocate bus resource: "
+ "ioport\n");
+ return (ENXIO);
+ }
+ adapter->hw.io_base = 0;
+ adapter->osdep.io_bus_space_tag =
+ rman_get_bustag(adapter->ioport);
+ adapter->osdep.io_bus_space_handle =
+ rman_get_bushandle(adapter->ioport);
+ }
+
+ adapter->hw.back = &adapter->osdep;
+
+ return (error);
+}
+
+/*********************************************************************
+ *
+ * Setup the Legacy or MSI Interrupt handler
+ *
+ **********************************************************************/
+int
+lem_allocate_irq(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ int error, rid = 0;
+
+ /* Manually turn off all interrupts */
+ E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
+
+ /* We allocate a single interrupt resource */
+ adapter->res[0] = bus_alloc_resource_any(dev,
+ SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
+ if (adapter->res[0] == NULL) {
+ device_printf(dev, "Unable to allocate bus resource: "
+ "interrupt\n");
+ return (ENXIO);
+ }
+
+#ifdef EM_LEGACY_IRQ
+ /* We do Legacy setup */
+ if ((error = bus_setup_intr(dev, adapter->res[0],
+ INTR_TYPE_NET | INTR_MPSAFE, NULL, lem_intr, adapter,
+ &adapter->tag[0])) != 0) {
+ device_printf(dev, "Failed to register interrupt handler");
+ return (error);
+ }
+
+#else /* FAST_IRQ */
+ /*
+ * Try allocating a fast interrupt and the associated deferred
+ * processing contexts.
+ */
+ TASK_INIT(&adapter->rxtx_task, 0, lem_handle_rxtx, adapter);
+ TASK_INIT(&adapter->link_task, 0, lem_handle_link, adapter);
+ adapter->tq = taskqueue_create_fast("lem_taskq", M_NOWAIT,
+ taskqueue_thread_enqueue, &adapter->tq);
+ taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq",
+ device_get_nameunit(adapter->dev));
+ if ((error = bus_setup_intr(dev, adapter->res[0],
+ INTR_TYPE_NET, lem_irq_fast, NULL, adapter,
+ &adapter->tag[0])) != 0) {
+ device_printf(dev, "Failed to register fast interrupt "
+ "handler: %d\n", error);
+ taskqueue_free(adapter->tq);
+ adapter->tq = NULL;
+ return (error);
+ }
+#endif /* EM_LEGACY_IRQ */
+
+ return (0);
+}
+
+
+static void
+lem_free_pci_resources(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+
+
+ if (adapter->tag[0] != NULL) {
+ bus_teardown_intr(dev, adapter->res[0],
+ adapter->tag[0]);
+ adapter->tag[0] = NULL;
+ }
+
+ if (adapter->res[0] != NULL) {
+ bus_release_resource(dev, SYS_RES_IRQ,
+ 0, adapter->res[0]);
+ }
+
+ if (adapter->memory != NULL)
+ bus_release_resource(dev, SYS_RES_MEMORY,
+ PCIR_BAR(0), adapter->memory);
+
+ if (adapter->ioport != NULL)
+ bus_release_resource(dev, SYS_RES_IOPORT,
+ adapter->io_rid, adapter->ioport);
+}
+
+
+/*********************************************************************
+ *
+ * Initialize the hardware to a configuration
+ * as specified by the adapter structure.
+ *
+ **********************************************************************/
+static int
+lem_hardware_init(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ u16 rx_buffer_size;
+
+ INIT_DEBUGOUT("lem_hardware_init: begin");
+
+ /* Issue a global reset */
+ e1000_reset_hw(&adapter->hw);
+
+ /* When hardware is reset, fifo_head is also reset */
+ adapter->tx_fifo_head = 0;
+
+ /*
+ * These parameters control the automatic generation (Tx) and
+ * response (Rx) to Ethernet PAUSE frames.
+ * - High water mark should allow for at least two frames to be
+ * received after sending an XOFF.
+ * - Low water mark works best when it is very near the high water mark.
+ * This allows the receiver to restart by sending XON when it has
+ * drained a bit. Here we use an arbitary value of 1500 which will
+ * restart after one full frame is pulled from the buffer. There
+ * could be several smaller frames in the buffer and if so they will
+ * not trigger the XON until their total number reduces the buffer
+ * by 1500.
+ * - The pause time is fairly large at 1000 x 512ns = 512 usec.
+ */
+ rx_buffer_size = ((E1000_READ_REG(&adapter->hw, E1000_PBA) &
+ 0xffff) << 10 );
+
+ adapter->hw.fc.high_water = rx_buffer_size -
+ roundup2(adapter->max_frame_size, 1024);
+ adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
+
+ adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
+ adapter->hw.fc.send_xon = TRUE;
+
+ /* Set Flow control, use the tunable location if sane */
+ if ((lem_fc_setting >= 0) && (lem_fc_setting < 4))
+ adapter->hw.fc.requested_mode = lem_fc_setting;
+ else
+ adapter->hw.fc.requested_mode = e1000_fc_none;
+
+ if (e1000_init_hw(&adapter->hw) < 0) {
+ device_printf(dev, "Hardware Initialization Failed\n");
+ return (EIO);
+ }
+
+ e1000_check_for_link(&adapter->hw);
+
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * Setup networking device structure and register an interface.
+ *
+ **********************************************************************/
+static int
+lem_setup_interface(device_t dev, struct adapter *adapter)
+{
+ struct ifnet *ifp;
+
+ INIT_DEBUGOUT("lem_setup_interface: begin");
+
+ ifp = adapter->ifp = if_alloc(IFT_ETHER);
+ if (ifp == NULL) {
+ device_printf(dev, "can not allocate ifnet structure\n");
+ return (-1);
+ }
+ if_initname(ifp, device_get_name(dev), device_get_unit(dev));
+ ifp->if_mtu = ETHERMTU;
+ ifp->if_init = lem_init;
+ ifp->if_softc = adapter;
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = lem_ioctl;
+ ifp->if_start = lem_start;
+ IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
+ ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
+ IFQ_SET_READY(&ifp->if_snd);
+
+ ether_ifattach(ifp, adapter->hw.mac.addr);
+
+ ifp->if_capabilities = ifp->if_capenable = 0;
+
+ if (adapter->hw.mac.type >= e1000_82543) {
+ ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
+ ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
+ }
+
+ /*
+ * Tell the upper layer(s) we support long frames.
+ */
+ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
+ ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
+ ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
+
+ /*
+ ** Dont turn this on by default, if vlans are
+ ** created on another pseudo device (eg. lagg)
+ ** then vlan events are not passed thru, breaking
+ ** operation, but with HW FILTER off it works. If
+ ** using vlans directly on the em driver you can
+ ** enable this and get full hardware tag filtering.
+ */
+ ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
+
+#ifdef DEVICE_POLLING
+ ifp->if_capabilities |= IFCAP_POLLING;
+#endif
+
+ /* Enable only WOL MAGIC by default */
+ if (adapter->wol) {
+ ifp->if_capabilities |= IFCAP_WOL;
+ ifp->if_capenable |= IFCAP_WOL_MAGIC;
+ }
+
+ /*
+ * Specify the media types supported by this adapter and register
+ * callbacks to update media and link information
+ */
+ ifmedia_init(&adapter->media, IFM_IMASK,
+ lem_media_change, lem_media_status);
+ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+ (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
+ u_char fiber_type = IFM_1000_SX; /* default type */
+
+ if (adapter->hw.mac.type == e1000_82545)
+ fiber_type = IFM_1000_LX;
+ ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
+ 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
+ } else {
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
+ 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
+ 0, NULL);
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
+ 0, NULL);
+ if (adapter->hw.phy.type != e1000_phy_ife) {
+ ifmedia_add(&adapter->media,
+ IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
+ ifmedia_add(&adapter->media,
+ IFM_ETHER | IFM_1000_T, 0, NULL);
+ }
+ }
+ ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
+ ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
+ return (0);
+}
+
+
+/*********************************************************************
+ *
+ * Workaround for SmartSpeed on 82541 and 82547 controllers
+ *
+ **********************************************************************/
+static void
+lem_smartspeed(struct adapter *adapter)
+{
+ u16 phy_tmp;
+
+ if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
+ adapter->hw.mac.autoneg == 0 ||
+ (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
+ return;
+
+ if (adapter->smartspeed == 0) {
+ /* If Master/Slave config fault is asserted twice,
+ * we assume back-to-back */
+ e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
+ if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
+ return;
+ e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
+ if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
+ e1000_read_phy_reg(&adapter->hw,
+ PHY_1000T_CTRL, &phy_tmp);
+ if(phy_tmp & CR_1000T_MS_ENABLE) {
+ phy_tmp &= ~CR_1000T_MS_ENABLE;
+ e1000_write_phy_reg(&adapter->hw,
+ PHY_1000T_CTRL, phy_tmp);
+ adapter->smartspeed++;
+ if(adapter->hw.mac.autoneg &&
+ !e1000_copper_link_autoneg(&adapter->hw) &&
+ !e1000_read_phy_reg(&adapter->hw,
+ PHY_CONTROL, &phy_tmp)) {
+ phy_tmp |= (MII_CR_AUTO_NEG_EN |
+ MII_CR_RESTART_AUTO_NEG);
+ e1000_write_phy_reg(&adapter->hw,
+ PHY_CONTROL, phy_tmp);
+ }
+ }
+ }
+ return;
+ } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
+ /* If still no link, perhaps using 2/3 pair cable */
+ e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
+ phy_tmp |= CR_1000T_MS_ENABLE;
+ e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
+ if(adapter->hw.mac.autoneg &&
+ !e1000_copper_link_autoneg(&adapter->hw) &&
+ !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
+ phy_tmp |= (MII_CR_AUTO_NEG_EN |
+ MII_CR_RESTART_AUTO_NEG);
+ e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
+ }
+ }
+ /* Restart process after EM_SMARTSPEED_MAX iterations */
+ if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
+ adapter->smartspeed = 0;
+}
+
+
+/*
+ * Manage DMA'able memory.
+ */
+static void
+lem_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
+{
+ if (error)
+ return;
+ *(bus_addr_t *) arg = segs[0].ds_addr;
+}
+
+static int
+lem_dma_malloc(struct adapter *adapter, bus_size_t size,
+ struct em_dma_alloc *dma, int mapflags)
+{
+ int error;
+
+ error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
+ EM_DBA_ALIGN, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ size, /* maxsize */
+ 1, /* nsegments */
+ size, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockarg */
+ &dma->dma_tag);
+ if (error) {
+ device_printf(adapter->dev,
+ "%s: bus_dma_tag_create failed: %d\n",
+ __func__, error);
+ goto fail_0;
+ }
+
+ error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
+ BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->dma_map);
+ if (error) {
+ device_printf(adapter->dev,
+ "%s: bus_dmamem_alloc(%ju) failed: %d\n",
+ __func__, (uintmax_t)size, error);
+ goto fail_2;
+ }
+
+ dma->dma_paddr = 0;
+ error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
+ size, lem_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT);
+ if (error || dma->dma_paddr == 0) {
+ device_printf(adapter->dev,
+ "%s: bus_dmamap_load failed: %d\n",
+ __func__, error);
+ goto fail_3;
+ }
+
+ return (0);
+
+fail_3:
+ bus_dmamap_unload(dma->dma_tag, dma->dma_map);
+fail_2:
+ bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
+ bus_dma_tag_destroy(dma->dma_tag);
+fail_0:
+ dma->dma_map = NULL;
+ dma->dma_tag = NULL;
+
+ return (error);
+}
+
+static void
+lem_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
+{
+ if (dma->dma_tag == NULL)
+ return;
+ if (dma->dma_map != NULL) {
+ bus_dmamap_sync(dma->dma_tag, dma->dma_map,
+ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(dma->dma_tag, dma->dma_map);
+ bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
+ dma->dma_map = NULL;
+ }
+ bus_dma_tag_destroy(dma->dma_tag);
+ dma->dma_tag = NULL;
+}
+
+
+/*********************************************************************
+ *
+ * Allocate memory for tx_buffer structures. The tx_buffer stores all
+ * the information needed to transmit a packet on the wire.
+ *
+ **********************************************************************/
+static int
+lem_allocate_transmit_structures(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct em_buffer *tx_buffer;
+ int error;
+
+ /*
+ * Create DMA tags for tx descriptors
+ */
+ if ((error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
+ 1, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ MCLBYTES * EM_MAX_SCATTER, /* maxsize */
+ EM_MAX_SCATTER, /* nsegments */
+ MCLBYTES, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockarg */
+ &adapter->txtag)) != 0) {
+ device_printf(dev, "Unable to allocate TX DMA tag\n");
+ goto fail;
+ }
+
+ adapter->tx_buffer_area = malloc(sizeof(struct em_buffer) *
+ adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
+ if (adapter->tx_buffer_area == NULL) {
+ device_printf(dev, "Unable to allocate tx_buffer memory\n");
+ error = ENOMEM;
+ goto fail;
+ }
+
+ /* Create the descriptor buffer dma maps */
+ for (int i = 0; i < adapter->num_tx_desc; i++) {
+ tx_buffer = &adapter->tx_buffer_area[i];
+ error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
+ if (error != 0) {
+ device_printf(dev, "Unable to create TX DMA map\n");
+ goto fail;
+ }
+ tx_buffer->next_eop = -1;
+ }
+
+ return (0);
+fail:
+ lem_free_transmit_structures(adapter);
+ return (error);
+}
+
+/*********************************************************************
+ *
+ * (Re)Initialize transmit structures.
+ *
+ **********************************************************************/
+static void
+lem_setup_transmit_structures(struct adapter *adapter)
+{
+ struct em_buffer *tx_buffer;
+
+ /* Clear the old ring contents */
+ bzero(adapter->tx_desc_base,
+ (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
+
+ /* Free any existing TX buffers */
+ for (int i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
+ tx_buffer = &adapter->tx_buffer_area[i];
+ bus_dmamap_sync(adapter->txtag, tx_buffer->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(adapter->txtag, tx_buffer->map);
+ m_freem(tx_buffer->m_head);
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+ }
+
+ /* Reset state */
+ adapter->next_avail_tx_desc = 0;
+ adapter->next_tx_to_clean = 0;
+ adapter->num_tx_desc_avail = adapter->num_tx_desc;
+
+ bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ return;
+}
+
+/*********************************************************************
+ *
+ * Enable transmit unit.
+ *
+ **********************************************************************/
+static void
+lem_initialize_transmit_unit(struct adapter *adapter)
+{
+ u32 tctl, tipg = 0;
+ u64 bus_addr;
+
+ INIT_DEBUGOUT("lem_initialize_transmit_unit: begin");
+ /* Setup the Base and Length of the Tx Descriptor Ring */
+ bus_addr = adapter->txdma.dma_paddr;
+ E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
+ adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
+ E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
+ (u32)(bus_addr >> 32));
+ E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
+ (u32)bus_addr);
+ /* Setup the HW Tx Head and Tail descriptor pointers */
+ E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
+ E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
+
+ HW_DEBUGOUT2("Base = %x, Length = %x\n",
+ E1000_READ_REG(&adapter->hw, E1000_TDBAL(0)),
+ E1000_READ_REG(&adapter->hw, E1000_TDLEN(0)));
+
+ /* Set the default values for the Tx Inter Packet Gap timer */
+ switch (adapter->hw.mac.type) {
+ case e1000_82542:
+ tipg = DEFAULT_82542_TIPG_IPGT;
+ tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+ tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+ break;
+ default:
+ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
+ (adapter->hw.phy.media_type ==
+ e1000_media_type_internal_serdes))
+ tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+ else
+ tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+ tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+ tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+ }
+
+ E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
+ E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
+ if(adapter->hw.mac.type >= e1000_82540)
+ E1000_WRITE_REG(&adapter->hw, E1000_TADV,
+ adapter->tx_abs_int_delay.value);
+
+ /* Program the Transmit Control Register */
+ tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+ /* This write will effectively turn on the transmit unit. */
+ E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
+
+ /* Setup Transmit Descriptor Base Settings */
+ adapter->txd_cmd = E1000_TXD_CMD_IFCS;
+
+ if (adapter->tx_int_delay.value > 0)
+ adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+}
+
+/*********************************************************************
+ *
+ * Free all transmit related data structures.
+ *
+ **********************************************************************/
+static void
+lem_free_transmit_structures(struct adapter *adapter)
+{
+ struct em_buffer *tx_buffer;
+
+ INIT_DEBUGOUT("free_transmit_structures: begin");
+
+ if (adapter->tx_buffer_area != NULL) {
+ for (int i = 0; i < adapter->num_tx_desc; i++) {
+ tx_buffer = &adapter->tx_buffer_area[i];
+ if (tx_buffer->m_head != NULL) {
+ bus_dmamap_sync(adapter->txtag, tx_buffer->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(adapter->txtag,
+ tx_buffer->map);
+ m_freem(tx_buffer->m_head);
+ tx_buffer->m_head = NULL;
+ } else if (tx_buffer->map != NULL)
+ bus_dmamap_unload(adapter->txtag,
+ tx_buffer->map);
+ if (tx_buffer->map != NULL) {
+ bus_dmamap_destroy(adapter->txtag,
+ tx_buffer->map);
+ tx_buffer->map = NULL;
+ }
+ }
+ }
+ if (adapter->tx_buffer_area != NULL) {
+ free(adapter->tx_buffer_area, M_DEVBUF);
+ adapter->tx_buffer_area = NULL;
+ }
+ if (adapter->txtag != NULL) {
+ bus_dma_tag_destroy(adapter->txtag);
+ adapter->txtag = NULL;
+ }
+#if __FreeBSD_version >= 800000
+ if (adapter->br != NULL)
+ buf_ring_free(adapter->br, M_DEVBUF);
+#endif
+}
+
+/*********************************************************************
+ *
+ * The offload context needs to be set when we transfer the first
+ * packet of a particular protocol (TCP/UDP). This routine has been
+ * enhanced to deal with inserted VLAN headers, and IPV6 (not complete)
+ *
+ * Added back the old method of keeping the current context type
+ * and not setting if unnecessary, as this is reported to be a
+ * big performance win. -jfv
+ **********************************************************************/
+static void
+lem_transmit_checksum_setup(struct adapter *adapter, struct mbuf *mp,
+ u32 *txd_upper, u32 *txd_lower)
+{
+ struct e1000_context_desc *TXD = NULL;
+ struct em_buffer *tx_buffer;
+ struct ether_vlan_header *eh;
+ struct ip *ip = NULL;
+ struct ip6_hdr *ip6;
+ int curr_txd, ehdrlen;
+ u32 cmd, hdr_len, ip_hlen;
+ u16 etype;
+ u8 ipproto;
+
+
+ cmd = hdr_len = ipproto = 0;
+ *txd_upper = *txd_lower = 0;
+ curr_txd = adapter->next_avail_tx_desc;
+
+ /*
+ * Determine where frame payload starts.
+ * Jump over vlan headers if already present,
+ * helpful for QinQ too.
+ */
+ eh = mtod(mp, struct ether_vlan_header *);
+ if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
+ etype = ntohs(eh->evl_proto);
+ ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
+ } else {
+ etype = ntohs(eh->evl_encap_proto);
+ ehdrlen = ETHER_HDR_LEN;
+ }
+
+ /*
+ * We only support TCP/UDP for IPv4 and IPv6 for the moment.
+ * TODO: Support SCTP too when it hits the tree.
+ */
+ switch (etype) {
+ case ETHERTYPE_IP:
+ ip = (struct ip *)(mp->m_data + ehdrlen);
+ ip_hlen = ip->ip_hl << 2;
+
+ /* Setup of IP header checksum. */
+ if (mp->m_pkthdr.csum_flags & CSUM_IP) {
+ /*
+ * Start offset for header checksum calculation.
+ * End offset for header checksum calculation.
+ * Offset of place to put the checksum.
+ */
+ TXD = (struct e1000_context_desc *)
+ &adapter->tx_desc_base[curr_txd];
+ TXD->lower_setup.ip_fields.ipcss = ehdrlen;
+ TXD->lower_setup.ip_fields.ipcse =
+ htole16(ehdrlen + ip_hlen);
+ TXD->lower_setup.ip_fields.ipcso =
+ ehdrlen + offsetof(struct ip, ip_sum);
+ cmd |= E1000_TXD_CMD_IP;
+ *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
+ }
+
+ hdr_len = ehdrlen + ip_hlen;
+ ipproto = ip->ip_p;
+
+ break;
+ case ETHERTYPE_IPV6:
+ ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
+ ip_hlen = sizeof(struct ip6_hdr); /* XXX: No header stacking. */
+
+ /* IPv6 doesn't have a header checksum. */
+
+ hdr_len = ehdrlen + ip_hlen;
+ ipproto = ip6->ip6_nxt;
+ break;
+
+ default:
+ return;
+ }
+
+ switch (ipproto) {
+ case IPPROTO_TCP:
+ if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
+ *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+ *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+ /* no need for context if already set */
+ if (adapter->last_hw_offload == CSUM_TCP)
+ return;
+ adapter->last_hw_offload = CSUM_TCP;
+ /*
+ * Start offset for payload checksum calculation.
+ * End offset for payload checksum calculation.
+ * Offset of place to put the checksum.
+ */
+ TXD = (struct e1000_context_desc *)
+ &adapter->tx_desc_base[curr_txd];
+ TXD->upper_setup.tcp_fields.tucss = hdr_len;
+ TXD->upper_setup.tcp_fields.tucse = htole16(0);
+ TXD->upper_setup.tcp_fields.tucso =
+ hdr_len + offsetof(struct tcphdr, th_sum);
+ cmd |= E1000_TXD_CMD_TCP;
+ }
+ break;
+ case IPPROTO_UDP:
+ {
+ if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
+ *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+ *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+ /* no need for context if already set */
+ if (adapter->last_hw_offload == CSUM_UDP)
+ return;
+ adapter->last_hw_offload = CSUM_UDP;
+ /*
+ * Start offset for header checksum calculation.
+ * End offset for header checksum calculation.
+ * Offset of place to put the checksum.
+ */
+ TXD = (struct e1000_context_desc *)
+ &adapter->tx_desc_base[curr_txd];
+ TXD->upper_setup.tcp_fields.tucss = hdr_len;
+ TXD->upper_setup.tcp_fields.tucse = htole16(0);
+ TXD->upper_setup.tcp_fields.tucso =
+ hdr_len + offsetof(struct udphdr, uh_sum);
+ }
+ /* Fall Thru */
+ }
+ default:
+ break;
+ }
+
+ if (TXD == NULL)
+ return;
+ TXD->tcp_seg_setup.data = htole32(0);
+ TXD->cmd_and_length =
+ htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT | cmd);
+ tx_buffer = &adapter->tx_buffer_area[curr_txd];
+ tx_buffer->m_head = NULL;
+ tx_buffer->next_eop = -1;
+
+ if (++curr_txd == adapter->num_tx_desc)
+ curr_txd = 0;
+
+ adapter->num_tx_desc_avail--;
+ adapter->next_avail_tx_desc = curr_txd;
+}
+
+
+/**********************************************************************
+ *
+ * Examine each tx_buffer in the used queue. If the hardware is done
+ * processing the packet then free associated resources. The
+ * tx_buffer is put back on the free queue.
+ *
+ **********************************************************************/
+static void
+lem_txeof(struct adapter *adapter)
+{
+ int first, last, done, num_avail;
+ struct em_buffer *tx_buffer;
+ struct e1000_tx_desc *tx_desc, *eop_desc;
+ struct ifnet *ifp = adapter->ifp;
+
+ EM_TX_LOCK_ASSERT(adapter);
+
+ if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
+ return;
+
+ num_avail = adapter->num_tx_desc_avail;
+ first = adapter->next_tx_to_clean;
+ tx_desc = &adapter->tx_desc_base[first];
+ tx_buffer = &adapter->tx_buffer_area[first];
+ last = tx_buffer->next_eop;
+ eop_desc = &adapter->tx_desc_base[last];
+
+ /*
+ * What this does is get the index of the
+ * first descriptor AFTER the EOP of the
+ * first packet, that way we can do the
+ * simple comparison on the inner while loop.
+ */
+ if (++last == adapter->num_tx_desc)
+ last = 0;
+ done = last;
+
+ bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
+ BUS_DMASYNC_POSTREAD);
+
+ while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
+ /* We clean the range of the packet */
+ while (first != done) {
+ tx_desc->upper.data = 0;
+ tx_desc->lower.data = 0;
+ tx_desc->buffer_addr = 0;
+ ++num_avail;
+
+ if (tx_buffer->m_head) {
+ ifp->if_opackets++;
+ bus_dmamap_sync(adapter->txtag,
+ tx_buffer->map,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(adapter->txtag,
+ tx_buffer->map);
+
+ m_freem(tx_buffer->m_head);
+ tx_buffer->m_head = NULL;
+ }
+ tx_buffer->next_eop = -1;
+ adapter->watchdog_time = ticks;
+
+ if (++first == adapter->num_tx_desc)
+ first = 0;
+
+ tx_buffer = &adapter->tx_buffer_area[first];
+ tx_desc = &adapter->tx_desc_base[first];
+ }
+ /* See if we can continue to the next packet */
+ last = tx_buffer->next_eop;
+ if (last != -1) {
+ eop_desc = &adapter->tx_desc_base[last];
+ /* Get new done point */
+ if (++last == adapter->num_tx_desc) last = 0;
+ done = last;
+ } else
+ break;
+ }
+ bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ adapter->next_tx_to_clean = first;
+ adapter->num_tx_desc_avail = num_avail;
+
+ /*
+ * If we have enough room, clear IFF_DRV_OACTIVE to
+ * tell the stack that it is OK to send packets.
+ * If there are no pending descriptors, clear the watchdog.
+ */
+ if (adapter->num_tx_desc_avail > EM_TX_CLEANUP_THRESHOLD) {
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+ if (adapter->num_tx_desc_avail == adapter->num_tx_desc) {
+ adapter->watchdog_check = FALSE;
+ return;
+ }
+ }
+}
+
+/*********************************************************************
+ *
+ * When Link is lost sometimes there is work still in the TX ring
+ * which may result in a watchdog, rather than allow that we do an
+ * attempted cleanup and then reinit here. Note that this has been
+ * seens mostly with fiber adapters.
+ *
+ **********************************************************************/
+static void
+lem_tx_purge(struct adapter *adapter)
+{
+ if ((!adapter->link_active) && (adapter->watchdog_check)) {
+ EM_TX_LOCK(adapter);
+ lem_txeof(adapter);
+ EM_TX_UNLOCK(adapter);
+ if (adapter->watchdog_check) /* Still outstanding? */
+ lem_init_locked(adapter);
+ }
+}
+
+/*********************************************************************
+ *
+ * Get a buffer from system mbuf buffer pool.
+ *
+ **********************************************************************/
+static int
+lem_get_buf(struct adapter *adapter, int i)
+{
+ struct mbuf *m;
+ bus_dma_segment_t segs[1];
+ bus_dmamap_t map;
+ struct em_buffer *rx_buffer;
+ int error, nsegs;
+
+ m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
+ if (m == NULL) {
+ adapter->mbuf_cluster_failed++;
+ return (ENOBUFS);
+ }
+ m->m_len = m->m_pkthdr.len = MCLBYTES;
+
+ if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
+ m_adj(m, ETHER_ALIGN);
+
+ /*
+ * Using memory from the mbuf cluster pool, invoke the
+ * bus_dma machinery to arrange the memory mapping.
+ */
+ error = bus_dmamap_load_mbuf_sg(adapter->rxtag,
+ adapter->rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
+ if (error != 0) {
+ m_free(m);
+ return (error);
+ }
+
+ /* If nsegs is wrong then the stack is corrupt. */
+ KASSERT(nsegs == 1, ("Too many segments returned!"));
+
+ rx_buffer = &adapter->rx_buffer_area[i];
+ if (rx_buffer->m_head != NULL)
+ bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
+
+ map = rx_buffer->map;
+ rx_buffer->map = adapter->rx_sparemap;
+ adapter->rx_sparemap = map;
+ bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
+ rx_buffer->m_head = m;
+
+ adapter->rx_desc_base[i].buffer_addr = htole64(segs[0].ds_addr);
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * Allocate memory for rx_buffer structures. Since we use one
+ * rx_buffer per received packet, the maximum number of rx_buffer's
+ * that we'll need is equal to the number of receive descriptors
+ * that we've allocated.
+ *
+ **********************************************************************/
+static int
+lem_allocate_receive_structures(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+ struct em_buffer *rx_buffer;
+ int i, error;
+
+ adapter->rx_buffer_area = malloc(sizeof(struct em_buffer) *
+ adapter->num_rx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
+ if (adapter->rx_buffer_area == NULL) {
+ device_printf(dev, "Unable to allocate rx_buffer memory\n");
+ return (ENOMEM);
+ }
+
+ error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
+ 1, 0, /* alignment, bounds */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ MCLBYTES, /* maxsize */
+ 1, /* nsegments */
+ MCLBYTES, /* maxsegsize */
+ 0, /* flags */
+ NULL, /* lockfunc */
+ NULL, /* lockarg */
+ &adapter->rxtag);
+ if (error) {
+ device_printf(dev, "%s: bus_dma_tag_create failed %d\n",
+ __func__, error);
+ goto fail;
+ }
+
+ /* Create the spare map (used by getbuf) */
+ error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
+ &adapter->rx_sparemap);
+ if (error) {
+ device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
+ __func__, error);
+ goto fail;
+ }
+
+ rx_buffer = adapter->rx_buffer_area;
+ for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
+ error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
+ &rx_buffer->map);
+ if (error) {
+ device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
+ __func__, error);
+ goto fail;
+ }
+ }
+
+ return (0);
+
+fail:
+ lem_free_receive_structures(adapter);
+ return (error);
+}
+
+/*********************************************************************
+ *
+ * (Re)initialize receive structures.
+ *
+ **********************************************************************/
+static int
+lem_setup_receive_structures(struct adapter *adapter)
+{
+ struct em_buffer *rx_buffer;
+ int i, error;
+
+ /* Reset descriptor ring */
+ bzero(adapter->rx_desc_base,
+ (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
+
+ /* Free current RX buffers. */
+ rx_buffer = adapter->rx_buffer_area;
+ for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
+ if (rx_buffer->m_head != NULL) {
+ bus_dmamap_sync(adapter->rxtag, rx_buffer->map,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
+ m_freem(rx_buffer->m_head);
+ rx_buffer->m_head = NULL;
+ }
+ }
+
+ /* Allocate new ones. */
+ for (i = 0; i < adapter->num_rx_desc; i++) {
+ error = lem_get_buf(adapter, i);
+ if (error)
+ return (error);
+ }
+
+ /* Setup our descriptor pointers */
+ adapter->next_rx_desc_to_check = 0;
+ bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ return (0);
+}
+
+/*********************************************************************
+ *
+ * Enable receive unit.
+ *
+ **********************************************************************/
+#define MAX_INTS_PER_SEC 8000
+#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
+
+static void
+lem_initialize_receive_unit(struct adapter *adapter)
+{
+ struct ifnet *ifp = adapter->ifp;
+ u64 bus_addr;
+ u32 rctl, rxcsum;
+
+ INIT_DEBUGOUT("lem_initialize_receive_unit: begin");
+
+ /*
+ * Make sure receives are disabled while setting
+ * up the descriptor ring
+ */
+ rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+
+ if (adapter->hw.mac.type >= e1000_82540) {
+ E1000_WRITE_REG(&adapter->hw, E1000_RADV,
+ adapter->rx_abs_int_delay.value);
+ /*
+ * Set the interrupt throttling rate. Value is calculated
+ * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
+ */
+ E1000_WRITE_REG(&adapter->hw, E1000_ITR, DEFAULT_ITR);
+ }
+
+ /*
+ ** When using MSIX interrupts we need to throttle
+ ** using the EITR register (82574 only)
+ */
+ if (adapter->msix)
+ for (int i = 0; i < 4; i++)
+ E1000_WRITE_REG(&adapter->hw,
+ E1000_EITR_82574(i), DEFAULT_ITR);
+
+ /* Disable accelerated ackknowledge */
+ if (adapter->hw.mac.type == e1000_82574)
+ E1000_WRITE_REG(&adapter->hw,
+ E1000_RFCTL, E1000_RFCTL_ACK_DIS);
+
+ /* Setup the Base and Length of the Rx Descriptor Ring */
+ bus_addr = adapter->rxdma.dma_paddr;
+ E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
+ adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
+ E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
+ (u32)(bus_addr >> 32));
+ E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
+ (u32)bus_addr);
+
+ /* Setup the Receive Control Register */
+ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+ E1000_RCTL_RDMTS_HALF |
+ (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+ /* Make sure VLAN Filters are off */
+ rctl &= ~E1000_RCTL_VFE;
+
+ if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
+ rctl |= E1000_RCTL_SBP;
+ else
+ rctl &= ~E1000_RCTL_SBP;
+
+ switch (adapter->rx_buffer_len) {
+ default:
+ case 2048:
+ rctl |= E1000_RCTL_SZ_2048;
+ break;
+ case 4096:
+ rctl |= E1000_RCTL_SZ_4096 |
+ E1000_RCTL_BSEX | E1000_RCTL_LPE;
+ break;
+ case 8192:
+ rctl |= E1000_RCTL_SZ_8192 |
+ E1000_RCTL_BSEX | E1000_RCTL_LPE;
+ break;
+ case 16384:
+ rctl |= E1000_RCTL_SZ_16384 |
+ E1000_RCTL_BSEX | E1000_RCTL_LPE;
+ break;
+ }
+
+ if (ifp->if_mtu > ETHERMTU)
+ rctl |= E1000_RCTL_LPE;
+ else
+ rctl &= ~E1000_RCTL_LPE;
+
+ /* Enable 82543 Receive Checksum Offload for TCP and UDP */
+ if ((adapter->hw.mac.type >= e1000_82543) &&
+ (ifp->if_capenable & IFCAP_RXCSUM)) {
+ rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
+ rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
+ E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
+ }
+
+ /* Enable Receives */
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
+
+ /*
+ * Setup the HW Rx Head and
+ * Tail Descriptor Pointers
+ */
+ E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
+ E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
+
+ return;
+}
+
+/*********************************************************************
+ *
+ * Free receive related data structures.
+ *
+ **********************************************************************/
+static void
+lem_free_receive_structures(struct adapter *adapter)
+{
+ struct em_buffer *rx_buffer;
+ int i;
+
+ INIT_DEBUGOUT("free_receive_structures: begin");
+
+ if (adapter->rx_sparemap) {
+ bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
+ adapter->rx_sparemap = NULL;
+ }
+
+ /* Cleanup any existing buffers */
+ if (adapter->rx_buffer_area != NULL) {
+ rx_buffer = adapter->rx_buffer_area;
+ for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
+ if (rx_buffer->m_head != NULL) {
+ bus_dmamap_sync(adapter->rxtag, rx_buffer->map,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(adapter->rxtag,
+ rx_buffer->map);
+ m_freem(rx_buffer->m_head);
+ rx_buffer->m_head = NULL;
+ } else if (rx_buffer->map != NULL)
+ bus_dmamap_unload(adapter->rxtag,
+ rx_buffer->map);
+ if (rx_buffer->map != NULL) {
+ bus_dmamap_destroy(adapter->rxtag,
+ rx_buffer->map);
+ rx_buffer->map = NULL;
+ }
+ }
+ }
+
+ if (adapter->rx_buffer_area != NULL) {
+ free(adapter->rx_buffer_area, M_DEVBUF);
+ adapter->rx_buffer_area = NULL;
+ }
+
+ if (adapter->rxtag != NULL) {
+ bus_dma_tag_destroy(adapter->rxtag);
+ adapter->rxtag = NULL;
+ }
+}
+
+/*********************************************************************
+ *
+ * This routine executes in interrupt context. It replenishes
+ * the mbufs in the descriptor and sends data which has been
+ * dma'ed into host memory to upper layer.
+ *
+ * We loop at most count times if count is > 0, or until done if
+ * count < 0.
+ *
+ * For polling we also now return the number of cleaned packets
+ *********************************************************************/
+static bool
+lem_rxeof(struct adapter *adapter, int count, int *done)
+{
+ struct ifnet *ifp = adapter->ifp;;
+ struct mbuf *mp;
+ u8 status = 0, accept_frame = 0, eop = 0;
+ u16 len, desc_len, prev_len_adj;
+ int i, rx_sent = 0;
+ struct e1000_rx_desc *current_desc;
+
+ EM_RX_LOCK(adapter);
+ i = adapter->next_rx_desc_to_check;
+ current_desc = &adapter->rx_desc_base[i];
+ bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
+ BUS_DMASYNC_POSTREAD);
+
+ if (!((current_desc->status) & E1000_RXD_STAT_DD)) {
+ if (done != NULL)
+ *done = rx_sent;
+ EM_RX_UNLOCK(adapter);
+ return (FALSE);
+ }
+
+ while (count != 0 && ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ struct mbuf *m = NULL;
+
+ status = current_desc->status;
+ if ((status & E1000_RXD_STAT_DD) == 0)
+ break;
+
+ mp = adapter->rx_buffer_area[i].m_head;
+ /*
+ * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
+ * needs to access the last received byte in the mbuf.
+ */
+ bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
+ BUS_DMASYNC_POSTREAD);
+
+ accept_frame = 1;
+ prev_len_adj = 0;
+ desc_len = le16toh(current_desc->length);
+ if (status & E1000_RXD_STAT_EOP) {
+ count--;
+ eop = 1;
+ if (desc_len < ETHER_CRC_LEN) {
+ len = 0;
+ prev_len_adj = ETHER_CRC_LEN - desc_len;
+ } else
+ len = desc_len - ETHER_CRC_LEN;
+ } else {
+ eop = 0;
+ len = desc_len;
+ }
+
+ if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
+ u8 last_byte;
+ u32 pkt_len = desc_len;
+
+ if (adapter->fmp != NULL)
+ pkt_len += adapter->fmp->m_pkthdr.len;
+
+ last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
+ if (TBI_ACCEPT(&adapter->hw, status,
+ current_desc->errors, pkt_len, last_byte,
+ adapter->min_frame_size, adapter->max_frame_size)) {
+ e1000_tbi_adjust_stats_82543(&adapter->hw,
+ &adapter->stats, pkt_len,
+ adapter->hw.mac.addr,
+ adapter->max_frame_size);
+ if (len > 0)
+ len--;
+ } else
+ accept_frame = 0;
+ }
+
+ if (accept_frame) {
+ if (lem_get_buf(adapter, i) != 0) {
+ ifp->if_iqdrops++;
+ goto discard;
+ }
+
+ /* Assign correct length to the current fragment */
+ mp->m_len = len;
+
+ if (adapter->fmp == NULL) {
+ mp->m_pkthdr.len = len;
+ adapter->fmp = mp; /* Store the first mbuf */
+ adapter->lmp = mp;
+ } else {
+ /* Chain mbuf's together */
+ mp->m_flags &= ~M_PKTHDR;
+ /*
+ * Adjust length of previous mbuf in chain if
+ * we received less than 4 bytes in the last
+ * descriptor.
+ */
+ if (prev_len_adj > 0) {
+ adapter->lmp->m_len -= prev_len_adj;
+ adapter->fmp->m_pkthdr.len -=
+ prev_len_adj;
+ }
+ adapter->lmp->m_next = mp;
+ adapter->lmp = adapter->lmp->m_next;
+ adapter->fmp->m_pkthdr.len += len;
+ }
+
+ if (eop) {
+ adapter->fmp->m_pkthdr.rcvif = ifp;
+ ifp->if_ipackets++;
+ lem_receive_checksum(adapter, current_desc,
+ adapter->fmp);
+#ifndef __NO_STRICT_ALIGNMENT
+ if (adapter->max_frame_size >
+ (MCLBYTES - ETHER_ALIGN) &&
+ lem_fixup_rx(adapter) != 0)
+ goto skip;
+#endif
+ if (status & E1000_RXD_STAT_VP) {
+ adapter->fmp->m_pkthdr.ether_vtag =
+ (le16toh(current_desc->special) &
+ E1000_RXD_SPC_VLAN_MASK);
+ adapter->fmp->m_flags |= M_VLANTAG;
+ }
+#ifndef __NO_STRICT_ALIGNMENT
+skip:
+#endif
+ m = adapter->fmp;
+ adapter->fmp = NULL;
+ adapter->lmp = NULL;
+ }
+ } else {
+ ifp->if_ierrors++;
+discard:
+ /* Reuse loaded DMA map and just update mbuf chain */
+ mp = adapter->rx_buffer_area[i].m_head;
+ mp->m_len = mp->m_pkthdr.len = MCLBYTES;
+ mp->m_data = mp->m_ext.ext_buf;
+ mp->m_next = NULL;
+ if (adapter->max_frame_size <=
+ (MCLBYTES - ETHER_ALIGN))
+ m_adj(mp, ETHER_ALIGN);
+ if (adapter->fmp != NULL) {
+ m_freem(adapter->fmp);
+ adapter->fmp = NULL;
+ adapter->lmp = NULL;
+ }
+ m = NULL;
+ }
+
+ /* Zero out the receive descriptors status. */
+ current_desc->status = 0;
+ bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ /* Advance our pointers to the next descriptor. */
+ if (++i == adapter->num_rx_desc)
+ i = 0;
+ /* Call into the stack */
+ if (m != NULL) {
+ adapter->next_rx_desc_to_check = i;
+ EM_RX_UNLOCK(adapter);
+ (*ifp->if_input)(ifp, m);
+ EM_RX_LOCK(adapter);
+ rx_sent++;
+ i = adapter->next_rx_desc_to_check;
+ }
+ current_desc = &adapter->rx_desc_base[i];
+ }
+ adapter->next_rx_desc_to_check = i;
+
+ /* Advance the E1000's Receive Queue #0 "Tail Pointer". */
+ if (--i < 0)
+ i = adapter->num_rx_desc - 1;
+ E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
+ if (done != NULL)
+ *done = rx_sent;
+ EM_RX_UNLOCK(adapter);
+ return ((status & E1000_RXD_STAT_DD) ? TRUE : FALSE);
+}
+
+#ifndef __NO_STRICT_ALIGNMENT
+/*
+ * When jumbo frames are enabled we should realign entire payload on
+ * architecures with strict alignment. This is serious design mistake of 8254x
+ * as it nullifies DMA operations. 8254x just allows RX buffer size to be
+ * 2048/4096/8192/16384. What we really want is 2048 - ETHER_ALIGN to align its
+ * payload. On architecures without strict alignment restrictions 8254x still
+ * performs unaligned memory access which would reduce the performance too.
+ * To avoid copying over an entire frame to align, we allocate a new mbuf and
+ * copy ethernet header to the new mbuf. The new mbuf is prepended into the
+ * existing mbuf chain.
+ *
+ * Be aware, best performance of the 8254x is achived only when jumbo frame is
+ * not used at all on architectures with strict alignment.
+ */
+static int
+lem_fixup_rx(struct adapter *adapter)
+{
+ struct mbuf *m, *n;
+ int error;
+
+ error = 0;
+ m = adapter->fmp;
+ if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
+ bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
+ m->m_data += ETHER_HDR_LEN;
+ } else {
+ MGETHDR(n, M_DONTWAIT, MT_DATA);
+ if (n != NULL) {
+ bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
+ m->m_data += ETHER_HDR_LEN;
+ m->m_len -= ETHER_HDR_LEN;
+ n->m_len = ETHER_HDR_LEN;
+ M_MOVE_PKTHDR(n, m);
+ n->m_next = m;
+ adapter->fmp = n;
+ } else {
+ adapter->dropped_pkts++;
+ m_freem(adapter->fmp);
+ adapter->fmp = NULL;
+ error = ENOMEM;
+ }
+ }
+
+ return (error);
+}
+#endif
+
+/*********************************************************************
+ *
+ * Verify that the hardware indicated that the checksum is valid.
+ * Inform the stack about the status of checksum so that stack
+ * doesn't spend time verifying the checksum.
+ *
+ *********************************************************************/
+static void
+lem_receive_checksum(struct adapter *adapter,
+ struct e1000_rx_desc *rx_desc, struct mbuf *mp)
+{
+ /* 82543 or newer only */
+ if ((adapter->hw.mac.type < e1000_82543) ||
+ /* Ignore Checksum bit is set */
+ (rx_desc->status & E1000_RXD_STAT_IXSM)) {
+ mp->m_pkthdr.csum_flags = 0;
+ return;
+ }
+
+ if (rx_desc->status & E1000_RXD_STAT_IPCS) {
+ /* Did it pass? */
+ if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
+ /* IP Checksum Good */
+ mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
+ mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
+
+ } else {
+ mp->m_pkthdr.csum_flags = 0;
+ }
+ }
+
+ if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
+ /* Did it pass? */
+ if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
+ mp->m_pkthdr.csum_flags |=
+ (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
+ mp->m_pkthdr.csum_data = htons(0xffff);
+ }
+ }
+}
+
+/*
+ * This routine is run via an vlan
+ * config EVENT
+ */
+static void
+lem_register_vlan(void *arg, struct ifnet *ifp, u16 vtag)
+{
+ struct adapter *adapter = ifp->if_softc;
+ u32 index, bit;
+
+ if (ifp->if_softc != arg) /* Not our event */
+ return;
+
+ if ((vtag == 0) || (vtag > 4095)) /* Invalid ID */
+ return;
+
+ EM_CORE_LOCK(adapter);
+ index = (vtag >> 5) & 0x7F;
+ bit = vtag & 0x1F;
+ adapter->shadow_vfta[index] |= (1 << bit);
+ ++adapter->num_vlans;
+ /* Re-init to load the changes */
+ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
+ lem_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
+}
+
+/*
+ * This routine is run via an vlan
+ * unconfig EVENT
+ */
+static void
+lem_unregister_vlan(void *arg, struct ifnet *ifp, u16 vtag)
+{
+ struct adapter *adapter = ifp->if_softc;
+ u32 index, bit;
+
+ if (ifp->if_softc != arg)
+ return;
+
+ if ((vtag == 0) || (vtag > 4095)) /* Invalid */
+ return;
+
+ EM_CORE_LOCK(adapter);
+ index = (vtag >> 5) & 0x7F;
+ bit = vtag & 0x1F;
+ adapter->shadow_vfta[index] &= ~(1 << bit);
+ --adapter->num_vlans;
+ /* Re-init to load the changes */
+ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
+ lem_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
+}
+
+static void
+lem_setup_vlan_hw_support(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ u32 reg;
+
+ /*
+ ** We get here thru init_locked, meaning
+ ** a soft reset, this has already cleared
+ ** the VFTA and other state, so if there
+ ** have been no vlan's registered do nothing.
+ */
+ if (adapter->num_vlans == 0)
+ return;
+
+ /*
+ ** A soft reset zero's out the VFTA, so
+ ** we need to repopulate it now.
+ */
+ for (int i = 0; i < EM_VFTA_SIZE; i++)
+ if (adapter->shadow_vfta[i] != 0)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
+ i, adapter->shadow_vfta[i]);
+
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg |= E1000_CTRL_VME;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+ /* Enable the Filter Table */
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ reg &= ~E1000_RCTL_CFIEN;
+ reg |= E1000_RCTL_VFE;
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+
+ /* Update the frame size */
+ E1000_WRITE_REG(&adapter->hw, E1000_RLPML,
+ adapter->max_frame_size + VLAN_TAG_SIZE);
+}
+
+static void
+lem_enable_intr(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ u32 ims_mask = IMS_ENABLE_MASK;
+
+ if (adapter->msix) {
+ E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
+ ims_mask |= EM_MSIX_MASK;
+ }
+ E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
+}
+
+static void
+lem_disable_intr(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+
+ if (adapter->msix)
+ E1000_WRITE_REG(hw, EM_EIAC, 0);
+ E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
+}
+
+/*
+ * Bit of a misnomer, what this really means is
+ * to enable OS management of the system... aka
+ * to disable special hardware management features
+ */
+static void
+lem_init_manageability(struct adapter *adapter)
+{
+ /* A shared code workaround */
+ if (adapter->has_manage) {
+ int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
+ /* disable hardware interception of ARP */
+ manc &= ~(E1000_MANC_ARP_EN);
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
+ }
+}
+
+/*
+ * Give control back to hardware management
+ * controller if there is one.
+ */
+static void
+lem_release_manageability(struct adapter *adapter)
+{
+ if (adapter->has_manage) {
+ int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
+
+ /* re-enable hardware interception of ARP */
+ manc |= E1000_MANC_ARP_EN;
+ E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
+ }
+}
+
+/*
+ * lem_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means
+ * that the driver is loaded. For AMT version type f/w
+ * this means that the network i/f is open.
+ */
+static void
+lem_get_hw_control(struct adapter *adapter)
+{
+ u32 ctrl_ext;
+
+ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
+ ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+ return;
+}
+
+/*
+ * lem_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that
+ * the driver is no longer loaded. For AMT versions of the
+ * f/w this means that the network i/f is closed.
+ */
+static void
+lem_release_hw_control(struct adapter *adapter)
+{
+ u32 ctrl_ext;
+
+ if (!adapter->has_manage)
+ return;
+
+ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
+ ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+ return;
+}
+
+static int
+lem_is_valid_ether_addr(u8 *addr)
+{
+ char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
+
+ if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
+ return (FALSE);
+ }
+
+ return (TRUE);
+}
+
+/*
+** Parse the interface capabilities with regard
+** to both system management and wake-on-lan for
+** later use.
+*/
+static void
+lem_get_wakeup(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+ u16 eeprom_data = 0, device_id, apme_mask;
+
+ adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
+ apme_mask = EM_EEPROM_APME;
+
+ switch (adapter->hw.mac.type) {
+ case e1000_82542:
+ case e1000_82543:
+ break;
+ case e1000_82544:
+ e1000_read_nvm(&adapter->hw,
+ NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
+ apme_mask = EM_82544_APME;
+ break;
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ if (adapter->hw.bus.func == 1) {
+ e1000_read_nvm(&adapter->hw,
+ NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
+ break;
+ } else
+ e1000_read_nvm(&adapter->hw,
+ NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+ break;
+ default:
+ e1000_read_nvm(&adapter->hw,
+ NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+ break;
+ }
+ if (eeprom_data & apme_mask)
+ adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
+ /*
+ * We have the eeprom settings, now apply the special cases
+ * where the eeprom may be wrong or the board won't support
+ * wake on lan on a particular port
+ */
+ device_id = pci_get_device(dev);
+ switch (device_id) {
+ case E1000_DEV_ID_82546GB_PCIE:
+ adapter->wol = 0;
+ break;
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546GB_FIBER:
+ /* Wake events only supported on port A for dual fiber
+ * regardless of eeprom setting */
+ if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
+ E1000_STATUS_FUNC_1)
+ adapter->wol = 0;
+ break;
+ case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+ /* if quad port adapter, disable WoL on all but port A */
+ if (global_quad_port_a != 0)
+ adapter->wol = 0;
+ /* Reset for multiple quad port adapters */
+ if (++global_quad_port_a == 4)
+ global_quad_port_a = 0;
+ break;
+ }
+ return;
+}
+
+
+/*
+ * Enable PCI Wake On Lan capability
+ */
+static void
+lem_enable_wakeup(device_t dev)
+{
+ struct adapter *adapter = device_get_softc(dev);
+ struct ifnet *ifp = adapter->ifp;
+ u32 pmc, ctrl, ctrl_ext, rctl;
+ u16 status;
+
+ if ((pci_find_extcap(dev, PCIY_PMG, &pmc) != 0))
+ return;
+
+ /* Advertise the wakeup capability */
+ ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
+
+ /* Keep the laser running on Fiber adapters */
+ if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
+ adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
+ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
+ }
+
+ /*
+ ** Determine type of Wakeup: note that wol
+ ** is set with all bits on by default.
+ */
+ if ((ifp->if_capenable & IFCAP_WOL_MAGIC) == 0)
+ adapter->wol &= ~E1000_WUFC_MAG;
+
+ if ((ifp->if_capenable & IFCAP_WOL_MCAST) == 0)
+ adapter->wol &= ~E1000_WUFC_MC;
+ else {
+ rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
+ rctl |= E1000_RCTL_MPE;
+ E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
+ }
+
+ if (adapter->hw.mac.type == e1000_pchlan) {
+ if (lem_enable_phy_wakeup(adapter))
+ return;
+ } else {
+ E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
+ E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
+ }
+
+
+ /* Request PME */
+ status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
+ status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
+ if (ifp->if_capenable & IFCAP_WOL)
+ status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
+ pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
+
+ return;
+}
+
+/*
+** WOL in the newer chipset interfaces (pchlan)
+** require thing to be copied into the phy
+*/
+static int
+lem_enable_phy_wakeup(struct adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ u32 mreg, ret = 0;
+ u16 preg;
+
+ /* copy MAC RARs to PHY RARs */
+ for (int i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
+ mreg = E1000_READ_REG(hw, E1000_RAL(i));
+ e1000_write_phy_reg(hw, BM_RAR_L(i), (u16)(mreg & 0xFFFF));
+ e1000_write_phy_reg(hw, BM_RAR_M(i),
+ (u16)((mreg >> 16) & 0xFFFF));
+ mreg = E1000_READ_REG(hw, E1000_RAH(i));
+ e1000_write_phy_reg(hw, BM_RAR_H(i), (u16)(mreg & 0xFFFF));
+ e1000_write_phy_reg(hw, BM_RAR_CTRL(i),
+ (u16)((mreg >> 16) & 0xFFFF));
+ }
+
+ /* copy MAC MTA to PHY MTA */
+ for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
+ mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
+ e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
+ e1000_write_phy_reg(hw, BM_MTA(i) + 1,
+ (u16)((mreg >> 16) & 0xFFFF));
+ }
+
+ /* configure PHY Rx Control register */
+ e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
+ mreg = E1000_READ_REG(hw, E1000_RCTL);
+ if (mreg & E1000_RCTL_UPE)
+ preg |= BM_RCTL_UPE;
+ if (mreg & E1000_RCTL_MPE)
+ preg |= BM_RCTL_MPE;
+ preg &= ~(BM_RCTL_MO_MASK);
+ if (mreg & E1000_RCTL_MO_3)
+ preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
+ << BM_RCTL_MO_SHIFT);
+ if (mreg & E1000_RCTL_BAM)
+ preg |= BM_RCTL_BAM;
+ if (mreg & E1000_RCTL_PMCF)
+ preg |= BM_RCTL_PMCF;
+ mreg = E1000_READ_REG(hw, E1000_CTRL);
+ if (mreg & E1000_CTRL_RFCE)
+ preg |= BM_RCTL_RFCE;
+ e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
+
+ /* enable PHY wakeup in MAC register */
+ E1000_WRITE_REG(hw, E1000_WUC,
+ E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
+ E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
+
+ /* configure and enable PHY wakeup in PHY registers */
+ e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
+ e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
+
+ /* activate PHY wakeup */
+ ret = hw->phy.ops.acquire(hw);
+ if (ret) {
+ printf("Could not acquire PHY\n");
+ return ret;
+ }
+ e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+ (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+ ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
+ if (ret) {
+ printf("Could not read PHY page 769\n");
+ goto out;
+ }
+ preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
+ ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
+ if (ret)
+ printf("Could not set PHY Host Wakeup bit\n");
+out:
+ hw->phy.ops.release(hw);
+
+ return ret;
+}
+
+static void
+lem_led_func(void *arg, int onoff)
+{
+ struct adapter *adapter = arg;
+
+ EM_CORE_LOCK(adapter);
+ if (onoff) {
+ e1000_setup_led(&adapter->hw);
+ e1000_led_on(&adapter->hw);
+ } else {
+ e1000_led_off(&adapter->hw);
+ e1000_cleanup_led(&adapter->hw);
+ }
+ EM_CORE_UNLOCK(adapter);
+}
+
+/*********************************************************************
+* 82544 Coexistence issue workaround.
+* There are 2 issues.
+* 1. Transmit Hang issue.
+* To detect this issue, following equation can be used...
+* SIZE[3:0] + ADDR[2:0] = SUM[3:0].
+* If SUM[3:0] is in between 1 to 4, we will have this issue.
+*
+* 2. DAC issue.
+* To detect this issue, following equation can be used...
+* SIZE[3:0] + ADDR[2:0] = SUM[3:0].
+* If SUM[3:0] is in between 9 to c, we will have this issue.
+*
+*
+* WORKAROUND:
+* Make sure we do not have ending address
+* as 1,2,3,4(Hang) or 9,a,b,c (DAC)
+*
+*************************************************************************/
+static u32
+lem_fill_descriptors (bus_addr_t address, u32 length,
+ PDESC_ARRAY desc_array)
+{
+ u32 safe_terminator;
+
+ /* Since issue is sensitive to length and address.*/
+ /* Let us first check the address...*/
+ if (length <= 4) {
+ desc_array->descriptor[0].address = address;
+ desc_array->descriptor[0].length = length;
+ desc_array->elements = 1;
+ return (desc_array->elements);
+ }
+ safe_terminator = (u32)((((u32)address & 0x7) +
+ (length & 0xF)) & 0xF);
+ /* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
+ if (safe_terminator == 0 ||
+ (safe_terminator > 4 &&
+ safe_terminator < 9) ||
+ (safe_terminator > 0xC &&
+ safe_terminator <= 0xF)) {
+ desc_array->descriptor[0].address = address;
+ desc_array->descriptor[0].length = length;
+ desc_array->elements = 1;
+ return (desc_array->elements);
+ }
+
+ desc_array->descriptor[0].address = address;
+ desc_array->descriptor[0].length = length - 4;
+ desc_array->descriptor[1].address = address + (length - 4);
+ desc_array->descriptor[1].length = 4;
+ desc_array->elements = 2;
+ return (desc_array->elements);
+}
+
+/**********************************************************************
+ *
+ * Update the board statistics counters.
+ *
+ **********************************************************************/
+static void
+lem_update_stats_counters(struct adapter *adapter)
+{
+ struct ifnet *ifp;
+
+ if(adapter->hw.phy.media_type == e1000_media_type_copper ||
+ (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
+ adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
+ adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
+ }
+ adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
+ adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
+ adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
+ adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
+
+ adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
+ adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
+ adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
+ adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
+ adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
+ adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
+ adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
+ adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
+ adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
+ adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
+ adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
+ adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
+ adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
+ adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
+ adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
+ adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
+ adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
+ adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
+ adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
+ adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
+
+ /* For the 64-bit byte counters the low dword must be read first. */
+ /* Both registers clear on the read of the high dword */
+
+ adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
+ ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
+ adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
+ ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
+
+ adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
+ adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
+ adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
+ adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
+ adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
+
+ adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
+ adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
+
+ adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
+ adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
+ adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
+ adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
+ adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
+ adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
+ adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
+ adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
+ adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
+ adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
+
+ if (adapter->hw.mac.type >= e1000_82543) {
+ adapter->stats.algnerrc +=
+ E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
+ adapter->stats.rxerrc +=
+ E1000_READ_REG(&adapter->hw, E1000_RXERRC);
+ adapter->stats.tncrs +=
+ E1000_READ_REG(&adapter->hw, E1000_TNCRS);
+ adapter->stats.cexterr +=
+ E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
+ adapter->stats.tsctc +=
+ E1000_READ_REG(&adapter->hw, E1000_TSCTC);
+ adapter->stats.tsctfc +=
+ E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
+ }
+ ifp = adapter->ifp;
+
+ ifp->if_collisions = adapter->stats.colc;
+
+ /* Rx Errors */
+ ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc +
+ adapter->stats.crcerrs + adapter->stats.algnerrc +
+ adapter->stats.ruc + adapter->stats.roc +
+ adapter->stats.mpc + adapter->stats.cexterr;
+
+ /* Tx Errors */
+ ifp->if_oerrors = adapter->stats.ecol +
+ adapter->stats.latecol + adapter->watchdog_events;
+}
+
+/* Export a single 32-bit register via a read-only sysctl. */
+static int
+lem_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
+{
+ struct adapter *adapter;
+ u_int val;
+
+ adapter = oidp->oid_arg1;
+ val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
+ return (sysctl_handle_int(oidp, &val, 0, req));
+}
+
+/*
+ * Add sysctl variables, one per statistic, to the system.
+ */
+static void
+lem_add_hw_stats(struct adapter *adapter)
+{
+ device_t dev = adapter->dev;
+
+ struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
+ struct sysctl_oid *tree = device_get_sysctl_tree(dev);
+ struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
+ struct e1000_hw_stats *stats = &adapter->stats;
+
+ struct sysctl_oid *stat_node;
+ struct sysctl_oid_list *stat_list;
+
+ /* Driver Statistics */
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_alloc_fail",
+ CTLFLAG_RD, &adapter->mbuf_alloc_failed,
+ "Std mbuf failed");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "cluster_alloc_fail",
+ CTLFLAG_RD, &adapter->mbuf_cluster_failed,
+ "Std mbuf cluster failed");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
+ CTLFLAG_RD, &adapter->dropped_pkts,
+ "Driver dropped packets");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail",
+ CTLFLAG_RD, &adapter->no_tx_dma_setup,
+ "Driver tx dma failure in xmit");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_desc_fail1",
+ CTLFLAG_RD, &adapter->no_tx_desc_avail1,
+ "Not enough tx descriptors failure in xmit");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_desc_fail2",
+ CTLFLAG_RD, &adapter->no_tx_desc_avail2,
+ "Not enough tx descriptors failure in xmit");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
+ CTLFLAG_RD, &adapter->rx_overruns,
+ "RX overruns");
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
+ CTLFLAG_RD, &adapter->watchdog_events,
+ "Watchdog timeouts");
+
+ SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
+ CTLFLAG_RD, adapter, E1000_CTRL,
+ lem_sysctl_reg_handler, "IU",
+ "Device Control Register");
+ SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
+ CTLFLAG_RD, adapter, E1000_RCTL,
+ lem_sysctl_reg_handler, "IU",
+ "Receiver Control Register");
+ SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
+ CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
+ "Flow Control High Watermark");
+ SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
+ CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
+ "Flow Control Low Watermark");
+ SYSCTL_ADD_QUAD(ctx, child, OID_AUTO, "fifo_workaround",
+ CTLFLAG_RD, &adapter->tx_fifo_wrk_cnt,
+ "TX FIFO workaround events");
+ SYSCTL_ADD_QUAD(ctx, child, OID_AUTO, "fifo_reset",
+ CTLFLAG_RD, &adapter->tx_fifo_reset_cnt,
+ "TX FIFO resets");
+
+ SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "txd_head",
+ CTLFLAG_RD, adapter, E1000_TDH(0),
+ lem_sysctl_reg_handler, "IU",
+ "Transmit Descriptor Head");
+ SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "txd_tail",
+ CTLFLAG_RD, adapter, E1000_TDT(0),
+ lem_sysctl_reg_handler, "IU",
+ "Transmit Descriptor Tail");
+ SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rxd_head",
+ CTLFLAG_RD, adapter, E1000_RDH(0),
+ lem_sysctl_reg_handler, "IU",
+ "Receive Descriptor Head");
+ SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rxd_tail",
+ CTLFLAG_RD, adapter, E1000_RDT(0),
+ lem_sysctl_reg_handler, "IU",
+ "Receive Descriptor Tail");
+
+
+ /* MAC stats get their own sub node */
+
+ stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
+ CTLFLAG_RD, NULL, "Statistics");
+ stat_list = SYSCTL_CHILDREN(stat_node);
+
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "excess_coll",
+ CTLFLAG_RD, &stats->ecol,
+ "Excessive collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "single_coll",
+ CTLFLAG_RD, &stats->scc,
+ "Single collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
+ CTLFLAG_RD, &stats->mcc,
+ "Multiple collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "late_coll",
+ CTLFLAG_RD, &stats->latecol,
+ "Late collisions");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "collision_count",
+ CTLFLAG_RD, &stats->colc,
+ "Collision Count");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
+ CTLFLAG_RD, &adapter->stats.symerrs,
+ "Symbol Errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
+ CTLFLAG_RD, &adapter->stats.sec,
+ "Sequence Errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "defer_count",
+ CTLFLAG_RD, &adapter->stats.dc,
+ "Defer Count");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "missed_packets",
+ CTLFLAG_RD, &adapter->stats.mpc,
+ "Missed Packets");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
+ CTLFLAG_RD, &adapter->stats.rnbc,
+ "Receive No Buffers");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
+ CTLFLAG_RD, &adapter->stats.ruc,
+ "Receive Undersize");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
+ CTLFLAG_RD, &adapter->stats.rfc,
+ "Fragmented Packets Received ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
+ CTLFLAG_RD, &adapter->stats.roc,
+ "Oversized Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
+ CTLFLAG_RD, &adapter->stats.rjc,
+ "Recevied Jabber");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_errs",
+ CTLFLAG_RD, &adapter->stats.rxerrc,
+ "Receive Errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "crc_errs",
+ CTLFLAG_RD, &adapter->stats.crcerrs,
+ "CRC errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
+ CTLFLAG_RD, &adapter->stats.algnerrc,
+ "Alignment Errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
+ CTLFLAG_RD, &adapter->stats.cexterr,
+ "Collision/Carrier extension errors");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
+ CTLFLAG_RD, &adapter->stats.xonrxc,
+ "XON Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_txd",
+ CTLFLAG_RD, &adapter->stats.xontxc,
+ "XON Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
+ CTLFLAG_RD, &adapter->stats.xoffrxc,
+ "XOFF Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
+ CTLFLAG_RD, &adapter->stats.xofftxc,
+ "XOFF Transmitted");
+
+ /* Packet Reception Stats */
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
+ CTLFLAG_RD, &adapter->stats.tpr,
+ "Total Packets Received ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
+ CTLFLAG_RD, &adapter->stats.gprc,
+ "Good Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
+ CTLFLAG_RD, &adapter->stats.bprc,
+ "Broadcast Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
+ CTLFLAG_RD, &adapter->stats.mprc,
+ "Multicast Packets Received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
+ CTLFLAG_RD, &adapter->stats.prc64,
+ "64 byte frames received ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
+ CTLFLAG_RD, &adapter->stats.prc127,
+ "65-127 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
+ CTLFLAG_RD, &adapter->stats.prc255,
+ "128-255 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
+ CTLFLAG_RD, &adapter->stats.prc511,
+ "256-511 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
+ CTLFLAG_RD, &adapter->stats.prc1023,
+ "512-1023 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
+ CTLFLAG_RD, &adapter->stats.prc1522,
+ "1023-1522 byte frames received");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
+ CTLFLAG_RD, &adapter->stats.gorc,
+ "Good Octets Received");
+
+ /* Packet Transmission Stats */
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
+ CTLFLAG_RD, &adapter->stats.gotc,
+ "Good Octets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
+ CTLFLAG_RD, &adapter->stats.tpt,
+ "Total Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
+ CTLFLAG_RD, &adapter->stats.gptc,
+ "Good Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
+ CTLFLAG_RD, &adapter->stats.bptc,
+ "Broadcast Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
+ CTLFLAG_RD, &adapter->stats.mptc,
+ "Multicast Packets Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
+ CTLFLAG_RD, &adapter->stats.ptc64,
+ "64 byte frames transmitted ");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
+ CTLFLAG_RD, &adapter->stats.ptc127,
+ "65-127 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
+ CTLFLAG_RD, &adapter->stats.ptc255,
+ "128-255 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
+ CTLFLAG_RD, &adapter->stats.ptc511,
+ "256-511 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
+ CTLFLAG_RD, &adapter->stats.ptc1023,
+ "512-1023 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
+ CTLFLAG_RD, &adapter->stats.ptc1522,
+ "1024-1522 byte frames transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_txd",
+ CTLFLAG_RD, &adapter->stats.tsctc,
+ "TSO Contexts Transmitted");
+ SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
+ CTLFLAG_RD, &adapter->stats.tsctfc,
+ "TSO Contexts Failed");
+}
+
+/**********************************************************************
+ *
+ * This routine provides a way to dump out the adapter eeprom,
+ * often a useful debug/service tool. This only dumps the first
+ * 32 words, stuff that matters is in that extent.
+ *
+ **********************************************************************/
+
+static int
+lem_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
+{
+ struct adapter *adapter;
+ int error;
+ int result;
+
+ result = -1;
+ error = sysctl_handle_int(oidp, &result, 0, req);
+
+ if (error || !req->newptr)
+ return (error);
+
+ /*
+ * This value will cause a hex dump of the
+ * first 32 16-bit words of the EEPROM to
+ * the screen.
+ */
+ if (result == 1) {
+ adapter = (struct adapter *)arg1;
+ lem_print_nvm_info(adapter);
+ }
+
+ return (error);
+}
+
+static void
+lem_print_nvm_info(struct adapter *adapter)
+{
+ u16 eeprom_data;
+ int i, j, row = 0;
+
+ /* Its a bit crude, but it gets the job done */
+ printf("\nInterface EEPROM Dump:\n");
+ printf("Offset\n0x0000 ");
+ for (i = 0, j = 0; i < 32; i++, j++) {
+ if (j == 8) { /* Make the offset block */
+ j = 0; ++row;
+ printf("\n0x00%x0 ",row);
+ }
+ e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
+ printf("%04x ", eeprom_data);
+ }
+ printf("\n");
+}
+
+static int
+lem_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
+{
+ struct em_int_delay_info *info;
+ struct adapter *adapter;
+ u32 regval;
+ int error;
+ int usecs;
+ int ticks;
+
+ info = (struct em_int_delay_info *)arg1;
+ usecs = info->value;
+ error = sysctl_handle_int(oidp, &usecs, 0, req);
+ if (error != 0 || req->newptr == NULL)
+ return (error);
+ if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
+ return (EINVAL);
+ info->value = usecs;
+ ticks = EM_USECS_TO_TICKS(usecs);
+
+ adapter = info->adapter;
+
+ EM_CORE_LOCK(adapter);
+ regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
+ regval = (regval & ~0xffff) | (ticks & 0xffff);
+ /* Handle a few special cases. */
+ switch (info->offset) {
+ case E1000_RDTR:
+ break;
+ case E1000_TIDV:
+ if (ticks == 0) {
+ adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
+ /* Don't write 0 into the TIDV register. */
+ regval++;
+ } else
+ adapter->txd_cmd |= E1000_TXD_CMD_IDE;
+ break;
+ }
+ E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
+ EM_CORE_UNLOCK(adapter);
+ return (0);
+}
+
+static void
+lem_add_int_delay_sysctl(struct adapter *adapter, const char *name,
+ const char *description, struct em_int_delay_info *info,
+ int offset, int value)
+{
+ info->adapter = adapter;
+ info->offset = offset;
+ info->value = value;
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
+ OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
+ info, 0, lem_sysctl_int_delay, "I", description);
+}
+
+static void
+lem_set_flow_cntrl(struct adapter *adapter, const char *name,
+ const char *description, int *limit, int value)
+{
+ *limit = value;
+ SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
+ OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
+}
+
+#ifndef EM_LEGACY_IRQ
+static void
+lem_add_rx_process_limit(struct adapter *adapter, const char *name,
+ const char *description, int *limit, int value)
+{
+ *limit = value;
+ SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
+ OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
+}
+#endif
diff --git a/freebsd/dev/e1000/if_lem.h b/freebsd/dev/e1000/if_lem.h
new file mode 100644
index 00000000..21287b61
--- /dev/null
+++ b/freebsd/dev/e1000/if_lem.h
@@ -0,0 +1,492 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2010, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+
+#ifndef _LEM_HH_DEFINED_
+#define _LEM_HH_DEFINED_
+
+
+/* Tunables */
+
+/*
+ * EM_TXD: Maximum number of Transmit Descriptors
+ * Valid Range: 80-256 for 82542 and 82543-based adapters
+ * 80-4096 for others
+ * Default Value: 256
+ * This value is the number of transmit descriptors allocated by the driver.
+ * Increasing this value allows the driver to queue more transmits. Each
+ * descriptor is 16 bytes.
+ * Since TDLEN should be multiple of 128bytes, the number of transmit
+ * desscriptors should meet the following condition.
+ * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
+ */
+#define EM_MIN_TXD 80
+#define EM_MAX_TXD_82543 256
+#define EM_MAX_TXD 4096
+#define EM_DEFAULT_TXD EM_MAX_TXD_82543
+
+/*
+ * EM_RXD - Maximum number of receive Descriptors
+ * Valid Range: 80-256 for 82542 and 82543-based adapters
+ * 80-4096 for others
+ * Default Value: 256
+ * This value is the number of receive descriptors allocated by the driver.
+ * Increasing this value allows the driver to buffer more incoming packets.
+ * Each descriptor is 16 bytes. A receive buffer is also allocated for each
+ * descriptor. The maximum MTU size is 16110.
+ * Since TDLEN should be multiple of 128bytes, the number of transmit
+ * desscriptors should meet the following condition.
+ * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
+ */
+#define EM_MIN_RXD 80
+#define EM_MAX_RXD_82543 256
+#define EM_MAX_RXD 4096
+#define EM_DEFAULT_RXD EM_MAX_RXD_82543
+
+/*
+ * EM_TIDV - Transmit Interrupt Delay Value
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 64
+ * This value delays the generation of transmit interrupts in units of
+ * 1.024 microseconds. Transmit interrupt reduction can improve CPU
+ * efficiency if properly tuned for specific network traffic. If the
+ * system is reporting dropped transmits, this value may be set too high
+ * causing the driver to run out of available transmit descriptors.
+ */
+#define EM_TIDV 64
+
+/*
+ * EM_TADV - Transmit Absolute Interrupt Delay Value
+ * (Not valid for 82542/82543/82544)
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 64
+ * This value, in units of 1.024 microseconds, limits the delay in which a
+ * transmit interrupt is generated. Useful only if EM_TIDV is non-zero,
+ * this value ensures that an interrupt is generated after the initial
+ * packet is sent on the wire within the set amount of time. Proper tuning,
+ * along with EM_TIDV, may improve traffic throughput in specific
+ * network conditions.
+ */
+#define EM_TADV 64
+
+/*
+ * EM_RDTR - Receive Interrupt Delay Timer (Packet Timer)
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 0
+ * This value delays the generation of receive interrupts in units of 1.024
+ * microseconds. Receive interrupt reduction can improve CPU efficiency if
+ * properly tuned for specific network traffic. Increasing this value adds
+ * extra latency to frame reception and can end up decreasing the throughput
+ * of TCP traffic. If the system is reporting dropped receives, this value
+ * may be set too high, causing the driver to run out of available receive
+ * descriptors.
+ *
+ * CAUTION: When setting EM_RDTR to a value other than 0, adapters
+ * may hang (stop transmitting) under certain network conditions.
+ * If this occurs a WATCHDOG message is logged in the system
+ * event log. In addition, the controller is automatically reset,
+ * restoring the network connection. To eliminate the potential
+ * for the hang ensure that EM_RDTR is set to 0.
+ */
+#define EM_RDTR 0
+
+/*
+ * Receive Interrupt Absolute Delay Timer (Not valid for 82542/82543/82544)
+ * Valid Range: 0-65535 (0=off)
+ * Default Value: 64
+ * This value, in units of 1.024 microseconds, limits the delay in which a
+ * receive interrupt is generated. Useful only if EM_RDTR is non-zero,
+ * this value ensures that an interrupt is generated after the initial
+ * packet is received within the set amount of time. Proper tuning,
+ * along with EM_RDTR, may improve traffic throughput in specific network
+ * conditions.
+ */
+#define EM_RADV 64
+
+/*
+ * This parameter controls the max duration of transmit watchdog.
+ */
+#define EM_WATCHDOG (10 * hz)
+
+/*
+ * This parameter controls when the driver calls the routine to reclaim
+ * transmit descriptors.
+ */
+#define EM_TX_CLEANUP_THRESHOLD (adapter->num_tx_desc / 8)
+#define EM_TX_OP_THRESHOLD (adapter->num_tx_desc / 32)
+
+/*
+ * This parameter controls whether or not autonegotation is enabled.
+ * 0 - Disable autonegotiation
+ * 1 - Enable autonegotiation
+ */
+#define DO_AUTO_NEG 1
+
+/*
+ * This parameter control whether or not the driver will wait for
+ * autonegotiation to complete.
+ * 1 - Wait for autonegotiation to complete
+ * 0 - Don't wait for autonegotiation to complete
+ */
+#define WAIT_FOR_AUTO_NEG_DEFAULT 0
+
+/* Tunables -- End */
+
+#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+
+#define AUTO_ALL_MODES 0
+
+/* PHY master/slave setting */
+#define EM_MASTER_SLAVE e1000_ms_hw_default
+
+/*
+ * Micellaneous constants
+ */
+#define EM_VENDOR_ID 0x8086
+#define EM_FLASH 0x0014
+
+#define EM_JUMBO_PBA 0x00000028
+#define EM_DEFAULT_PBA 0x00000030
+#define EM_SMARTSPEED_DOWNSHIFT 3
+#define EM_SMARTSPEED_MAX 15
+#define EM_MAX_LOOP 10
+
+#define MAX_NUM_MULTICAST_ADDRESSES 128
+#define PCI_ANY_ID (~0U)
+#define ETHER_ALIGN 2
+#define EM_FC_PAUSE_TIME 0x0680
+#define EM_EEPROM_APME 0x400;
+#define EM_82544_APME 0x0004;
+
+/* Code compatilbility between 6 and 7 */
+#ifndef ETHER_BPF_MTAP
+#define ETHER_BPF_MTAP BPF_MTAP
+#endif
+
+/*
+ * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
+ * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. This will
+ * also optimize cache line size effect. H/W supports up to cache line size 128.
+ */
+#define EM_DBA_ALIGN 128
+
+#define SPEED_MODE_BIT (1<<21) /* On PCI-E MACs only */
+
+/* PCI Config defines */
+#define EM_BAR_TYPE(v) ((v) & EM_BAR_TYPE_MASK)
+#define EM_BAR_TYPE_MASK 0x00000001
+#define EM_BAR_TYPE_MMEM 0x00000000
+#define EM_BAR_TYPE_IO 0x00000001
+#define EM_BAR_TYPE_FLASH 0x0014
+#define EM_BAR_MEM_TYPE(v) ((v) & EM_BAR_MEM_TYPE_MASK)
+#define EM_BAR_MEM_TYPE_MASK 0x00000006
+#define EM_BAR_MEM_TYPE_32BIT 0x00000000
+#define EM_BAR_MEM_TYPE_64BIT 0x00000004
+#define EM_MSIX_BAR 3 /* On 82575 */
+
+/* Defines for printing debug information */
+#define DEBUG_INIT 0
+#define DEBUG_IOCTL 0
+#define DEBUG_HW 0
+
+#define INIT_DEBUGOUT(S) if (DEBUG_INIT) printf(S "\n")
+#define INIT_DEBUGOUT1(S, A) if (DEBUG_INIT) printf(S "\n", A)
+#define INIT_DEBUGOUT2(S, A, B) if (DEBUG_INIT) printf(S "\n", A, B)
+#define IOCTL_DEBUGOUT(S) if (DEBUG_IOCTL) printf(S "\n")
+#define IOCTL_DEBUGOUT1(S, A) if (DEBUG_IOCTL) printf(S "\n", A)
+#define IOCTL_DEBUGOUT2(S, A, B) if (DEBUG_IOCTL) printf(S "\n", A, B)
+#define HW_DEBUGOUT(S) if (DEBUG_HW) printf(S "\n")
+#define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A)
+#define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B)
+
+#define EM_MAX_SCATTER 64
+#define EM_VFTA_SIZE 128
+#define EM_TSO_SIZE (65535 + sizeof(struct ether_vlan_header))
+#define EM_TSO_SEG_SIZE 4096 /* Max dma segment size */
+#define EM_MSIX_MASK 0x01F00000 /* For 82574 use */
+#define ETH_ZLEN 60
+#define ETH_ADDR_LEN 6
+#define CSUM_OFFLOAD 7 /* Offload bits in mbuf flag */
+
+/*
+ * 82574 has a nonstandard address for EIAC
+ * and since its only used in MSIX, and in
+ * the em driver only 82574 uses MSIX we can
+ * solve it just using this define.
+ */
+#define EM_EIAC 0x000DC
+
+/* Used in for 82547 10Mb Half workaround */
+#define EM_PBA_BYTES_SHIFT 0xA
+#define EM_TX_HEAD_ADDR_SHIFT 7
+#define EM_PBA_TX_MASK 0xFFFF0000
+#define EM_FIFO_HDR 0x10
+#define EM_82547_PKT_THRESH 0x3e0
+
+/* Precision Time Sync (IEEE 1588) defines */
+#define ETHERTYPE_IEEE1588 0x88F7
+#define PICOSECS_PER_TICK 20833
+#define TSYNC_PORT 319 /* UDP port for the protocol */
+
+/*
+ * Bus dma allocation structure used by
+ * e1000_dma_malloc and e1000_dma_free.
+ */
+struct em_dma_alloc {
+ bus_addr_t dma_paddr;
+ caddr_t dma_vaddr;
+ bus_dma_tag_t dma_tag;
+ bus_dmamap_t dma_map;
+ bus_dma_segment_t dma_seg;
+ int dma_nseg;
+};
+
+struct adapter;
+
+struct em_int_delay_info {
+ struct adapter *adapter; /* Back-pointer to the adapter struct */
+ int offset; /* Register offset to read/write */
+ int value; /* Current value in usecs */
+};
+
+/* Our adapter structure */
+struct adapter {
+ struct ifnet *ifp;
+#if __FreeBSD_version >= 800000
+ struct buf_ring *br;
+#endif
+ struct e1000_hw hw;
+
+ /* FreeBSD operating-system-specific structures. */
+ struct e1000_osdep osdep;
+ struct device *dev;
+ struct cdev *led_dev;
+
+ struct resource *memory;
+ struct resource *flash;
+ struct resource *msix;
+
+ struct resource *ioport;
+ int io_rid;
+
+ /* 82574 may use 3 int vectors */
+ struct resource *res[3];
+ void *tag[3];
+ int rid[3];
+
+ struct ifmedia media;
+ struct callout timer;
+ struct callout tx_fifo_timer;
+ bool watchdog_check;
+ int watchdog_time;
+ int msi;
+ int if_flags;
+ int max_frame_size;
+ int min_frame_size;
+ struct mtx core_mtx;
+ struct mtx tx_mtx;
+ struct mtx rx_mtx;
+ int em_insert_vlan_header;
+
+ /* Task for FAST handling */
+ struct task link_task;
+ struct task rxtx_task;
+ struct task rx_task;
+ struct task tx_task;
+ struct taskqueue *tq; /* private task queue */
+
+ eventhandler_tag vlan_attach;
+ eventhandler_tag vlan_detach;
+ u32 num_vlans;
+
+ /* Management and WOL features */
+ u32 wol;
+ bool has_manage;
+ bool has_amt;
+
+ /* Multicast array memory */
+ u8 *mta;
+
+ /*
+ ** Shadow VFTA table, this is needed because
+ ** the real vlan filter table gets cleared during
+ ** a soft reset and the driver needs to be able
+ ** to repopulate it.
+ */
+ u32 shadow_vfta[EM_VFTA_SIZE];
+
+ /* Info about the interface */
+ uint8_t link_active;
+ uint16_t link_speed;
+ uint16_t link_duplex;
+ uint32_t smartspeed;
+ uint32_t fc_setting;
+
+ struct em_int_delay_info tx_int_delay;
+ struct em_int_delay_info tx_abs_int_delay;
+ struct em_int_delay_info rx_int_delay;
+ struct em_int_delay_info rx_abs_int_delay;
+
+ /*
+ * Transmit definitions
+ *
+ * We have an array of num_tx_desc descriptors (handled
+ * by the controller) paired with an array of tx_buffers
+ * (at tx_buffer_area).
+ * The index of the next available descriptor is next_avail_tx_desc.
+ * The number of remaining tx_desc is num_tx_desc_avail.
+ */
+ struct em_dma_alloc txdma; /* bus_dma glue for tx desc */
+ struct e1000_tx_desc *tx_desc_base;
+ uint32_t next_avail_tx_desc;
+ uint32_t next_tx_to_clean;
+ volatile uint16_t num_tx_desc_avail;
+ uint16_t num_tx_desc;
+ uint16_t last_hw_offload;
+ uint32_t txd_cmd;
+ struct em_buffer *tx_buffer_area;
+ bus_dma_tag_t txtag; /* dma tag for tx */
+ uint32_t tx_tso; /* last tx was tso */
+
+ /*
+ * Receive definitions
+ *
+ * we have an array of num_rx_desc rx_desc (handled by the
+ * controller), and paired with an array of rx_buffers
+ * (at rx_buffer_area).
+ * The next pair to check on receive is at offset next_rx_desc_to_check
+ */
+ struct em_dma_alloc rxdma; /* bus_dma glue for rx desc */
+ struct e1000_rx_desc *rx_desc_base;
+ uint32_t next_rx_desc_to_check;
+ uint32_t rx_buffer_len;
+ uint16_t num_rx_desc;
+ int rx_process_limit;
+ struct em_buffer *rx_buffer_area;
+ bus_dma_tag_t rxtag;
+ bus_dmamap_t rx_sparemap;
+
+ /*
+ * First/last mbuf pointers, for
+ * collecting multisegment RX packets.
+ */
+ struct mbuf *fmp;
+ struct mbuf *lmp;
+
+ /* Misc stats maintained by the driver */
+ unsigned long dropped_pkts;
+ unsigned long mbuf_alloc_failed;
+ unsigned long mbuf_cluster_failed;
+ unsigned long no_tx_desc_avail1;
+ unsigned long no_tx_desc_avail2;
+ unsigned long no_tx_map_avail;
+ unsigned long no_tx_dma_setup;
+ unsigned long watchdog_events;
+ unsigned long rx_overruns;
+ unsigned long rx_irq;
+ unsigned long tx_irq;
+ unsigned long link_irq;
+
+ /* 82547 workaround */
+ uint32_t tx_fifo_size;
+ uint32_t tx_fifo_head;
+ uint32_t tx_fifo_head_addr;
+ uint64_t tx_fifo_reset_cnt;
+ uint64_t tx_fifo_wrk_cnt;
+ uint32_t tx_head_addr;
+
+ /* For 82544 PCIX Workaround */
+ boolean_t pcix_82544;
+ boolean_t in_detach;
+
+
+ struct e1000_hw_stats stats;
+};
+
+/* ******************************************************************************
+ * vendor_info_array
+ *
+ * This array contains the list of Subvendor/Subdevice IDs on which the driver
+ * should load.
+ *
+ * ******************************************************************************/
+typedef struct _em_vendor_info_t {
+ unsigned int vendor_id;
+ unsigned int device_id;
+ unsigned int subvendor_id;
+ unsigned int subdevice_id;
+ unsigned int index;
+} em_vendor_info_t;
+
+struct em_buffer {
+ int next_eop; /* Index of the desc to watch */
+ struct mbuf *m_head;
+ bus_dmamap_t map; /* bus_dma map for packet */
+};
+
+/* For 82544 PCIX Workaround */
+typedef struct _ADDRESS_LENGTH_PAIR
+{
+ uint64_t address;
+ uint32_t length;
+} ADDRESS_LENGTH_PAIR, *PADDRESS_LENGTH_PAIR;
+
+typedef struct _DESCRIPTOR_PAIR
+{
+ ADDRESS_LENGTH_PAIR descriptor[4];
+ uint32_t elements;
+} DESC_ARRAY, *PDESC_ARRAY;
+
+#define EM_CORE_LOCK_INIT(_sc, _name) \
+ mtx_init(&(_sc)->core_mtx, _name, "EM Core Lock", MTX_DEF)
+#define EM_TX_LOCK_INIT(_sc, _name) \
+ mtx_init(&(_sc)->tx_mtx, _name, "EM TX Lock", MTX_DEF)
+#define EM_RX_LOCK_INIT(_sc, _name) \
+ mtx_init(&(_sc)->rx_mtx, _name, "EM RX Lock", MTX_DEF)
+#define EM_CORE_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->core_mtx)
+#define EM_TX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->tx_mtx)
+#define EM_RX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_mtx)
+#define EM_CORE_LOCK(_sc) mtx_lock(&(_sc)->core_mtx)
+#define EM_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_mtx)
+#define EM_TX_TRYLOCK(_sc) mtx_trylock(&(_sc)->tx_mtx)
+#define EM_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_mtx)
+#define EM_CORE_UNLOCK(_sc) mtx_unlock(&(_sc)->core_mtx)
+#define EM_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_mtx)
+#define EM_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_mtx)
+#define EM_CORE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->core_mtx, MA_OWNED)
+#define EM_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_mtx, MA_OWNED)
+
+#endif /* _LEM_HH_DEFINED_ */